CAUSAS DEL CAMBIO ESTACIONAL EN LA DIETA DE LA NUTRIA EUROPEA EN UN SISTEMA CERRADO PARA LAS PRESAS

CAUSES OF THE SEASONAL CHANGE IN DIET OF THE EUROPEAN OTTER IN A CLOSED SYSTEM FOR PREY

Carlos Veloy Domínguez
Trabajo Fin de Grado Curso 2015/2016
Director: Dr. Alejandro Martínez Abraín
Índice

Resumen.. 4
Abstract .. 4
Introducción .. 6
Material y métodos .. 8
Área de estudio ... 8
Trabajo de campo y análisis de los excrementos ... 8
Tamaño de las presas consumidas ... 10
Análisis estadístico ... 10
Resultados ... 12
Estacionalidad y frecuencias de presas ... 12
Buceo y manejo de las presas .. 13
Tamaño y peso medio de las presas .. 15
Cálculo de la relación beneficio/coste .. 17
Discusión ... 17
Factores abióticos .. 17
Factores bióticos ... 18
Conclusiones ... 19
Conclusions .. 19
Agradecimientos .. 20
Bibliografía ... 20
APÉNDICE I .. 22
Resumen

Examinamos una población de nutrias y su alimentación en un medio artificial (un embalse del NW de la Península Ibérica) encontrando diferencias estacionales en el tipo de presas consumidas estudiando sus excrementos. A pesar de que durante todo el año la presa más prevalente fue el cangrejo rojo americano (*Procambarus clarkii*), el porcentaje de ciprínidos (carnines *Carassius auratus*) en la dieta aumentó en el período otoño-invierno (del 15% a 38%). Para establecer las causas de esta estacionalidad determinamos la cantidad de energía que proporciona una presa media de cada tipo (cangrejo y carpín) y el tiempo necesario para su captura y procesado. Aplicando la “Optimal Foraging Theory” concluimos que los crustáceos son una presa menos rentable que los ciprínidos y por tanto que su alta frecuencia en la dieta de las nutrias se debe a la menor disponibilidad de peces, especialmente en el período primavera-verano. La baja disponibilidad se debe a la competición inter específica con otros componentes del gremio de grandes piscívoros del embalse como el cormorán grande (*Phalacrocorax carbo*) y al ascenso del volumen de agua almacenado que dificulta el buceo y pesca de las nutrias en el fondo del embalse.

Palabras clave: Nutria europea, optimal foraging theory, estacionalidad, embalse, cangrejo rojo americano, ciprínidos, competición inter específica, nivel de las aguas.

Abstract

We studied the foraging ecology of European otters in an artificial habitat (a reservoir located in the NW of the Iberian Peninsula) and found seasonal differences in the type of prey consumed after analyzing their spraints. Although the most prevalent prey item during the whole year was the red swamp crayfish (*Procambarus clarkii*), cyprinids (goldfish *Carassius auratus*) percentual prevalence raised during the autumn-winter period (from 15% to 38%). To establish why this seasonality occurs we determined the amount of energy that a mean prey (crayfish and carps) provide and the time needed to both capture and handle each prey type. Applying the optimal foraging theory, we conclude that crustaceans are a less profitable prey compared to cyprinids and thus that their high frequency in otter’s diet is caused mostly by a lower availability of fish, especially during the spring-summer period. Low availability of fish during fall-winter is due to competition with other intra-guild species such as wintering great cormorants (*Phalacrocorax carbo*), and also due to the increase in water volume stored in the reservoir during the drier months that makes it more difficult for otters to dive and fish in the bottom.

Keywords: European otter, optimal foraging theory, seasonality, reservoir, red swamp crayfish, cyprinid fish, interspecific competition, water level.
Introducción

La nutria europea (*Lutra lutra*) siempre se ha considerado un animal típico de cursos altos de río cuando realmente es un ejemplo de especie desplazada por la actividad humana de aquellos ambientes donde realmente prosperaba, los cursos bajos de los ríos, caracterizados por ser tramos lentos y con una gran abundancia y diversidad de presas (Martínez-Abraín & Jiménez, 2016). La construcción de embalses (como el de Cecebre, Fig. 1) supuso en su momento un impacto negativo para muchos organismos, incluidas las nutrias, si bien esta especie con el tiempo acabó colonizándolos y empleándolos con un sustituto de sus medios originales.

De estos medios lênticos artificiales cabe destacar la importancia de ser, también, medios cerrados para las presas. Las especies migratorias de peces (anguilas, lampreas, reos, salmones) no tienen acceso al embalse desde su creación y por tanto las presas de las nutrias cierran sus ciclos vitales en el interior del embalse o aprovechando el río aguas arriba del embalse o pequeños arroyos que desemboquen en él.

Por otro lado se ha observado una cierta variación a lo largo del año en la dieta de estos carnívoros mustélidos cuando ocupan embalses. En exploraciones previas a este estudio se observó que en el período de primavera-verano, la inmensa mayoría de los excrementos tienen restos de exoesqueletos de cangrejo rojo americano o de Louisiana (*Procambarus clarkii*), una especie invasora de crustáceo decápodo introducida en la Península Ibérica en los años 70. Sin embargo en el período otoño-invierno abundan excrementos con restos de pez.
Con este estudio pretendemos averiguar si, efectivamente, esta diferencia estacional de la dieta se produce y determinar cuáles son sus posibles causas, basándonos para ello en la teoría de forrajeo óptimo (Optimal Foraging Theory) (Krebs y Davies, 1993).
Material y métodos

Área de estudio

Nuestra área de estudio es el embalse de Abegondo-Cecebre (Fig. 2). Esta presa (existente desde 1975), creada por el río Mero y el Barcés, alberga según un informe sobre la fauna ictícola (Ecohydros, 2009) cinco especies de peces (dos de ellas autóctonas): trucha (Salmo trutta), boga del Duero (Pseudochondrostoma duriense), perca americana o blackbass (Micropterus salmoides), carpin dorado (Carassius auratus) y gambusia (Gambusia holbrooki). Esta última por su pequeño tamaño no es de interés para el estudio ya que no es presa de la nutria sino del gremio de pequeños piscívoros del embalse como el martín pescador (Alcedo athis) o el zampullín chico (Tachybaptus ruficollis). Por otra parte, como ya se mencionó en la introducción, hay una población de Procambarus clarkii en este emplazamiento.

Fig. 2: Ubicación de la zona de estudio (Embalse de Cecebre)

Trabajo de campo y análisis de los excrementos

Para este estudio se trabajó con datos obtenidos en el campo y en el laboratorio. En el campo se realizaron observaciones sobre el comportamiento de forrajeo de las nutrias teniendo en cuenta el número de lances o intentos de caza, el periodo de tiempo que pasa el animal debajo del agua en cada lance, la duración de las series de lances (cada vez que la nutria observada regresa a tierra se da por finalizada la serie, y cuando
vuelve se contabiliza una nueva serie), el tipo y tamaño de presa, el tiempo de manejo de la presa hasta que es comida y la edad y sexo de la nutria cuando es conocida. La obtención de estos datos supuso unas 8 horas y media de observación en las cuales se registraron 59 sesiones de caza y 402 lances. También se realizaron censos periódicos de cormorán grande en dormidero durante el invierno 2015-2016.

En el laboratorio se examinaron n=234 excrementos de nutria recogidas durante el período de octubre 2014 a octubre 2015 en las orillas del embalse. La recogida se realizó en dos tandas. La dieta de otoño-invierno se vería reflejada en los excrementos recogidos en marzo y abril del 2015, mientras que los obtenidos a principios de otoño del mismo año representarían la dieta de primavera-verano. Las muestras se observaron bajo la lupa binocular siguiendo el procedimiento descrito por Blanco-Garrido y Prenda (2008). Nos centramos en la determinación de presencia/ausencia de restos de pez o cangrejo en cada excremento ya que la identificación específica de las presas (en el caso de los peces) se llevó a cabo mediante técnicas genéticas dentro del marco de un proyecto más amplio que éste que aquí se presenta como Trabajo de Fin de Grado. Se consideró que una muestra presentaba cangrejo cuando se pudieron apreciar fragmentos de exoesqueleto o apéndices, pudiendo encontrarse también gastrolitos (Fig.3), unos depósitos de calcio ubicados en el estómago de los cangrejos por pares y empleados para la muda del exoesqueleto. Aquellas muestras que contuvieron escamas o huesos indicaron presencia de peces.

Fig. 3: Gastrolitos de Procambarus clarkii

Con el objetivo de determinar la estacionalidad de la dieta de las nutrias consideramos dos períodos a lo largo del año (según la cantidad de agua almacenada en el embalse): primavera-verano, comprendiendo los meses entre marzo y septiembre; y otoño-invierno, comprendiendo los meses entre octubre y febrero.
Tamaño de las presas consumidas

Después de realizar el análisis de los excrementos, se procedió a la medida de los gastrolitos (n=250) con un calibre digital para el cálculo de la longitud de los cangrejos capturados por los mustélidos, usando para ello la relación del diámetro del gastrolito con la longitud del cefalotórax (carapace length, CL) establecida en otros trabajos para esta especie (Godley et al., 1984). Además, se realizó la medida comparada de caparazones y longitudes totales de n=18 ejemplares capturados en el embalse. Las medidas fueron tomadas con dos decimales.

En el caso de los peces, se determinó cualitativamente la longitud furcal (distancia entre la parte distal de la mandíbula y la escotadura de la aleta caudal del pez) y del animal en base a observaciones durante los lances de caza. Las presas fueron clasificadas en tres categorías: peces pequeños, medianos y grandes en comparación con el ancho de las mandíbulas y el cráneo de las nutrias.

Los datos de longitud fueron convertidos a valores de peso empleando dos ecuaciones. Para los peces la establecida por Andreu-Soler et al. (2006) y para los crustáceos la empleada por Correia y Costa (1994). Después el peso se multiplicó por los valores de rendimiento energético recogidos en Kruuk (2006), para ambos tipos de presa.

Finalmente, usando las medidas de energía obtenida y tiempo empleado en el buceo y en el manejo de la presa (beneficios y costes), se analizó la rentabilidad de caza de tipo de presa en el marco de la Optimal Foraging Theory.

Análisis estadístico

Para determinar si existieron diferencias estadísticamente significativas en la composición de la dieta por periodos temporales y tipos de presa utilizamos tablas de contingencia de frecuencias junto con una prueba de la chi-cuadrado con alfa=0,05. La hipótesis nula (H₀) en este caso fue que no existía ninguna asociación entre el período anual y el tipo de presa consumida (crustáceo o pez).

Para analizar las diferencias en tiempo medio de procesado de presas de diferente tamaño (pez grande, mediano y pequeño) se realizó un análisis Kruskal-Wallis con dos grados de libertad. En el caso de tipo de presa (cangrejo, pez) utilizamos un test de Wilcoxon para dos muestras con un grado de libertad. Nuestra H₀ en ambas pruebas
fue que no existían diferencias estadísticamente significativas en el tiempo medio de procesado o buceo en función de la especie y las dimensiones de la presa.
Resultados

Estacionalidad y frecuencias de presas

La presencia de cangrejo fue casi absoluta en las muestras a lo largo del año. Sin embargo, sí se aprecia una variación estacional en el número de muestras con pez. En el período de otoño-invierno las nutrias consumen sobre todo cangrejo pero el porcentaje de peces en su dieta es de casi un 40% (en términos de frecuencia). En primavera-verano este porcentaje disminuye notablemente hasta un 15%, por lo que los crustáceos forman prácticamente la totalidad de la dieta (Tabla 1) (Fig. 4).

El análisis estadístico muestra que estas diferencias debidas a la estacionalidad son estadísticamente significativas ($X^2 (1) = 19.80$, p-valor < 0.05)

| Tabla 1: Resultados del muestreo de heces |
|-------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| | Peces | Cangrejos | Total | % Peces | % Cangrejos |
| Otoño-Invierno | 66 | 105 | 171 | 38,6 | 61,4 |
| Primavera-Verano | 21 | 118 | 139 | 15,1 | 84,9 |

Fig. 4: Prevalencia de consumo de presas en función del periodo
Buceo y manejo de las presas

El tiempo medio que las nutrias invirtieron en una sesión de caza fue de unos 9 minutos haciendo una media de 7 lances de pesca por sesión. En cada uno de estos lances, la posibilidad de éxito fue muy alta, en torno a un 60%. El tiempo medio de buceo por lance fue de unos 30 segundos y el tiempo medio que emplean para procesar sus presas fue de 15 segundos (Tabla 2).

<table>
<thead>
<tr>
<th>Tabla 2: Resultados generales de las observaciones en el campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duración media sesión (minutos)</td>
</tr>
<tr>
<td>Lances por sesión</td>
</tr>
<tr>
<td>Tiempo medio de buceo (segundos)</td>
</tr>
<tr>
<td>Tiempo medio de procesado (segundos)</td>
</tr>
<tr>
<td>Porcentaje de éxito</td>
</tr>
</tbody>
</table>

Sin embargo, el tiempo de procesado fue diferente según el tamaño de la presa. Las diferencias fueron estadísticamente significativas ($X^2(2) = 21,86; p$-valor<0,05) (Fig.5). También son significativas las diferencias en el tiempo de buceo según el tamaño ($X^2(2)=11,01; p$-valor<0,05).

![Fig. 5: Gráfica de cajas con los resultados del análisis Kruskal-Wallis para tiempos de procesado según el tamaño de los peces]
Debido a que la distribución al muestreo del tiempo de manejo no coincidió con una normal, emplearemos la mediana del tiempo de procesado de peces y no la media aritmética como métrico de la tendencia central de tiempo de procesado. La misma solución es aplicable al tiempo de buCEO.

Tabla 3: Diferencias de tiempo de manejo y de buCEO según el tipo y tamaño de la presa

<table>
<thead>
<tr>
<th></th>
<th>Cangrejo</th>
<th>Pez</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tiempo Buceo</td>
<td>23,5</td>
<td>32</td>
</tr>
<tr>
<td>Tiempo Procesado</td>
<td>8,5</td>
<td>21</td>
</tr>
<tr>
<td>Tiempo P+B</td>
<td>32</td>
<td>53</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Pez pequeño</th>
<th>Pez mediano</th>
<th>Pez grande</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tiempo Buceo</td>
<td>27,2</td>
<td>31</td>
<td>47,5</td>
</tr>
<tr>
<td>Tiempo Procesado</td>
<td>12,0</td>
<td>30</td>
<td>89,3</td>
</tr>
<tr>
<td>Tiempo P+B</td>
<td>39,2</td>
<td>61</td>
<td>136,8</td>
</tr>
</tbody>
</table>

Al carecer de información cuantitativa sobre el tamaño medio de los peces consumidos, realizamos un análisis cualitativo basándonos en los datos de los estudios censales de las poblaciones de peces del embalse Cecebre (Ecohydros, 2009), observaciones de campo sobre tamaño aproximado (presa pequeña, mediana, grande, en relación al tamaño del cráneo de la nutria) y datos sobre duración media del tiempo de procesado, que es un buen proxy del tamaño de presa.

En los histogramas de la Figura 6 se puede ver que el mayor número de capturas corresponde a presas que fueron procesadas en 0-30 segundos, lo cual corresponde a peces clasificados como pequeños, y las categorías superiores tienen frecuencias menores. Nótese un espacio sin muestras entre la categoría 35-40 y 45-50, que puede corresponder al cambio de procesar presas en la superficie del agua a desplazarse a tierra para ello.
Fig. 6: Histogramas de frecuencias de tiempo de procesado para todos los lances de pez (izquierda) y para aquellos de menos de 70 segundos (derecha).

Es destacable también la diferencia en tiempo de manejo y buceo entre los distintos tipos de presa, apreciable en la Tabla 3 y que son estadísticamente significativas (W=1074,5, p-valor<0,05; W=2214,5, p-valor<0,05). El tiempo empleado cuando consumen crustáceo es mucho menor que cuando consumen peces, especialmente en relación al tiempo de procesado, que supone una diferencia media de doce segundos, lo cual indica una mayor facilidad para capturar cangrejos.

Tamaño y peso medio de las presas

Con los gastrolitos disponibles de cangrejo rojo encontrados en las heces se estimó un diámetro medio de 5,3 mm a partir del cual se calculó el tamaño medio de cefalotórax usando la siguiente ecuación.

\[
DT = 0.157 \times CL - 0.552 \enspace \text{Godley et al. (1984)}.
\]

Por otra parte, tras determinar la relación entre la longitud del cefalotórax (CT) y la longitud total (LT) se obtuvo la siguiente recta de regresión con un \(r^2 \) de 0,96 (Fig. 7):

\[
LT = 1,649 \times CT + 11,95
\]
A partir de esta relación, obtenemos una longitud media de 7,35 cm, tras esto empleamos la ecuación que relaciona peso y longitud total del individuo

\[\log(W) = \log(10.4) + 3.1 \log(TL) \]
Correia y Costa (1994)

Utilizamos la ecuación que emplean estos autores para estimar el peso de machos de la FII (adultos jóvenes) debido a que presentan un valor de \(r^2 \) alto y para tratar de ser conservadores (determinar el beneficio obtenido por consumir ejemplares óptimos energéticamente). Obtuvimos una media de peso para los cangrejos consumidos de 5,9 g con una desviación estándar de 4.02.

En el caso de los peces, se ha visto que la mayoría de presas que cazan las nutrias sobresalen ligeramente por ambos lados de la cabeza. Sabiendo que el ancho zigomático (y por tanto el ancho aproximado de la cabeza) es de unos 70 mm, pudiendo llegar a los 77 en machos grandes (Lynch et al., 1996; Yom-Tov et al. 2006), y considerando tres categorías de tamaño según los histogramas de frecuencias de tamaño de carpín en Cecebre proporcionados por la bibliografía (85-90 mm, 105 mm y 135 mm) llegamos a la conclusión de que las presas que más se consumen son las de las dos primeras clases de edad.

\[\log(W) = \log(0.0193) + 3.04 \log(FL) \]
Andreu-Soler et al. (2006)
Empleando esta ecuación, estimamos que el peso medio de los peces de la primera categoría (la que más se corresponde con nuestro tamaño cuantitativo) sería de 15,4 gramos.

Cálculo de la relación beneficio/coste

Usando valores de energía obtenida por presa obtenidos de Kruuk (2006), y la suma de los tiempos medios de manejo y buCEO de ambos tipos de presa (para carpines, la mediana del tiempo en ejemplares pequeños) obtenidos en este estudio, analizamos el cociente beneficio/coste para establecer la rentabilidad de ambos tipos de presas (Tabla 4).

Tabla 4: Energía obtenida por tipo medio de presa y relación beneficio/coste para cada tipo de presa.

<table>
<thead>
<tr>
<th>Presa</th>
<th>Energía ganada / Tiempo invertido</th>
</tr>
</thead>
<tbody>
<tr>
<td>(kJ/g * peso medio en g)</td>
<td>Tiempo de procesado + tiempo buCEO</td>
</tr>
<tr>
<td>Cangrejo de río</td>
<td>24,2</td>
</tr>
<tr>
<td>Ciprínido</td>
<td>73,7</td>
</tr>
</tbody>
</table>

Discusión

Tras determinar la estacionalidad de la dieta durante el año podemos postular algunas posibles explicaciones sobre qué factores determinan esta variación.

Factores abióticos

Los factores abióticos principales son los cambios tanto en la temperatura del agua como del nivel del embalse (APÉNDICE I, Fig. 1). Ambos afectan al esfuerzo necesario que deben realizar los mustélidos a la hora de conseguir comida. El aumento de la temperatura del agua durante el período de primavera-verano incrementa la velocidad natatoria de los peces (hay que tener en cuenta su carácter ectotermo). Por otra parte el cierre de compuertas de la presa durante primavera-verano provoca una subida del nivel del agua de unos dos metros. Estas circunstancias dificultan la actividad de forrajeo de la nutria por su limitada capacidad de buCEO, dado que captura sus presas en el fondo y por su falta de grasa subcutánea. Por las observaciones de campo (existencia de cazaderos estables) intuimos que las nutrias están cazando en afloramientos roco-
sos sumergidos, donde sus presas (peces herbívoros, de lento movimiento, alta relación grasa/proteína respecto a un pez depredador como las truchas o percas americanas y actividad nocturna) descansan durante el día. La pesca se realiza sin apenas emplear la visión, con la ayuda de las largas vibrissas que detectan el movimiento (Kruuk, 2006).

Factores bióticos

Por otra parte, el factor biótico al que se debe el cambio de dieta es la competencia interespecífica con otras especies del gremio de los grandes piscívoros del embalse. En particular, durante la etapa otoño-invierno el embalse acoge una población invernante de cormorán grande (*Phalocorax carbo*) con censo máximo en dormidero de 250 individuos (APÉNDICE I, Figura 2) y censos máximos en el agua durante el día de 346 individuos (el 31 de octubre de 2015). Cada individuo ingiere diariamente 400-500 g de pescado (Fisheries and Angling Conservation Trust y Joint Wildlife Management Group, 2006). Una nutria por el contrario consume al día, por término medio, de 1,1 a 1,6 kg (Kruuk, 2006). Esto significa que aproximadamente 2 cormoranes equivalen a una nutria en consumo de pescado. Debido a esta a la tasa de consumo la abundancia de peces va disminuyendo a lo largo del invierno, ya que el embalse es un sistema cerrado para las presas. La abundancia máxima de peces se da a primeros de otoño tras la reproducción de los ciprínidos en primavera-verano y la mínima se da al comienzo de la primavera, tras toda la depredación invernal.

Por tanto la mayor prevalencia del cangrejo en las muestras examinadas de excrementos no parece ser debida a una mayor preferencia por esta presa, sino a una mayor disponibilidad de cangrejo frente a los peces.

La cantidad de energía proporcionada por un cangrejo medio es tres veces menor que la que puede obtener de un pez ciprínido y la relación Beneficio/Coste es aproximadamente el doble en peces que en crustáceos, lo cual indica que los peces son una presa mucho más rentable.

No obstante, la presencia de cangrejo americano es clave para posibilitar el uso del embalse por las nutrias durante todo el año ya que en primavera-verano las nutrias no podrían cubrir sus necesidades energéticas sin contar con esta presa tan abundante y de fácil captura en aguas someras. Paradójicamente la existencia de diversas especies exóticas en el embalse (con claros efectos negativos para la vegetación subacuática o para taxones como el de los anfibios) ha posibilitado la colonización y el uso anual de este medio artificial por parte de las nutrias. Las nutrias (diversas especies de
nutrias de las 13 que existen en el mundo), se sabe que alternan el consumo de peces con el de crustáceos en sus hábitats originales (Kruuk, 2006), por lo que de algún modo están “pre-adaptadas” a la situación que encontramos en el embalse de Cecebre, debida totalmente a la acción humana. Esta coincidencia es lo que convierte a Cecebre en un medio de sustitución para la especie, en el sentido destacado por Martínez-Abrain y Jiménez (2016). Los problemas de dispersión radial que pueda presentar la especie para dispersar hacia los alrededores del embalse deberán ser estudiados en detalle en el futuro pues, aunque el embalse es un medio atractivo para las nutrias y de alta productividad para ellas (medias de 2 cachorros por hembra), puede actuar en realidad como una trampa eológica (un sumidero atractivo) por riesgo de mortalidad en las infraestructuras humanas ubicadas perimetralmente al embalse, incluyendo carreteras locales, vías de ferrocarril, autovías y autopistas.

Conclusiones

La presa más prevalente de *Lutra lutra* en el embalse de Cecebre fue el cangrejo de río americano, seguida de peces ciprínidos (carpines y bogas). Existe estacionalidad en la dieta, variando la proporción de peces/cangrejo consumida a lo largo del año. A pesar de que los peces son una presa más provechosa energéticamente, las nutrias consumen una elevada proporción de crustáceos debido a factores abióticos que hacen más difícil la captura de los peces (cambios en nivel del embalse, en la temperatura del agua) y a factores bióticos que afectan a la abundancia de los mismos (competencia interspecífica con cormorán grande y ciclo vital de los ciprínidos).

Conclusions

The most prevalent prey of *Lutra lutra* in Cecebre’s reservoir was the red swamp crayfish, followed by cyprinid fishes (goldfish and nase). Seasonality in diet exists, varying the proportion of fish/crayfish consumed through the year. Even though fishes are a more energetically profitable prey, otters consume a high proportion of crustaceans due to abiotic factors that make capturing fish more difficult (changes on the reservoir’s level and water temperature) and biotic factors that affect their abundance (interspecific competition with great cormorants and cyprinids life cycle).
Agradecimientos

Merecen mención muy especial por la ayuda prestada en este trabajo Charles William Key por su mapa de la presa, EMALCSA por proporcionar los datos del nivel de agua durante el período octubre 2014-2015 y a la Xunta de Galicia por su informe sobre la fauna ictícola del embalse.

Bibliografía

Ecohydros. 2009. Asistencia técnica para la toma de datos del indicador biológico peces en las redes de monitorización de aguas superficiales en el ámbito de la demarcación hidrográfica Galicia-Costa (EXPTE. OH.688.244.SV): estudios censales de peces en los embalses de Cecebre y As Forcadas [Electrónico]. Xunta de Galicia. Informe Nº: EC08013-IF.

Fig. 1: Valores de profundidad del embalse (arriba) y temperatura media del agua a partir de un modelo que relaciona temperatura del aire con la del agua (abajo) en el periodo de Octubre 2014 a 2015 (Fuente: Consellería Medio Ambiente).
Fig. 2: Censos en dormidero de la población invernante de cormorán grande (*Phalacrocorax carbo*).