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ABSTRACT 

As expressed in earlier works, if filled nulls are required in a power pattern generated by a 

Taylor line source, their corresponding roots must be complex. This leads to a multiplicity of 

solutions emerged from the fact that the power pattern keeps unaltered if the signs of the 

imaginary part of the roots are changed. In view of this attribute, the selection of the most 

favourable roots set –in terms of variability of amplitude excitation distribution, for example– is 

allowed. It is shown in this paper that, if the pattern is symmetric, a further consideration, never 

reported so far, can increase the number of available solutions.  

 

1. INTRODUCTION 

It is well known that antenna designers are allowed to control the sidelobe topography of sum 

patterns generated by line sources through the proper choice of the roots of Taylor distributions 

[1-2]. That control can be extended to every single side lobe, even for asymmetric topographies 

[3]. If patterns with filled nulls –as, for example, shaped beams– are needed, they can be 

generated by making to correspond every filled null with its appropriate complex root in the 

Taylor’s formula [4]. The space factor that summarizes all the mentioned cases is expressed as: 
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where u = (2a/)cos, with  measured from the endfire of the antenna of length 2a. The 

subscripts L and R identify the parameters on the left and on the right sides of the pattern 

whose  L Rn n 2  sidelobes are controlled by the proper choice of the real part of the zn,L and 

zn,R complex roots1. The imaginary parts vn,L and vn,R can control the level of every filled null. A 

remarkable property of eq. (1) is that, once established a set of roots {zn,L, zn,R}, the power 

pattern so obtained will keep unchanged if any of the values that belongs to the set are replaced 

by its conjugate complex. Nevertheless, this change of sign in any of the imaginary parts of the 

                                                 

1 The un,L and un,R indicate the positions of the zeros of the function F(u), but it is perfectly known that these values 

also determine a specific sidelobe topography.  
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roots will alter both the phase of the space factor –mostly being of no account in antenna 

design, which constitutes the main advantage of the method–, and the continuous aperture 

distribution, whose expression is given by: 
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Here,   [–a,a] is the variable along the line source.  A subtle examination of such a roots signs 

property reveals, on the one side, the number of solutions (emerged from the choices of signs 

combinations) that lead to the same power pattern, and, on the other side, the main 

characteristics of g(). Moreover, if the power pattern is symmetric, the number of available 

solutions increases, depending this on how the roots are grouped. This symmetry in addition to 

further necessary conditions are analysed in next section.  

 

2. ANALYSIS 

We initiate our discussion by establishing  L Rn n n  in (1). Let us call Z = {zn} = {(un, vn)}, (with 

n[1, n 1]),  the set of roots obtained by a proper synthesis technique (see, for example, [4]) 

that, when replaced into both products of (1) –called, from here on, and without any risk of 

confusion, L and R brackets–, produces a certain symmetrical power pattern. The choice of 

such symmetry will be justified in paragraph [2.2]. vn is different from zero only if a filled null is 

needed at the angular position determined by un. Let M  n 1 be the number of such filled 

nulls, counted on one side of the pattern. The possibility of changing the signs of the roots 

provides 22M distinct solutions, concerning aperture distributions (including those cases in which 

one distribution turns out to be a mirror image of any other). The analysis reported up to now in 

previous papers [4] is revealed in item [2.1], whereas the two remainders describe the 

unreported ones, but inspired by an analogous work [5]:  

 

[2.1]  The replacement of Z  into L and R brackets implies un,L = un,R = un, and  vn,L =  vn,R = 

 vn, and determines 2M different solutions, provided by the choice of +vn or –vn is 

available whenever a certain null is filled at un. The so obtained aperture distributions are 

complex and symmetric, and the designer is free to select any of them by applying a 

specific criterion, such as minimal variability of amplitude distribution, reduced edge 

brightening, maximum absolute value of slope, etc.  

[2.2]  The substitution of Z  into R and Z* into L (the asterisk indicates conjugate complex), 

determines, again, 2M solutions, provided the combination of signs is still available, but in 

this case the vn on the left and on the right sides are compelled to be opposite. This 

means un,L = un,R = un, and  vn,L = vn,R = vn, giving, as a result, a g() real-valued (with 

a phase aperture distribution piecewise constant, oscillating between 0 or 180º) and 

asymmetric. This possibility, not mentioned in the earlier literature, arises –as in [2.3]– due 

to the symmetry of the power pattern, and provided by the roots conditions. As in the 



previous –and next– points, the designer is free to choose the most convenient aperture 

distribution. 

[2.3]  The remainder cases offer 22M-2×2M = 22M-2M+1 new solutions, all of them representing 

complex, but this time asymmetric, aperture distributions. No further restrictions are 

imposed to the vnL and vnR, except that, obviously, they must not fulfil the abovementioned 

requirements.  

 

3. EXAMPLE 

By applying Ares-Elliott method [4] we synthesized, as an example given to show the scope of 

the method, a flat topped beam generated by an antenna of a = 5, setting M = n 1 = 8, 

establishing four sidelobes at 0 dB (normalized power), and all the remainders under control at 

20 dB. To provide the coverage zone, two nulls on either side of the central lobe were raised to 

1 dB (which implies 0.5 dB of ripple), whereas the remainders were kept to 25 dB. The 

pattern so obtained, shown in figure 1 (in which are listed the roots of the set Z), provides 22x8 = 

65536 different cases. From those, we show six solutions, as regards these (arbitrarily chosen) 

criterions: in the case of complex aperture distributions (symmetric [2.1] and asymmetric [2.2]), 

we calculated the dynamic range ratio ( = |gmax|/|gmin|) and, in the case of real aperture 

distributions ([2.2]) we computed the maximum slope of the amplitude –being the slope the 

absolute quantity of the numerical derivative of the normalized2 g(), and calculated within the 

range [-a,a]–. Figure 2 shows the better (at the top) and worst solutions of the set. As can be 

seen, the minimum (1.91)  correspond to the complex symmetric (CS) solution, whereas the 

maximum correspond to the complex asymmetric (CA) one (1901.00). The slope of the real 

asymmetric (RA) cases is bounded between 0.72 and 1.65.  Plots of phase distributions were 

omitted for the sake of brevity. 

 

4. FINAL REMARKS 

By exploiting the characteristics of symmetrical power patterns generated by Taylor line sources 

it is possible to obtain 22M different solutions if M filled nulls are needed on either side of the 

main lobe. Previous works reported the 2M cases that correspond to symmetric complex 

aperture distributions, which are useful, by proper sampling, for corporate-fed arrays. In this 

work we show that 22M-2M further asymmetric solutions can be obtained (2M corresponding to 

real apertures, the remainders leading to complex ones), mainly useful in end-fed arrays. 

Symmetric real apertures are available only if each of the complex roots of F(u) are 

accompanied by its complex conjugate, as seen in [6], but those roots sets do not match the 

ones include here. Besides, the main beam of the power pattern obtained in that manner is 

considerably broadened, if the same number of filled nulls is required.  

                                                 

2 The aperture distribution g was normalized to its maximum within the range [-a,a]. 
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CAPTIONS OF FIGURES 

 

FIGURE 1. Symmetric flat topped beam obtained by controlling n 1 = 8 roots on either side of 

the main lobe. Note that the last sidelobes were not controlled (as well known, up to eighths 

lobes the topography will decay as a uniform aperture distribution). 

 

 

FIGURE 2. Top: Amplitude distributions that correspond to the most favourable solutions that 

generate the power pattern given in figure 1. Bottom: As mentioned for top, but showing the 

worst cases. It is understood the curves that correspond to RA distributions going below zero 

represent a constant phase of 180º, whereas the part going up to zero correspond to 0º, or 

vice–versa. 
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Figure 2 


