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ABSTRACT 

The problem of synthesizing a linear array generating a shaped beam pattern with M filled nulls has 2M 

alternative solutions. In this study we examined their bandwidths as regards compliance with pattern quality 

or input impedance requirements in the presence and absence of a backing ground plane. Placing a ground 

plane behind the antenna almost doubles side lobe level bandwidth. 

 

1. INTRODUCTION 

As is well known, the filled nulls of a shaped beam pattern generated by a linear array of N radiating 

elements spaced a distance d apart correspond to those roots of the equation 
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that lie off the Schelkunoff unit circle, where In is the excitation of the n-th element and 

w=exp[j(2d/)cos], with  measured from endfire. It has often been pointed out [1-2] that any such off-

circle root, exp(an + jbn) say, can be replaced by exp(-an + jbn) without altering the radiation power pattern. 

As a result, there are in general 2M solutions for a pattern with M filled nulls, although the number of 

independent solutions will be smaller if symmetry constraints are introduced [2]. This multiplicity of 

solutions has in the past been taken advantage of by choosing from among their number the solution 

consisting of what appeared to be the excitation distribution least likely to be affected by problems due to 

mutual coupling among the elements, which in the case of dipole arrays has usually been identified as the 

one with the smallest value of |I|max/|I|min or (|In|/|In1|)max , where |I|max and |I|min are respectively the largest 

and smallest of the |In|.   
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 In this work we investigated whether there can be solutions with significant advantages as regards 

bandwidth with respect to pattern quality or embedded impedance; compared the bandwidths of the 2M 

solutions described above with those of a system consisting of a symmetric pure real excitation distribution 

generating a flat-topped beam of approximately equal width as in the above cases (for this it is necessary to 

introduce extra array elements [2]); and investigated the influence of a nearby ground plane on these 

findings. In all these calculations we considered an array of parallel dipoles spaced /2 apart. 

 

2. METHOD 

2.1 GENERAL SOLUTIONS IN THE ABSENCE OF A GROUND PLANE 

We considered an array of 20 parallel dipoles of length D/2 and radius 0.004763D, all parallel to the x 

axis and spaced D /2 apart along the z axis, where D is the design frequency. For this array we used the 

Orchard-Elliott method [1] to find a solution to the problem of synthesizing a symmetric flat-topped shaped 

beam pattern with M = 6 filled nulls, a beamwidth of about 52° between nulls, ± 0.5 dB of ripple, and a 

maximum side lobe level of -20 dB (Fig.1, continuous curve). This method directly affords the roots 

exp(an + jbn) of eq.1, and we then found the other 63 excitation distributions giving the same radiation 

power pattern by generating all possible combinations of signs of the six nonzero an.  

 For each of the distributions {In} so obtained, we next obtained the required input voltages Vn from 

the expression 
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where the Znm are the self and mutual impedances of the elements, which were calculated as per Hansen [3]; 

and we then obtained the embedded impedances (or active impedances) Ze
n = Vn/In. Finally, we investigated 

the tolerance of the solutions to deviations from the design frequency fD as regards the embedded 

impedance characteristics |Z1
e|, |R1

e|, |X1
e|, |Z10

e|, |R10
e|, |X10

e|, |Ze|max, |R
e|max and |Xe|max (where Ze

n = Re
n + jXe

n) 

and the ripple, side lobe level and -3 dB beamwidth of the corresponding power patterns in the yz plane 

(= 90°). The impedances of the central element (10) and the edge element (1) were chosen for special 

attention because, like the present array, most shaped beam arrays have enough elements for the design to 

be based on these impedances. For each solution we fixed the Vn obtained above (arrays generating shaped 

beams are almost always designed on a constant voltage basis) and for each of a sequence of frequencies 
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differing by f = fD/300 we calculated first the corresponding Znm (as per Hansen [3]) and then the 

corresponding Im (by solving eqs.2) and the resulting power patterns (for which the array factor given by the 

In was multiplied by the element factor). By this means we determined fU = fU* - f and fL = fL* + f (where 

fU* and fL* are respectively the lowest frequency higher than fD and the highest frequency lower than fD at 

which the test characteristic differed by more than a specified amount  from its value at fD), and we 

calculated the bandwidth for the test characteristic in question as (fU - fL)/fD, expressed as a percentage. For 

|Ze|max, |R
e|max, |X

e|max and the corresponding properties of elements 1 and 10, the value of  used was 15% of 

the values of these characteristics at fD ; for the beamwidth at -3 dB,   2°; for ripple,  0.5 dB; and 

for the side lobe level,  = 3 dB for levels higher than -20 dB and  otherwise. 

 

2.2 PURE REAL SYMMETRIC SOLUTION IN THE ABSENCE OF A GROUND PLANE 

To synthesize an array with a symmetric pure real excitation distribution generating a power pattern similar 

to that described above, we considered an array of 24 elements with eight off-circle roots exp(an + jbn)  of 

eq.1, each accompanied by both exp(an - jbn) and exp(-an + jbn) [2]; with this array size and these 

constraints the Orchard-Elliott method afforded a solution generating the pattern shown by the dotted curve 

in Fig.1 (increasing the number of double filled nulls broadened the beam excessively). For this solution we 

calculated the same bandwidths as described in the previous subsection, except that |Ze
10|, |R

e
10| and |Xe

10| 

were replaced by |Ze
12|, |Re

12| and |Xe
12|, elements 10 and 12 being central elements of the 20  and 

24element arrays, respectively. 

 

2.3 SOLUTIONS IN THE PRESENCE OF A GROUND PLANE 

All the calculations described above were repeated for the case of an array lying in the y = D/8 plane with a 

ground plane occupying the y = -D/8 plane. For this, the sets of excitations {In} were taken to be the same 

as those found above, and input voltages and embedded impedances were calculated as described in [4] 

(pp.386 and 387). For bandwidth determinations, these calculated voltages were then fixed and the 

formulae of [4] were used to calculate excitation currents and embedded impedances. Fig.2 compares the 

patterns generated by 20-element M = 6 arrays with and without the ground plane.  
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3. RESULTS AND DISCUSSION 

 The main results are summarized in Table 1, in which letters in parentheses indicate whether the 

maximum- and minimum-bandwidth array current distributions are real (R) or complex (C), and also 

whether they are symmetric (S) or asymmetric (A). 

 In the absence of a ground plane, bandwidths for pattern ripple among the solutions for the 20-

element array ranged from 13.33% (eight solutions) to 15.17% (two solutions, one of them the "all-outside" 

solution in which all the off-circle roots of eq.1 lie outside the unit circle). Side lobe level bandwidth ranged 

from 39.17% to 41.17%, and beamwidth bandwidth from 7.67% (two solutions, one of them one of the 

solutions with greatest ripple bandwidth) to 8.83%.  

 The relative variations in impedance bandwidths in the absence of a ground plane were more 

marked: |Ze|max bandwidth ranged from 5.17% for the all-inside and all-outside solutions to 15.83%; |Re|max 

bandwidth was in most cases between 11.17% and 23% (two solutions, one of them being one of the 

solutions with narrowest side lobe level bandwidth), although eight solutions had significantly narrower 

bandwidths ranging from 1.33% to 5.17% - this latter associated with the greatest beamwidth bandwidth; 

and |Xe|max bandwidth was in most cases between 1.33% (six solutions, one coinciding with the narrowest 

side lobe level bandwidth) and 6.83% (coinciding with the narrowest |Re|max bandwidth), the exceptions in 

this case being the all-inside and all-outside solutions, which both had |Xe|max bandwidths of 24.67%. 

Almost all Ze
1 bandwidths lay between 13.00% and 18.17% (the two exceptions were values of 8.83% - for 

the all-inside solution - and 9.83%); almost all Re
1 bandwidths between 20.00% and 22.33% (the only 

exception being that of the all-inside solution, 18.83%); and all Xe
1 bandwidths between 1.00% and 2.17%. 

Almost all Ze
10 bandwidths lay between 10.00% and 13.83% (the only exception being that of the all-

inside solution, Ze
10  = 5.50%); almost all Re

10 bandwidths lay between 14.67% and 19.83% (seven were 

greater (20-24%) and two smaller (12.83% and 10%)); and all Xe
10 bandwidths except two were either 

1.00% or 0.67%, one of the exceptions being 0.83% and the other 3.00%.  

 Introducing a ground plane narrowed the ranges of |Re|max and |Xe|max bandwidths among the 64 

solutions: |Re|max bandwidth now ranged from 7.67% to 19.00%, and |Xe|max bandwidth from 2.33% to 5.67% 

(in particular, the exceptionally high values of the all-inside and all-outside solutions were eliminated). By 

contrast, the bandwidth range of |Ze|max, and those of |Ze
10|, |R

e
10|, |X

e
10|, |X

e
1|, ripple and side lobe level, were 

all slightly widened. In the last four cases, however, the major effect of the ground plane was to raise the 
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whole range of bandwidths (from 13.33-15.17% to 14.67-19.33% for ripple, from 39.17-41.17% to 68.83-

73.50% for side lobe level, from 1.002.17% to 2.334.00% for |Xe
1| and from 0.673.00% to 1.004.50% 

for |Xe
10|  no |Xe

10| bandwidth was narrower with the ground plane than without); while for all solutions 

except five the major effect on |Ze
10| and |Re

10| bandwidths was to narrow them. The bandwidth ranges of 

|Ze
1| and |Re

1| were both narrowed and lowered, from 8.8318.17% to 5.678.17% for |Ze
1|, and from 

18.3322.33% to 8.6711.67% for |Re
1|. In many cases, but not all, the solutions with extreme bandwidth 

values in the presence of the ground plane also had extreme or near-extreme values in its absence.  

 Both of the solutions obtained for the 24-element array reflected the cost of imposing the condition 

that the excitations be both real and symmetric. In the absence of a ground plane, most of the bandwidths 

were smaller than for the 20-element array or similar to the smaller values obtained for that array, with 

values of 8.67% for ripple, 30.33% for side lobe level, 4.33% for |Ze|max , 3.33% for |Re|max, 7.50% for |Z1
e|, 

16.50% for |Re
1| and 0.67% for |Xe

10| (only |Xe|max bandwidth, 13%, and |Xe
1| bandwidth, 2.50%, were wider 

than for most 20-element solutions). In the presence of a ground plane, qualitatively the same differences 

with respect to the 20-element solutions were generally observed, the most significant deviation from this 

pattern being that side lobe level bandwidth, 73.67%, was now wider than for any 20-element solution.  

 

4. CONCLUSIONS 

The multiplicity of solutions generated by null filling does allow some choice as to the bandwidth of certain 

parameters of interest (notably |Xe|max and |Ze|max). Placing a ground plane behind the antenna almost doubles 

side lobe level bandwidth (to about 70%). Real symmetric solutions obtained by adding elements to the 

array generally have poorer bandwidth than solutions that are not both real and symmetric. 
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LEGENDS FOR THE FIGURES AND TABLES 

Fig. 1. Continuous curve: a symmetric flat-topped shaped beam pattern with M = 6 filled nulls, a 

beamwidth of about 52° between nulls, ± 0.5 dB of ripple, and a maximum side lobe level of -20 dB 

generated by a 20-element /2-spaced linear array. Dotted curve: the similar pattern, with M = 8 filled nulls, 

generated by a 24-element /2-spaced linear array with a symmetric real excitation distribution. 

Fig. 2. Continuous curve: the pattern shown as a continuous curve in Fig.1. Dotted curve: the pattern 

obtained when a ground plane is placed behind the antenna at a distance of /4 while antenna inputs are 

modified to maintain the same current distributions as before. 

 

Table 1. Maximum and minimum bandwidths of every parameter considered. 
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Number of 

elements 
Parameter 

Without  

ground plane 

With 

ground plane 

Max Min Max Min 

20 

BW Ripple % 15.17 (CS) 13.33 (CA)  19.33 (RA) 14.67 (CA) 

BW SLLa % 41.17 (CA) 39.17 (CS) 73.50 (CS) 68.86 (RA) 

BW -3dB % 8.83 (CA) 7.67 (CS) 8.50 (CA) 7.83 (CS) 

BW |Ze|max % 15.83 (CA) 5.17 (RA) 15.67 (CS) 2.00 (RA) 

BW |Re|max % 23.00 (RA) 1.33 (RA) 19.00 (CA) 7.67 (RA) 

BW |Xe|max % 24.67 (RA) 1.33 (CS) 5.67 (CA) 2.33 (RA) 

BW |Ze
1| % 18.17 (CA) 8.83 (RA) 8.17 (RA) 5.67 (RA) 

BW |Re
1| % 22.33 (CA) 18.83 (RA) 11.67 (CA) 8.67 (RA) 

BW |Xe
1| % 2.17 (RA) 1.00 (CA) 4.00 (RA) 2.33 (CA) 

BW |Ze
10| % 13.83 (RA) 5.50 (RA) 18.50 (CA) 4.33 (RA) 

BW |Re
10| % 24.00 (CS) 10.00 (RA) 20.50 (CA) 4.50 (RA) 

BW |Xe
10| % 3.00 (RA) 0.67 (CA) 4.50 (RA) 1.00 (CA) 

24 (RS) 

BW Ripple % 8.67 10.17 

BW SLLa % 30.33 73.67 

BW -3dB % 8.17 8.00 

BW |Ze|max % 4.33 3.17 

BW |Re|max % 3.33 9.00 

BW |Xe|max % 13.00 3.50 

BW |Ze
1| % 7.50 5.33 

BW |Re
1| % 16.50 7.83 

BW |Xe
1| % 2.50 4.00 

BW |Ze
10| % 11.50 9.17 

BW |Re
10| % 16.50 12.67 

BW |Xe
10| % 0.67 2.00 

 a SLL = side lobe level. 

 

Table 1. 
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Fig. 1  



10 

0 30 60 90 120 150 180

-50

-40

-30

-20

-10

0

 20-element array 

(without ground plane)

 20-element array 

(with ground plane)

 = 90º cut

P
o

w
 [

d
B

]

 (deg)
 

Fig. 2  

 


