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ABSTRACT 

For calculating antenna directivities, C++ routines implementing the simple generalization of Simpson's 

rule to two dimensions compare well with methods currently available in common symbolic and numerical 

calculation packages. 

 

1. INTRODUCTION 

The directivity D(0,0) of an antenna in the direction (0,0) is given by 
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where (,)2 is the power radiated in the direction (,).1  When the integration in the denominator has to 

be performed numerically, calculation of the directivity is generally time-consuming in comparison with 

other calculations that are commonly required in antenna synthesis. When repeated directivity calculations 

are required, as in optimization-based array synthesis procedures that take directivity into account, they can 

constitute the rate-limiting step of the overall computational process. Although the computational burden 

can often be alleviated by applying symmetry considerations (for example, for arrays of elements that are 

isotropic or have a common element factor that can be ignored, for which the integral reduces to a linear 

combination of the element excitations [1]; or for line antennas and others with rotational symmetry, for 

which the double integral reduces to a single integral), in many cases this is not possible – notably when 

                                                      
1 For planar antennas the range of integration in the denominator is limited to the upper hemisphere, (0,0)  (,)  (/2,2). 
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(,) is known only through a set of field measurements. Approximations are available that can be applied 

in certain situations [2-4], but they are only approximations, and are by no means universally applicable; 

when they are not applicable, it is likely that most antenna designers nowadays resort to the integration 

routines of widely used mathematics packages such as MATLAB [5], Mathematica [6] and IMSL [7], or 

incorporate well-known numerical integration algorithms [8] in ad hoc programs written in languages such 

as C or C++. In this paper we present a C++ routine for directivity calculation that is based on the 

generalization of Simpson's rule to two dimensions, and show that this and an alternative C++ 2D Simpson 

method both compare well with other approaches [8]. As far as the authors know, this method has not, 

surprisingly (and probably due to its ease), been discussed before in the technical literature, despite some 

rough publications in certain web pages.  

 

2. THE TWO-DIMENSIONAL SIMPSON'S RULE 

Let us first recall the one-dimensional Simpson's rule. To approximate a definite integral ( ) 
b

a
I f x dx , we 

first decompose it as a sum of integrals over smaller equal intervals, 
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where x0 = a and xN = b, and then apply a quadrature formula to each In, i.e. we approximate In as a linear 

combination ,
0
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I w f x of the values of f at certain points xn,k in [xn,xn+1]. Simpson's rule is a 

quadrature formula that uses three points (xn,0 = xn, xn,1 = xn + ½ = ½(xn+xn+1), and xn,2 = xn +  = xn+1, 

where  = xn+1– xn) and requires that the approximation actually be exact for polynomials of order 0, 1 and 

2. When applied, in particular, to the polynomials f(x) = 1, f(x) = x and f(x) = x2, this requirement leads to 

the system of equations 
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which can be solved to afford w0 = w2 = /6 and w1 = 4/6. Thus: 
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where  = (b–a)/N and {q0,q1,q2} = {1,4,1}, with an error that can be shown to be of the order of 4. 

Finally, taking into account that xn,2 = xn+1,0 = xn+1, eq.4 becomes 
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where ui = x0 + i/2 (i = 0,...,2N) and the Qi follow the pattern 1,4,2,4,2,....,2,4,2,4,1, i.e. Q0 = Q2N = 1, 

Qi = 2 if i is even (i  0,2N), Qi = 4 if i is odd.  

 

The generalization of the above derivation to integrals over rectangular areas in two dimensions is 

straightforward. To approximate a definite integral ( , )  
b d

a c
J f x y dy dx , we first decompose it as a sum 

over equal rectangles [xn,xn+1][ym,ym+1], 
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where x0 = a, xN = b, y0 = c and yM = d; and we then apply to each Jnm a (3  3)-point quadrature formula in 

which the points are defined in each direction as for the one-dimensional Simpson's rule, and which we 

require to be exact for all monomials f(x,y) = xrys (r,s = 0,1,2), This requirement leads to a system of nine 

linear equations of the form 
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that can be solved to yield the solution: 

, ,(1/36)  k l x y k lw q  (8) 
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with an error that can be shown to be of the order of 4 4  x y ; and when it is taken into account that 

xn,2 = xn+1,0 = xn+1 and ym,2 = ym+1,0 = ym+1, equation 9 becomes 



4 

  
2 2

,

0 0

1/36 ( , )
 

   
N M

x y i j i j

i j

J Q f u v  (10) 

where ui=x0+ix/2, vj=y0+jy/2 and the Qi,j follow the onedimensional Simpson pattern along the 

boundaries of the integration domain (i. e. if i is 0 or 2N, or j is 0 or 2M) and in the interior of the domain 

Qi,j=Q0,jQi,0, as in the following scheme: 

Qij  i=0 i=1 i=2 i=3 · · · i=2N-3 i=2N-2 i=2N-1 i=2N 

j=0 1 4 2 4 · · · 4 2 4 1 

j=1 4 16 8 16 · · · 16 8 16 4 

j=2 2 8 4 8 · · · 8 4 8 2 

j=3 4 16 8 16 · · · 16 8 16 4 

· · · · · · · · · · · · 

· · · · · · · · · · · · 

· · · · · · · · · · · · 

j=2M-3 4 16 8 16 · · · 16 8 16 4 

j=2M-2 2 8 4 8 · · · 8 4 8 2 

j=2M-1 4 16 8 16 · · · 16 8 16 4 

j=2M 1 4 2 4 · · · 4 2 4 1 

 

The C++ routine dintsimpit listed in the Appendix integrates a function pointed to by funcp over the 

rectangular domain [ix,fx][iy,fy] by repeated application of eq.10 (with M = N) to progressively finer 

subdivisions of the domain, halting when a convergence criterion is satisfied or a user-specified maximum 

number of iterations have been performed. 

 

3. APPLICATION AND COMPARISON WITH OTHER METHODS 

To test dintsimpit we compared its performance with those of some other commonly used two-

dimensional integration tools, namely the MATLAB routine dblquad [5], the Mathematica routine 

NIntegrate [6], the IMSL Fortran routine TWODQ [7], and dqsimp, the nested application (for two-

dimensional integration) of the C++ version of the one-dimensional algorithm qsimp of Numerical Recipes 

[8]. We used each method to calculate the denominator of equation 1 for a linear array of 10 isotropic 

elements spaced /2 apart on the z axis, for which [2] 
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Although the symmetry of this array leads to the desired integral being easily calculable as 

10  4 = 125.6637, it nevertheless serves just as well as any other antenna for initial comparison of the 
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efficiencies of the various two-dimensional integration routines. In running NIntegrate, an accuracy of 

three decimal places was required (AccuracyGoal = 3), and run times were measured using the function 

Timing [6]; dblquad was used with the error tolerance parameter set to 103, and timed using the 

functions tic and toc [5]; and the other routines were terminated when the difference between the value of 

the integral obtained in successive iterations was less than 103, and were timed using ad hoc timing 

routines. In all cases, (,) was calculated directly using equation 11, without any attempt to convert this 

expression to a computationally optimal form. All calculations were performed on a PC with an Athlon XP 

1800 processor running at 1.533 GHz.  

Table 1 lists the time taken by each method to calculate the desired integral 200 times. As expected, the 

MATLAB routine is by far the slowest (in spite of not achieving the desired accuracy) because it is run via 

an interpreter. The fact that the professional package routines NIntegrate and TWODQ are slightly slower 

than the C++ routines may be attributed to the former having been designed for integration of general 

functions over domains that are not necessarily rectangular, so that they presumably employ methods that 

are not necessarily the most efficient for integrating an antenna power pattern over a rectangle.  

ROUTINE TIME (S) RESULT 

dqsimp (C++) 0.75 125.664 

dintsimpit (C++) 1.27 125.664 

TWODQ (IMSL Fortran) 1.45 125.664 

NIntegrate (Mathematica) 2.21 125.664 

dblquad (MATLAB) 13.11  125.667 
 

Table 1. Times taken by various routines to calculate the denominator  

of equation 1 two hundred times for a 10-element linear array antenna. 

 

As a more exhaustive test, the two C++ Simpson routines were also used to calculate, with an absolute 

precision of 0.1, the directivities at (/4,/4) of a series of planar arrays of nx  ny elements (ny = nx + 5), 

each with element factor fe(,) = cos2, that are laid out on rectangular grids with between-element spacing 

of /2 in both the x and y directions, the excitation Imn of the (m,n)-th element being ImIn, where Im and In are 

respectively the excitations of the m-th and n-th elements of nx- and ny-element linear arrays generating 

25 dB Chebyshev patterns with their main beams aimed by introduction of a phase shift of /4 between 

successive elements. A routine to do this using dintsimpit is listed in section (b) of the Appendix. Fig.1 

shows that for arrays of more than about 2000 elements dintsimpit systematically performed better than 

dqsimp; although the cause of this is not totally clear, it seems likely to be due to the precision required of 
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the intermediate one-dimensional integrations performed by dqsimp not being properly matched to the 

global precision requirement. The routine dintsimpit of course uses much more memory than dqsimp, 

but this is not likely to be a problem with today's computers. 

 

4. CONCLUSIONS AND FINAL REMARKS 

The calculation of directivities can become the rate-limiting step in antenna design procedures. The C++ 

integration routines tested in this study, both of which implement the two-dimensional Simpson's rule, 

appears to be for directivity calculation, at least, as fast as the general-purpose routines included in the 

commercial packages IMSL, Mathematica and MATLAB.   

In practice, the repeated calculation of directivities in an antenna design optimization procedure can be 

speeded up even more by by-passing the progressive subdivision of the domain of integration that is 

normally required in an integration routine to ensure that a sufficiently good approximation to the desired 

integral is obtained. The routine dintsimpit (or dqsimp) can be used to calculate directivity at a single 

arbitrary point of the search space, and the number of divisions with which this calculation converges can 

then be forced during the whole of the optimization proper by setting nbdivmin appropriately and niter 

to 1, which considerably reduces computational overheads. For example, when the calculation for which 

results are shown in Table 1 was performed using dintsimpit with niter = 1 and nbdivmin = 21, the 

time taken for the 200 repetitions was 0.31 s. Once a near-optimum solution has been obtained in this way, 

the solution can be refined using the full resources of dintsimpit. 
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APPENDIX 

a) An annotated listing of the 2D Simpson's rule integration routine dintsimpit.  

double dintsimpit(double (*funcp)(double,double), double ix, double fx,  

  double iy, double fy,int nbdivmin , int niter , double precision) 

{ 

/********************************************************************** 

 funcp = pointer to the function to be integrated (the integrand) 

 x,y = arguments of the integrand 

 ix,iy,fx,fy = initial and final values defining the domain of integration 

 niter = max. no. of iterations (step-halvings) that algorithm will attempt  

 precision = required absolute precision  

 nbdivmin = number of "big" divisions of the domain of integration 

            (N in eq.10) in the first iteration 

 nsdivmin = number of "small" divisions of the domain of integration 

            (2N in eq.10) in the first iteration 

 nsdivmax = number of "small" divisions in the niter-th iteration 

 relscale = current number of small divisions divided by nsdivmin 

 n_points_max = maximum number of points in each dimension 

 grid_size = n_points_max * n_points_max) 

 minstep_x, minstep_y = size of smallest "small" divisions in each dimension  

 dx, dy = size of current "small" divisions in each dimension 

 f_val = vector storing calculated values of the integrand  

 flags = boolean vector flagging points at which integrand has been calculated 

 index = place in the vectors f_val and flags  

 edge_x, edge_y = flags indicating points on the boundary of the domain 

 old_s, new_s = old and new values of the integral 

 sum = partial sum accumulated in each iteration 

 a = vector of constants used for speed 

 i,j,k,m,n = counters 

 coeff = coefficient by which the value of the integrand at the current point 

    is multiplied (see scheme in Section 2 above) 

**********************************************************************/ 

int index,i,j,k,m,n,relscale =(int)pow(2,niter-1),nsdivmin=2*nbdivmin, 

nsdivmax=nbdivmin*(int)pow(2,niter); 

int n_points_max=nsdivmax+1, grid_size=n_points_max*n_points_max; 

double coeff, sum, old_s, new_s, *f_val, a[]={4,2}; 

double x,y,dx,dy, minstep_x=(fx-ix)/(double)nsdivmax,  

 minstep_y=(fy-iy)/(double)nsdivmax; 

bool *flags, edge_x, edge_y; 

f_val=new double[grid_size]; flags=new bool[grid_size]; 

for(i=0;i<grid_size;i++) { f_val[i]=0; flags[i]=0;} 

 for(i=0;i<niter;i++) 

 { 

  // dx, dy and relscale cannot be zero: 

 

  if(relscale==0) relscale=1; 

  dx=minstep_x*(double)relscale; 

  dy=minstep_y*(double)relscale; 

   

  // Initialize sum: 

 

  sum=0; 

  for(j=0,x=ix,m=0;j<n_points_max;j+=relscale,m++,x+=dx) 

  { 

   edge_x=(j==0 || j==nsdivmax); 

   for(k=0,y=iy,n=0;k<n_points_max;k+=relscale,n++,y+=dy) 

   { 

    edge_y=(k==0 || k==nsdivmax); 

    index=j+k*n_points_max; 

 

   // If the point is a vertex, the coefficient is 1: 
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    if(edge_x && edge_y) coeff=1;  

 

   // Otherwise, the value of coeff depends on whether the point  

   // lies on an edge and on the parities of m and n:  

 

 else       

 coeff=(((double)(m%2)+1)*((double)(n%2)+1))* 

     a[(int)(edge_x || edge_y)]; 

 

   // If the integrand has not already been calculated  

   // for the current point, calculate it now:  

 

    if(flags[index]==0) 

    {  

     f_val[index]=funcp(x,y);  

     flags[index]=1; 

    } 

 

    // Now add the current term to the sum: 

 

    sum+=coeff*f_val[index]; 

   } 

  } 

   

  // In the first iteration, just set old_s and new_s  

  // and reduce relscale: 

 

  if(i==0) { old_s=new_s=sum*dx*dy/9.00; relscale/=2; continue; }  

 

  // Otherwise, update old_s and new_s ... 

 

  else { old_s=new_s; new_s=sum*dx*dy/9.00; } 

   

  // ... test the halt criterion ...  

 

  if(fabs(old_s-new_s)<=precision)  

  { 

   delete[] f_val,flags;  

   return new_s; 

  } 

 

  // ... and reduce relscale if the desired precision  

  // has not yet been achieved 

 

  relscale/=2; 

 } 

  

 // If at this point we are still in dintsimpit, we clear memory; ...  

  

 delete[] f_val,flags; 

 

 // ... if we have not forced a single-iteration calculation 

 // we announce that the algorithm has failed to converge; ... 

  

 if(niter!=1) 

 { 

 cout << "Subroutine dintsimpit has not converged to the required"; 

 cout << " precision within the allowed number of iterations." << endl; 

 } 

 

 //... and we return the best value we have been able to obtain:  

 

 return new_s; 

} 
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b)  A routine that uses dintsimpit to calculate the directivity of a planar antenna in the direction  

(/4,/4). The power radiated in any direction (th,ph) is given by the function power, and the 

integrand in the denominator of equation 1 is provided by the function integrand. The call to 

dintsimpit specifies that the denominator of equation 1 be calculated with a precision of 0.001 in at 

most 3 iterations, the domain of integration having initially been divided into 11 "big" divisions in each 

direction (N = M = 11 in equation 10). 

     

#include <math.h> 

#include <iostream.h> 

#define PI 3.1415926535897932 

double power(double theta, double phi); 

double integrand(double theta, double phi);  

double dintsimpit(double (*funcp)(double,double), double ix, double fx, 

 double iy, double fy,int nbdivmin , int niter , double precision); 

int main(void) 

{ 

 double th=PI/4, ph=PI/4; 

 double denom=dintsimpit(integrand,0,PI/2,0,2*PI,11,3,1E-3); 

 if(denom<=0)  

 { 

  cout << "Problems with denominator. Abnormal termination" << endl; 

  return 0; 

 } 

  cout << "Directivity =" << 4*PI*power(th,ph)/denom << endl; 

 return 0; 

} 

double power(double theta, double phi) 

{ 

 // CODE FOR power TO BE INSERTED HERE 

} 

double integrand(double theta, double phi) 

{ 

 return power(theta,phi)*sin(theta); 

} 

double dintsimpit(double (*funcp)(double,double), double ix, double fx, 

 double iy, double fy,int nbdivmin , int niter , double precision) 

{ 

 // CODE SHOWN IN SECTION (a) OF THIS APPENDIX TO BE INSERTED HERE 

} 
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Figure 1. Times taken to calculate the directivities of {nx  (nx + 5)}-element arrays in a given direction using dintsimpit and dqsimp. 
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