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ABSTRACT 

Flow cytometric measurements were used to investigate the toxic action of copper 

on some Phaeodactylum tricornutum membrane systems. Throughout the time of metal 

exposure, the percentage of viable cells decreased as copper concentration increased. 

The forward scatter signal increased as a result of copper exposure. After 72 h of metal 

exposure, cultures with 0.5 and 1 mg l
−1

 of copper showed an important increase in the 

peroxidase activity in comparison with control cells. Cells cultured with copper 

presented alterations in the membrane potential, increasing as copper concentration 

increased, after 96 h of metal exposure. Results obtained in this work showed that 

copper induced a degenerative process in P. tricornutum cells, closely related with 

alterations or disorders in membrane systems. 
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Copper is an essential micronutrient for growth, metabolism, and enzyme 

activities of various algae, cyanobacteria, and other organisms; however, it is also a 

proven inhibitor of algal growth at high concentrations (5). The increasing occurrence 

of heavy metals, copper included, has stimulated many studies on the toxicity to aquatic 

microorganisms, and the need for convenient methods for assayed pollutants toxicity 

has become evident. The response of microalgae to a toxicant is typically measured 

using population-based parameters (11, 12), such as specific growth rate, biomass, cell 

yield, chlorophyll fluorescence, and primary production. The bulk population based 

endpoints used in algal toxicity tests did not supply information on the distribution of 

responses among the individual cells within the population. Flow cytometry is an 

alternative to the standard algal population-based endpoints, since it allows the rapid 

and quantitative measurement of responses of individual algal cells to a toxic stress. 

Microorganisms, and microalgae in particular, are the first organisms affected by 

heavy metals discharges in aquatic environments (9) because they are directly in contact 

with the medium, separated only by the cytoplasmic membrane and the cell wall. 

Cellular membranes are selective, dynamic barriers that play an essential role in 



regulating biochemical and physiological events, so any alteration produced in the 

environment provokes changes in microorganisms membranes. 

The present work studies the effect of different copper concentrations on growth 

and different parameters closely related to cellular membranes, in the marine microalgae 

Phaeodactylum tricornutum. Flow cytometric measurements were used to investigate 

the mode of toxic action of copper to some P. tricornutum membrane systems. 

 

MATERIALS AND METHODS 

Algal Cultures 

Phaeodactylum tricornutum Bohlin (Bacillariophyceae) (isolated from Ria de 

Arousa waters by Dr. J. Fábregas, University of Santiago, Spain) was cultured in batch 

conditions in seawater filtered through a 0.45 µm Millipore filter, and autoclaved at 

120°C for 60 min. Microbiological studies on heavy metals are generally performed in 

synthetic growth media, the constituents and properties of which can greatly influence 

the free concentrations, and thus toxicity, of metals. Because of this, the assays were 

carried out in raw, unenriched sea water, with no inorganic nutrients added. P. 

tricornutum grows normally in raw sea water, as has been previously shown (3). 

Salinity of seawater was 35% and the initial pH of the cultures was 7.6. Cultures were 

grown in KIMAX test tubes, containing 40 ml of seawater. The tubes were previously 

rinsed with nitric acid and washed several times with redistilled water. Cultures were 

maintained at 18 ± 1°C and 140 µmol photon m
-2

 s
-1

, with a darkdight cycle of 12:12 h. 

Initial cell density was 2.4 x 10
5
 cells ml

-1
. Copper concentrations assayed were 0.05, 

0.10, 0.50, and 1 mg Cu l
-1

, added as copper chloride; control cultures without copper 

were also included. All experiments were carried out in triplicate. 

 

Measurement of Growth 

Growth of the microalgal cultures was measured by counting daily culture 

aliquots in a Neubauer hemocytometer, during the 96 h of copper exposure. Growth 

rate, expressed as doublings day
-1

, was calculated using the following formula: 



µ = (ln Nt – ln N0)/ ln2 (t – t0) 

where Nt, is the cell density at time t and N0 is the cell density at time 0. 

The most common parameter used in toxicity assays is the EC50, i.e., the 

concentration of the tested substance which decreases the growth rate by 50%. The 

easiest way to obtain an EC50, value is the graphic interpolation; however, in order to 

obtain a confidence interval for the EC50, value, a statistical method, such as probit 

analysis, should be used. Probit analysis of growth data was carried out using the SPSS-

PC + software. 

 

Flow Cytometry Determinations 

Forward scatter and cell viability, peroxidase activity, and membrane potential 

were determined during copper exposure (96 h) by flow cytometry (FCM), using a 

FACScan flow cytometer (Becton Dickinson Instruments, San Jose, California), 

equipped with an argon-ion excitation laser (488 nm). Fluorescence signals were 

collected at 90º to the light beam, split by a dichroic mirror, and detected by 

photomultiplier tubes (PMT). Scattered light was removed from fluorescence 

measurements using a 515 nm laser blocking pair. Autofluorescence from chlorophyll a 

was separated from the green and orange fluorescences of the different fluorochromes, 

using short pass filters. The interval of fluorescence collected by the different PMT 

were 530-560 nm for the green fluorescence (FL1 channel), 560-590 nm for the orange 

fluorescence (FL2), and 660-700 nm for the red fluorescence (FL3). Chlorophyll a red 

fluorescence histograms were used to set gating levels, excluding particles without red 

fluorescence, which are obviously non-algal particles.  

Cell viability. The fluorescence of cells stained with propidium iodide (PI; Sigma 

Chemical Co.) was measured to study cell viability. PI is a fluorescent dye that 

intercalates with double-stranded nucleic acids to produce red fluorescence when 

excited by blue light. It is unable to pass through intact cell membranes; however, when 

the cell dies the integrity of the cell membrane fails, PI is able to enter and stain the 

nucleic acids (14). In this way, PI can be used to discriminate betwen live 

nonfluorescent cells and non-viable fluorescent cells; the orange fluorescent emission of 

this compound was collected in the FL2 channel (560-590 nm). diquots of 2.4 x 10
5
 



cells ml
-1

 were stained with PI to a final concentration of 60 µM, during an incubation 

period of 20 min. 

This staining procedure was also applied in the study of cell volume and of 

membrane potentials.  

Forward scatter. Since this signal (FSC) can be correlated with the size of the 

cell (19), aliquots of microalgal cultures, stained with PI, were analyzed to study the 

possible changes in cell volume. Only viable cells were analyzed. 

Peroxidase activity. Flow cytometry techniques have important advantages over 

conventional biochemical assays of enzyme activities, particularly as cells can be 

assayed under near physiological conditions (19). Dihydroethidium, also called 

hydroethidine (HE; Molecular Probes, Inc.), is a chemically reduced fluorophore. 

Cytoplasmic dihydroethidium has blue fluorescence, but when intracellular peroxidases, 

in combination with reactive oxygen species (peroxide and superoxide), catalyze the 

oxidative reaction, ethidium, a highly red fluorescent product, is obtained (2, 8). The 

orange fluorescent emission of this compound was also collected in the FL2 channel. 

Aliquots of 2.4 x 10
5
 cells ml

-1
 were stained with HE to a final concentration of 10.3 

mM. The incubation time was 30 min. 

Membrane potential. Flow cytometry was first demonstrated to be applicable to 

analysis of membrane potential by Shapiro et al. (20), and the techniques used 

subsequently are fundamentally unaltered. The dyes used  for this purpose are lipophilic 

to permit passage of lipid bilayers, and are positively charged as the interior of the cell 

and of the mitochondria are negative; once the cells are equilibrated with the probe, 

depolarization (decrease in potential difference) will cause release of the dye into the 

medium, and hyperpolarization (increase in potential difference) will cause uptake of 

the dye (15). The dyes used were 3,3'-dihexyloxacarbocyanineine, abbreviated 

DiOC6,(3) (Sigma Chemical Co.), and rhodamine 123 (Rh123; Sigma Chemical Co.) 

(8). Final concentrations used were 0.35 µM for DiOC6(3) and 26 µM for Rh123. A 

centrifugation step is necessary in the staining procedure with Rh123, to eliminate the 

excess of dye in the medium. The green fluorescent emission of these compounds were 

collected in the FL1 channel (530-560 nm). When these dyes were used as membrane 

potential probes, PI was also added at concentrations described above, allowing non-



viable cells to be gated out of analyses on the basis of its orange fluorescence (FL2 

channel). 

Data Analysis 

Data were statistically analyzed by an one-way analysis of variance (ANOVA) 

and, when differences observed were significant, means were compared by the multiple 

range Duncan test, at a level of significance of 0.05. 

For each cytometric parameter investigated, 10
4
 events (cells) were analyzed per 

condition and fluorescence measurements were in the logarithmic scale. Data collection 

was performed using the list mode. The mean of fluorescence for any given population 

was provided by the instrument software (LYSIS II program; Becton Dickinson 

Instruments). 

Since results obtained by flow cytometry are qualitative, they are treated in a 

special way, making possible the comparison of data. Except in the study of the 

viability, data were expressed as a percentage (%) of the fluorescence (or forward 

scatter signal) of the control cells according to the equation of Reader et al. (16): 

%F= 100 - [00(Fc - Ft)/Fc] 

where %F is the percentage of fluorescence of the P. tricornutum cells; Fc, the 

mean fluorescence of control cells; and Ft; mean fluorescence of copper-treated cells. 

 

RESULTS 

Growth 

Copper affected the growth of the marine diatom Phaeodactylum tricornutum 

(Fig. 1). There are not significant differences between control cultures, without copper, 

and cultures with 0.05 mg l
-1

 of copper (P < 0.05), with growth rates of 1.16 and 1.10 

doublings day
-1

, respectively. As copper concentration increased in the medium, the 

growth decreased; a copper concentration of 1 mg l
-1

 did not allow the growth of this 

diatom, with a growth rate close to 0. (Fig. 1). The EC50, of copper for growth was 

0.208 and 0.231 mg l
-1

, after 48 and 96 h, respectively. 



 

Fig. 1. Growth curves of P. tricornutum cultures with different copper concentrations (mg 

l
-1

). Results are the means of three replicates. 

 

Cell Viability 

The evolution of cell viability did not show important variations in the first 24 h 

of copper exposure, but the proportion of viable cells decreased after 48 h in cultures 

with 0.5 and 1 mg l
-1

 (Table 1). After 96 h of copper exposure, the percentage of viable 

cells decreased to 76, 14 and 8% in cultures with 0.10, 0.50, and 1 mg l
-1

, respectively. 

 

Forward Scatter 

Copper provoked an increase in the FSC signal of P. tricornutum cells (Figs. 2 

and 3). The highest copper concentration assayed, 1 mg l
-1

, provoked an important 

increase in FSC after 24 h of copper exposure, while the effect of the remaining copper 

concentrations were not visible until 48 or 72 h of metal exposure (Fig. 3). After 96 h of 

copper exposure, differences in forward scatter between control and all cultures with 

copper occurred, being maximum for cultures with 1 mg l
-1

  of copper, which provokes 

an increase of 49% in FSC, calculated as described before. This increase in forward 

scatter is correlated with an increase in the volume of the cells, observed using an 

optical microscope (unpublished data). 

 



 

Fig. 2. Typical overlay of FSC signal histograms showing the profiles of a control sample 

(solid histogram) and a sample with the maximum copper concentration assayed (1 mg l
-1

), after 

8 and 96 h of culture (A and B, respectively). 

 

Fig. 3. Forward scatter, after copper exposure, of P. tricornutum cells. Data are 

expressed as the percentage of the FSC signal of control cells, according to the equation cited in 

the text. Results are the means of three replicates. 

 

Peroxidase Activity 

Figure 4 represents data on the changes observed in the peroxidase activity during 

the 96 h culture, expressed as percentage of the hydroethidine fluorescence of the 

control cells, according with the equation described by Reader et al. (16). After 48 h of 

copper exposure, viable cells exposed to copper showed a higher peroxidase activity 

(Fig. 4). After 72 h of copper exposure, only cultures with 0.5 and 1 mg l
-1

 of copper 

presented an important increase in the peroxidase activity respect to the control cells, 

while differences after 96 h were not relevant (Fig. 4). 



 

Fig. 4. Variations in the peroxidase activity after copper exposure of P. tricornutum cells. 

Hydroethidine was used as the fluorescent probe to evaluate the peroxidase activity. Data are 

expressed as the percentage of the fluorescence of control cells, according to the equation cited 

in the text. Results are the means of three replicates 

 

Membrane Potential 

Possible variations in membrane potential were measured after 24 and 96 h of 

copper exposure, using DiOC6(3). After 24 h of culturing, differences in membrane 

potential were not found using this fluorochrome (Figs. 5 and 6); but after 96 h of metal 

exposure, all cells cultured with copper presented alterations in the membrane potential, 

which increased as copper concentration increased (Fig. 6). 

The lipophilic cationic dye rhodamine 123 has been used for investigations of 

mitochondrial structure and function; it accumulates in energized mitochondria as a 

result of their membrane potential (18). Copper has also provoked an increase in the 

membrane potential studied using Rh123, following the same pattern described for the 

assays carried out using DiOC6(3) (Fig. 7): after 96 h of metal exposure, all cultures 

with copper presented higher membrane potential than control cultures. 

 

Fig. 5. Typical overlay of 3.3'-diiexyloxacarbocyanine fluorescence histograms showing 

the profiles of a control sample (solid histogram) and a sample with the maximum copper 

concentration assayed (1 mg l
-1

), after 24 and 96 h of culture (A and B, respectively). 



 

FIG. 6. Variations in the membrane potential after copper exposure of P. tricornutum 

cells, using 3,3'dihexyloxacarbocyanine as the fluorescent probe. Data are expressed as the 

percentage of the fluorescence of control cells, according to the equation cited in the text. 

Results are the means of three replicates. 

 

FIG. 7. Variations in the membrane potential after copper exposure of P. tricornutum 

cells, using rhodamine 123 as the fluorescent probe. Data are expressed as the percentage of the 

fluorescence of control cells, according to the equation cited in the text. Results are the means of 

three replicates. 

 

DISCUSSION 

Some metals play indispensable roles in cell growth and maintenance of 

metabolic functions, but when their concentrations in the environment increase above a 

threshold, many cellular changes can be detected as a response to the stress provoked. 

Results obtained indicated that growth of Phaeodactylum tricornutum cultures was 

affected by copper (Fig. l). 

Copper concentrations assayed provoked an increase in the forward scatter signal 

of P.  tricornutum cells detected by flow cytometry, being maximum for cultures with 1 

mg l
-1

  of copper (Figs. 2 and 3). Microscopical analysis of these cells have shown an 

increase in size, probably due to the incapacity to finish the cell division because of 

copper exposure. These data can suggest a correlation between the increase in cell size 



observed microscopically and the increase in the forward scatter signal. Other authors, 

using microscopic techniques, have observed an increase in the cellular volume in 

different microalgal species exposed to high concentrations of different heavy metals (1, 

17, 21, 22). 

The main characteristic of cell death, whether from senescence, acute stress, or 

aging, seems to be the loss of the cell's ability to maintain homeostasis (4,6). Cellular 

membranes are selective, dynamic barriers that play an essential role in regulating 

biochemical and physiological events. The viability of P. tricornutum cells decrease 

throughout 96 h of copper exposure (Table 1 ), showing a progressive loss of their 

membrane integrity, like occurs in the aging or senescence process (23). Whereas 

senescence represents endogenously controlled degenerative processes leading to death, 

aging encompasses a wide array of passive or nonregulated, degenerative processes 

driven primarily by exogenous factors (23). 

Membranes could be expected to be highly prone to free radical attack inasmuch 

as unsaturated fatty acids are major components of most membrane lipid bilayers. The 

consequences of free radical attack on membranes are numerous and include the 

induction of lipid peroxidation (lo), lysis (7), and fatty acid deesterification (13). 

Senescence is an active process initiated by some combination of internal and 

environmental triggers, and membrane deterioration is an early and fundamental feature 

of this process. Results obtained in this work show important changes in the 

cytoplasmic membrane. Peroxidase activity increased in cells exposed to the higher 

copper concentrations assayed (Fig. 4), where cell viability decreased. The peroxidase 

activity detected seems to be directly correlated to the progressive loss of function and 

structural integrity of the cell membrane, leading to the cell death or decrease of cell 

viability.  

After 96 h of copper exposure, results obtained by flow cytometry showed that 

cells cultured with this metal presented an increase in the membrane potentials, 

increasing as copper concentration increased (Figs. 6 and 7). These changes in the 

membrane potentials can be associated with alterations provoked by the peroxidation of 

membrane lipids as consequence of free radical attack (copper in this case), and also 

with other changes found in these cells like the increase in the intracellular pH (3). 



Results obtained in this work showed that copper induced a degenerative process 

in Phaeodactylum tricornutum cells, closely related with alterations or disorders in 

membrane systems. 
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