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ABSTRACT 

It is shown in this paper that when artificial neural networks are extended to be complex-valued, 

they can be incorporated as a very powerful and effective tool in the design and implementation 

of antenna arrays. 

 

1. INTRODUCTION 

Artificial neural networks (ANN) have demonstrated to be a very useful tool in a wide range of 

scientific, industrial and business applications [1]. In antenna implementations, they have found 

several branches to deal with, as, for example [1,2]: in antenna arrays, for signal –and power– 

control; in radar, for targets detection and recognition; in microwave devices, for design and 

optimization; and even in computational electromagnetics, for reducing the number of 

operations during certain calculations. In antenna array design, some works due to 

Christodoulou, Southall, O’Donnell, and Mailloux (some of them with collaborators) are of 

concern [2, 5]. The tools presented by those authors are limited to work with real-valued ANN, 

which, in principle, are the ones initially defined by the pioneers of that field (the first work on 

ANN is attributed to McCullough and Pitts, in a paper dated on 1943) [1]. Nevertheless, some 

authors have realized that, when dealing with signal processing or analogous mathematical 

subjects, it would be desirable for the ANN to be complex-valued [5,6]. As seen in next sections, 

CVANNs (Complex-Valued ANNs) have simpler architectures; consequently, their computations 

are faster. Besides, the configuration of the ANNs so considered become easier to understand 

from a point of view based on mathematical analogies. In what follows, it is assumed that the 

reader has some familiarity with the theory of antennas, but little less knowledge about the 

ANNs.  
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2. DEFINITIONS AND APPLICATIONS. 

2.1 ARTIFICIAL NEURAL NETWORKS.  

Even definitions of ANN are encountered in any specialized book [1,2], it is presented here a 

brief look about them in order to introduce rapidly some concepts and see clearly their straight 

applications to array antennas design. Figure 1 depicts one of the most used architectures of an 

ANN. It consists of:  

a) A set of variables (input vector) {xp}  R, p  {0, 1, 2, …P} (R is the set of real numbers).  

b) A set of weights (weight matrix) {wqp}   R,  q  {0, 1, 2, …Q},  p  {0, 1, 2, …P}.  

c) A set of Q+1 neurons (a layer). In the architecture shown in figure 1 (full connected and 

feedforward ANN [1]), the neuron q receives the sum of all the P+1 inputs, whose values 

have been previously multiplied by their corresponding weights, to obtain 




P

q qp pp 0
v w x .  

d) A set of transfer functions q(.)  R. Every q implements some calculation on vq. They 

are usually taken to be the same for all neurons in a layer.  

e) A set of Q+1 outputs (output vector), whose values are given by the abovementioned 

operation {yp}={q(vp)}  R. 

The outputs {yp} can be used as inputs of another neurons layer, performing a multilayer ANN. 

In this work a single-layered ANN will suffice. A survey for architectures of ANN, and the 

properties of their variables and transfer functions could be found in [1]. As seen, all the 

aforementioned operations constitute a mapping 
+1 +1P QR R  through  

 
 

P

p q qp pp 0
y w x . (1) 

The utility of the ANN is based on its ability to perform a desired mapping from certain set of 

input vectors to certain set of output vectors through the proper selection of q(.) and wqp. The 

choice of q is, more or less, arbitrary, and specified by the problem the designer has in hands. 

The selection of the wqp, nevertheless, can be more systematically analyzed, and they are 

usually calculated through certain algorithm, prior to the operation of the neural network, called 

“training process (TP)” [1,2]. In short, the training process consists in the adjustment of the 

weight matrix wqp values (such an adjustment being based on a specified “learning rule”) 

through a sequential presentation to the ANN of certain number of R input-output vectors 

{{xp}r,{dq}r}, so that the Euclidean distance between {yq}r and {dq}r  r  [1,2,..R] is minimized. 

After the wqp have been selected, and if the TP was successful,  the ANN is ready to respond 



correctly, not only to the training set, but to any other related input vector, not considered during 

the TP1.  

If q are taken to be the identity function q(vp)=vp, eq. (1) can be written in matrix form as 

    


  
P

p qp pp 0
y w x Y W X  (2) 

The utility of eq. (2) will be apparent in next sections. 

 

2.2 FIELD OF AN ARRAY OF ISOTROPIC ELEMENTS. 

With no loss of generality, let us consider the far-field radiation expression of a linear array of 

N+1 isotropic elements with excitation distribution {In}  C  (the set of complex numbers) and 

equispaced along the z-axis a distance d apart, n  {0,1, …N}. In frequency domain, its 

expression, often called array factor, is given by2  

N jnu

nn 0
F(u) e I


 . (3) 

with u=(2/)d cosbeing the wavelength and   (0,180º) measured from the z-axis.  

 

2.3 UTILITY CASES. 

 2.3.1 ARRAY PATTERN ANALYSIS 

 Once d, N and  have been fixed, we can obtain, by discretizing eq. (3) to M+1 

measurement points Fm(um), m  {0,1,2,…M}, the following matrix expression: 

m
N jnu

m nn 0
F e I [F] [e][I]


   . (4) 

It can be seen that equations (2) and (4) are equivalent if the ANN is allowed to be complex 

valued, and then identifying      and[F]; [e] [I]  Y W X . In this case the analogy is trivial: 

the weight matrix is directly obtained from [e] (no training process is required), and, once fixed 

the measurement points M+1Q+1, the ANN will respond correctly to the corresponding 

excitations distributions [I] of a linear array with N+1P+1 elements, calculating the M+1 values 

of the array factor Fm at um.  

                                                 

1 The training set could be obtained, for example, by some numerical calculation. Usually, if some inverse 

problem is difficult to solve analytically, but the direct one is known, the input-output vectors pairs (IOVP) 

are generated directly, and then presented inversely to the ANN. The (IOVP) can be also obtained 

through physical measurement, if the ANN is required to find some empirical relationship between them. 

 

2 For the purposes given here, the generalization to more complicated array expressions (near field, non-

isotropic elements, planar or conformal arrays, and so on) is straightforward. 



 2.3.2 ARRAY PATTERN SYNTHESIS AND DIAGNOSTICS. 

 If M+1=N+1, and [e] is invertible, the problem of finding a certain excitation distribution 

when field measurements are given is solved directly from (4) as 
1[I] [e] [F]  (d, N and  are 

considered to be fixed, as before). Nevertheless, it is usual in antenna measurements to have 

M>N, so (4) becomes an overdetermined system, and its solution can be found by several 

ways, one of them being by taking the Moore-Penrose pseudoinverse of [e], denoted as [e], 

(see, for example, [7]). Now, identifying      and[I]; [e] [F]  Y W X , the CVANN can be 

used to find the corresponding excitation distribution by taking as vector inputs the field 

measurements, or field calculations. As in 2.3.1, no TP is needed. In this manner, the CVANN 

will be available for pattern synthesis, by giving certain desired field distribution as input vector 

to obtain the required excitation distribution, or for array diagnostics, since if the field values that 

are presented as input vector belong to a certain, previously specified, excitation distribution, 

the CVANN will be able to find it (or will give an approximate solution, which is optimum in the 

mean-square-error sense [7]), even if the arrays have some faulty elements (which constitutes 

another application of this tool). A straight comparison of this CVANN architecture with those 

given in earlier works for similar purposes (Radial Basis Function architecture in ANNs prepared 

to estimate the direction of signal arrival, or beamforming for interference cancellation, for 

example, applied to array antennas [2,3]) reveals the simplification obtained when using 

CVANN.  

 

3. FINAL REMARKS 

It is understood that the analogies given in 2.3.1 and 2.3.2 are readily –and clearly– seen, and it 

can be thought as the authors are assigning two names to the same thing. In some sense, this 

is true: once established the equations (2) and (4) –and their counterparts when using the 

inverse problem established in 2.3.2–, by different ways and with different significances, the 

direct utility of the CVANN in array antennas design and implementation is encountered rapidly. 

But,  

a) More important than those analogies, is the view that ANNs can be naturally 

incorporated to array antennas design by allowing them to be complex-valued. In some 

other antenna problem, in which any of the analogies shown here can not be applied, 

surely some training process and a different CVANN architecture will be needed. In that 

case, the ideas expressed in [5] or [6] will probably be of help.  

b) One of the advantages of the ANNs is that they can be easily implemented as hardware 

devices. It is seen that the allowance of making the ANN be complex-valued has no 

severe modifications in its physical structure, but they will probably be easier to construct 

due to the simplification of their architectures. Such simplifications will make them very 

appropriate for real-time operations.   
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Figure 1. Structure of a single-layered artificial neural network. 

 

 


