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Abstract 

 

After resistance exercise, there are reductions in cardiovagal control and baroreflex sensitivity, 

and decrements in blood pressure, that may have clinical relevance. This thesis present three 

studies that explored the interaction between set configuration and the type of exercise on 

the cardiac parasympathetic control, blood pressure, and perceived exertion. For this, maximal 

and submaximal sets were tested with exercises differing in the muscle mass involved. The 

results indicated that longer sets have a higher cardiac parasympathetic withdrawal and higher 

values of perceived exertion in comparison with shorter sets. Also, short sets with an inter-

repetition rest design may not produce a reduction in cardiac parasympathetic activity. 

Submaximal sets did not affect post-exercise blood pressure but a long set leading to failure 

produced post-exercise hypotension in disregard of the exercise used. Lastly, the effect of set 

configurations on autonomic control and perceived exertion were dependant on the exercise 

performed, with dissimilar effects depending on the muscle mass involved and the set 

configuration used. This suggests that the prescription of resistance exercise through the set 

configuration may have important applications in training since it permits a control of cardiac 

parasympathetic reduction, the onset of post-exercise hypotension, and a modulation of 

perceived exertion. 

 

 

Keywords: set configuration, muscle mass, resistance exercise, cardiac autonomic control, 
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Resumen 

 

Después de una sesión de fuerza, hay una reducción del control vagal cardíaco y de la 

sensibilidad barorrefleja, y una disminución de la presión arterial, que pueden tener relevancia 

clínica. Esta tesis presenta tres diferentes estudios en los que se exploran la interacción entre 

la configuración de la serie y el tipo de ejercicio en el control parasimpático cardíaco, la 

presión arterial y el esfuerzo percibido. Para esto, se testaron series máximas y submáximas 

con varios tipos de ejercicio con diferente masa muscular implicada. Los resultados indicaron 

que las series más largas producen una retirada parasimpática y un esfuerzo percibido mayor 

que las series más cortas. Además, las series cortas con un diseño de descanso entre 

repeticiones pueden no producir una reducción del control autónomo cardíaco. Las series 

submáximas no produjeron una reducción de la presión arterial pero una serie larga hasta el 

fallo muscular la produjo, independientemente del tipo de ejercicio realizado. Por último, el 

efecto de la configuración de la serie en el control autónomo y es esfuerzo percibido fue 

dependiente del tipo de ejercicio realizado, con efectos diferentes dependiendo de la masa 

muscular del ejercicio involucrado y de la configuración de la serie utilizada. Esto sugiere que la 

prescripción de fuerza a través de la configuración de la serie puede tener aplicaciones 

prácticas en el entrenamiento permitiendo controlar la reducción del control parasimpático 

cardíaco y la aparición de la hipotensión postejercicio, y modulando el esfuerzo percibido. 

 

 

Palabras clave: configuración de la serie, masa muscular, fuerza, control autónomo cardíaco, 

sensibilidad barorrefleja, hipotensión postejercicio, esfuerzo percibido 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

Resumo 

 

Despois dunha sesión de forza, hai unha redución do control vagal cardíaco e da sensibilidade 

barorreflexa, e unha disminución da presión arterial, que poden ter unha relevancia clínica. 

Esta tese presenta tres estudos no que se exploran a interacción entre a configuración da serie 

e o tipo de exercicio no control parasimpático cardíaco, a presión arterial e o esforzo 

percibido. Para isto, testáronse series máximas e submáximas con varios tipos de exercicio con 

diferente masa muscular implicada. Os resultados indicaron que as series máis longas 

producen unha retirada parasimpática e un esforzo percibido maior que as series máis curtas. 

Ademáis, as series curtas cun deseño de descanso entre repeticións poden non producir unha 

redución do control autónomo cardíaco. As series submáximas non produciron unha redución 

da presión arterial pero unha serie longa ata o fallo muscular a produxo, independentemente 

do tipo de exercicio realizado. Por último, o efecto da configuración da serie no control 

autónomo e o esforzo percibo foi dependente do tipo de exercicio realizado, con efectos 

diferentes dependendo da masa muscular do exercicio involucrado e da configuración da serie 

utilizada. Isto suxire que a prescripción de forza a través da configuración da serie pode ter 

aplicacións prácticas no adestramento, permitindo controlar a redución do control 

parasimpático cardíaco e a aparición da hipotensión postexercicio, e modulando o esforzo 

percibido. 

 

 

Palabras chave: configuración da serie, masa muscular, forza, control autónomo cardíaco, 

sensibilidade barorreflexa, hipotensión postexercicio, esforzo percibido 
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Men who have excessive faith in their theories or ideas are not only ill prepared for 

making discoveries; they also make very poor observations.  

Of necessity, they observe with a preconceived idea, and when they devise an 

experiment, they can see, in its results, only a confirmation of their theory 

— Claude Bernard, An introduction to the study of Experimental Medicine 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iii 
 

Contents 

 

Abbreviations ................................................................................................................................ v 

Index of figures ............................................................................................................................. vii 

Index of tables ............................................................................................................................. viii 

1. General introduction ......................................................................................................... 1 

1.1. How to prescribe resistance exercise? .......................................................................... 5 

1.1.1. Traditional prescription of resistance exercise ......................................................... 6 

1.1.2. An alternative prescription of resistance exercise: Set configuration ...................... 7 

1.1.2.1. Characteristics of the prescription through set configuration .......................... 8 

1.1.2.2. Acute effects of prescription through set configuration................................... 9 

1.1.2.3. Chronic effects of prescription through set configuration ............................. 13 

1.2. Effect of resistance exercise on cardiac autonomic and baroreflex control ............... 15 

1.2.1. Cardiac autonomic control ...................................................................................... 15 

1.2.1.1. Control of the cardiac autonomic activity after resistance exercise ............... 16 

1.2.1.2. Effect of resistance exercise on cardiac autonomic control ........................... 17 

1.2.2. Cardiac baroreflex control ....................................................................................... 19 

1.2.2.1. Control of the cardiac baroreflex activity after resistance exercise ............... 21 

1.2.2.2. Effect of resistance exercise on cardiac baroreflex control ............................ 22 

1.2.3. Applicability of the set configuration on autonomic and reflex control ................. 23 

1.3. Effect of resistance exercise on post-exercise hypotension ....................................... 25 

1.3.1. Post-exercise hypotension ...................................................................................... 25 

1.3.2. Physiological model of post-exercise hypotension in aerobic exercise .................. 26 

1.3.2.1. Obligatory mechanisms ................................................................................... 26 

1.3.2.2. Situational mechanisms .................................................................................. 28 

1.3.3. Effect of resistance exercise on post-exercise hypotension ................................... 29 

1.3.3.1. Total volume .................................................................................................... 31 

1.3.3.2. Type of exercise ............................................................................................... 31 

1.3.3.3. Intensity of load............................................................................................... 32 

1.3.3.4. The onset of muscular failure ......................................................................... 33 

1.3.4. A physiological model for resistance exercise ........................................................ 34 

1.3.5. Applicability of the set configuration on post-exercise hypotension ..................... 36 

1.4. Effect of resistance exercise on perceived exertion ................................................... 38 



iv 
 

1.4.1. Perceived exertion .................................................................................................. 38 

1.4.2. Control of perceived exertion during resistance exercise ...................................... 39 

1.4.3. Effect of resistance exercise on perceived exertion ............................................... 40 

1.4.4. Applicability of the set configuration on perceived exertion .................................. 43 

2. Purposes and hypotheses ............................................................................................... 47 

3. Study I .............................................................................................................................. 51 

3.1. Introduction ................................................................................................................ 53 

3.2. Methods ...................................................................................................................... 55 

3.3. Results ......................................................................................................................... 60 

3.4. Discussion .................................................................................................................... 64 

3.5. Conclusions ................................................................................................................. 67 

4. Study II ............................................................................................................................. 69 

4.1. Introduction ................................................................................................................ 71 

4.2. Methods ...................................................................................................................... 74 

4.3. Results ......................................................................................................................... 79 

4.4. Discussion .................................................................................................................... 83 

4.5. Conclusions ................................................................................................................. 87 

5. Study III ............................................................................................................................ 89 

5.1. Introduction ................................................................................................................ 91 

5.2. Methods ...................................................................................................................... 93 

5.3. Results ......................................................................................................................... 97 

5.4. Discussion .................................................................................................................. 100 

5.5. Conclusions ............................................................................................................... 103 

6. General discussion ........................................................................................................ 105 

7. General conclusions ...................................................................................................... 119 

8. Bibliography .................................................................................................................. 123 

Appendix A: Abstract of at least 3000 words in an official language .................................... 141 

Appendix B: Informed consent .............................................................................................. 155 

Appendix C: Publications that led to the thesis .................................................................... 161 

 

 



v 
 

Abbreviations 

 

1RM  Maximum manifestation of strength 

ANOVA  Analysis of variance 

ATP  Adenosine triphosphate 

BP  Blood pressure 

BRS  Baroreflex sensitivity 

DBP  Diastolic blood pressure 

ECG  Electrocardiogram 

H+  Hydron 

HF  High-frequency power 

HR  Heart rate 

HRC  Heart rate complexity 

HRV  Heart rate variability 

LF  Low-frequency power 

LF/HF  Ratio between Low-frequency power and High-frequency power 

Ln  Natural logarithm 

MAP  Mean arterial pressure 

MPV  Mean propulsive velocity of the concentric phase 

MV  Mean velocity of the concentric phase 

nu  Normalized units 

PEH  Post-exercise hypotension 

PCr  Phosphocreatine 

RM  Maximum number of repetitions performed with a submaximal weight 

RMSSD  Root mean square of differences between adjacent R-R intervals 

SampEn Sample Entropy 

SBP  Systolic blood pressure 

SD  Standard deviation 

SEM  Standard error of the mean 

V02max  Maximal oxygen consumption 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vii 
 

Index of figures 

 

General introduction 

Figure 1. Representation of different examples of set configurations ......................................... 9 

Figure 2. Schematical representation of the baroreflex loop ..................................................... 19 

Figure 3. Model of carotid baroreflex function curve ................................................................. 20 

Figure 4. Obligatory and situational mechanisms during post-exercise hypotension ................ 29 

 

Study I 

Figure 5. Schematic representation of the sessions ................................................................... 57 

 

Study II 

Figure 6. Interaction between Exercise and Time for the Ln of HF/IRR2 x 104 ............................ 80 

Figure 7. Interaction between Protocol and Time for the Ln of HF/IRR2 x 104 ........................... 81 

Figure 8. Interaction between Exercise and Protocol for the Ln of HF/IRR2 x 104 ...................... 81 

Figure 9. Interaction between Protocol and Time for SBP (a) and DBP (b) ................................ 82 

 

 

 

 

 

 

 

 

 

 



viii 
 

Index of tables 

 

Study I 

Table 1. Physical, cardiovascular and functional characteristics of the subjects ........................ 55 

Table 2. Autonomic and baroreflex responses across sessions .................................................. 62 

Table 3. Hemodynamic responses across sessions ..................................................................... 63 

 

Study II 

Table 4. Physical, cardiovascular and functional characteristics of the participants .................. 74 

 

Study III 

Table 5. Repetitions performed in Failure session for Bench press and Parallel squat .............. 95 

Table 6. OMNI-RES responses and MPV through sessions, exercises and sets .......................... 99 

Table 7. OMNI-RES values for main effects and interactions ................................................... 100 

 

 

 

 

 

 

 



 
 

 

 

 

 

 

 

 

 

 

1. General introduction 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3 
 

Resistance exercise has been shown to prevent and improve several musculoskeletal and 

metabolic conditions (1), and is recommended by the American College of Sports Medicine and 

the American Heart Association as a means to reduce pathologies related to these outcomes 

and improve the quality of life (2,3). In this sense, resistance training will lead to some health 

benefits, such as an increase of strength, muscle mass, and bone mineral density, and 

improvements in the metabolism of glucose, lipids, and lipoproteins (1–3). While the 

cardiovascular effects of aerobic exercise are studied traditionally, it was not until lately that 

the effects of resistance exercise on cardiovascular control were analyzed. In this regard, some 

efforts were made recently to design protocols to understand the effects of acute (4–7) and 

chronic (8–10) resistance exercise on the cardiovascular system and to improve the 

cardiovascular conditions of pathological individuals (8–10). 

Nowadays, it is known that after a resistance training session, there is a reduction of cardiac 

parasympathetic control that is conducted by reductions in vagal autonomic activity (4,5,11–

13) and glossopharyngeal and vagal baroreflex activities (5,14–16). That reduction in 

parasympathetic control may mean a transient harmful effect since 30 minutes after an 

exercise there is an increased risk of a cardiac event due to a decrease in parasympathetic 

activity in individuals at cardiac risk (17). Also, this reduction in parasympathetic activity should 

be managed in particular individuals such as athletes in order to prescribe exercise through the 

effect of the session on the nervous system for providing a better individualization of the 

training (18,19). Otherwise, it is known now that strength training produce acutely (20–22) and 

chronically (23,24) a reduction of blood pressure that could mean a reduction of the risk of 

suffer a coronary heart disease, stroke, or all-cause mortality (23). Nevertheless, while the 

beneficial effect of resistance training on blood pressure has been proven (23,25), the small 

number of studies performed until date has slowed the possible applicability of strength 

training as a non-pharmacological therapy to reduce or prevent high blood pressure (23,25). 
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In this sense, there is no consensus on how resistance training should be prescribed, due to 

the novelty of the field of study and the lack of applicable knowledge (2,26,27). There are 

multiple factors that could contribute to the effects of resistance exercise on cardiovascular 

system, such as loading parameters (i.e., load, volume, and suchlike), the type of exercise (i.e., 

upper vs. lower limbs), or the way to prescribe resistance exercise (i.e., percentage of 1RM, 

repetitions to failure, and suchlike). In this regard, the loading parameters, the type of 

exercises used, and the way to prescribe resistance exercise can modulate and determine the 

acute and chronic cardiovascular responses. Essentially, the former and the latter are 

interrelated since the way of prescribing resistance exercise may determine factors such as the 

load used, the repetitions performed, and the total rest of the session; and therefore the total 

volume performed or the ratio between work and rest. In summary, there is a lack of 

knowledge to indicate the precise responses of every variable of resistance exercise and how 

that contributes to undesirable or desirable effects on the post-exercise homeostasis, like 

reductions of cardiac autonomic and reflex control (15,28,29), or the onset of post-exercise 

hypotension (6,30,31) after resistance exercise. 

Additionally, beyond the cardiovascular effects, resistance exercise provokes a perceptual 

response known as perceived exertion. Perceived exertion should be taken into account since 

control the effort during the work-out would offer the possibility to regulate the resistance 

exercise session and to know their physiological implication (32). The control of the process of 

strength training through perceived exertion with other indicators could prevent negative 

processes that lead to illness and overtraining (33), or determine the adherence to training 

(34). In this sense, despite the notion that some loading parameters determine and modulate 

the perceived exertion, such as the load (35), the total volume performed (36), or the rest 

periods between sets and exercises of the session (37), there is an absence of knowledge 

regarding how the effect of other parameters such as the set configuration or the type of 

exercise performed affect the perceived exertion. 
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Solving this issue is of importance in order to prescribe resistance exercise in a precise way, 

establishing correctly the loading parameters selected. Besides, knowing how the different 

loading parameters and the characteristics of the session affect the perceived exertion may 

help to understand in the future how the perceived exertion is determined by different 

mechanical, metabolic or neural processes. That may give clues about the possible 

physiological implication of the session and, therefore, signalize in the long-term the criterion-

related validity of perceived exertion during resistance exercise. 

Thus, the main goal of the present thesis is to analyze through three different studies how the 

way to prescribe resistance exercise by modifying the configuration of the set and the type of 

exercise selected, determine the cardiovascular responses, particularly the autonomic and 

baroreflex control and the post-exercise blood pressure, and the perceived exertion during 

exercise. It is hypothesized that long set configurations and an exercise with more muscle mass 

involved would produce a greater reduction in blood pressure and a larger withdrawal of 

cardiac autonomic and baroreflex parasympathetic control, concomitant with higher values of 

perceived exertion, in comparison with short set configurations and an exercise with less 

muscle mass involved. 

 

1.1. How to prescribe resistance exercise?  

To maximize the effect of resistance training, the exercise design may be manipulated by 

several variables, called loading parameters (38,39). Traditionally, the most important loading 

parameter is the intensity and refers to the load used (3). The importance of the intensity of 

load (40) lies in determining the total volume performed in a set prior to muscular failure (41). 
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1.1.1. Traditional prescription of resistance exercise 

The intensity of load has been prescribed traditionally through two principal ways: the 

percentage of the maximum manifestation of strength (i.e. % 1RM) and the maximum number 

of repetitions that can be performed with a given submaximal weight (i.e., RM). Both 

mechanisms have advantages and disadvantages that should be known to maximize the effect 

of the prescribed resistance exercise program and to control the cardiovascular and perceptive 

(i.e., perceived exertion) effects that are provoked by the way of designate the workout. 

Prescribing resistance exercise as a percentage of the 1RM is acknowledged as the most 

important stimulus related to changes in strength levels (42). Nevertheless, not all evidence 

supports that training with a certain percentage of 1RM is important for strength gains (43). It 

has the advantage that it can be used to program resistance training for many individuals at 

the same time while the loads can be easily transformed into absolute values (41). In this 

sense, prescription of exercise as a percentage of 1RM can clearly reflect the dynamics of the 

evolution of the training load (41). Nonetheless, the knowledge of the 1RM at a given intensity 

of load does not provide any accurate basis for prediction of how many repetitions can be 

performed at a given %1RM (44). This is because the number of repetitions that can be 

performed at each percentage of 1RM is exercise-dependent (45–50) and has a large inter-

subject variability (45–50). During training, when resistance exercise is prescribed, a 

theoretical number of repetitions by set can mean that the muscular failure happens later or 

earlier than the repetitions prescribed. The former case may lead the individual to 

undertraining (51), while the latter leads to overtraining and injury due to the infeasibility of 

the repetitions determined (52). 
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An alternative worldview is to prescribe the intensity of load through the maximum number of 

repetitions that can be performed with a given submaximal weight. This approach associates 

an RM range with training goals, establishing a repetition maximum continuum (53). The 

continuum concept illustrates that a certain RM emphasizes a specific outcome, but, probably, 

the training benefits can be provided at any given RM (54). The RM approach has the 

advantage of eliminating the inter-subject variability and the differences between exercises 

(45–50). Nevertheless, the theoretical prescription of repetitions is correct for all individuals 

only in the first set of training. It is known that after the first set an individual may not be 

capable of performing the same number of repetitions, so this prescription is unrealistic 

(55,56) because the individual is not training within the prescribed RM. Otherwise, since the 

maximum number of repetitions that can be performed, at least in the first set, are well 

known, the possibility of undertraining is lower in comparison with the prescription through 

%1RM. Training to failure may have the advantage of a greater activation of motor units and a 

higher hormones secretion (52). Also, it is suggested that certain characteristics are better 

trained with ranges of RM than through the percentage of 1RM (57–59). However, performed 

over long periods, it has a high potential for overtraining and overuse injuries (52). Besides, 

training to muscular failure is not necessarily the best stimulus to improve strength gains (60). 

 

1.1.2. An alternative prescription of resistance exercise: Set configuration 

Another alternative prescription that could influence the acute responses and the strength 

gains after a training process is set configuration. Set configuration refers to the repetitions 

performed with regard to the maximum possible number of repetitions in a set (14–16). The 

importance of the relation between the number of repetitions performed and the total 

number of repetitions possible in a set has been analyzed from different perspectives and 

previously named as intensity (44,54,61,62), effort (40), intensity of effort (43) or level of effort 
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(41). In addition, for several authors, this relation between repetitions performed over 

repetitions possible is an independent loading parameter, as relevant as the intensity of load 

or volume (40,41,54,62). In this respect, several authors recommend prescribing resistance 

exercises considering the maximum number of repetitions (47,51,57,58,63), inasmuch as 

prescribing resistance through the percentage of 1RM disregards the maximum number of 

repetitions that can be performed, has a large inter-subject variability and is exercise-

dependent (45–50). 

 

1.1.2.1. Characteristics of the prescription through set configuration 

Strength training prescription through set configuration is usually termed cluster training, 

inter-repetition rest training or intra-set rest training (64,65). Differences in terms refer to the 

total number of repetitions performed in each set, this is the intensity of effort (40), but they 

are essentially the same. In this regard, the configuration of the sets can be manipulated in 

two principal ways, once the intensity of load and the total volume are chosen: The number of 

repetitions performed in each set and the rest between each set or group of sets. 

The number of repetitions performed in each set will show how far (short set configuration) or 

close (long set configuration) the set is with regard to the muscular failure. For example, with 

the 10 repetitions maximum (10 RM) load, it could be performed at only 1 repetition, with 9 

repetitions left undone. This indicates a 1(10) set configuration, with an intensity of effort of 

10%. However, if 4 repetitions were performed, with 6 repetitions left undone, it would show 

a 4(10) set configuration, with an intensity of effort of 40%. These two set configurations are 

examples of short set configurations. The first, 1(10), is termed inter-repetition rest training 

since individual repetitions are perform. The second, 4(10), is termed cluster training or intra-

set rest training since the repetitions are performed in clusters. 
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On the other hand, the longer set configurations are performed close or leading to muscular 

failure. For example, when 8 repetitions are performed and only 2 repetitions left undone, this 

indicates an 8(10) set configuration, therefore with an intensity of effort of 80%. Finally, in an 

RM set configuration, when all repetitions are performed and 0 are left undone, this is a 10(10) 

set configuration so that intensity of effort would be maximal, this is, 100%. Graphical 

representations of these examples of short and long set configurations are shown in Figure 1. 

 

 

Figure 1. Representation of different examples of set configurations. 

 

The rest between sets or group of sets are determined based on the metabolic replenishment 

needed to allow a more complete or incomplete recovery (64–66). In this regard, a break of 

about 15-30 seconds between repetitions or sets is typically left in short set configurations for 

an almost complete recovery (64,67), without additional benefits with longer rests (68). The 

effects of different set configurations will be discussed below. 

 

1.1.2.2. Acute effects of prescription through set configuration 

The different set configuration may lead to dissimilar acute 1) mechanical, 2) metabolic, 3) 

hormonal and 4) neural responses that should be taken into account to prescribe resistance 

exercise in a precise way. 
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1.1.2.2.1. Mechanical performance 

Mechanical performance refers to the different expressions of strength in the assessment of 

resistance exercise movements (e.g., velocity, power or force). These expressions are 

important in resistance training because training to a higher mechanical performance, near or 

at optimal load (i.e., the load at which the greatest power output is observed), may produce 

favorable effects on training (69,70). In addition, as mechanical performance indicates the 

neuromuscular fatigue of the session (71), exercise to different mechanical performances can 

lead to dissimilar adaptations in a training process (70). In a set, after achieving the 

performance peak during the second or third repetition (72), there is a loss of performance 

with each new repetition (72,73). This reduction of mechanical performance achieves 

significant values when an individual performs between one third and half of the total number 

of repetitions, depending on the exercise performed (72,73). A short set configuration, with an 

intensity of effort lower than 50%, reveal a higher mechanical performance than long set 

configurations for several parameters including peak power (66,68,74–76), mean power 

(66,74), peak velocity (64,68,75), mean propulsive velocity (77), and peak force (68). 

Nevertheless, between short set configurations, there are not differences in such variables 

(68,75,78). This higher performance was observed for exercises of several modalities; in 

explosive barbell exercises such as clean pull (64) or power clean (68), in strength exercises 

such as bench press (78), leg press (66,74), or parallel squat (77), and in power exercises such 

as ballistic bench press (76), jump squat (75), or plyometric jump (79). The pattern of loss of 

mechanical performance in a long set configuration is always the same for a given exercise, 

independently of the load (73). Nevertheless, it is known that the loss of mechanical 

performance in short sets is less steep in comparison with long set designs (76). In this regard, 

previous studies have shown that the number of repetitions that can be performed until 

muscular failure with a short set is higher than with a long set design (80–82), up to 4-fold 

more (80). 
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1.1.2.2.2. Metabolic response 

This differences in mechanical performance indicates the metabolic responses and, therefore, 

the neuromuscular fatigue of the session, as was previously pointed out (71). A resistance 

exercise induces different metabolic processes that occur simultaneously. There is a decrease 

in ATP stores and an increase in lactate and by-products of ATP (e.g., H+) that contributes to 

fatigue (66,71). The extent of this reduction in ATP store and the increase in lactate depends 

on the configuration of the set (66). 

Oxidative phosphorylation. The short set configurations maintain the PCr muscle content 

during exercise, meanwhile in long set configurations this content is reduced dramatically. This 

suggests that in short sets the ATP synthesis matched the ATP utilization, something that does 

not occur in the long sets (66). The extent of the degradation of PCr and the resynthesis of ATP 

is marked by the intensity of effort of the set and the rest between groups of repetitions or 

sets. Therefore, short set configurations have a lower disruption of the energy balance than 

long sets. 

Anaerobic glycolysis. The changes in production of lactate, as a metabolic product of anaerobic 

glycolysis, occur simultaneously with the changes in PCr (66). Long set configurations have a 

higher glycolytic involvement than short sets (66,71,82–84). For short set configurations, a 

non-significant (83) or a slight elevation (66,82) of lactate is observed, suggesting that 

anaerobic glycolysis is extensively activated in long but not in short set configurations (66,71). 

This is because short sets may allow for a partial regeneration of PCr, resulting in low demand 

on anaerobic glycolysis and therefore less lactate production (66). These differences were 

observed between traditional, long set configurations versus inter-set rest (82–84) and inter-

repetition rest (77) set designs. 
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When an insufficient rest is allowed between sets or repetitions (<15-30 s), no differences in 

lactate production are observed between short or long sets (81) due to a insufficient 

resynthesis of PCr in the short sets (64,67). It indicates that rest between repetitions or sets 

should be manipulated precisely to a reduced activation of anaerobic glycolysis. 

 

1.1.2.2.3. Hormonal response 

Previous studies have indicated that the metabolic involvement in a session determines in part 

the magnitude of the hormonal responses (85). As a consequence, enhancing the acute 

metabolic accumulation and hormonal response may result, in theory, in a higher cross-

sectional area after resistance training (86). It seems that long sets of resistance exercise have 

a higher response of growth hormone (83,84), plasma epinephrine and norepinephrine (83), 

and cortisol (84) in comparison with short sets. Also, short sets produce a significant elevation 

of plasma norepinephrine (83), total and free testosterone (84) and cortisol (84) after a 

session, indicating a humble but significant hormonal response. 

 

1.1.2.2.4. Neural response 

Muscular activity increases with each new repetition performed, with the higher value near or 

at the end of the set, with the muscular failure (87). Due to this, the continuous pattern of the 

traditional set configuration results in a high threshold motor unit recruitment due to the size 

principle and, therefore, in greater muscular activity (88). In addition, higher threshold motor 

units are activated in response to an elevated metabolic production (i.e., lactate) that occurs in 

longer set configurations (89,90). Previous studies have observed a higher muscular activity in 

long set configurations versus short set configurations (81,91), confirming these postulations. 
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1.1.2.3. Chronic effects of prescription through set configuration 

These acute differences in mechanical performance, metabolic involvement, hormonal and 

neural response between different set configuration sessions may lead to dissimilar 

adaptations to long-term training in strength, power, muscular endurance and cross-sectional 

areas. 

 

1.1.2.3.1. Maximal strength 

Most studies comparing the effects of training with different set configurations revealed no 

significant differences in maximal strength (70,83,92,93) or higher improvements in long set 

configurations (39,94,95). When higher maximal strength improvements were observed after 

long sets, short set configurations also improved significantly (39,94,95). Only one study 

reported higher improvements with shorter sets (69). The possible benefits for short sets may 

be due to the intensity of load used, since protocols using a medium-to-high intensity of load 

(<80%) had better o similar benefits (69,83,92,93) with short sets, meanwhile very high 

intensities of load (>80% 1RM) always provoked higher benefits for longer sets (39,94,95). 

Finally, comparables or different improvements between exercises seem to not be muscular or 

exercise-type dependent, since similar effects have been observed for the improvements of 

bench press (69,70,94), knee extension (83,92,93), and squat (39,69,70). 

 

1.1.2.3.2. Power 

Short set configurations seems advantageous for the improvement of power when training is 

performed near the optimal load (i.e., maximal power output) (69,70). Out of this point, 

benefits may be more humble (39), comparable (70,93), or lower (94) than with long sets. 
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However, contrary to the previous comment regarding maximal strength, improvements of 

power in training protocols differing in set configuration may be dependent on the muscles 

trained. The short sets seem to elicit a higher power development in comparison to long sets 

for lower limbs (e.g., squat) (39,69,70), but results for upper limbs (e.g., bench press) are at 

this moment confusing (69,70,94). 

 

1.1.2.3.3. Muscular endurance 

Improvements in the endurance with the same absolute load prior to training did not seem to 

be dependent on the set configuration used. In this regard, most of the cases reported 

revealed no changes between different protocols (70,83,93), with only one case reporting 

higher muscular endurance after training with long sets (70). 

 

1.1.2.3.4. Cross-sectional area 

Although a prior study revealed improvements in long set configuration (83), results are not 

conclusive, observing no differences in the majority of the cases (69,83). The theoretical model 

explains that the enhanced acute hormonal response in a series of sessions of strength 

training, as observed in long set configuration protocols, results chronically in an increased 

cross-sectional area (86). Nevertheless, this was not observed generally in studies that 

analyzed designs differing in set configuration (69,83). 
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1.2. Effect of resistance exercise on cardiac autonomic and baroreflex control 

 

1.2.1. Cardiac autonomic control 

The heart is not a metronome and the normal heart beat is not characterized by clockwork 

regularity. In healthy individuals maintaining normal sinus rhythm, changes in the heart period 

are expected (96). The modulation of the heart period is due to alternations in the autonomic 

activity originated by the cardiovascular centre in the medulla oblongata. The cardiovascular 

centre regulates the heart via changes in the activity of the parasympathetic and sympathetic 

fibres innervating the sinoatrial node. In this regard, parasympathetic or vagal activity slows 

the heart rate, meanwhile the sympathetic stimulation increase heart rate. Heart rate 

variability (HRV) and heart rate complexity (HRC) are non-invasive methods to measure these 

changes in the autonomic activity. The importance of these measures resides in that they are 

useful to monitoring aspects such as fatigue and recovery after training (18), and provide 

valuable information about the health and illness conditions dependent on the cardiovascular 

function of the individual (97). 

HRV refer to the oscillation of the cardiac cycle (98) meanwhile HRC refer to their irregularity 

(12). This cardiac autonomic activity may be represented throughout different parameters 

with different time and frequency domain, and with non-linear methods (98). In this sense, the 

majority of the HRV parameters are surrogates of cardiac vagal activity between them (96). 

The HRC markers are also indicators of parasympathetic activity, but that yield essential 

information on heart rate dynamics (99). 
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1.2.1.1. Control of the cardiac autonomic activity after resistance exercise 

After resistance exercise there is a reduction in the vagal control of the heart (4,5,11–13). The 

control of the reduction in vagal activity may serve to provide a better individualization of 

training prescription and to monitor aspects such as fatigue and recovery (18). Also, the 

control of the loss of vagal activity after resistance exercise may help to prevent possible 

outcomes such as sudden cardiac death in pathological individuals, since 30 min after an 

exercise there is an increased risk of an event due to a decrease in vagal activity (17). In 

addition, prognosis studies revealed associations between reductions in cardiac vagal control 

and myocardiac ischemia and cardiac death (97), justifying the importance of maintaining the 

maximal vagal activity possible after exercise. 

It is well known that diseased individuals with cardiac antecedents have a dysfunctional 

autonomic control and therefore lower values of HRV and HRC in comparison with healthy 

individuals (100). Also, when there is a dysfunctional autonomic control, the recovery after 

exercise is worse in diseased individuals in comparison with healthy participants (100). 

Nevertheless, middle- and older-age hypertensive individuals with treated hypertension but 

with a intact cardiac autonomic control have the same cardiac nervous activity after resistance 

exercise than young- and middle-age healthy individuals (16,101). This makes young, healthy 

individuals an excellent model to try to understand how resistance exercise affects the cardiac 

control after a session. 

Previous studies have reported that resistance exercise causes a greater autonomic disruption 

in comparison with endurance exercise (15,28,29). Thereby, one single exercise is enough to 

produce significant reductions in vagal control (102,103). Nevertheless, the cardiac impact of 

the different loading parameters of strength training remains still unknown. This impact must 

be elucidated in order to modulate the cardiac impact of the work out and prescribe exercise 

in an accurate and secure manner. 



17 
 

1.2.1.2. Effect of resistance exercise on cardiac autonomic control 

As was explained before, studies reported a reduction in cardiac vagal control after resistance 

exercise in comparison with a control session (4,5,11–13); but attending to the loading 

parameters, only a few studies were published. It appears that the volume affects the 

cardiovagal control of the heart when the differences in total volume are massive (30), with a 

higher withdrawal when more total volume is performed. Nevertheless, it is not observed 

when the total volume and the differences in the total volume are minor (13). 

Also, it seems that the intensity of load determines the cardiovagal withdrawal after resistance 

exercise. Most studies comparing the intensity of load revealed that medium or higher loads 

provoke a higher loss of parasympathetic control of the heart in comparison to lower loads 

(15,103–106), independent of the total volume being equated (103) or not (15,104–106). 

Nevertheless, the studies that were not equated (15,104–106) reached muscular failure at 

higher intensities. In this sense, reaching muscular failure may be a confounding factor that 

elicits per se a disturbance the autonomic control, beyond relative load. 

In this regard, reaching to muscular failure provokes a high involvement of the glycolytic 

system and produces an important elevation of lactate on blood (71). Regarding the vagal 

cardiac control, it appears that the glycolytic involvement during resistance exercise 

determines the vagal withdrawal after the session (103,107). The relationship between the 

glycolytic involvement and the vagal withdrawal was observed previously at rest (108,109) and 

during aerobic exercise (110). On the one hand, it has been formerly pointed out that at rest 

there is a significant withdrawal of cardiac vagal control in the presence of lactate when it is 

injected intravenously (108,109). On the other hand, in the aerobic model of autonomic 

recovery after exercise, has been shown that the anaerobic involvement during the session 

modulates the cardiovagal withdrawal (110). 



18 
 

In resistance exercise, there is a lack of differences between protocols that are leading to 

muscular failure but that differ in volume and type of exercises (13), suggesting that reaching 

muscular failure provokes a huge reduction in the vagal control of the heart that is larger than 

the reduction that may be elicited by the loading parameters such as the intensity of load or 

the total volume performed (13). This has been previously shown in the aerobic model, in 

which the cardiovagal withdrawal was affected by the anaerobic involvement during the 

session while it was not affected by the total volume performed (110–112). 

However, when different types of exercise (i.e., upper versus lower limbs) are compared 

between them with the same protocol but without reaching muscular failure, the difference 

between exercises exists, with a higher reduction of vagal control after the exercise of the 

lower limbs (113). This difference may be due to the dissimilar lactate production that exists 

between the exercises of upper and lower limbs (71). 

At last, the cardiovagal response to resistance exercise in different resistance training status of 

the participants seems to be similar for HRV, despite that resistance trained individuals have a 

higher loss of HRC in comparison with moderately actively ones (13). This difference in HRC 

without changes in HRV is an interesting point of HRC, since as was argued before it yields 

essential information about heart rate dynamics beyond the surrogate markers of 

parasympathetic activity of HRV (99). Another previous study reported differences in HRC 

while it did not observe differences in HRV (12), suggesting that during some stressful 

situations or with some training status, the heart can experience a loss of complexity without a 

loss of variability (12,99). 
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1.2.2. Cardiac baroreflex control 

The baroreflex is a mechanism that helps to maintain the homeostasis of the blood pressure. 

This mechanism responds to beat-to-beat changes in blood pressure by reflexively altering 

autonomic neural activity (114). The elevation of blood pressure results in a stretch of the 

aortic arch and the carotid sinus, where reside stretch-sensitive receptors. This deformation 

causes an increase in afferent neuronal firing at baroreceptive neurons. These afferent 

neuronal firing project to the dorsomedial medulla, which in turn signals the neurons 

composing the efferent autonomic limb of the baroreflex (115). The resultant cardiac 

adjustments modify the heart period to buffer the rises and falls of the blood pressure, 

preventing short-term wide blood pressure fluctuations, and thereafter reducing the variability 

of the blood pressure (116). A schematical representation of the baroreflex loop is shown in 

Figure 2. 

 

 

Figure 2. Schematical representation of the baroreflex loop. Adapted from Di Rienzo et al., (114). 

 

The sensitivity -or gain- of the baroreflex (i.e., baroreflex sensitivity, BRS), is the relation 

between the changes in systolic blood pressure and their respective change in the heart period 

(117) around the operating point. The operating point is a non-fixed point where the systolic 

blood pressure and the heart are working under a given period of time previous to an invasive 

stimulus or during spontaneous changes (117). 
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Traditionally, this relationship is represented by a logistic model (i.e., carotid baroreflex 

function curve. Figure 3) where the changes in heart rate and blood pressure are analyzed in 

comparison with the changes in the carotid sinus pressure (118). These changes between 

blood pressure and heart period in the operating point, that is, the BRS, provide valuable 

information about health and illness conditions (119), is a predictor of cardiac mortality (97) 

and reveals valuable information about cardiac vagal autonomic activity (120). 

 

 

Figure 3. Model of carotid baroreflex function curve. Adapted from Raven et al., (118). 

 

There are several techniques for the analysis of the BRS. This quantification has been 

measured traditionally by the injection of vasoactive drugs (i.e., Oxford technique). However, 

the need for intravenous cannulation and the use of drugs limit the applicability of this 

technique under real-life conditions (121,122). Recently, several techniques have been 

developed based on computer procedures that analyze the spontaneous changes between 

blood pressure and heart period and give precious information about the baroreflex control of 

the heart. These techniques, usually called “spontaneous methods” (123), identified by time 

domain (i.e., sequence method) (124) or frequency domain (i.e., α-index method) (125) the 

relationship between the changes of those variables. 
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From a general point of view, both methods report the same information about BRS (126). 

Nevertheless, the sequence method brings some advantages in comparison with the α-index 

method. These are: detailed information on the physiological minute-to minute variability of 

BRS, a reduced time window for the analysis, and offers a separate assessment of the reflex 

heart period induced by increases and decreases of heart period (122). 

BRS by the sequence method is obtained by computing the slope of the regression line 

between three or more consecutive beats in which progressive increase or decrease in systolic 

blood pressure are followed by progressive changes of the heart period in the same direction 

(121). Also, BRS of the cardiac baroreflex control is predominantly parasympathetic, as 

observed by autonomic blockade in humans (127,128) and sino-aortic denervation in animals 

(124). Lastly, that the sequences reflect beat-by-beat interactions between blood pressure and 

heart period rather than chance coupling has been supported via surrogate data analysis (129). 

 

1.2.2.1. Control of the cardiac baroreflex activity after resistance exercise 

After resistance exercise there is a reduction in the BRS (5,14–16). In addition, after a 

resistance exercise session there is a great loss of BRS in comparison with an aerobic exercise 

session (14). While there is not a previously stated association between the reduction of the 

baroreflex control after exercise and an acute increased risk of a cardiac event; data 

interpretation suggest that the effect of resistance exercise on BRS should be monitored in 

order to avoid certain risks. In this sense, prognosis studies revealed that reductions in the 

level of BRS are associated with myocardiac ischemia and cardiac death (97), indicating the 

relevance of maintaining the maximal BRS possible after exercise. 
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Also, the decreased BRS could lead to a decrease in vagal activity, as the baroreflex function 

influences the resting cardiac vagal outflow (130). This could affect in the same way that 

exposed in the effects of resistance exercise on cardiac autonomic control section, since after 

resistance exercise there is a reduction of vagal activity (4,5,11–13). 

Like in the case of cardiac autonomic control, it is known that diseased individuals with cardiac 

antecedents have a reduction in BRS in comparison with healthy individuals (119) and that 

when the participants have the same BRS between groups, the response of BRS to a resistance 

exercise session seems to be similar between groups (16). This makes healthy individuals a 

good model to analyze the effects of resistance exercise on baroreflex sensitivity in both 

health and disease when the baroreflex control is already working properly, in order to 

understand how the resistance exercise affects the baroreflex control. 

In this sense, the effect of the different loading parameters of resistance exercise on post-

exercise BRS is unknown yet. This impact must be elucidated in order to manage the 

cardiovascular impact of the work out and to prescribe resistance exercise in a precise and a 

safe way. 

 

1.2.2.2. Effect of resistance exercise on cardiac baroreflex control 

As was previously pointed out, it is known that after resistance exercise there is a reduction in 

the BRS, observed with the sequence (5,14,15) and α-index method (16). While a protocol with 

a higher intensity of load produced a longer reduction in BRS in comparison with a protocol 

with a lower intensity of load (15), the effects of other loading parameters are still unknown. 

Attending to this only previous study, could be postulated that more demanding protocols may 

cause a higher reduction of BRS, in comparison with less demanding protocols. 
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Thus, protocols with a higher intensity of load, more volume or a longer set configuration may 

produce a higher reduction of BRS. Several metabolites could account for this theoretically 

implication in more demanding protocols. In this sense, it was previously observed that while 

lactate infusion does not produce a reduction in BRS (109), the nitric oxide presence in blood 

produces a reduction in BRS (131). Nevertheless, no studies until date have analyzed these 

possible effects on BRS after resistance exercise. 

 

1.2.3. Applicability of the set configuration on autonomic and reflex control 

While most studies revealed no differences in the increase of maximal strength with different 

set configurations resistance training designs (70,83,92,93), the effect on cardiac autonomic 

and baroreflex control are probably dissimilar. As was previously commented, there is a 

reduction in cardiac vagal autonomic (4,5,11–13) and baroreflex control (5,14–16) after a 

resistance training session. The importance of controlling the cardiac autonomic and 

baroreflex loss lies in, on the one hand, the ability to provide a better individualization of 

training allowed by the prescription of exercise through the effect of the session on the 

nervous system (18); and, on the other hand, to help in diseased individuals to reduce the loss 

of cardiac control and, therefore, to prevent the possible outcomes associated with the 

reduction of vagal control, such as sudden cardiac death (17). 

For this, to know the precise effects of the different loading parameters is strictly necessary. In 

this sense, the effect of set configuration is an interesting parameter to analyze, since permits 

to match the load, volume, and rest, and therefore the work-to-rest ratio. That allows to 

modulate the metabolic and perceptual responses while maintaining the loading variables 

equated. As was previously explained, glycolytic involvement during resistance exercise 

determines the cardiac vagal withdrawal after the session (103,107), so this is probably that 
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the length of the set determines the cardiac autonomic control after resistance exercise. 

Additionally, the interaction with the type of exercise will be analyzed to better understand 

the effects of set configuration on cardiac control. In this sense, the type of exercise performed 

also determines the reduction in the cardiac control (113) due possibly to a different glycolytic 

involvement (71). It is hypothesized that longer set configurations would produce a higher 

cardiac vagal withdrawal in comparison with shorter set configurations and that this reduction 

would be increased with the use of type of exercises with muscle mass involved in comparison 

with exercises with less muscle mass involved. 

In the case of baroreflex control, the factors that modulate the loss of BRS after resistance 

exercise are not known, but it is known that more demanding protocols cause a longer 

reduction of BRS in comparison with lighter protocols (15). In this regard, testing protocols 

equated in loading parameters but that allow for different intensities of effort can provide 

information about how this control is affected by the design of the session in general and 

about set configuration in particular. While the benefits of strength training are probably 

comparable regardless of set configuration used (70,83,92,93), knowing what designs help to 

better maintain the baroreflex control may have practical applications in diseased individuals. 

As in the instance of cardiac vagal control and due to its physiological relationship (132), since 

the baroreflex control of the heart is mainly parasympathetic (127,128), it is hypothesized that 

longer set configurations would produce a higher BRS reduction in comparison with shorter set 

configurations. 
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1.3. Effect of resistance exercise on post-exercise hypotension 

 

1.3.1. Post-exercise hypotension 

Post-exercise hypotension is a transient but sustained reduction in systolic and/or diastolic 

blood pressure below control levels after a bout of exercise. Post-exercise hypotension occurs 

in response to several types of exercise (133), but the purpose of this thesis focuses on post-

exercise hypotension after resistance exercise. After resistance exercise, a maximal reduction 

of approximately 30/20 mmHg of systolic and diastolic blood pressure has been reported (31), 

lasting up to 24 hours in hypertensive individuals (134). Nevertheless, post-exercise 

hypotension is usually more humble, especially in normotensive individuals. Post-exercise 

hypotension after resistance exercise is commonly assumed to be less in magnitude and 

duration than after aerobic exercise (20), but when the type of exercises are compared 

between, this assumption is far of be demonstrated (135–138). While matching a session of 

aerobic training with a session of strength training is not possible since the units between 

types of training are different (i.e., ml/kg/min of V02 consumed versus Kg lifted), a acute 

session with the same relative load (i.e., % of the V02max versus % of the 1RM) produces 

comparable effects on post-exercise blood pressure (135,136). 

The decrease in blood pressure observed after exercise could be an effective non-

pharmacological strategy to treat or prevent the appearance of hypertension (139). In this 

sense, the acute reduction in blood pressure after exercise may contribute to chronic 

reductions in hypertensive individuals (140). In this sense, the magnitude of post-exercise 

hypotension correlates strongly with long-term blood pressure reductions produced by 

resistance exercise (141). Lastly, a meta-analysis suggested that resistance training may cause 

a significant reduction in systolic and diastolic blood pressure (23), so resistance training may 

be of clinical interest in the treatment or prevention of hypertension. 
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Studies that analyze the physiological process that lies in post-exercise hypotension are 

normally carried out with aerobic exercises and in a normotensive population. Also, studies 

that analyze the effect of the different loading parameters of exercise in post-exercise 

hypotension, for both aerobic and resistance exercises are normally performed in 

normotensive individuals. Thus, studies in resistance exercise performed in a hypertensive 

population are scarce (31,104,134,142–146). Nevertheless, it is possible that the differences in 

blood pressure after exercise between hypertensive and normotensive individuals are just 

quantitative and not qualitative in regard to the subjacent mechanisms of the post-exercise 

hypotension (16,133,147). Despite this, some authors suggest that these differences may be 

due to statistical phenomena as the regression toward the mean (148). 

 

1.3.2. Physiological model of post-exercise hypotension in aerobic exercise 

In the literature, there is just one general model based in aerobic studies to explain the 

physiological processes of the reduction in blood pressure after exercise. This model is defined 

in 1) obligatory mechanisms, that are essential to the onset of post-exercise hypotension, and 

2) situational influences, that vary from one study to another (147). 

 

1.3.2.1. Obligatory mechanisms 

The obligatory mechanisms to the onset of post-exercise hypotension are a resetting of the 

baroreflex, mediated by a central decrease in sympathetic outflow (149–151), a blunted 

transduction of sympathetic outflow into vasoconstriction (149), and a sustained histaminergic 

vasodilatation (152,153). 
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After aerobic exercise, the baroreflex control is well preserved (154) but is reset in order to 

defend lower blood pressure (149,155). This resetting of the baroreflex results in reduced 

sympathetic outflow that is observed by a reduction of the muscle sympathetic nerve activity 

in both normotensive (149) and hypertensive (150,151) individuals. As muscle sympathetic 

nerve activity is reduced after exercise rather than elevated, as might be expected during a 

reduction of blood pressure (150), baroreflex-mediated regulation of the muscle sympathetic 

nerve activity must be reset to a lower operating point during postexercise hypotension (139). 

In addition to this, postexercise hypotension is associated with a blunted transduction of 

sympathetic outflow into vasoconstriction (149). It means that for a comparable levels of 

muscle sympathetic nerve activity, there is an attenuated vascular resistance in the previously 

active muscles (149). An increased reuptake of noradrenaline or a presynaptic inhibition of 

noradrenaline release are possible explanations for this blunted transduction (147). 

Also, there is a postexercise vasodilatation dependent on the activation of histamine H1 (156) 

and H2 (157) receptors. Combined H1 and H2 receptor antagonism reduce in a large extent the 

vasodilatation and hypotension that occurs after exercise (152,153). Histamine release can be 

elicited by a degranulation of the mast cells located within the connective tissue of the 

surrounding skeletal muscle, or by an increase in reactive oxygen species or a rise in 

temperature. 

Also, histamine appears to be formed newly due to oxidative stress or as a consequence of 

shear stress in large vessels (147). Prostaglandins (158) and nitric oxide (159) appears to have 

little effect on the contribution of postexercise vasodilation. 
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1.3.2.2. Situational mechanisms 

The situational mechanisms, contrary to the obligatory mechanism, vary from one study to 

another but affect the pathways that are related with post-exercise hypotension. These 

include the presence or absence of gravitational stress due to posture, and the fluid status and 

the heat balance with the environment. These mechanisms are manifested as changes in the 

stroke volume and hence in the cardiac output. The general model based in the majority of 

studies reports an elevated cardiac output during postexercise hypotension (160). This 

elevation is generally due to a well-maintained stroke volume and an elevation of heart rate. 

Also, hemodynamic mechanisms are dependent of the status of the participants (161). 

The position in which the participants are tested after exercise influences the hemodynamic 

responses (162,163). Most of the studies reporting hemodynamic responses that have been 

carried out in a supine position indicate an elevation of cardiac output without changes in 

stroke volume. However, when studies are performed in a seated position, reports inform a 

possible reduction in cardiac output (161,162). This is due to a hindered venous return that 

affects cardiac preload and therefore stroke volume (162,164,165). Further, fluid loss or heat 

balance appears not to affect postexercise hypotension (166,167) though stroke volume 

appears to be highly affected by these factors (168). In this sense, heat stress leads to a fluid 

loss that decreases cardiac preload and hence decreases also stroke volume. On the contrary, 

the heat can lead to a increase in heart rate that augments cardiac output (168). The 

physiological model that explains the obligatory and situational mechanisms during post-

exercise hypotension (147) is represented conceptually in Figure 4. 
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Figure 4. Obligatory and situational mechanisms during post-exercise hypotension.  

Based from Halliwill et al., (118). 

 

1.3.3. Effect of resistance exercise on post-exercise hypotension 

A resistance exercise session can cause an acute decline in the ambulatory blood pressure 

values in both normotensive (137,169,170) and hypertensive (134,143) individuals. In this 

sense, blood pressure may be declined after exercise during the periods of day (134,137,143), 

sleep (143,169,170) and during the 24 hours after a resistance exercise session (137,143,170). 

These reductions in ambulatory blood pressure have been observed for both systolic 

(134,137,143,170) and diastolic (134,137,143,169,170) blood pressure. In hypertensive 

individuals, there is always a reduction in systolic blood pressure after a resistance exercise 

session (31,104,134,142–145). These falls in the 24 hour period after a resistance exercise 

session can suppose a reduction of approximately 4 mmHg of systolic and/or 3 mmHg of 

diastolic blood pressure (137,143,170). 
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However, the main body of studies analyzes the effect of a resistance exercise session on post-

exercise blood pressure between 60 and 90 minutes after the end of the session (30,106,171–

174). Reductions are also observed for normotensive (16,30,106,173,175) and hypertensive 

(31,104,134,142,144) individuals, and for systolic (4,30,104,173,176) and diastolic 

(16,30,170,171,177) blood pressure. Although there are several studies in which post-exercise 

hypotension is not observed (6,178–183), when post-exercise hypotension is noticed, it 

normally lasts up to approximately 60 min with mean reductions of about 5-10 mmHg for 

systolic and diastolic blood pressure (16,30,106,171–173,184–186). However, in several 

studies the time under post-exercise hypotension matches the total time of data collection 

(30,106,171–174), so post-exercise hypotension may actually be longer. 

Otherwise, the factors that affect postexercise hypotension after resistance exercise are not 

entirely understood. Thus, to make the prescription of resistance exercise useful to elicit post-

exercise hypotension, it is necessary to understand the effects of the loading parameters in 

order to know the extent to which these parameters affect post-exercise blood pressure and 

how to maximize them. In this regard, the main differences between protocols are given by 

the time under post-exercise hypotension (i.e., duration) while differences in the size of the 

decrease of post-exercise hypotension (i.e., magnitude) protocols are scarce 

(4,30,31,104,106,176). 

Although there are works about several parameters of the load, the main factors that might be 

responsible for the onset or increase of a hypotensive effect after resistance exercise are a) 

the total volume, b) type of exercise, c) intensity of load and d) the onset of muscular failure. It 

is important to note that these factors are interrelated and, therefore, they can affect each 

other. 
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1.3.3.1. Total volume 

It appears that the total volume is the main factor to the onset of postexercise hypotension 

after resistance exercise. The more volume, the longer the duration of the hypotensive effect 

for both normotensive (30,172) and hypertensive (142) individuals. Besides, total volume 

seems to be the only load parameter by which the magnitude of reduction of blood pressure 

can be widely modulated (30). In this sense, normotensive individuals after performing a 

session with large volumes experience lower blood pressures than individuals after a session 

with small volumes for the entire postexercise period (30). Also, protocols with very low total 

volume do not produce a hypotensive effect (6,179–181,187,188). 

The type of protocol (i.e., paired exercises protocols versus traditional designs) does not 

appear to be important for the onset of postexercise hypotension when the total volume is 

equated, and the same exercises are performed (172). Nevertheless, when differences in total 

volume are observed between protocols due to reaching muscular failure, the designs that 

have a higher volume produce a longer hypotensive effect (174,189,190). These protocols to 

muscular failure alternated agonist and antagonists exercises (190) or exercises of the upper 

and lower limbs (174,189) in comparison to designs performed in consecutive sets to muscular 

failure and that, therefore, allowed a lower total volume. All this also suggests a major role of 

volume on the hypotensive effect (174,189,190). 

 

1.3.3.2. Type of exercise 

It appears that the inclusion of exercises of the lower limbs (i.e., legs) help tremendously to 

induce the onset and duration of post-exercise hypotension, probably due to the muscle mass 

involved in the exercises (6,146,176). This is true even with small volumes performed 

(191,192). 
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When the protocols are performed with lower limbs of the body and leading to muscular 

failure, small total volumes in the session but with a great number of sets by exercise produces 

a hypotensive effect (6). Nevertheless, when the protocols are also performed leading to 

muscular failure but with the upper limbs (i.e., arms) no hypotensive effect is observed, 

independently of the number of sets by exercise (6). It seems that when there is a sufficient 

volume, the type of exercise is another important variable to provoke hypotensive effect. 

In this sense, post-exercise hypotension may be longer in exercises of the lower limbs (176), or 

it can be absent after exercises in the upper limbs when it is observed in the lower limbs 

(6,146). Thus, there are several studies in which no effects were observed when the exercises 

were performed only in the upper limbs (6,146,172,188,193). Additionally, small volumes 

performed with the lower members have shown a hypotensive effect, with (191) or without 

(192) leading to muscular failure, an important co-factor of post-exercise hypotension (104). 

 

1.3.3.3. Intensity of load 

It seems that exercise at a medium intensity of load (60-70%) increase mildly the time under 

hypotension in comparison with high (80%) and low (40%) intensities of load for systolic (106) 

and diastolic blood pressure (106,171). Also, an intensity of load about 30% (176,194) or 40% 

(135,195) is enough to produce post-exercise hypotension, provided that a minimum of 

volume is made. 

In hypertensive individuals, exercise at a high intensity of load (80%) showed a higher 

magnitude of reduction in comparison to low intensities of load (50%) for systolic and diastolic 

blood pressure during all the post-exercise period (31,104). Nevertheless, participants in the 

protocol of higher intensity of load reached to muscular failure (104), which can be a 

confounding factor. 
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In normotensive individuals, differences of magnitude were observed only in specific moments 

in the post-exercise period (i.e., not all the course of data collection). In these particular 

moments, protocols at high (80%) or medium (70%) intensities of load had lower values of 

systolic blood pressure in comparison with the counterpart with a relatively lower intensity of 

load (40% and 60%, respectively) (106,179). Nevertheless, the contrary was observed in other 

studies for systolic blood pressure (106) and diastolic blood pressure (4), with lower values in 

the relative lower intensities of load (40%, 60%) in comparison with higher intensities of load 

(70%, 80%). Also, protocols at lower intensities of load affected to diastolic blood pressure in 

several studies in which the protocols at high intensities of load did not affect 

(172,176,182,196). Taking all this into account, to prescribe resistance exercise at the medium 

intensity of load may be recommendable in order to descend the systolic blood pressure 

(106,179) while prescribing resistance exercise at the low intensity of load could be a better 

option when the objective is to lower the diastolic blood pressure (4). 

 

1.3.3.4. The onset of muscular failure 

Reaching muscular failure may be another co-factor that determines the onset and the 

increase of post-exercise hypotension and that has not been studied sufficiently (104). When 

resistance exercise is prescribed through RM and, therefore, muscular failure is intentional, 

post-exercise hypotension is observed even with low total volumes (6,142,190). Nevertheless, 

a minimum total volume may be necessary to the onset of post-exercise hypotension since 

protocols with very low total volumes do not produce this effect, even with the onset of 

muscular failure (6,15). Also, a protocol that led to muscular failure but that was larger in total 

volume produced a longer hypotensive effect than another protocol that also led to failure but 

that have a relatively lower volume (172), showing the importance of the volume performed 

beyond muscular failure itself. 
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Besides, when protocols are equated in total volume, the protocols that lead to muscular 

failure produce longer hypotensive effects than protocols that do not lead to muscular failure 

(11,172,196), indicating certain importance as a co-factor effect when the volume is equated. 

Unfortunately, the intensity of load between these protocols was different and thus may have 

affected the responses (106,171). 

 

1.3.4. A physiological model for resistance exercise 

As explained before, the physiological processes studies in post-exercise hypotension are 

normally performed in aerobic studies. So it is plausible that the factors that produce post-

exercise hypotension differ in characteristics and magnitudes between aerobic and resistance 

exercise. 

Some studies reported an increase in systolic blood pressure 1-5 min after the end of 

resistance exercise (135,178,182,197). So it is possible that the immediate post-exercise 

hyperemia that happens after aerobic exercise (198) and helps to provoke the first minutes of 

post-exercise hypotension does not occur to the same extent after resistance exercise. 

Also, previous studies reported a decrease in cardiac output due to a reduction in stroke 

volume after resistance exercise (4,5,16,199), since heart rate is above (4,5,199) or not 

different (16) than control values. That is probably due to a decrease in the pre-load that 

occurs because of the change in fluids status from plasma to interstitial space during exercise 

(200,201) or due to cardiac fatigue as a consequence of loss of myocardial performance (165). 

After aerobic exercise, an elevation in cardiac output is usually reported (160), with exceptions 

depending on the status of the participants. That may be another difference between 

resistance and aerobic exercise models. 
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Moreover, an increase in systemic vascular resistance is commonly observed after resistance 

exercise (4,5,16) despite the fact that it was traditionally proposed in aerobic models that 

systemic vascular resistance might be lower after exercise (202). It is probably due to the 

decrease in cardiac output provoked by the shift in plasma volume, with individuals having an 

increased systemic vascular resistance that is not fully compensated due to the inhibition of 

the sympathetic vasoconstrictor nerves (147). 

Differences reported in the literature in cardiac output and systemic vascular resistance 

between resistance and aerobic exercise models could also be affected by the gravitational 

stress of the posture (167,168). This is because the individuals in the resistance exercise 

studies were tested in a seated position, and this is a confounding factor that affects the 

hemodynamic responses after exercise (161,162). 

After isokinetic resistance exercise, there was not enough activation of histamine H1 and H2 

receptors in a design with a short protocol without leading to muscular failure that did not 

cause post-exercise hypotension (152). As was explained before, a minimum volume is 

necessary to provoke post-exercise hypotension. At the same time, it is probably necessary to 

elicit some muscular fatigue and a reduction in blood flow since these factors are contributors 

to the liberation or production of histamine or are contributors to the activation of histamine 

receptors (203–205). In this sense, it is known that the activation of these receptors provides 

protection against fatigue during exercise (152). Thus, protocols that differ in the appearance 

or not of muscular failure are needed to analyze the role that the histamine H1 and H2 

receptors may have. As after aerobic exercise, nitric oxide appears to have little effect on post-

exercise hypotension (206). 
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1.3.5. Applicability of the set configuration on post-exercise hypotension 

To study the possible effect of muscle fatigue and failure on the onset of post-exercise 

hypotension, it is necessary to compare protocols equated in all the loading parameters, 

including the intensity of load. In this sense, set configuration here emerges as a variable that 

should be taken into account in post-exercise hypotension. Long set configurations, near or 

leading to muscular failure, provoke larger muscular contractions, a worsened blood flow and 

higher fatigue than short set configurations far from the onset of muscle failure. All these 

factors are contributors to the release or production of histamine or are contributors to the 

activation of the histamine receptors (203–205). In this sense, activation of histamine 

receptors provide protection against fatigue during exercise (152) and play a crucial role in the 

modulation of the metabolism during recovery (207). 

Thus, it is plausible that long set configurations, especially set designs to failure, may help 

induce the onset of post-exercise hypotension due to these characteristics previously 

discussed. To test the hypothesis that reaching to muscular failure is a co-factor in the onset of 

post-exercise hypotension, it is necessary to compare protocols differing in the set design, this 

is, with or without muscular failure, while the rest of the parameters (i.e., intensity of load, 

volume, work-to-rest ratio) of the load remain equated. Also, to test the hypothesis that 

specifically fatigue, more than the fact of reaching muscle failure, may be responsible for the 

onset of post-exercise hypotension, it is necessary to compare protocols differing in the set 

configuration but without reaching to muscular failure. Additionally, the interaction with the 

type of exercise will be analyzed in protocols with and without muscular failure to analyze the 

possible implication of the lower limbs, since it is probably an important modulator of post-

exercise hypotension (6,146,176). 
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It is hypothesized that set configuration leading to failure may be an important co-factor for 

the onset of post-exercise hypotension, maybe due to a substantial implication of the factors 

that are responsible for the release or production of histamine and/or due to the activation of 

the histamine receptors. Additionally, in protocols leading to failure and involving the lower 

limbs, post-exercise hypotension would be to a greater extent than protocols involving upper 

limbs. Otherwise, protocols without reaching muscular failure, even having longer set 

configurations, would not be important contributors because of this issue. 
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1.4. Effect of resistance exercise on perceived exertion 

 

1.4.1. Perceived exertion 

Perceived exertion scales are tools that serve to measure subjectively the intensity of effort, 

strain, discomfort, and/or fatigue that an individual feels while exercising (211). These scales 

are used, from a practical point of view and focused on resistance exercise, to know about the 

perceptual responses that are happening with certain loading parameters (35–37,212–214) 

and that are physiologically mediated (32). 

The perceived exertion results from the complex integration of three different inputs to the 

central nervous system: Firstly, inputs centrally generated by forwarding neural signals, 

termed corollary discharges (208,209). Secondly, inputs peripherally produced by afferent 

feedback from the active organs, like the skeletal muscles implicated (210,211). And lastly, 

inputs of the information processing, like knowledge of the exercise task endpoint (212). The 

integrative response of all the inputs is summarized in an integer dependent on the scale used. 

In resistance exercise, the OMNI-RES scale is usually used which categorizes the perception of 

effort between a numerical response range between 0 and 10, and that is helped by pictorial 

and verbal descriptors that assist in anchoring the number (213). In this regard, its applicability 

has been focused on assessing the perceived exertion at the end of each exercise set 

(214,215). Nevertheless, there are not transcendent differences between scales since all are 

essentially the same (32,216). To a correct collection and use of the perceived exertion, some 

steps must be followed (217), such as explaining properly the instructions (213), establishing 

anchoring (35), and selecting the suitability of the overall perception or the active muscles 

perception (218). If this is properly performed, perceived exertion is actually able to distinguish 

numerous loading parameters (35–37,212–214) and is related somehow with certain 

physiological and neuromuscular parameters (213,219,220), as will be explained below. 



39 
 

1.4.2. Control of perceived exertion during resistance exercise 

During resistance exercise, there is a progressive increase of perceived exertion with new 

repetitions (213,221) and sets (36) that leads to a maximal perceived exertion close or leading 

to muscular failure (222,223). Also, perceived exertion is determined by the intensity of load 

used (35,218,224) and modulated by the rest allowed between sets and exercises (37). 

The control of the values obtained and their evolution would allow the possibility to regulate 

the resistance exercise session. These changes of the loading parameters and thus the possible 

physiological processes that are related may have different applications during a single 

workout of resistance exercise session and across the process of strength training. For 

example, regarding an individual work out of resistance exercise, a fixed perceived exertion 

value (e.g., 4) may correspond to a certain percentage of 1RM (225) or a range of the 

repetition maximum continuum (226). Besides, the perceived exertion may reasonably 

estimate the 1RM through progressive loads and their corresponding perceived exertion value 

(227) and is an indicator of the repetitions that can be performed prior to muscular failure 

(222). 

Regarding the strength training process, perceived exertion may control the suitability of the 

intensity of load used since the values of perceived exertion are progressively descending 

when the 1RM is increasing (228), and the same perceived exertion value is obtained with a 

new absolute load after a period of training (229). Also, the perceived exertion may detect, 

with the help of other parameters of the session, negative processes that lead to illness and 

overtraining (33). Al last, it is possible that lower mean values of perceived exertion may lead 

to a higher middle-term adherence to exercise since a negative correlation was observed 

between both parameters (34). 
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1.4.3. Effect of resistance exercise on perceived exertion 

As was explained above, in resistance exercise there is a progressive increase of perceived 

exertion with new repetitions (213,221) and with new sets (36), leading to the maximal 

perceived exertion value close or leading to muscular failure (222,223). In addition, several 

loading parameters, which are often related to each other somehow, determine the perceived 

exertion response: 

The intensity of load used determines the perceived exertion. Each individual repetition 

(35,218) or group of repetitions (224) of an intensity of load have their own perceived exertion 

value, with higher values of perceived exertion with each higher intensity of load used 

(35,218,224). Nevertheless, this is not a universal finding (226). 

Besides, there are increments of perceived exertion with each new set as observed after the 

first repetitions (36,37,230) or at the end of the new set (231). This is true in disregard of the 

intensity of load used, as long as the repetitions performed with each set (36,231) or the rest 

allowed between sets are fatiguing enough (37). In addition, short sets with an inter-repetition 

rest design also leads to an increase in perceived exertion (232). This increment in perceived 

exertion with sets was also observed within each new exercise performed in a resistance 

training session, showing a partial recovery in perceived exertion with each new exercise and a 

progressive increase with consecutive sets of the new exercise performed (219). 

Additionally, the rest interval (37,233) and the type of exercise (234,235) performed might be 

modulators of the perceived exertion. On the rest interval, it is known that the rest between 

sets determines the perceived exertion in the first repetition of the next set (37), and probably 

at the end of the set (233), with higher values when the rests are shorter (37,233). Thus, this 

effect of the rest interval was also observed in short sets with an inter-repetition rest design, 

with lower values when the rest between repetitions is large enough (232). 
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On the type of exercise prescribed, their features can also affect the perceived exertion 

(234,235). Previously, discrepancies have been observed regarding the type of exercise 

performed, suggesting that the muscle mass implicated in the exercise could cause increases 

(234), no differences (36) or decreases (235) in the perceived exertion between exercises. The 

effect of the type of exercise and their characteristics, as the muscle mass implicated, should 

be elucidated for a better control of the effect of resistance exercise on perceived exertion. 

The occurrence of muscular failure is a great determinant of the perceived exertion (236,237). 

Completing the maximum numbers of repetitions that can be performed in a set (i.e., RM or 

maximal. An intensity of effort of 100%) should be interpreted as a nearly maximum or 

maximum perceived exertion (i.e., 9-10 values) by the participant, due to anchoring (238). In 

this regard, perceived exertion is not usually capable of distinguishing between protocols 

differing in intensity of load (49,237,239), or rest (215,230,237) but that are leading their sets 

to muscular failure. Nevertheless, is is probably able to distinguish successive sets when these 

are leading to muscular failure (240,241). 

In protocols to muscular failure, the total volume lifted seems to be the major determinant of 

perceived exertion (237,242–244). In this sense, designs with an equated volume lifted after 

an exercise (237,243) or a group of exercises (244) have shown comparable values of 

perceived exertion, despite the fact that were not equated in intensity of load (237,243) or rest 

(243). In addition, a previous study has shown that in protocols to failure, a design with a low 

intensity load but with a large volume performed, had higher values of perceived exertion in 

comparison with a design with a high intensity of load (242). All together, this suggests that in 

these kinds of protocols total volume lifted is more important that the intensity of load used 

(237,242,243). 
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However, in protocols without leading to muscular failure, the intensity of load used appears 

to be a major determinant of the perceived exertion (220,237,245,246), since individual sets 

(220,245,246) or consecutive sets (237) in protocols differing in intensity of load but with all of 

the rest of the parameters equated showed higher values of perceived exertion in the protocol 

with higher intensity of load used. When some determinants of perceived exertion in protocols 

leading (244) and without leading to muscular failure (237) are known, like some modulators 

(232,242), the extent of how these variables influence the perceived exertion are still 

unknown. 

Previous studies have shown that perceived exertion during resistance exercise may be related 

to several physiological and neuromuscular variables, such as lactate (213,219) and cortisol 

production (219), or muscle activity (220). That relation suggests that some physiological and 

neuromuscular variables may determine in part the perceived exertion (213,219,220). In this 

sense, physiological and neuromuscular responses must be a consequence of the loading 

parameters used, which explains the perceptive responses observed (32). 

Lactate production was observed to be positively correlated with perceived exertion (213,219), 

despite that in other studies this correlation was not observed (245,247). When differences in 

methodology may account in part for these discrepancies, the changes in lactate production 

are usually mirrored by the perceived exertion, even in total (213,248–251) or at least in part 

(245,252). 

Cortisol is a neuroendocrine marker that augments due to physical or mental stress. Despite 

that only one article reported a positive association between perceived exertion and salivary 

cortisol (219), the perceived exertion during resistance exercise mirrors the production of 

cortisol after the session (219,253,254). 

Finally, muscle activity refers to the active motor units and/or the firing frequency in which the 

motor units fire. The perceived exertion is functionally related somehow to the activity of the 
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muscle, suggesting that the physiological processes related to their activation act as a 

mediator of the perceived exertion: When studies compared protocols differing in the 

intensity of load, a positive correlation between perceived exertion and muscle activity was 

observed (220). Moreover, perceived exertion and muscle activity behaved in a corresponding 

manner between protocols differing in load (245,246) and rest (247).  

Taking all this into account, despite that some physiological and neuromuscular variables 

partially regulate the perceived exertion (213,219,220), as observed by alterations in the 

loading parameters (32), it is premature to hypothesize about how and in what extent these 

variables affect the perception of effort. 

 

1.4.4. Applicability of the set configuration on perceived exertion 

While some loading parameters such as the intensity of load (35,218,224), the volume (231), 

and the rest (37) determine and modulate the perceived exertion, the effects of other 

parameters are not established yet. In this regard, it is known that the duration of the 

repetitions (255) and the length of the set (213) also influence perceived exertion. Besides, 

both variables are logically related since the lower velocity observed at the end of longer sets 

means repetitions of more duration when the repetitions of the set are not paced externally 

(73). 

The problem here emerges when other parameters want to be taken into account, such as the 

work-to-rest ratio. The work-to-rest ratio refers to the total work performed in relation with 

the total rest selected. As was previously explained, lower work-to-rest ratios (i.e., more rest in 

relation to the work done) as explained by differences in total rest between sets elicit lower 

values of perceived exertion (37,233). Also, the same finding was observed with inter-

repetitions rest sets differing in rest between repetitions (232). 
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The study of the set configuration brings a unique contribution to this issue, since all the 

loading parameters are perfectly matched, exclusively allowing changes in the length of the 

set. One previous approach was made comparing protocols with the same intensity of load 

and also equated in the work-to-rest ratio (233). However, a percentage of the 1RM was 

chosen, not taking into account the maximum number of repetitions that can be performed 

and thus selecting a fixed number of repetitions. This may be a weakness in the design since 

the number of repetitions that can be done in a set is individual-dependent (45–50) and the 

remoteness and closeness to the muscular failure of each individual is a cofounding factor in 

relation to perceived exertion (237,242–244). 

The design proposed may help to elucidate the effect of resistance exercise on perceived 

exertion when is prescribed through set configuration; which will be explained, to the best of 

our knowledge, for the first time. Also, their interaction with the type of exercise will be 

analyzed, as a trial to understand deeper the effects of set configuration on the perception of 

effort. As a consequence, this also might aid to understand the effect of the length of the set 

and the effect of the work-to-rest ratio in different exercises when all the loading parameters 

are equated. All this can contribute to the body of knowledge in perceived exertion, making 

the perceived exertion scales truly tools to prescribe resistance exercise based on the 

perception on the individual. 

It is hypothesized that longer set configuration may cause higher values of perceived exertion 

in comparison with shorter set configurations. In addition, the interaction with the type of 

exercise performed would show higher values when the exercise is performed with more 

muscle mass implicated in comparison with exercises with less muscle mass involved. Finally, 

taking into account the difficulties of the scales of perceived exertion to discern between 

protocols leading to muscular failure, designs with the same configuration of the set but with 
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different exercises would be not able to distinguish between set designs leading to failure, but 

would be able to discriminate between designs with other set configurations. 

If this were true, the lower vales obtained in perceived exertion with shorter set configurations 

could have direct practical applications in training while maintaining the strength gains 

(70,83,92,93): it would allow to vary or reduce the loading parameters of the session that can 

lead to illness and overtraining (33) and facilitate a higher middle-term adherence to exercise 

(33), as was previously pointed out. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

 

 

 

 

 

 

2. Purposes and hypotheses 
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Study I: A shorter set reduces the loss of cardiac autonomic and baroreflex control after resistance exercise. 

Purpose 

To analyze the effect of submaximal set configurations of resistance exercise on post-exercise 

autonomic and baroreflex control and in blood pressure. 

Hypothesis 

Longer set configurations without leading to failure would produce a higher cardiac vagal 

withdrawal and loss in BRS, and a large reduction in post-exercise blood pressure in 

comparison with shorter set configurations. 

 

Study II: Exercise type affects cardiac vagal autonomic recovery after a resistance training session. 

Purpose 

To analyze the effect of maximal versus submaximal set configurations of resistance exercise 

on post-exercise cardiac vagal control and blood pressure and their interaction with the type 

of exercise.  

Hypothesis 

The maximal set configuration and the exercise with more muscle mass involved would 

produce a higher cardiac vagal withdrawal and a large reduction of blood pressure after 

exercise in comparison with a submaximal short set configurations and an exercise with less 

muscle mass involved. 

 

Study III: Effects of set configuration of resistance exercise on perceived exertion. 

Purpose 

To analyze the effect set configurations of resistance exercise on perceived exertion and their 

interaction with the type of exercise.  

Hypothesis 

The long set configuration and the exercise with more muscle mass involved would produce a 

higher perceived exertion in comparison with a short set configuration and an exercise with 

less muscle mass involved. 
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Abstract 

 

Set configuration may affect the recovery pattern of cardiac vagal autonomic and reflex 

modulation after a resistance exercise, since it is closely associated with intensity and volume 

and determines the metabolic involvement of the session.Wetested the hypothesis that longer 

set configurations have a higher impact on cardiac autonomic control and baroreflex sensitivity 

compared with shorter set configurations. We studied the effects of three set configurations 

with the same components of work on the cardiac autonomic control and baroreflex 

sensitivity. Seventeen subjects performed one control session and three experimental sessions 

of a leg-press exercise with the same volume (40 repetitions), resting time (720 s) and intensity 

(10RM load): (a) 5 sets of 8 repetitions with 3 min of rest between sets (8S), (b) 10 sets of 4 

repetitions with 80 s of rest between sets (4S) and (c) 40 sets of 1 repetition with 18.5 s of rest 

between each repetition (1S). Longer set configurations (8S and 4S) induced greater reductions 

of the vagal cardiac autonomic control and baroreflex sensitivity (p≤.001) compared with a 

shorter set configuration (1S). Also, 1S had non-significant reductions versus the control 

session (p>.05). These findings suggest that a shorter set configuration can reduce the impact 

of resistance exercise on the post-exercise cardiac vagal autonomic control and baroreflex 

sensitivity. 
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3.1. Introduction 

Long-term resistance training has been shown to be beneficial for prevention and 

improvement of musculoskeletal, metabolic or cardiovascular conditions (1). In addition, 

resistance training improves several markers of cardiac autonomic control in both healthy 

(256) and diseased individuals (257). 

HRV and HRC are non-invasive methods to measure changes in autonomic modulation. HRV 

and HRC refer to the oscillation and irregularity of the cardiac cycles, respectively (12,98). A 

resistance training session induced changes in HRV and HRC suggesting a transient reduction in 

cardiac vagal control after exercise (27). Also, a resistance exercise session may produce a 

decrement in BRS (5,16). Nevertheless, the effects of the loading parameters of resistance 

exercise on autonomic control and BRS are not fully understood (27). 

In order to prescribe resistance exercise in a secure way, the effects of the loading parameters 

(i.e., intensity, volume, rest) on the cardiac autonomic and reflex control should be fully 

elucidated. Cardiac vagal control after a resistance session have been shown to be affected by 

intensity (103) and volume (30), meanwhile others have not confirmed these findings (13,171). 

Another factor that could influence on the cardiac control is set configuration. Set 

configuration refers to the repetitions actually performed with regard to the maximum 

possible number of repetitions in a set. It is closely associated with intensity and volume, since 

it determines the total number of repetitions that can be performed prior to muscular failure 

(80) and modulates the metabolic involvement in the session (77). 
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Shorter set configurations, termed cluster training or inter-repetition rest training (64), result 

in a higher velocity and a lower glycolytic metabolism (77) than longer set configurations with 

repetitions close or leading to muscular failure. In addition, training protocols with shorter set 

configurations have revealed similar improvements in comparison with longer set 

configurations (92). However, the cardiovascular responses to different set configurations have 

not been studied extensively. It is plausible that shorter set configurations may reduce the 

vagal withdrawal since strenuous protocols affect cardiac autonomic control (103) and BRS 

(15) more than light protocols. A recent study comparing a resistance exercise protocol leading 

to muscular failure with another protocol with rests between repetitions did not find 

differences in the cardiac autonomic control (102). However, the reduced volume used in that 

study and the high physical status of the participants may have prevented to induce sufficient 

fatigue in the participants to detect differences between protocols. 

Therefore, the main goal of this study was to compare the effect of three resistance training 

protocols equated in load, volume and work-to-rest ratio, but with different set configuration, 

on the recovery pattern of the cardiac autonomic control and BRS after exercise. In this sense, 

our aim is to identify the training protocol in which the heart control is less affected, which 

may have practical applications to prescribing resistance exercise in diseased individuals. 

Studies typically compare protocols differing in load, volume or rest. This impedes to know 

exactly which one is the variable that affects the cardiac control and to what extent to do. 

With our design, all this parameters (i.e., load, total volume, total rest and therefore the work-

to-rest ratio) are strictly equated with except of the repetitions performed in each set. Our 

hypothesis was that longer sets, with a lower velocity and hence a higher neuromuscular 

fatigue, will have greater impact on cardiac vagal autonomic and BRS recovery compared with 

shorter sets. If differences between protocols are due to set configuration, it is possible that 

shorter sets as an inter-repetition rest design may have practical applications to prescribe 

resistance exercise to diseased individuals in order to provoke a lower disturbance of the 

cardiac control after exercise. 
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3.2. Methods 

17 healthy adults participated in this study, with at least six months of experience lifting 

weights two or three times/week. Participants were screened and excluded if they had prior 

history of cardiovascular disease. The study was approved by the local Institutional Ethics 

Committee and participants signed an informed consent (Appendix B) and were informed they 

could withdraw at any time. The characteristics of the participants are shown in Table 1. 

Procedures. A repeated measures design was used in which participants completed a total of 

nine sessions: five orientation sessions and four experimental sessions. Participants were 

instructed to refrain from exercise, alcohol, caffeine and nicotine for 24 hours and fast for 

three hours prior to the testing sessions. Each session started with a warm-up of 5 min of 

submaximal cycling exercise and joint mobilization, and 2 sets of 10 repetitions using light 

loads. 

 

Table 1. Physical, cardiovascular and functional characteristics of the subjects (n=17) 

Characteristics Values 

Men/women 12/5 

Age (year) 23 ± 2 

Weight (kg) 68.6 ± 10.9 

Height (m) 1.76 ± 8.6 

Body mass index (kg/m2) 21.8 ± 2.8 

Resting heart rate (beats/min) 61± 14 

Resting systolic blood pressure (mmHg) 116 ± 9 

Resting diastolic blood pressure (mmHg) 68 ± 7 

Resting mean arterial pressure (mmHg) 87 ± 7 

10 RM in Leg Press (kg) 211 ± 45 

Data displayed as means ± SD 
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Orientation sessions. Participants completed three familiarization sessions in which they were 

instructed on how to perform the leg press exercise programs with a proper technique. Two 

sessions were performed subsequently, to test the 10RM and to establish reliability. 

Dynamic leg press was performed using a diagonal sled-type double-leg press machine 

(Biotech Fitness Solutions, Brazil). Participants were instructed to start with the knees fully 

extended and lowered until reach a 90º of flexion of both knees and hip joints. After reaching 

this position, participants returned to the initial position performing each repetition as fast as 

possible. The same researcher provided verbal encouragement to the participants. In order to 

obtain the 10RM load, a previously reported protocol was employed (258). 10RM was defined 

as the load that a participant was able to lift properly 10 times, but not 11. 

Experimental sessions. Participants completed in an individual random sequence four 

experimental sessions, consisting of a control session and three exercise sessions with 

different set configurations. Participants did not know what protocol were going to perform 

until the beginning of the session. For each exercise session, the loading parameters (i.e., load, 

total volume and total rest) were equated in order to guarantee the same work-to-rest ratio. 

Every exercise session consisted in a total of 40 repetitions and 720 s of rest, using the 10RM 

load. The exercise sessions differed according to the following set configurations: a) 5 sets of 8 

repetitions with 3 min of rest between sets (8S, with 8 repetitions performed over 10 possible 

repetitions [80%]). b) 10 sets of 4 repetitions with 80 s of rest between sets (4S, 4 repetitions 

over 10 [40%]) and c) 40 sets of 1 repetition with 18.5 s of rest between each repetition (1S, 1 

repetition over 10 [10%]). The control session (C) consisted of maintaining a semirecumbent 

position (i.e., exercise position) for 15 minutes. Sessions were separated by at least 72 hours 

and were performed at the same time of the day (± 1 h) for each participant. A schematic 

representation of the experimental sessions is presented in Figure 5. 
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Figure 5. Schematic representation of the sessions. (a) Graphical simplification of the entire 

protocols design. HRV, heart rate variability; HRC, heart rate complexity; BRS, baroreflex 

sensitivity; HR, heart rate; BP, blood pressure; MV, mean velocity. (b) Representation of the 

experimental sessions. All sessions consisted of 40 repetitions and 720 s of total rest with the 

10RM load. (8S) 5 sets of 8 repetitions with 3 min of rest between sets. (4S) 10 sets of 4 

repetitions with 80 s of rest between sets. (1S) 40 sets of 1 repetition with 18.5 s of rest 

between each repetition 

 

Physiological recording. A Task Force Monitor (CNSystems, Austria) was used for continuous 

monitoring of the HR and BP. HR was obtained by a three lead electrocardiogram (ECG) with a 

sampling frequency of 1000 Hz. Beat-by-beat monitoring of BP was obtained by 

photoplethysmography. Two pneumatic cuffs were placed on the proximal phalange of the 

index and the middle fingers of the left hand allowing a continuous BP measurement. The Task 

Force Monitor has an additional oscillometric device that automatically and continuously 

transforms the absolute values of the finger pressure into the values of the brachial artery. The 

oscillometric device was located on the right arm. Data were obtained 10 min before and in 

the period 20-40 min after the end of the exercise. During this time, participants were seated, 

breathing spontaneously, in a semirecumbent position in the leg press machine. Data 

acquisition started after a period of 20 min post-exercise in order to avoid the effect of the 

increased respiratory rate on the autonomic parameters (27). 
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Physiological assessment. We analyzed the heart rate (HR), systolic blood pressure (SBP), 

diastolic blood pressure (DBP) and mean arterial pressure (MAP) over the last 5 min before the 

beginning of exercise. These variables were also evaluated for 5 min epochs across the 20-40 

min obtained at the end of the protocols. 

HRV was used to estimate the vagal autonomic modulation. Analysis of the data consists of 

time and frequency domain analyses. For the time domain analysis, the root mean square of 

differences between adjacent R-R intervals (RMSSD) was selected as an indicator of the vagal 

control of the heart (98). For the spectral analysis, Fast Fourier Transformation method with 

the Welch’s method was employed (window width: 256 s, overlapping: 128 s). High frequency 

activity (HF, 0.15-0.4 Hz) and low frequency activity (LF, 0.04-0.15 Hz) in absolute units were 

calculated. HF is a marker of the cardiovagal control meanwhile LF is mediated by both 

sympathetic and parasympahtetic activities (98). 

To control the decreases in total power, normalized units of LF (LFnu) was used along with the 

LF/HF ratio, which are considered as markers of sympathovagal balance (259). Epochs of 5 min 

were used as recommended by guidelines for HRV analysis during short-term recording (98). 

Analysis of HRC was performed with Sample entropy (SampEn). Meanwhile HRV determines 

the variability of the data, HRC determines the irregularity of these data. HRC measures are 

independent markers of parasympathetic modulation that yield essential information on heart 

rate dynamics (99). SampEn is an indicator of system complexity that agreed more closely with 

the theory of random numbers than other entropies. SampEn determines the probability of 

find specific patterns in a range from 0-2, being less predictive (i.e., complex) when values are 

close to 2 (260). After the removal of lineal trends, an embedding dimension m (i.e. length of 

sequences to be compared) of 2 was used. The filter parameter r (i.e. tolerance for accepting 

matches) was set at 20% of the standard deviation of the time series and epochs of 5 min were 

used to the analysis following the suggestions published elsewhere (12). 
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Automatic artifact correction (i.e., medium correction threshold level, ±0.25 s) and calculation 

were performed using Kubios HRV software v2.1 (The Biomedical Signal and Medical Imaging 

Analysis Group, UEF, Finland). Data were detrended with the smoothness priors method 

(Lambda: 500). Artifact correction never exceeded the 3% of the signal. 

BRS was calculated using the sequence method (124) with the Task Force Monitor software 

v2.3. The sequence method consists of sequences formed by three or more consecutive beats 

of SBP and pulse intervals of their following beat (Lag 1), changed in the same direction. 

Thresholds were defined for 1 mmHg and 4 ms. Data analysis was performed for the last 10 

min obtained before the protocol and for the intervals 20-30 and 30-40 min obtained after the 

protocols. Epochs of 10 min are usually used to analyze BRS after resistance exercise (15,16). 

Velocity measurement. Velocity was recorded during exercise with a dynamic measure device 

(T-Force System, Ergotech, Spain). Mean velocity (MV) of the concentric phase of each 

repetition was calculated and averaged over the whole protocol of each experimental session 

(1S, 4S and 8S). MV was used as an indicator of neuromuscular fatigue, since the loss of 

velocity is related to metabolic production (71). Neuromuscular fatigue is a reduction of 

performance as a consequence of a limited capability to generate force due to a neural or 

metabolic origin. 

Statistical analysis. Descriptive statistics are shown as mean ± standard deviation (SD). Intra-

Class Correlation Coefficient (ICC) with Single Measure Intra-Class correlation was used to test 

the reliability of the 10RM (ICC= 0.989). A 1-way repeated measures analysis of variance 

(ANOVA) was used to evaluate the effect of session (1S, 4S or 8S) on the averaged mean 

velocity of every repetition. A 2-way repeated measures ANOVA (session x time) was 

performed to evaluate the effect and interaction between session (1S, 4S, 8S or C) and time 

(Pre and 20-25, 25-30, 30-35, 35-40 min epochs for HR, BP and HRV markers; and Pre and 20-

30, 30-40 min periods for BRS). 
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Normality was tested using Shapiro–Wilk test. If data violated normality were log transformed. 

Post-hoc comparisons were performed with Bonferroni correction. A p≤0.05 was established 

as statistical significance. The data were analyzed using SPSS 17.0 (SPSS, Inc., Chicago, IL, USA). 

A post-hoc power analysis was calculated using the G Power software (version 3.1.4). 

Statistical power (1-β) of a repeated measures ANOVA with 3, 4 and 5 measurements for a 

sample size of 17, and a correlation among repeated measures of 0.5 and a medium effect size 

(f=0.25) is 0.75, 0.64 and 0.71, respectively. 

 

3.3. Results 

Autonomic and baroreflex data. Autonomic and reflex data are shown in Table 2. Values 

before exercise were similar between protocols for all variables (p>0.05). For Ln of RMSSD, 

main effects for session (F3, 48= 5.491 p=0.003) and time (F4, 64= 7.732 p=0.004) were observed. 

The main effect of session revealed that 8S was significantly lower than Control session 

(p=0.01). The main effect of time showed that the epoch of 20-25 min (p=0.028) was 

significantly lower than the Pre values. Also, an interaction between session and time was 

observed (F12, 192= 13.580, p<0.001). 8S revealed lower values of RMSSD compared with the 

Control session and Pre values during the post-exercise period (20-40 min). Meanwhile lower 

values were observed for 4S in comparison with Control and Pre values for the 20-30 min 

interval. Also, RMSSD values were lower for 8S compared with 1S during 20-30 min period. No 

differences were found between 1S, the Control session or Pre values (p>0.05). 
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For Ln of HF, main effects for session (F3, 48= 3.582 p=0.02) and time (F4, 64= 6.429 p=0.004) were 

observed. Post-hoc pairwise comparison for the main effect of session did not reveal 

differences between protocols. The main effect of time showed that the epoch of 20-25 min 

(p=0.028) was lower than the Pre values. Besides, an interaction between session and time 

was detected (F12, 192= 4.556, p=0.003). 8S had lower values of HF in comparison with the 

Control session and Pre values, for the period 20-35 min. In addition, lower values for 4S were 

observed in comparison with the Control session (20-30 min period) and Pre values (20-35 min 

period). No differences were observed between 1S and the Control session or between Pre 

recordings (p>0.05).  

SampEn showed a main effect of session (F3, 48= 5.115, p=0.012). Pairwise comparison revealed 

no differences among protocols. There was not interaction between session and time (p>0.05). 

For Ln of BRS, main effects for session (F3, 45= 4.756 p=0.006) and time (F2, 30= 15.385 p<0.001) 

were observed. The main effect for session revealed a lower BRS values in 8S in comparison 

with Control session (p=0.007). The main effect of time showed lower values of BRS for all the 

postexercise period. The p-values of BRS for the periods were: 20-30 min (p=0.002) and 30-40 

min (p=0.026) respect to baseline data. In addition to this, an interaction between session and 

time was observed (F6, 90= 5.902, p=0.002). 8S and 4S revealed lower BRS values compared with 

the Control session and the Pre values during the post-exercise period (20-40 min). Also, lower 

values were observed for 8S in comparison to 1S, for the 20-30 min interval. There were no 

differences between 1S and the Control session or Pre values. 

For Ln of LF, a significant interaction between session and time was observed (F12, 192= 2.624, 

p=0.016). 4S had lower values of LF in comparison to the Control session in the period 20-25 

min (p=0.038) and in comparison to the 1S in the epoch 25-30 min (p=0.045). No main effects 

were observed for this variable (p>0.05). 
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Table 2. Autonomic and baroreflex responses across sessions (n=17) 

 Pre 20-25 25-30 30-35 35-40 

Ln RMSSD (ms)      

Control 3.97±0.6 4.1±0.49 4.14±0.47 4.18±0.47 4.16±0.5 
1S 4.01±0.42 3.95±0.53 3.96±0.52 3.96±0.53 3.95±0.45 
4S 4.1±0.53 3.71±0.54†‡* 3.77±0.54†‡* 3.85±0.5 3.89±0.44 
8S 4.18±0.37 3.63±0.59†* 3.71±0.49†* 3.73±0.55†* 3.79±0.55†* 

Ln HF (ms
2
)  

Control 6.68±1.38 6.93±1.02 6.98±0.96 6.99±1.1 6.95±1.2 
1S 6.77±0.78 6.38±1.47 6.72±0.96 6.63±0.94 6.69±0.82 
4S 6.96±1.08 6.14±1.08†* 6.21±1.14†* 6.3±1.06* 6.56±0.87 
8S 7.11±0.73 6.03±1.17†* 6.21±0.93†* 6.19±1.06†* 6.37±1.14 

Ln LF (ms
2
)  

Control 6.87±1.09 7.51±0.82 7.38±0.89 7.41±1.04 7.43±1.11 
1S 7.07±0.86 7.18±1.09 7.27±0.82 7.24±0.93 7.2±0.88 
4S 7.15±0.92 6.77±0.92† 6.75±1.03‡ 7.08±1 7.15±0.75 
8S 7.24±0.79 6.78±1.24 7.01±0.92 6.94±0.85 7.12±0.98 

Ln LF/HF  

Control 0.19±0.71 0.58±0.78 0.40±0.61 0.42±0.84 0.48±0.99 
1S 0.3±0.63 0.51±0.68 0.55±0.56 0.61±0.81 0.51±0.69 
4S 0.19±0.76 0.61±0.68 0.54±0.75 0.78±0.66 0.59±0.69 
8S 0.13±0.64 0.75±0.85 0.8±0.84 0.74±0.81 0.75±0.71 

LF (nu)  

Control 54.07±15.97 62.27±17.38 59.01±14.44 59.01±18.81 60.31±21.09 
1S 57.13±14.74 61.09±15.4 62.48±13.08 62.91±17.17 61.31±16.14 
4S 54.28±17.59 63.94±14.95 62.03±17.31 67.02±14.4 63.08±15.35 
8S 52.72±14.57 65.67±18.47 66.88±18.02 65.87±17.83 66.25±15.21 

SampEn  

Control 1.8±0.21 1.84±0.16 1.82±0.18 1.77±0.25 1.83±0.17 
1S 1.77±0.17 1.7±0.21 1.76±0.19 1.71±0.17 1.72±0.21 
4S 1.69±0.3 1.73±0.29 1.78±0.24 1.77±0.25 1.68±0.25 
8S 1.76±0.25 1.66±0.37 1.65±0.28 1.64±0.25 1.61±0.25 

Ln BRS (ms/mmHg)  

Control 3.12±0.58 3.12±0.38 3.31±0.47 
1S 3.05±0.52 3±0.43 3.04±0.41 
4S 3.26±0.53 2.8±0.44†* 2.92±0.39†* 
8S 3.21±0.31 2.69±0.49†‡* 2.8±0.47†* 

†Different vs. C (p<0.05). ‡ Different vs. 1S (p<0.05) * Different vs. Pre (p<0.05) 

 

For Ln of LF/HF, a main effect of time was observed (F4, 64= 7.932, p<0.001). The postexercise 

epochs of 20-25 (p=0.006), 30-35 (p=0.006) and 35-40 min (p=0.026) were higher than the Pre 

values. Neither the main effect for session nor the interaction between session and time were 

significant (p>0.05). 
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LFnu showed a main effect of time (F4, 64= 8.105, p<0.001). Pairwise comparison showed higher 

values in the postexercise periods of 20-25 (p=0.006), 30-35 (p=0.008) and 35-40 min 

(p=0.023) in comparison to Pre values. There was not a main effect of session or an interaction 

between session and time (p>0.05). 

Hemodynamic data. Hemodynamic data are shown in Table 3. For SBP, DBP and MAP, no main 

effects or interactions were observed among protocols (p>0.05). 

 

Table 3. Hemodynamic responses across sessions (n=17) 

 Pre 20-25 25-30 30-35 35-40 

Systolic blood pressure (mmHg)  

Control 114±13 115±9 113±10 113±10 113±11 
1S 115±11 118±12 119±12 118±11 118±11 
4S 117±12 117±16 117±17 117±17 116±18 
8S 117±8 117±11 117±10 118±9 116±10 

Diastolic blood pressure (mmHg)  

Control  67±11 71±7 71±7 71±7 71±8 
1S 68±8 70±13 71±14 71±13 70±14 
4S 69±9 71±13 70±14 69±11 68±11 
8S 69±7 73±8 72±8 72±8 71±9 

Mean arterial pressure (mmHg)  

Control 85±12 88±7 88±8 88±7 88±8 
1S 86±8 88±13 89±13 88±13 88±13 
4S 88±9 88±13 88±14 87±12 87±13 
8S 87±6 89±8 88±7 88±7 87±8 

Data displayed as means ± SD 

 

Velocity measurement. Values of MV were 0.29±0.04 m.s-1 for 1S, 0.27±0.04 m.s-1 for 4S and 

0.26±0.04 m.s-1 for 8S. MV values showed a significant main effect for session (F2,32= 7.300; 

p=.006). Pairwise differences were observed between 1S and 8S (p=0.016) and between 4S and 

8S (p=0.045), with lower values for 8S. 
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3.4. Discussion 

The main finding of this study was that cardiac vagal autonomic control and BRS are affected 

by set configuration after a resistance exercise. The sets with higher number of repetitions (8 

and 4 repetitions/set) induced the largest reductions of these parameters in comparison with 

the control session. Notably, no differences were observed between the shorter set 

configuration (1 repetition/set) and the control session. 

Our results showed that when intensity, volume and work-to-rest ratio were equated, set 

configuration influenced the pattern of the cardiac vagal autonomic and BRS recovery. A 

plausible explanation for the differences between sessions may be attributed to the 

differences in glycolytic involvement between sessions, since vagal activity is negatively related 

with lactate production (103,107). Although we did not assess lactate concentration, 

differences in velocity in our study and findings from previous studies support this explanation. 

On the one hand, differences in velocity strongly correlates with lactate production, with a 

higher lactate production in protocols with a lower velocity (71). On the other hand, set 

configuration similar to our 1S is characterized by higher velocity and lower glycolytic 

involvement than a traditional configuration (77). Unfortunately, we did not measure lactate 

production and therefore we could not confirm this hypothesis. 

The results of our study for longer set configuration (i.e., 8S and 4S) support previous findings 

showing that resistance exercise induce a reduction in cardiac vagal modulation (4,5,11–13). 

However, significant differences between resistance exercise protocols are scarce. Some 

studies have shown that intensity (103) and volume (30) may affect the vagal control of the 

heart, meanwhile others have not confirmed these findings (13,171). Contrary to our current 

data, a recent study (102) comparing a resistance exercise protocol leading to muscular failure 

with another protocol with rests between repetitions did not find differences in the cardiac 

autonomic control. This discrepancy may be due to the reduced volume used in that study 
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(~10 repetitions versus 40 repetitions in our study) or due to the differences in the fitness level 

of the participants (performance wrestlers versus a ordinary active population in our study), 

since it has been reported that volume (30) and resistance-training experience (13) may 

influence the recovery of the vagal control after resistance exercise. 

While the 8S and 4S configurations lead to a reduction of the cardiac vagal modulation, these 

changes were absent in the 1S configuration. 8S had a longer cardiac vagal withdrawal in 

comparison with 4S although 8S and 4S were not different in magnitude (i.e., size reduction in 

cardiovagal control). In addition, a single resistance exercise with longer set configurations was 

sufficient to reduce cardiac vagal control, as was previously reported in the literature (102). 

Moreover, there were no differences between an inter-repetition rest design as the 1S and the 

control session (no exercise). This observation provides data that can be possible to perform 

resistance training without the cardiac impact that may imply a reduction in cardiovagal 

control to the participants (17). Despite the differences between protocols due to the loss of 

variability, the analysis of complexity only revealed a main effect for session. As previously 

explained, complexity variables are independent markers of parasympathetic control that 

provide essential information of HR dynamics (99). In this sense, previous studies have 

reported reductions in complexity without changes in the variability parameters after a 

resistance session (12,13) suggesting that resistance exercise may affect more the complexity 

than the variability of the heart control. Contrary to this data, it seems that differences among 

diverse set configurations may be due more to a loss of variability in the signal than a loss of 

complexity. 
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BRS was also affected by set configuration, with reductions for 8S and 4S, but not for 1S. Our 

results support previous findings showing that higher demanding protocols cause a decrease in 

post-exercise BRS (5,15). In our study, longer sets had a lower velocity than the shorter sets, 

and the loss of velocity indicates neuromuscular fatigue (71). The reduced BRS observed in 

more strenuous set configurations may be due to a transient increase in arterial stiffness as a 

response to a higher sympathetic tone of the central arteries (12), since resistance exercise can 

affect the central vessels by producing a reduced wall deformation and hence an attenuated 

baroreceptor activation. 

Previous studies showed that a traditional resistance session with multiple exercises may 

affect to BRS (5,15). In our study, we showed that a single exercise with longer set 

configurations also affected BRS. Further, there were no differences between the 1S and the 

control session what suggests that set configuration is useful in order to regulate the loss in 

the reflex control of the heart after resistance exercise. 

These impact in the cardiac control after exercise can be interpreted as a transient harmful 

effect in diseased individuals since 30 min after an exercise there is an increased possibility of 

a sudden cardiac death due to a decreased vagal activity (17). Also, prognosis studies revealed 

that reductions in both cardiac vagal modulation and BRS are associated with myocardial 

ischemia and sudden cardiac death (97). 

No post-exercise hypotension was observed after either protocol. The onset of post-exercise 

hypotension after resistance exercise is due to the interaction between the total volume 

performed, the muscle mass involved and reaching or not to muscular failure, in which the 

volume performed seems to be the main factor to provoke post-exercise hypotension (6,30). 

Our results agree with previous studies in which similar protocols were insufficient to provoke 

changes in blood pressure after resistance exercise (6). 
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Several limitations of the present study should be emphasized. Participants were healthy 

young adults, so the present findings should be taken with caution and further studies are 

needed in diseased individuals. We studied men and women in the same analysis, and gender 

may be a confounding factor. Also, glycolytic involvement was not measured. The inclusion of 

lactate production could provide further insight into the loss of cardiovagal autonomic control. 

As the cardiovascular parameters were not measured in the course of the exercise, it is not 

possible to know the physiological effects during the interventions. Finally, the breathing 

frequency and tidal volume were not controlled. 

 

3.5. Conclusions 

Our study suggests that resistance training session with a shorter set configuration design has 

a lower cardiovascular impact after exercise than longer set configurations, due to a lower 

disturbance of the autonomic and reflex control of the heart. The inter-repetition rest design 

did not induce a significant reduction in cardiac control. This finding may have practical 

applications in order to prescribe resistance training to diseased individuals. For instance, it 

could reduce the risk of a sudden cardiac death induced by a decreased vagal activity after an 

exercise. Further studies are needed in order to explore the effect of set configuration in the 

cardiac control of special populations. Also, a single resistance exercise may be sufficient to 

provoke a post-exercise reduction in cardiovagal autonomic control and BRS when is 

prescribed with longer set configurations. These findings provide evidence that cardiac vagal 

modulation and BRS are affected by set configuration after a resistance exercise, suggesting 

that set configuration could be a relevant factor to take into account when designing 

resistance exercise for diseased individuals. Future investigations should focus on identifying 

the effects on cardiac control of long-term resistance training programmes differing in set 

configuration.
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Abstract 

 

Resistance training session involving different exercises and set configurations may affect the 

acute cardiovascular recovery pattern. We explored the interaction between exercise type and 

set configuration on the postexercise cardiovagal withdrawal measured by heart rate 

variability and their hypotensive effect. Thirteen healthy participants (10RM parallel squat: 

91±13, bench press: 56±10 kg) performed six sessions corresponding to two exercises (Parallel 

squat vs Bench press), two set configurations (Failure session vs Inter-repetition rest session) 

and a Control session of each exercise. Load (10RM), volume (5 sets) and rest (720 sec) were 

equated between exercises and set configurations. Parallel squat produced higher reductions 

in cardiovagal recovery versus Bench press (p=0.001). These differences were dependent on 

the set configuration, with lower values in Parallel squat versus Bench press for Inter-

repetition rest session (1.816±0.711 vs 2.399±0.739 Ln HF/IRR2 x104, p=0.002), but not for 

Failure session (1.647±0.904 vs 1.808±0.703 Ln HF/IRR2 x104, p>0.05). Set configuration 

affected the cardiovagal recovery, with lower values in Failure session in comparison with 

Inter-repetition rest (p=0.027) and Control session (p=0.022). Postexercise hypotension was 

not dependent on the exercise type (p>0.05) but was dependent on the set configuration, with 

lower values of systolic (p=0.004) and diastolic (p=0.011) blood pressure after the Failure 

session but not after an Inter-repetition rest session in comparison with the Control session 

(p>0.05). These results suggest that the exercise type and an Inter-repetition rest design could 

blunt the decrease of vagal activity after exercise while exercising to muscular failure may 

contribute to the onset of postexercise hypotension. 
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4.1. Introduction 

Resistance training is considered a promising intervention to prevent and improve several 

musculoskeletal, metabolic and cardiovascular conditions (1). Nevertheless, previous studies 

have revealed through HRV that resistance training seems not to improve the autonomic 

control of the heart (27). Additionally, resistance exercise session provokes an acute reduction 

in the cardiac vagal control (4,5,11–13) that can be interpreted as a transient harmful effect in 

diseased individuals since 30 min after exercise exists an increased probability of suffering a 

sudden cardiac death due to a decreased vagal activity (17). In this sense, the effect of the 

characteristics of the session and the loading parameters of resistance exercise are not 

adequately understood (27). Coaches and practitioners should know the precise effects of the 

training factors that affect the cardiac control after resistance exercise to modulate the cardiac 

impact and prescribe exercise in an accurate way. Especially, resistance exercise should be 

prescribed in a riskless manner in certain individuals with cardiovascular risk. In order to solve 

this issue, these effects on the cardiac control should be fully elucidated. In this regard, cardiac 

vagal control after a resistance training session has been shown to be affected by intensity 

(103,105) and volume (30), although others have not confirmed these findings (13,171). 

Other factors that may affect the cardiac control after resistance exercise are, on the one 

hand, the type and features of the exercise used, and on the other hand, the set configuration 

employed. The type and features of the exercise used refer to the muscle mass of the exercises 

performed and the body postures associate in those exercises. In this sense, exercises with a 

higher muscle mass involvement produce higher lactatemia (71), and the glycolytic 

involvement is related to the cardiac vagal withdrawal (103,107). To our knowledge, only one 

study analyzed the effect of the exercises type (i.e. upper versus lower limbs) on the vagal 

control without detect significant differences between protocols (13). Nevertheless, the 

exercises were performed to muscular failure and the position of the exercises was always 

seated, variables that may have eliminated the differences between protocols. 
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Besides the effect of exercise type, the set configuration could also affect the vagal recovery to 

resistance exercise. Set configuration refers to the repetitions actually performed with regard 

to the maximum possible number of repetitions in a set. Set configuration is closely associated 

with intensity and volume, and affects the mechanical performance and the metabolic 

response to exercise (71,77). Short set configurations as the inter-repetition rest design (65,77) 

result in a higher mechanical performance and lower involvement of the glycolytic energy 

system than long set configurations, close or leading to muscular failure (71). As was explained 

before, the involvement of the glycolytic energy system during resistance exercise seems to be 

related to the changes in the postexercise cardiac vagal control (103,107). However, only one 

study have explored the effects of the set configuration on the cardiac vagal control (102). 

That study showed that the reduction of the vagal control of the heart after a resistance 

exercise was similar between sets performed to muscular failure and an inter-repetition rest 

set configuration. However, in that study only parallel squat exercise was analyzed and thus, it 

remains to be explore whether those results can be replicated with different exercises. It is 

likely that these inconsistent results could result from the interaction between the set 

configurations and the exercise used in that study. 

In contrast with the possible harmful effect that means the transient reduction in the vagal 

control of the heart, postexercise hypotension is a positive acute effect of resistance exercise 

that has been extensively reported in the literature (20). A recent study has shown a 

relationship between the postexercise hypotension caused by resistance exercise and long-

term blood pressure reduction at rest (141), making exercise as an interesting non-

pharmacological therapy to reduce blood pressure. Nevertheless, the loading parameters that 

affect postexercise hypotension are not completely established. In his sense, it is known that 

the volume performed is a key factor to induce postexercise hypotension (6,30). However, the 

impact of the exercise type and the muscular failure on the postexercise hypotension is not 

conclusive: About the exercise type, some studies suggest that hypotensive effect depends on 
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muscle mass engaged in the exercise (6,176), while others did not support this finding 

(187,261). About muscular failure, postexercise hypotension was observed in this kind of 

protocol in comparison with a non-failure design (11), suggesting that muscular failure may be 

an important contributor to this effect. However, the load between protocols were not 

equated, something that may affect the results (106). 

Therefore, the main objective of this study was to explore the impact of the exercise type and 

set configuration on the recovery pattern of cardiac vagal modulation and postexercise 

hypotension. In this regard, our aim is to identify the exercise type and set configuration in 

which the cardiac autonomic control is less affected, and the possible interaction between 

them. This may have practical applications to prescribing resistance exercise in individuals at 

cardiovascular risk. Also, our aim is to understand the implication of the exercise type and the 

set configuration with muscular failure when all the loading parameters are equated, 

something that may help to understand the onset or increase of the postexercise hypotension 

in order to prescribe resistance exercise as a non-pharmacological therapy to reduce blood 

pressure in hypertensive individuals. 

In order to do that, participants performed six experimental sessions, corresponding to the 

combination of two types of exercises (bench press and parallel squat) with two set 

configurations (sets leading to muscular failure and an inter-repetition rest design) and two 

control sessions, one for each exercise. All sessions had the same load, volume and work-to-

rest ratio, allowing the comparison between exercises and set configurations. Our hypothesis 

is that parallel squat and long set configurations leading to muscular failure would produce 

higher levels of cardiac vagal withdrawal and postexercise hypotension than a short set 

configurations as an inter-repetition rest design. 
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4.2. Methods 

Experimental approach to the problem. A repeated measures design was performed in order to 

test the impact of both exercise type and set configuration on the acute changes of cardiovagal 

control and blood pressure after a resistance training session. Thus, participants performed six 

experimental sessions corresponding to two exercise types (parallel squat and bench press) 

and three experimental protocols (control session, session to muscular failure and a an inter-

repetition rest session). All exercising sessions had the same load, volume and work-to-rest 

ratio in order to properly identify main effect and interaction between exercise type and set 

configurations. 

Participants. Thirteen normotensive males sport science students, with at least 6 months of 

experience in resistance training lifting completed this study. They were screened and 

excluded if they had prior history of cardiovascular disease, orthopedic pathology, or illness. 

All participants signed an informed consent form (Appendix B) and were informed they could 

withdraw from the study at any time. The study was approved by the local Institutional Ethics 

Committee. The physical, cardiovascular and functional characteristics of the participants are 

shown in Table 4. 

 

Table 4. Physical, cardiovascular and functional characteristics of the participants (n=13) 

Age (yr) 23 ±3 

Height (m) 1.76±0.05 

Body mass (kg) 72.1±5.8 

Body mass index (kg/m2) 23.4±1.2 

Systolic blood pressure (mmHg) 113±6 

Diastolic blood pressure (mmHg) 63±6 

Mean arterial pressure (mmHg) 79±6 

Heart rate (bpm) 54±6 

10RM Press (kg) 56±10 

10RM Squat (kg) 91±13 

Data displayed as means ± SD 
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Procedures. A repeated-measures design was used in this study. Participants attended 11 days 

to the laboratory: 5 for orientation procedures and 6 for experimental protocols. During the 

course of the experiment testing, participants were asked to refrain from alcohol, caffeine, 

nutritional supplements, nicotine, and exercise for 24 hours and fast for the three hours prior 

to the beginning of the sessions. The warm-up of each session was composed by 5 minutes of 

submaximal treadmill exercise, 5 minutes of joint mobilization and calisthenics, and 2 sets of 

10 repetitions with light loads. 

Orientation sessions. Participants were instructed on how to properly perform bench press and 

parallel squat in three familiarization sessions that consisted in of five progressive submaximal 

sets with 10 repetitions. In the following two sessions, 10 RM was tested to establish 

reliability. Both exercises were performed in a Smith Machine (Life Fitness, Brunswick 

Corporation, USA). The bench press exercise was performed with the participants starting with 

the elbows extended. Then, the bar was lowered to the chest in a controlled manner. 

Approximately 1 sec. was waited before the start of the concentric phase to eliminate the 

rebound effect and to obtain more consistent measures. Participants performed the 

concentric phase as fast as possible. The grip width was set at 130% of biacromial breadth. The 

parallel squat exercise was performed starting from the upright position with the knees 

extended, the feet parallel and placed shoulder width apart, and the barbell resting across the 

back. Participants then lowered in a controlled manner until the thigh was horizontal to the 

floor with the knees at approximately 90º of flexion. Finally, participants recovered the initial 

position, performing each repetition as fast as possible. The same researcher provided verbal 

encouragement in order to incite maximal effort by the participants. 
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A previously reported protocol was employed to obtain the 10RM load (258). 10RM was 

defined as the load that a participant was able to lift properly 10 times, but not 11. Participants 

performed no more than 5 attempts on each exercise with a rest interval of 2–5 min. between 

attempts. 

Experimental sessions. Participants completed 4 sessions corresponding to the combination of 

two types of exercises (Bench press and Parallel squat) and two set configurations: Failure 

session and Inter-repetition rest session. Additionally, two Control sessions were conducted as 

a reference for Bench press and Parallel squat protocols. 

Failure session consisted of 5 sets to failure with the 10RM load and with 180 sec. of rest 

between sets (i.e. 720 sec. of total resting time). Inter-repetition rest session consisted of the 

same number of repetitions completed in the Failure session, but with the total resting time 

(i.e. 720 sec.) distributed between each repetition. Thus, the work-to-rest ratio was equated 

between set configurations while the load (i.e., 10RM), volume (maximum number of 

repetitions performed in 5 sets) and rest (720 sec.) were similar between exercises. The 

Control session consisted in maintaining the body position of the exercises (i.e. lying on a 

bench for bench press and standing for parallel squat) during 15 min, but without performing 

any exercise. The order of exercises and control sessions were randomized. However, since the 

number of repetitions in the Inter-repetition rest session depended on the volume completed 

in the Failure session, it was not possible to randomize the order of the set configurations. 

The number of repetitions performed during the Failure session were different across 

participant and thus, the rest intervals between each repetition were individualized during the 

Inter-repetition rest session (262). Participants completed all repetitions in the Inter-repetition 

rest sessions without muscular failure. The sessions were separated by at least 72 hr. and were 

performed at approximately the same hour of the day (±1 hour) by each participant. 
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Physiological recording. A portable cardiac monitor (Polar RS800CX, Kempele, Finland) was 

used for beat-by-beat heart rate (HR) recording. An oscillometric device (Omron MIT Elite Plus, 

Kyoto, Japan) with proper sized cuff was employed for registering SBP and DBP before and 

after every session. Data were obtained 10 min prior and in the period 20-40 min after the 

exercise with the participant seated and breathing spontaneously. Data were recorded in a 

seated position at the end of a 20 min resting period after exercise to reduce the effect of the 

increased respiratory rate on the variables (263). 

Data analyses. HRV was used to estimate the vagal autonomic modulation of the heart. Fast 

Fourier Transformation method was selected in order to analyze the high frequency activity 

(HF, 0.15-0.4 Hz) in absolute units. HF is used as an indicator of cardiac vagal modulation (264). 

Kubios HRV software v2.1 (The Biomedical Signal and Medical Imaging Analysis Group, 

University of Kuopio, Kuopio, Finland) was used to analyze beat to beat intervals series with an 

automatic artifact correction (i.e., medium correction level). To weaken the HRV dependence 

on HR, HF was divided by the squared R-R interval (IRR2) of each epoch (265,266). Thereafter, 

the resultant of this division was log transformed since HF did not achieve normality, and 

multiplied by 10.000 to achieve positive parameters and facilitate the understanding of the 

results. This change in the scale does not modify the mathematical properties of the values. 

Prior to the warm-up, a 10 minutes period were recorded with the participants resting in a 

seated position. HRV was obtained in the last 5 minutes, while SBP and DBP were assessed at 

minute 8 and 10 of this period. After exercise, variables were obtained in epochs of 5 min 

across the 20-40 minutes for HRV and at minutes 20, 25, 30, 35 and 40 minutes postexercise 

for SBP and DBP. 
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Measurement of dynamic performance. A dynamic measurement device was used (T-Force 

System, Ergotech, Spain) in order to evaluate the mechanical performance as an indicator of 

neuromuscular fatigue (267). The propulsive part of the concentric phase of each repetition 

was analyzed and the mean propulsive velocity (MPV) was averaged to the entire session. The 

propulsive part is the portion during which acceleration is greater than the acceleration due to 

gravity (267). To ensure that there was no learning effect due to the non-randomization of the 

sets, the fastest repetitions of every set configuration and each exercise were compared, since 

the velocity of each load determines the relative load of the exercise (42). 

Statistical analyses. Descriptive statistics were calculated as mean ± standard deviation (SD). 

To establish the reliability of the 10RM test, the Intra-class Correlation Coefficients (ICC) with 

Single Measure Intra-Class correlation was determined (ICC = 0.98 and 0.97 for bench press 

and parallel squat, respectively). Shapiro–Wilk test was used to test normal distribution of 

parameters. Data were log transformed (Ln) in the case that normality assumption was 

violated. A paired t-test was used to compare within exercises the fastest repetitions of every 

set configuration (Failure session vs. Inter-repetition rest session). A 2-way repeated-measures 

ANOVA (exercise × set) was performed to compare the number of repetitions performed 

across the 5 sets within Failure sessions. A 3-way repeated measures ANOVA (exercise x 

protocol x time) was performed to evaluate the effect and interaction between Exercise 

(Bench press or Parallel squat), Protocol (Failure session, Inter-repetition rest session and 

Control session) and Time (Pre and 20-25, 25-30, 30-35, 35-40 min epochs for HRV; and 20, 25, 

30, 35, and 40 min moments for SBP and DBP). Multiple comparisons with Bonferroni 

correction were performed when necessary. Analysis of the Effect Size was performed with the 

partial Eta squared (
2

p ). Statistical significance was established with a p value of ≤0.05. The 

data were analyzed using SPSS 17.0 (SPSS, Inc., Chicago, IL, USA). A post-hoc power analysis 

was calculated using the G Power software (version 3.1.4). Statistical power (1-β) of a repeated 

measures ANOVA with 4, 5 and 6 measurements for a sample size of 13, a correlation among 

repeated measures of 0.5 and a medium effect size (f=0.25) is 0.51, 0.56 and 0.62, 

respectively. 
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4.3. Results 

Numbers of repetitions in Failure session were 32±5 and 34±6 repetitions for Bench press and 

Parallel squat, respectively. A significant effect of set was observed with a progressive 

decrease in the number of repetitions with each subsequent set (F4,52= 63.256, p< 0.001). 

Neither main effect of exercise, nor significant interaction between exercises and sets was 

observed (p>0.05). Rest intervals between each repetition during Inter-repetition rest session 

were 23.6±4.1 and 22.9±4.6 sec. for Bench press and Parallel squat, respectively. To analyze 

the possible learning effect due to the non-randomization of the set configuration, the fastest 

repetition of the two set configurations of each exercise was compared. There were no 

differences in the velocity of the fastest repetition between set configurations nor for Bench 

press neither for Parallel squat (p>0.05). 

Autonomic data. For Ln of HF/IRR2 x 104, main effects were observed for Exercise (F1, 12= 9.803, 

p=0.009; 
2

p = 0.45), Protocol (F2, 24= 8.426, p=0.002; 
2

p = 0.413), and Time (F4, 48= 8.669; 

p=0.001. 
2

p = 0.419). Significant interactions were observed between Exercise and Time (F4, 48= 

6.800, p=0.001; 
2

p = 0.362) and Protocol and Time (F4, 48= 9.625, p<0.001; 
2

p = 0.445) and 

Exercise and Protocol (F2, 24= 4.448, p=0.0023; 
2

p = 0.270). 

The interaction between Exercise and Time (Figure 6) revealed differences between exercises 

for the period 20-35 min (p≤0.001-0.012) with lower values for Parallel squat. Also, differences 

between moments were dependent on exercise. For Parallel squat, values were lower in the 

period 20-35 (p=0.003-0.044) respect to the pre-values; meanwhile for Bench press, 

differences were not observed between measurements. Additionally, no differences were 

observed in the pre values between exercises. 
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The interaction between Protocol and Time (Figure 7) of Ln of HF/IRR2 x 104 revealed 

differences between protocols for the post-exercise period. Control session was higher than 

Failure session for the entire post-exercise period: 20-40 (p≤0.001-0.017). Furthermore, 

differences versus the Pre values depended on the protocol. In Failure session, lower values 

were observed in the period 20-30 (p=0.003-0.004) in comparison with Pre values, while no 

differences were observed between moments in Control session or Inter-repetition rest 

session. Finally, no differences were observed in the pre values between exercises. 

The interaction between Exercise and Protocol (Figure 8) of Ln of HF/IRR2 x 104  revealed that 

differences were observed between exercises for Inter-repetition rest session, with lower 

values in Parallel squat in comparison with Bench press (p=0.002). Also, differences between 

protocols were observed and dependent on exercise. For Parallel squat, lower values were 

observed for Failure session (p=0.008) and Inter-repetition rest session (p=0.037) in 

comparison with Control session. However, for Bench press lower values were observed in 

Failure session respect to both Inter-repetition rest session (p=0.027) and Control session 

(p=0.022). Besides, no differences were observed between Control session and Inter-repetition 

rest session for bench press. 

 

Figure 6. Interaction between Exercise and Time for the Ln of HF/IRR
2 

x 10
4
 (n=13) 

In circles, Parallel Squat. In squares, Bench press 
* Differences versus pre-values of the same exercise 
# Differences between different exercises 
Data displayed as means ± SE 
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Figure 7. Interaction between Protocol and Time for the Ln of HF/IRR
2 

x 10
4
 (n=13) 

In circles, Control session. In squares, Inter-repetition rest session 
In triangles, Failure session 
* Differences versus the pre-values of the same protocol 
# Differences versus the Control session 
@ Differences between Cluster session 
Data displayed as means ± SE 

 

 
Figure 8. Interaction between Exercise and Protocol for the Ln of HF/IRR

2 
x 10

4 
(n=13) 

In black, Control session. In dark gray, Failure session 
In light gray, Inter-repetition rest session 
* Differences versus the Control session 
# Differences versus the Failure session of the Bench Press 
@ Differences versus the Inter-repetition rest session of the Parallel Squat 
Data displayed as means ± SE 
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Hemodynamic data. For SBP, a main effect for Protocol (F2, 24= 10.429, p=0.001; 
2

p = 0.465) 

was observed. Failure session was significant lower than Control session (p=0.004) and Inter-

repetition rest session (p=0.008). Additionally there was a significant interaction between 

Protocol and Time (F8, 96= 2.186, p=0.035; 
2

p = 0.154) (Figure 9a). Failure session was 

significantly lower than the Control session at 25 (p=0.006), 30 (p=0.009) and 40 min (p=0.017) 

after exercise. Failure session was also lower with respect to Inter-repetition rest session at 30 

min (p=0.036). Pre-post comparisons were not significant for any session. Finally, differences 

between sessions at the baseline were not significant. 

For DBP, a main effect for Protocol (F2, 24= 7.232, p=0.003; 
2

p = 0.376) was observed. Failure 

session was significant lower than control session (p=0.011). Additionally, there was a 

significant interaction between Protocol and Time (F8, 96= 4.253, p=0.006; 
2

p = 0.262) (Figure 

9b). Failure session was significant lower than the Control session for the entire post-exercise 

period: 25 (p=0.034), 30 (p=0.02), 35 (p=0.001) and 40 min (p=0.009). Also, the Failure session 

was lower with respect to Inter-repetition rest session at 35 min after exercise cessation 

(p=0.05). In the Control session there was a significant increase in DBP for 30 (p=.002), 35 

(p=0.011) and 40 min (p=0.014) moments respect to the baseline values. There were not 

differences between pre-post comparisons for any protocol. Differences in pre values were 

neither observed. 

Dynamic performance measurements. MPV values showed a significant lower velocity in the 

Failure session in comparison with Inter-repetition rest session for both Parallel squat 

(0.33±0.4 m.s-1 versus 0.41±0.1 m.s-1, p=0.001) and Bench press (0.28±0.05 m.s-1 versus 

0.40±0.07 m.s-1, p<0.001) exercises. 
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Figure 9. a) Interaction between Protocol and 
Time for SBP (a) and DBP (b) (n=13) 
In circles, Control session 
In squares, Inter-repetition rest session 
In triangles, Failure session 
# Differences versus the Control session 
@ Differences between Inter-repetition rest 
session and Failure session 
% Significant higher versus pre-values 
Data displayed as means ± SE 

 

 

4.4. Discussion 

In the current study we explore the effect of the exercise type, set configuration and their 

interaction on the postexercise cardiovagal withdrawal and the hypotensive effect. The main 

findings of this study were a) the type of exercise affected the cardiac vagal autonomic control 

after a resistance exercise, with less control after parallel squat in comparison with bench 

press exercise. b) Set configuration also affected the autonomic cardiac vagal control after 

exercise, with less control in Failure session in comparison with Inter-repetition rest session 

and Control session. c) Interactions between the type of exercise and the set configurations 

revealed that the cardiac vagal control is affected by both factors simultaneously. d) Systolic 

and diastolic blood pressure after failure sessions were decreased respect to control sessions. 
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Our study shows that when load, volume and work-to-rest ratio are equated, the type of 

exercise affects the pattern of recovery of the vagal autonomic control of the heart (Fig. 1). 

The lower reduction in the cardiac vagal control after Bench press in comparison with Parallel 

squat could be caused by the body positions and muscle masses involved in those exercises. 

The lying position during the bench press could facilitate the venous return and the cardiac 

filling of the ventricle during the preload, in comparison with the stand up position during the 

Parallel squat. In addition, the lower amount of muscle mass involved during a bench press 

exercise in comparison with a parallel squat could induce lower glycolytic involvement for the 

former. 

Although lactate was not analyzed in the current study, a previous study reported higher levels 

of blood lactate concentration during squat in comparison with bench press with the same 

load (71). Therefore, we can speculate that the low glycolytic involvement during the bench 

press could blunt the loss of cardiac vagal control, since previous studies have suggested a 

relationship between cardiac vagal withdrawal and lactate levels both at rest with intravenous 

injection of lactate (108,268) and after resistance exercises (103,107). To the best of our 

knowledge, only one study analyzed the effect of the exercises type (i.e. upper versus lower 

limbs) on the cardiac vagal control without detect significant differences between protocols 

(13). However, both exercises were performed to muscular failure, causing a high fatigue that 

could overcome a plausible difference effect of each exercise. In the present study, when both 

exercises were performed to muscular failure, no differences were observed, which is in 

agreement with that study (13). These findings suggest that training to muscular failure may 

provoke a significant and comparable reduction in vagal control regardless of the type of 

exercise performed. 
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Set configuration also affects the pattern of recovery of the vagal autonomic control of the 

heart (Fig. 2). Our study shows that Failure session had a higher loss of vagal control in 

comparison with Control session and Inter-repetition rest session. Meanwhile, for Inter-

repetition rest session the cardiac vagal control was scarcely affected. Nevertheless, when the 

type of exercise was taking into account, set configuration modulated cardiac vagal response 

for Bench press but not for Parallel squat (Fig. 3). In Bench press, Failure session induced less 

vagal control than Inter-rest repetition session. In Parallel squat, these differences were not 

observed. These results for parallel squat are coincident with a previous study comparing a 

session to muscular failure versus an inter-repetition rest session for the same exercise (102). 

The differences observed for set configuration between bench press and parallel squat may be 

due to the type and features of the resistance exercise performed. It is possible that when 

protocols are performed in exercises that involve large muscle mass, the loss in cardiac vagal 

control is comparable regardless the set configuration used. 

After resistance exercise there is a reduction in the vagal control of the heart (4,5,11–13), that 

may mean a transient harmful effect in individuals at cardiovascular risk since 30 min after 

exercise exists an augmented probability of suffering a sudden cardiac death due to a 

reduction in vagal activity (17). Therefore, the usefulness of controlling the loading parameters 

in order to minimize this reduction may be dependent on the exercise type, the set 

configuration and the interaction between them. It seems that exercises performed in a lying 

position, with less muscle mass implicated and done with a short set configuration as the inter-

repetition rest design may reduce the loss of cardiac vagal control of the heart, guaranteeing a 

more secure workout in individuals with cardiovascular risk. 
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Set configuration also affects post-exercise blood pressure. In the Failure session, both systolic 

and diastolic blood pressures were reduced with respect to the Control session. However, after 

Inter-repetition rest session blood pressure remained unaffected and not differences were 

found in comparison with the control session. A possible explanation to this difference is a 

local post-exercise vasodilation in the active muscles after Failure session due to an activation 

of histamine H1 and H2 receptors (147) as a consequence of the metabolic production 

associated with muscular fatigue. Postexercise hypotension has previously been observed in 

protocols leading to failure (142,145), even with low volume (142), what suggests that muscle 

failure is a substantial contributor to the onset of hypotensive effect. A previous study (11) 

compared a muscle failure with  muscle non-failure protocols, observing a hypotensive effect 

only in the former. Unfortunately, in that study the load was not equated. 

To the best of our knowledge, the current is the first study that compares a failure session with 

a protocol without failure maintaining equated all the parameters of the load. The type of 

exercise did not affect the blood pressure recovery and did not lead to postexercise 

hypotension. This lack of different between exercises is coincident with a previous study (187) 

that evaluated the effect of muscle mass on hypotension post-exercise using a similar volume 

to the present experiment. In addition, the significant DBP elevation observed in Control 

session could be attributed to the orthostatic stress (269). The orthostatic stress is commonly 

observed in prolonged sitting, possible due to a baroreflex-mediated raise in total peripheral 

resistance (269). 

Taking this into account, long set protocols leading to failure may have practical applications as 

a non-pharmacological therapy in hypertensive individuals to reduce blood pressure, since 

muscular failure per se, with all the rest loading parameters equated between protocols, 

appears to have an important role in the onset on postexercise hypotension.  
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Our study in healthy young population makes a first attempt to explore the possible 

implications of exercise type and set configuration on participants at cardiovascular risk. 

Future studies should focus on analyzing the applicability of these findings on diseased 

individuals. 

 

4.5. Conclusions 

In summary, the type of exercise affects the cardiac vagal autonomic control after a resistance 

exercise, with higher reductions in Parallel squat in comparison with Bench press. Also, our 

data showed that Failure session caused a loss of cardiac vagal control meanwhile Inter-

repetition rest session blunted the impact of resistance exercise on the post-exercise cardiac 

vagal control. Interactions between the type of exercise and set configurations showed that 

the cardiac vagal control after resistance exercise is affected by both factors simultaneously. 

Finally, postexercise hypotension was dependent on set configuration, with lower values of 

blood pressure after Failure session but not after Inter-repetition rest session. 

The type of exercise and the set configuration should be carefully selected to prescribe to 

populations with cardiovascular risk. Exercises with a lying position and less muscle mass 

involved (i.e. bench press) in combination with shorter set configurations (i.e. inter-repetition 

rest design) could blunt the increased cardiac risk associated to a decreased vagal activity after 

resistance exercise. On the contrary, when the objective of the prescribed resistance exercise 

is a postexercise reduction in blood pressure, set configurations to failure may be 

recommendable. It is important to note that one simple exercise with a long set configuration 

was sufficient to reduce the cardiac vagal control and to provoke the onset of the postexercise 

hypotension in comparison to a control session. 
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Abstract 

 

Set configuration refers to the repetitions performed with regard to the maximum possible 

number of repetitions, a factor affecting RPE that has not been previously studied. This study 

analyzed the effect of set configuration and muscle mass on RPE. Eight students (M age = 23.7 

yr. ± 1.7) completed four sessions corresponding to types of exercise with different amount of 

muscle mass (bench press and parallel squat) and two set configurations: a session with five 

sets of repetitions to failure and a cluster session. The cluster session involved the same 

intensity, volume, and rest than the failure session, guaranteeing the same work-to-rest ratio. 

RPE was higher in Failure vs Cluster sessions and higher in parallel squat vs bench press. This 

suggests that set configuration influences RPE. Similarly, RPE can be affected by the muscle 

mass of the exercise performed. 
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5.1. Introduction 

Rating of perceived exertion (RPE) scales have been used traditionally in aerobic exercise and 

recently, investigations have examined the usefulness of these scales to prescribe resistance 

exercise (35,245,246). RPE scales subjectively measure the intensity of effort, strain, 

discomfort and/or fatigue that a subject feels (217). Several components of resistance training 

have been shown to affect RPE, these include intensity (35), volume (36) and rest periods 

between set and exercise (232). Also, it has previously reported that RPE is related to certain 

physiological variables like muscle activity (246), blood lactate (245) and salivary cortisol (254). 

Another factor that could influence RPE is set configuration, since it is associated with 

intensity, volume and metabolic response to a workload (71,270). Set configuration refers to 

the repetitions performed with regard to the maximum possible number of repetitions. It is an 

important aspect to consider when prescribing resistance training, because distribution of 

work and rest into subsequent sets clearly differs in the mechanical performance and 

metabolic responses to the exercise (71). Traditional set configuration with repetitions leading 

to failure causes fatigue that results in a decline in mechanical performance (73) and requires 

long periods of rest to sustain the number of repetition over successive sets (270). 

Previous studies have shown that for traditional training with repetitions performed in a 

continuous fashion, total work (i.e., kg) seems to be an important factor affecting RPE 

(243,244). These studies compared different intensities and resistance training schemes but 

equated to total work, reporting similar RPE responses. However, total resting time was not 

the same and therefore the work-to-rest ratio was not equated. 
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An alternative set configuration consists of manipulating work and rest periods by breaking 

sets into small clusters of repetitions. This type of training has been termed cluster training, 

inter-repetition rest training or intra-set rest training (64,65,75). Cluster training allows a 

higher mechanical performance and a larger number of repetitions until failure with a lower 

glycolytic metabolism than the traditional training to failure (77,80). However, long-term 

studies have found that adaptations to cluster training vs. traditional training may be better 

(69), similar (70) or worse (39). The effect of a clustered set design on RPE has previously been 

studied (232,233). Hardee et al., (232) compared three protocols with the same intensity and 

total work in one protocol without inter-repetition rest, and two others with 20 sec. or 40 sec 

between each repetition. The study reported lower RPE values and higher mechanical 

performance in the 40 sec. inter-repetition rest protocol. However, work-to-rest ratio between 

conditions was not equated. It appears that only one study (233) equated the protocols with 

the same work-to-rest ratio between conditions. This study found decreased values of RPE in 

protocols with lower number of repetitions per set. However, a fixed number of repetitions 

were performed, not taking into account set configuration. It is possible that even when the 

intensity and work-to-rest ratio are equated, besides the total work, set configuration may 

affect the RPE response, as different set configurations with the same work-to-rest ratio affect 

to mechanical and metabolic responses to exercise (77). 

Additionally, it has pointed out previously that muscle mass may affect RPE. It could be 

interesting to know how muscle mass affects on RPE, in order to prescribe different exercises 

at the same intensity (i.e., load) by perceived exertion. Exercises with large muscle mass may 

cause higher RPE responses. In this sense, discrepancies has been reported in the literature 

stating that more muscle mass may cause higher (234), the same (36), or lower (235) RPE 

response. Thus, it will be important to further understand the influence of the muscle mass as 

well as the effect of the interaction between the muscle mass and set configuration on 

perceived exertion during the performance of resistance exercise.  
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This study compared the effects of different set configurations with the same intensity (i.e., 

load), volume (i.e., repetitions × kg), and work-to-rest ratio on RPE and mechanical 

performance. Secondly, the influence of muscle mass and set configuration on perceived 

exertion was assessed. A protocol with sets of repetitions leading to failure (Failure session) 

and a cluster set configuration (Cluster session) with rest between each repetition were 

compared. Both protocols were performed for two types of exercise engaging different 

amounts of muscle mass: bench press and parallel squat. Our hypothesis is that RPE will be 

higher in the Failure session compared with the Cluster session, due to higher physiological 

demand indicated by a reduced mechanical performance and that Parallel squat will be 

associated with higher RPE than bench press as a result of the larger muscle mass involved. 

 

5.2. Methods 

Participants for this study were 8 healthy (7 men, 1 woman), moderately trained sport science 

students (M age= 23.8 yr. ± 1.4; M height= 1.7 m ± 0.1; M body mass= 66.75 kg ± 9.5; M 10RM 

bench press= 47.31 kg ± 15.78; M 10RM parallel squat= 86.00 kg ± 23.89) with at least 6 mo. of 

experience in resistance training lifting weights two or three times/week. All participants 

signed an informed consent (Appendix B) and were informed they could withdraw from the 

study at any time. The study was approved by the local Institutional Ethics Committee. 

Procedures A repeated measures design was used in which participants completed 4 

experimental trials. The experiment consisted of 9 sessions: 5 orientation sessions and 4 

experimental sessions. During the course of testing, participants were instructed to refrain 

from exercise, alcohol, caffeine and nicotine for the 24 hr. before the testing sessions. Each 

session started with a warm-up of 5 min. of submaximal treadmill exercise, 5 min. of joint 

mobilization and calisthenics, and 2 sets of 10 repetitions with light loads. 
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Orientation sessions. Participants completed 3 familiarization sessions. In these sessions 

participants performed five progressive submaximal sets of 10 repetitions in which were given 

instructions on how to perform properly the exercises and learned how to anchor and rate the 

perceived exertion with the OMNI-RES scale following the procedures of Robertson, et al., 

(213). The following two sessions were performed to test the 10RM and to establish reliability. 

Both exercises were performed using a Smith Machine (Life Fitness, Brunswick Corporation, 

USA). In the bench press exercise, participants were instructed to start with the elbows fully 

extended and lower the bar to the chest with controlled velocity. After a pause of 

approximately 1 sec., participants performed the concentric phase in an explosive fashion, at 

maximum velocity. In the parallel squat exercise, participants started from the upright position 

with the knees fully extended, with the feet parallel and placed shoulder width apart and the 

barbell resting across the back. Participants then lowered in a controlled fashion until the thigh 

was in a horizontal plane, with the angle of the knee flexion at approximately 90º. Finally, 

participants recovered the initial position performing each repetition at the maximum velocity. 

All participants were provided with verbal encouragement by the same researcher. The 

procedures of the 10RM tests were followed as reported previously (172). 10RM was defined 

as the load that a participant was able to lift properly 10 times, but not 11. Participants 

performed no more than 5 attempts on each exercise with a rest interval of 2-5 min. between 

attempts. Intra-class Correlation Coefficients (ICC) were calculated to establish the reliability of 

the tests. 

Experimental sessions. Each participant completed four sessions corresponding to two types of 

exercise (bench press and parallel squat) and two types of set configuration (Failure session 

and Cluster session). For each exercise, the components of work (i.e., intensity, volume, total 

rest and total weight) were equated between set configurations in order to guarantee the 

same work-to-rest ratio with different distribution of pauses. The order of the exercises was 

counterbalanced, while sessions to failure were performed prior to cluster sessions. 
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Work-to-rest ratio was the same in both protocols for each exercise: the Failure session 

consisted of 5 sets to failure with 10RM load and with 3 min. of rest between sets. The Cluster 

session consisted of the same number of repetitions performed in Failure session and their 

total rest (i.e., 4 rest periods of 3 min., 720 sec.), but with rest distributed between each 

repetition. Since the number of repetitions in the Cluster session depended on the volume 

completed in Failure session, it was not possible to randomize the order of the Failure session 

and Cluster session conditions. As not all participants performed the same number of 

repetitions, the rest intervals between repetitions during Cluster session were individualized. 

The number of rest intervals was equal to the number of repetitions performed minus 1 (e. g., 

3 repetitions entail resting from repetition 1 to 2 and from repetitions 2 to repetition 3), pause 

between repetitions was calculated as [720/(numbers of repetitions completed in Failure 

session – 1)] sec. The mean of the length of rests between repetitions was of 24.7 sec. (SD= 

4.4) in bench press and 21.9 sec. (SD= 3.5) in parallel squat. Repetitions performed in Failure 

session for both exercises are reported in Table 5. Participants were able to complete all 

repetitions in Cluster session for both exercises. Sessions were separated by at least 72 hr. and 

were performed by each participant at the same hour of the day. 

 

Table 5. Repetitions performed in Failure session for Bench press and Parallel squat (n=8) 

Set Bench Press Parallel Squat 

M SD M SD 

Set 1 10.75 1.58 13.00 2.14 

Set 2 6.88 0.83 7.50 2.73 

Set 3 5.25 1.16 6.00 2.33 

Set 4 4.25 1.49 4.13 2.80 

Set 5 3.75 1.28 4.13 2.53 

Session 30.87 5.08 34.75 6.06 

Data are displayed as means±SD 
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Measurement of dynamic performance. A dynamic measurement device (T-Force System, 

Ergotech, Spain) was employed for evaluating mechanical performance. The velocities 

reported correspond to mean propulsive velocity (MPV) of the concentric phase of each 

repetition. The propulsive phase was the portion of the concentric phase during which 

acceleration of the barbell was greater than acceleration due to gravity. 

Assessment of perceived exertion. OMNI-RES scale was used to monitor perceived exertion. 

The OMNI-RES was used because it has been developed specifically for resistance exercise. 

This scale has pictorial descriptors that can help numerical and verbal descriptors to anchor 

the RPE (238). Concurrent validity (213) and construct validity (218) of OMNI-RES have been 

studied in resistance exercise suggesting that OMNI-RES is an appropriate and valid tool for 

assessing perceived exertion. The instructions used followed the guidelines published 

elsewhere (213). The scale was anchored using exercise-memory anchoring (35,216). In order 

to establish anchoring, the Low anchoring was fixed performing one repetition without load, 

having the equivalent of 0; the High anchoring was fixed thinking in the maximum effort that 

participants ever performed, the equivalent of 10 (271). Ratings of perceived exertion specific 

to the active muscles (218) were used. Active muscles RPE reflects the peripheral perceptual 

signals of the exercise done. Participants were told to focus on pectoris major muscle in bench 

press, and on the gluteus maximus, quadriceps and hamstrings in parallel squat. The same 

trained researcher explained and asked RPE values in the orientation and experimental 

sessions. OMNI-RES scale was in full view of the participants at all times during the procedures. 

In the Failure session, OMNI-RES was taken at the end of each set. Participants reported 

immediately a number of the OMNI-RES (0–10) scale decided simultaneously with the 

repetition of the set in which the participant failed to lift the weight. In the Cluster session, 

OMNI-RES value was reported immediately after the concentric phase of the repetition 

number coincident with the end of each set in the Failure session. 
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Analysis. Descriptive statistics are shown as mean±SD. Reliability of 10RM load was assessed 

by Intra-Class Correlation Coefficient (ICC) calculated using the one-way random effect model. 

Only Single Measure Intra-Class correlation was considered. A 2-way repeated measures 

ANOVA (exercise × set) was performed to compare the number of repetitions performed 

across the 5 sets in Failure sessions. Three-way repeated measures analyses of variance 

(ANOVA) was used to evaluate the effect of session (Failure or Cluster), exercise (bench press 

or parallel squat) and time (Set 1, Set 2, Set 3, Set 4, Set 5) on RPE. Also, a two-way repeated 

measures ANOVA (session × exercise) was performed for Set 5 on RPE in order to compare set 

configurations and exercises when accumulated resting time was the same between 

conditions. Additionally, a two-way repeated measures ANOVA (session × time) was performed 

for both exercises to identity any differences in MPV. When necessary, multiple comparisons 

were performed with Bonferroni correction. Statistical significance was assumed at p≤ .05. 

Effect sizes are reported as omega squared (ω2). The data were analyzed using SPSS Version 

17.0 (SPSS, Inc., Chicago, IL, USA). A post hoc power analysis was calculated using the G Power 

software (Version 3.1.4). Statistical power (1-β) of a repeated-measures ANOVA with 5 

measurements for a sample size of 8 and a large effect size (f= 0.4) is 0.754. 

 

5.3. Results 

Reliability of the 10RM across 2 trials was high for both exercises (ICC= .99 and .95 for bench 

press and parallel squat, respectively). Two-way repeated measures ANOVA indicated that 

there were no differences in the number of repetitions between exercises (F1,7= 2.67, p= .15), 

nor an interaction between exercise and sets (F4,28= 1.07, p= .39). A significant effect of set was 

detected, showing a progressive decrease in the number of repetitions with each successive 

set (F4,28= 42.93, p< .001). 
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Table 6 shows the values of OMNI-RES and MPV for every session, exercise, and set in Failure 

session or the coincident repetition in Cluster session. Table 7 summarizes main effects, effect 

sizes, and interactions of the OMNI-RES responses. 

The results of the 3-way ANOVA indicated significant main effects of session, exercise, and 

sets. The main effect for session indicated that RPEs were higher in the Failure session than the 

Cluster session for both exercises (F1,7= 12.47, p= .01). Furthermore, the main effect for 

exercise showed that rates of perceived exertion in parallel squat were higher compared with 

bench press (F1,7= 23.73, p= .002). The main effect for sets indicated an increase of RPE with 

each subsequent set (F1,7= 13.81, p= .002). A significant interaction was observed for Session × 

Exercise (F1,7= 11.71, p= .01). Simple effects indicated that RPE was lower during the Cluster 

session than the Failure session for bench press (F1,7= 17.79, p= .004), but not for parallel 

squat. Also, differences between exercises were only observed for the Cluster session, with 

higher values in parallel squat than bench press (F1,7= 27.32, p< .001). 

Two-way ANOVA of data corresponding to the final repetition performed in both protocols, 

when total resting time was equated between conditions, showed significant differences 

between sessions (Failure session= 9.38±1.03; Cluster session= 7.81±1.61; F1,7= 7.72, p= .03) 

and exercises (bench press= 8.19±1.61; parallel squat= 9±1.38; F1,7 = 18.78, p= .003). Similarly, 

the interaction between session and exercise was significant (F1,7= 38.16, p< .001). 

Analyses of simple effects indicated that RPEs were lower during the Cluster session than the 

Failure session for bench press (F1,7= 14.44, p= .007), but not for parallel squat. In addition, 

differences between exercises were significant only during the Cluster session, with higher 

values in parallel squat with respect to bench press (F1,7= 38.16, p< .001). 
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Table 6. OMNI-RES responses and MPV through sessions, exercises and sets (n=8) 

Set Failure Session Cluster Session 

OMNI MPV OMNI MPV 

 M SD M SD M SD M SD 

Bench press 

Set 1 7.38 1.47 .321 .069 5.16 1.67 .388 .051 

Set 2 8.00 1.13 .258 .049 5.75 1.51 .370 .053 

Set 3 8.75 2.4 .240 .054 6.00 1.4 .353 .058 

Set 4 9.13 2.43 .235 .072 6.62 1.18 .341 .074 

Set 5 9.38 2.18 .229 .068 7.00 1.30 .314 .071 

Mean 8.53 1.52 .272 .062 6.10 1.53 .364 .055 

Parallel Squat 

Set 1 8.25 1.89 .335 .043 6.50 1.69 .368 .044 

Set 2 8.87 1.35 .321 .035 7.50 1.69 .341 .051 

Set 3 9.12 .99 .303 .037 7.87 1.35 .337 .055 

Set 4 8.75 1.48 .309 .042 8.25 1.38 .322 .040 

Set 5 9.37 1.18 .299 .043 8.62 1.30 .308 .078 

Mean 8.88 1.39 .321 .034 7.75 1.6 .346 .048 

Data are displayed as means±SD 

 

For MPV, there were significant differences in session for bench press, with higher values in 

the Cluster session than the Failure session (F1,7= 17.49, p= .004). However, there were no 

differences between sessions in parallel squat (F1,7= 1.28, p= .29). A time effect was observed 

for both bench press (F4,28= 32.93, p< .001) and parallel squat (F4,28= 8.29, p< .001), with lower 

values in each subsequent set (Table 7). 
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Table 7. OMNI-RES values for main effects and interactions (n=8) 

Source M SD p ω2 

Session 

 

Failure 8.70 1.45 .01 

.23 Cluster 6.93 1.76 

Exercise 

 

Bench press 7.31 1.78 .002 

.070 
Parallel squat 8.31 1.35 

Sets 

 

Set 1 6.81 2.07 .002 

.29 

Set 2 7.53† 1.87 

Set 3 7.94† 1.72 

Set 4 8.19 1.57 

Set 5 8.59†‡ 1.50 

Session x Exercise  .01 .03 

Session x Sets .33 .00 

Exercise x Sets .1 .00 

Session x Exercise x Sets .063 .00 

Data are means±SD †Different from Set 1 (p <.05) ‡Different from Set 2 (p <.05) 

 

5.4. Discussion 

The main findings of this study were that the Failure session induced higher RPE compared 

with the Cluster session; when comparing the types of exercise, RPEs for parallel squat were 

higher than bench press; and set configuration affected both RPE and MPV in the same way. 

The results showed that when intensity, volume, and work-to-rest ratio were equated, the 

Cluster session lead to lower RPE. Hence, the set configuration seems to influence perceived 

exertion responses. A previous study (233) analyzed different set configurations with equated 

work-to-rest ratios, obtaining similar results and showing lower RPEs for the set configuration 

with fewer repetitions per set. However, this study (233) employed a fixed number of 

repetitions at an established intensity (i.e., 60% of 1 RM), so the ratio between repetitions 

performed and the maximum number of repetitions was not taken into account. 
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In the current study, the load was set according to the maximum number of repetitions that 

could be completed (i.e., 10RM load). During the Failure session, participants performed 5 sets 

to failure with the 10RM load, which entailed a decrease in the number of repetitions in 

successive sets in a similar way to data previously reported (270). In the Cluster session, 

participants performed the same number of repetitions as the Failure session, but with total 

rest distributed between repetitions. Therefore, this study design allows the comparison of 

different set configurations with the rest of the load parameters equated. 

Some studies found no differences in protocols with the same total work (243,244), concluding 

that total weight lifted seems to be an important factor affecting RPE in traditional protocols. 

Nevertheless, they used protocols with different intensities and the total resting time between 

protocols was not the same, therefore the work-to-rest ratio was not equated. Another study 

(232) compared three protocols with the same intensity and total work: a protocol without 

inter-repetition rest and other two with 20 sec. or 40 sec. between each repetition. 

The study reported lower RPE values with the 40 sec. inter-repetition rest protocol in 

comparison with 20 sec. and the traditional protocol. However, work-to-rest ratio between 

conditions was not equated. In the current study, with the same intensity, total weight lifted, 

and work-to-rest ratio equated, differences were observed between protocols. This suggests 

that not only total weight lifted, but also set configuration affects RPE response. 

Pairwise comparisons of RPE revealed that differences between sessions were only observed 

for bench press. These results are consistent with mechanical performance values since 

differences in MPV were only observed for this exercise. For bench press, mechanical 

performance was higher in the Cluster session in comparison with the Failure session, in 

contrast to the RPE response reported in the literature previously (232). In the parallel squat, 

no differences were observed for RPE or MPV. This suggests that RPE response represents 

properly the mechanical performance differences of the sessions. 
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Differences between exercises revealed higher RPEs for the parallel squat than in the bench 

press, suggesting that muscle mass may affect the RPE response. Higher RPEs to exercises 

involving larger muscle mass have been previously reported (234). However, others have not 

observed differences between exercises (36) or have found lower RPE for the exercises 

recruiting more muscle mass, in a sample of children (235). In addition to this, same intensity 

with regard to the maximum possible number of repetitions (i.e., 10RM) can mean different 

intensities respect to the percentage of 1RM, so it is conceivable that the exercise with large 

muscle mass is in a higher percentage of 1RM (49), so a higher RPE response is expected (35). 

This is in agreement with the hypothesis that at same RM load, exercises recruiting more 

muscle mass could result in higher RPEs. At least with the load of a goal RM, exercises 

requiring different amounts of muscle mass may evoke different RPEs. Nevertheless, as studies 

were not randomized (36,234) or were conducted in children (235), further studies should be 

conducted to identify the role of the muscle mass on RPE. 

Additionally, analysis of interaction only detected differences between exercises in the Cluster 

session. RPEs in the Failure session suggest a ceiling effect, which is inherent to category-ratio 

scales when the perception of fatigue is extremely high (217,223). This limitation has been 

reported in other studies with protocols to failure (222,272), suggesting that RPE scales are 

more useful to assess submaximal designs that protocols that lead to failure. Overview of the 

data suggests that the RPE differences between exercises could be influenced by the set 

configuration. 
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5.5. Conclusions 

In summary, the results demonstrate that set configuration may have an important role in RPE 

response, and may be influenced by the muscle mass involved. Also, RPE may have practical 

applications for monitoring resistance exercise, since it reflects differences between protocols 

with different set configurations and represents properly the mechanical performance of the 

exercises. The results provide evidence that perceived exertion values in similar designs (i.e., 

same intensity and work-to-rest ratio) at submaximal protocols are influenced by the muscle 

mass, suggesting that a fixed value of RPE does not represent the same intensity in different 

exercises, so attention should be paid when prescribing the intensity using RPE for different 

exercises.  



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

 

 

 

 

 

 

6. General discussion 
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The main findings of this thesis were that: a) maximal and submaximal long set configurations 

produce a higher reduction in cardiac parasympathetic activity as observed by the loss in 

autonomic and baroreflex control in comparison with short set configurations. b) a short set 

configuration as an inter-repetition rest design preserves the parasympathetic control of the 

heart as observed by non-significant reductions of autonomic and baroreflex control after 

resistance exercise. c) the effect of the set configuration on vagal autonomic control is affected 

by the type of exercise performed during the inter-rest repetition design, with a higher 

preservation of parasympathetic activity in the exercise with less muscle mass involved, in 

comparison with the exercise with more muscule mass involved; but not during a maximal set 

configuration. d) maximal but not submaximal long set configurations produce the onset of 

post-exercise hypotension in a session with a small total volume. e) the effect of the set 

configuration on post-exercise hypotension is not modulated by the type of exercise in a 

session with a small total volume. f) a maximal set produces a higher perceived exertion in 

comparison with a short set configuration as an inter-repetition rest design, indicating that the 

set configuration determines the perceived exertion. g) the effect of the set configuration on 

perceived exertion was dependent on the exercise performed, with differences observed 

between protocols in the exercise with less mucle mass involved but not between protocolos 

with more muscle mass involved. 

The results of these studies showed that when the intensity of load, volume and work-to-rest 

ratio were equated, the set configuration used determines the loss of parasympathetic activity 

as observed by the loss in autonomic and baroreflex control, in disregard of the comparison 

between submaximal protocols or between submaximal versus maximal designs. 

Thus, the affectation of the set configuration on the parasympathetic control is independent of 

the appearance or not of muscle failure in the comparison between protocols. 
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A major candidate for the loss of vagal autonomic control of the heart after exercise is the 

glycolytic involvement of the session, with higher reductions in parasympathetic activity with 

higher lactate productions (103,107,108,268). These relationships between cardiac 

parasympathetic control and glycolytic involvement were observed previously after 

intravenous injections of lactate (108,268) and resistance exercise sessions (103,107). 

Although lactate production was not analyzed in our study, former studies have shown 

differences in the glycolytic involvement between long and short set configurations after a 

resistance exercise session (66,71,82–84). In addition, lactate production correlates strongly 

with mechanical performance (71), and the short set configuration protocols in these studies 

showed a higher manifestation of velocity during the session than the long set configurations. 

Those arguments support the inference that the differences between set configurations may 

be mediated by the glycolytic involvement of the session. 

The present results for the longer set configurations support previous data reporting that 

resistance exercise perturbs the autonomic control inducing a reduction in cardiac vagal 

control (4,5,11–13). Nevertheless, no significant reductions were observed after the inter-

repetition rest designs, and this is a new finding. These non-significant reductions may be due 

to non-significant elevations of lactate production as previously observed in an inter-repetition 

rest design (77). The no significant elevations of lactate production occurred are probably the 

result of a partial regeneration of PCr that allows a lower demand of anaerobic glycolysis (66). 

When taking into account the exercise performed in the inter-repetition rest design, no 

significant reductions in cardiac vagal autonomic activity were observed when performing leg 

press (Study I) and bench press (Study II), but a significant decrease comparable to the long set 

configuration was observed when performing parallel squat (Study II). 

Peculiarly, in agreement with our study, a previous research using parallel squat to analyze the 

effect of set configuration on the cardiac autonomic control reported no differences between 
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protocols (102). While drawing inferences about the reasons for these differences would be 

nowadays misleading, appears that the ability of short set configurations as the inter-

repetition rest design to reduce the loss of cardiac vagal control after resistance exercise may 

be exercise-dependant. 

Regarding performing the same set configuration with different types of exercise, our data 

showed differences between exercises while performing short set configurations. In this sense, 

lactate production may account for the differences between bench press and parallel squat as 

was previously observed (71). Nevertheless, protocols leading to muscular failure but differing 

in the type of exercise had the same cardiac vagal activity after exercise. This is an interesting 

point because it is known that bench press and parallel squat produce different amounts of 

lactate during consecutive sets to failure (71). Similar to our results, a previous study observed 

no differences comparing protocols with exercises of upper limbs versus lower limbs leading to 

muscular failure (13). These findings suggest that other physiological factors that occur during 

muscular failure should displace the importance of the effect of lactate production, having the 

former a preferential role in the reduction of cardiac vagal control. 

Cardiac parasympathetic baroreflex control was also affected by the set configuration, with 

higher reductions in baroreflex sensitivity with longer set configurations in comparison with 

the inter-repetition rest design (Study I: 8S and 4S vs. 1S). Our results support previous 

observations showing that a resistance exercise session causes a transient reduction in the 

cardiac parasympathetic baroreflex control (14–16). While all the previous studies were 

performed with several exercises and showed significant reductions in baroreflex sensitivity 

(14–16), this is the first design to present that a single resistance exercise is enough to affect 

the baroreflex control. 
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Also, our study shows that with short set configurations as an inter-repetition rest design is 

possible to perform resistance exercise without reductions in baroreflex sensitivity. 

Additionally, our results support a previous study showing that more demanding protocols 

cause a higher decrease in baroreflex sensitivity than less demanding protocols (15). 

Differences in physiological demands can be interpreted as differences in the mechanical 

performance, a proxy of neuromuscular fatigue (71). While the factors affecting cardiac 

baroreflex control are not elucidated yet, it is possible that increases in nitric oxide (131) and 

arterial stiffness (14) partially explain the reduction of baroreflex sensitivity. On the one hand, 

increases in nitric oxide as a consequence of an augmented shear stress during resistance 

exercise (206) may reduce the sensitivity of the baroreflex, as was previously observed with 

nitric oxide injection (131). On the other hand, an increased arterial stiffness in the central 

vessels after exercise as a consequence of increased reservoir pressure may reduce the wall 

deformation and thus attenuate the baroreceptor activation (14). 

The control of the reduction in cardiac parasympathetic activity after resistance exercise may 

have practical applications in individuals with cardiac risk. This is because the reduction in 

cardiac parasympathetic control after exercise can be interpreted as a transient deleterious 

effect, since 30 min after an exercise there is a increased risk of a sudden cardiac death to 

decreased vagal activity (17). In addition, prognosis studies showed that decrements in the 

parasympathetic branch of the autonomic and baroreflex control are associated with 

myocardiac ischemia and cardiac death (97), suggesting the pertinence of maintaining the 

maximal parasympathetic activity possible after exercise in individuals with certain cardiac risk. 

This is due to the role that the parasympathetic activity has a regulator of the ventricular 

electrophysiological properties, providing protection against ventricular arrhythmias (273,274).  
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Beyond administrating the loss of cardiac parasympathetic control, our studies also provide 

data that can be possible to perform several exercises of resistance training (i.e., bench press 

and leg press) without eliciting the cardiac impact that causes a reduction in autonomic and 

baroreflex activity: This has clear relevance in the prescription of exercise in diseased 

individuals. Future studies should analyze if the theoretical benefits of a non-significant 

reduction with an exercise are consistent in a whole resistance training session. Besides, it is of 

interest the effect that different set configurations on parasympathetic control may have after 

a resistance training period in individuals with an affected autonomic control, and if dissimilar 

configurations of the set produce or not improvements in the vagal control. In this sense, it is 

known that in populations with an altered autonomic control, long set configurations may 

improve vagal activity (10), but the effect of short sets are still unknown. 

Set configuration also determines post-exercise hypotension. Our results revealed that when 

the intensity of load, volume, and work-to-rest ratio were equated, a maximal set 

configuration, with an intensity of effort of 100%, produces a reduction in systolic and diastolic 

blood pressure in comparison with a control session (Study II: Failure session). On the contrary, 

submaximal long (Study I: 8S) and short set configurations (Study I: 1S, and Study II: Inter-

repetition rest session) did not produce post-exercise hypotension. These findings support 

previous studies that reported that reaching muscular failure was a co-factor of the onset on 

post-exercise hypotension (11,172,196). Nevertheless, those studies were performed with 

different intensities of load, which can affect the results (11,172,196). To our knowledge, our 

study (Study II) is the first that compared a protocol leading to failure with another without 

muscular failure, with the rest of the loading parameters remaining equated. In this regard, 

attending to our results, long set configurations without leading to failure (Study II: 8S) and 

short set configurations (Study I: 4S and 1S. Study II: Inter-repetition rest session) do not cause 

the onset of post-exercise hypotension with a kind of protocol that may do that, indicating that 

those types of sets could not be the better designs when post-exercise hypotension is desired. 
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Additionally, in our study, the interaction between the set configuration and the type of 

exercise reported no differences. Regarding the short sets, no effects between inter-repetition 

rest designs with different exercises are expected, as these types of design do not cause post-

exercise hypotension. Regarding the sets leading to failure, this is consistent with a previous 

study analyzing upper versus lower limbs with a comparable volume (6). It appears that to 

benefit from the exercise type when comparing upper and lower limbs, the volume should be 

higher than ours (146). In this sense, as previously explained, seems that in our studies 

muscular failure were the major determinant of post-exercise hypotension. 

Previous studies have reported that a minimum volume is necessary, even when reaching 

muscular failure, for the onset of post-exercise hypotension after resistance exercise (6,15). On 

this point, data from a previous study suggested that the total volume performed is crucial for 

post-exercise hypotension, exceeding the effect of muscular failure (172). Our study, with a 

progressive reduction in the number of repetitions in each set due to fatigue, was sufficient to 

reveal a post-exercise hypotension with a very low total volume (about 32-34 total 

repetitions). This challenges in part the standpoint that the total volume is the cornerstone 

loading parameter that determines post-exercise hypotension after resistance exercise, since 

until date the design with the lower volume that produced hypotensive effect was about 100 

repetitions (6). Nevertheless, this finding is not contradictory with the role of total volume 

performed, since the physiological founder for both features of the session may be the same. 

In this regard, of the obligatory mechanisms for the onset of post-exercise hypotension, the 

vasodilatation dependent of the activation of the H1 (156) and H2 (157) receptors seems to be 

the factor that occurs during muscular failure, and probably while performing large volumes.  
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This is because during muscular failure there are large muscular contractions, an affected 

blood flow, and the inability to perform new repetitions due to fatigue. All of those features 

are contributors to the release or production of histamine or contributors to the activation of 

histamine receptors (203–205), since the activation of histamine receptors protects against 

fatigue during exercise (152) and modulates the metabolism during recovery (207). The same 

can be argued for the effect of total volume performed on post-exercise hypotension, since 

during every new set larger muscular contractions, worsened blood flow, and progressive 

muscle fatigue are expected to occur. Our findings defy the previous data reported, since 

muscular failure was the prime intended effect in our study, as observed by the progressive 

reduction in the number of repetitions performed in each set due to an incapacitating fatigue. 

Thus, intentional and deliberate muscular failure may displace the effect of the total volume 

performed to a secondary role. 

The reduction in post-exercise blood pressure after the Failure session design (Study II) has a 

practical application in training as a non-pharmacological strategy to treat or prevent the 

appearance of hypertension (139). This is due that post-exercise hypotension may contribute 

to the chronic reductions in blood pressure (140) as observed by the correlations between 

post-exercise hypotension and long-term blood pressure reduction after resistance training 

(141). Notwithstanding, at the same time that maximal set configurations lead to post-exercise 

hypotension, they also lead to a large decrease in cardiac parasympathetic control, as was 

previously indicated. The suitability of this kind of training should be dependent on the cardiac 

health that the individual has as measured by the grade of autonomic activity and by the 

pertinence of the session as inspected by the characteristics of the person (100). Future 

studies should focus on the potentiality of maximal long set configurations in the reduction of 

post-exercise blood pressure with a whole resistance training session, and on their possible 

relation with the activation of histamine receptors as was previously analyzed in aerobic 

exercise (156,157). In this sense, just one previous study analyzed the effect of resistance 
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exercise, specifically isokinetic, on post-exercise blood pressure, without leading to failure and 

without finding post-exercise hypotension (152). 

Lastly, the set configuration also determines perceived exertion. Our results indicated, for the 

first time, that when the intensity of load, the volume, and the ratio between work and rest 

are equated, a maximal set configuration (Study III: Failure session) produces a higher 

perceived exertion than a short set configuration as an inter-repetition rest design (Study III: 

Cluster session). Our data is coincident with a previous study that compared protocols with the 

same intensity of load, volume and work-to-rest ratio but that used a percentage of the 1RM, 

not taking into account the maximum number of repetitions that can be performed (233). That 

was a weakness in that design since the number of repetitions is individual-dependant (45–50) 

and the remoteness and closeness to muscular failure of each individual is a confounding 

factor in relation to perceived exertion (237,242–244). 

Our findings support previous research that argued that the duration of the repetitions (255) 

and the length of the set (213) mediate perceived exertion. Then, the appearance of failure is a 

great determinant of perceived exertion (236,237) since the repetitions and the length of the 

set are obviously largest with each longer configuration of the set. On this point, when 

comparing maximal versus submaximal set configurations, two reasonings should be unfolded. 

On the one hand, previous experiments altering the work-to-rest ratio observed that the lower 

work-to-rest ratio caused lower perceived exertion values, explaining the differences between 

protocols (37,233). Nevertheless, in our study, matching the work-to-rest ratio, differences 

between our protocols still exist, showing a secondary role for that ratio between work and 

rest when maximal and submaximal set configurations are compared. On the other hand, with 

the intensity of load (237) and volume (231) equated, the response of perceived exertion 

should be similar between protocols, as was previously debated.  
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Nevertheless, when comparing a maximal versus submaximal set configurations, intensity of 

load and volume seem to be a minor role affecting perceived exertion. Taking all this into 

account, it can be argued that the dissimilarities in our study are mediated by the differences 

in the duration of the repetitions (255) and the length of the sets (213), as observed by the 

remoteness and closeness to the muscular failure, which is a determinant of perceived 

exertion (236,237). 

In regards to the interaction between the set configuration and the type of exercise, we 

observed that in the type of exercise with less muscle mass involved (Study III: Bench press), 

set configuration caused different values of perceived exertion, with higher values in the 

maximal set configuration (Study III: Failure session). Nevertheless, in the exercise with more 

muscle mass involved (Study III: Parallel squat), no differences were observed in perceived 

exertion between sets configurations, despite higher values in the Failure session. The 

physiological reasons for those differences are unknown. Nevertheless our results mirror the 

differences of mechanical performances between set configurations for the same exercise, as 

differences were reported for Bench press but not for Parallel squat. While physiological 

determinants of perceived exertion are not clarified, a mirroring between perceived exertion 

and mechanical performance is expected, as observed previously between perceived exertion 

and lactate production (213,248–251) and muscle activity (245,246), both proxies of 

neuromuscular fatigue. 

In the same way, differences between exercises were only observed for the short set 

configuration (Study III: Cluster session), but not between maximal set configurations. In the 

Cluster session, higher values were observed for Parallel squat, the exercise with more muscle 

mass involved, which is concordant with a previous study that argued that more muscle mass 

involved produces more perceived exertion (234). While differences in lactate production (71) 

may account in part for those differences between protocols, as perceived exertion and lactate 
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production behave in a corresponding manner (213,248–251), a reasonable justification for 

this difference is the higher relative intensity of load for Parallel squat in comparison with 

Bench press (49), which could affect perceived exertion (35,218,224). 

Controling perceived exertion through set configuration may have practical applications of 

interest during a process of training. In this sense, set configuration can help to regulate and 

modulate the perceptive responses that affect an individual during resistance training. This 

may detect and prevent negative processes that lead to illness and overtraining (33) with the 

help of other parameters of the session. Otherwise, short set configurations as the inter-

repetition design may help to adhere the participants to a resistance training program, since 

lower values of perceived exertion were observed to correlate with higher adherence to 

training (33). This is a very interesting point, since as was previously showed, the strength 

benefits between long and short set configurations as our inter-repetition rest design are 

comparable (93). Further studies are needed to analyze the effect of longer but submaximal 

set configurations in comparison with other short set configurations. In this sense, if they 

produce different perceived exertion, the prescription of strength training through set 

configuration may be of interest to modulate the perceptual responses during exercise. 

The studies included in this thesis present several limitations that should be taken into 

account. Our participants, young adults without diseases, represent a good model to try to 

understand how resistance exercise affects cardiovascular control in healthy individuals, and 

how to affect the cardiac control in diseased individuals with an intact nervous system. 

Nevertheless, studies about the effect and applicability of set configuration are needed in 

diseased individuals with an affected autonomic and baroreflex control and with hypertension. 

In Study II, men and women were studied together, and there could be differences related to 

the gender of the participants. The inclusion of some metabolic markers, such as lactate 

production, could have provided valuable information about the autonomic and perceptive 



117 
 

responses to resistance exercise. Additionally, the posture of the participants in the data 

collection (Study I: semirecumbent, Study II: seated) may account for some differences in data 

interpretation between protocols and in comparison with the literature about cardiovascular 

responses to exercise. The same can be argued with the breathing frequency and tidal volume 

regarding the autonomic analysis, since both are variables that can affect the interpretability 

of the data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

 

 

 

 

 

 

7. General conclusions 
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 A resistance exercise with longer set configurations produces a higher cardiac vagal 

withdrawal and loss in baroreflex sensitivity in comparison with shorter set configurations. 

 

 A short set configuration as an inter-repetition rest design produces a non-significant 

reduction in parasympathetic activity, explained by comparable values of cardiac vagal 

control and baroreflex sensitivity. 

 

 The effect of the set configuration is modulated by the type of exercise performed, with 

higher reductions in cardiac vagal control in long set configurations in comparison with 

short set configurations performing the bench press, but not performing the parallel squat. 

 

 The effect of the type of exercise performed is modulated by the set configuration used, 

with a higher reduction of cardiac vagal control in the exercise with more muscle mass 

involved (i.e., parallel squat) in comparison with the exercise with less muscle mass 

involved (i.e., bench press) performing a short set configuration, but not performing sets to 

failure. 

 

 Differently to the leg press and the bench press, an inter-repetition rest design performing 

the parallel squat produces reductions in cardiac control, suggesting that the applicability 

of the short set configuration designs is dependent on the type of exercise performed. 

 

 A single resistance exercise is enough to produce a reduction in cardiac vagal activity and 

baroreflex sensitivity after the session. 

 

 A resistance exercise with a short volume performed with submaximal, long or short set 

configurations does not produce post-exercise hypotension. 
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 A resistance exercise performed with a short volume but with a maximal, long set 

configuration produces post-exercise hypotension. 

 

• A resistance exercise performed with a short volume produced a comparable post-exercise 

hypotension in disregard of the type of exercise performed. 

 

 A resistance exercise with a long set configuration produces a higher perceived exertion in 

comparison with a short set configuration. 

 

 The effect of set configuration used is modulated by the type of exercise performed, with 

higher values of perceived exertion in a long set configuration in comparison with a short 

set configuration performing the bench press, but not performing the parallel squat. 

 

 The effect of the type of exercise performed is modulated by the set configuration used, 

with higher values of perceived exertion in the exercise with more muscle mass involved 

(i.e., parallel squat), in comparison with the exercise with less muscle mass involved (i.e., 

bench press) performing a short set configuration, but not performing sets to failure. 
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Resumo 

 

O exercicio de forza prevén e mellora varias enfermidades musculoesqueléticas e metabólicas 

e é recomendado polo American College of Sports Medicine e pola American Heart Association 

como unha maneira de revertir patoloxías relacionadas con esas afeccións e para mellorar a 

calidade de vida. Neste sentido, o exercicio de forza promove certos beneficios para a saúde, 

como un aumento da masa muscular, da densidade mineral ósea e un aumento do 

metabolismo da glicose, dos lípidos e das lipoproteínas. Sen embargo, as respostas 

cardiovasculares agudas e crónicas ao exercicios de forza non son ben coñecidas, a pesares dos 

esforzos que se teñen realizado últimamente para deseñar adestramentos de forza co fin de 

mellorar as afeccións de individuos con patoloxías cardiovasculares. 

Hoxe en día, sábese que unha sesión de adestramento de forza produce unha redución do 

control cardíaco parasimpático que é mediado por unha redución da actividade autónoma 

vagal e por unha redución vagal e glosofarínxea baroreflexa. Esta redución pode significar un 

efecto perxudicial transitorio en individuos con risco cardiovascular xa que 30 minutos despois 

dun exercicio existe un risco maior de sufrir un avento cardíaco debido a unha redución da 

actividade vagal. 

Por outro lado, sábese que o adestramento de forza produce de maneira aguda e crónica unha 

redución da presión arterial, que pode significar unha redución do risco de sufrir un evento 

cardíaco. Sen embargo, cando o efecto beneficioso do adestramento de forza nesta variable é 

ben coñecido, o escaso número de estudos realizados provocan un enlentecemento da posible 

aplicabilidade do adestramento como unha terapia non farmacolóxica para previr ou tratar a 

hipertensión arterial. 
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Neste sentido, non hai consenso de como se ten que prescribir o adestramento de forza, 

principalmente debido a novidade do campo de estudo e a falta de coñecemento aplicable. 

Existen varios factores que poden contribuír ós efectos do exercicio de forza no sistema 

cardiovascular, como as características da carga (é dicir, a carga, o volume, etc.), o tipo de 

exercicio (é dicir, membros superiores en comparación con membros inferiores), ou a forma 

de prescribilo (é dicir, polo porcentaxe do 1RM, polo número de repeticións ata o fallo, etc.). 

Así, as características da carga, o tipo de exercicio usado e a forma de prescribilo determinan e 

modulan as respostas cardiovasculares de maneira aguda e crónica. Esencialmente, a primeira 

e a última están interrelacionadas xa que a forma de prescribir o exercicio determina factores 

como a carga utilizada, as repeticións que se poden realizar ou o descanso empregado, 

modificando polo tanto o volume total realizable e a relación entre o traballo e a pausa. En 

resumo, non se coñecen de maneira precisa as respostas de cada variable e como a súa 

realización contribúe a efectos desexables ou non desexables para a homeotase postexercicio, 

como a redución do control cardíaco autónomo e reflexo ou a aparición do efecto hipotensivo. 

Ademáis, máis aló dos efectos cardiovasculares, o exercicio de forza produce unha resposta 

perceptiva coñecida como esforzo percibido. O esforzo percibido debe terse en conta xa que 

controlar a percepción da carga dunha sesión podería permitir regulala e coñecer a implicación 

fisiolóxica da mesma. Neste sentido, coñecer como os diferentes parámetros da carga e as 

características de sesión afectan ao esforzo percibido podería axudar a entender no futuro 

como este está determinado por diferentes procesos mecánicos, metabólicos ou neurais. 

En relación a maneira de prescribir o exercicios de forza, varios compoñentes da sesión 

manipúlanse para maximizar o efecto do adestramento. Tradicionalmente, o compoñente máis 

importante é o comunmente chamado intensidade, que fai referencia a carga empregada. A 

súa importancia reside en que determina o número total de repeticións que se poden realizar 

antes de chegar ao fallo muscular. 
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A intensidade da carga prescríbese tradicionalmente de dúas maneiras: A máxima 

manifestación de forza (é dicir, 1RM) e o número máximo de repeticións que e poden facer 

cun peso submáximo antes do fallo muscular (é dicir, RM). Ambos mecanismos teñen ventaxas 

e desventaxas que deben terse en conta para maximizar o efecto do programa de forza e para 

controlar os efectos cardiovasculares e perceptivos que son provocados pola maneira de 

prescribir a sesión. 

Prescribir o exercicio de forza como un porcentaxe do 1RM é recoñecido como o estímulo máis 

importante para producir cambios nos niveis de forza. Sen embargo, non toda a evidencia 

apoia a hipótese que adestrar a un porcentaxe do 1RM é importante para as ganancias de 

forza. Mentres que permite prescribir exercicio a moitos individuos ao mesmo tempo é que 

pode transformarse fácilmente en valores absolutos, non proporciona ninguna información 

precisa en relación ao número de repeticións que se poden facer é e dependente do exercicio 

e ten unha gran variabilidade inter-suxeito, a diferenza de prescribir a través das repeticións 

máximas (é dicir, RM). 

Prescribir a través do número máximo de repeticións, pola contra, só acontece realmente 

durante a primeira serie, xa que nas posteriores series o individuo é incapaz de manter as 

repeticións desexadas. Ademáis, adestrar ata o fallo non é necesariamente o mellor estímulo 

para mellorar os niveis de forza e pode levar ao sobreadestramento ou a lesión. 

A prescripción a través da configuración da serie é un xeito alternativo que pode influír nas 

respostas agudas e crónicas ao exercicio de forza. A configuración da serie fai referencia ao 

número de repeticións que se fan nunha serie en relación ao número máximo de repeticións 

que se poderían realizar. Neste sentido, para varios autores é un parámetro de carga 

independente, recomendando a prescripción de exercicio a través dela. 
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A configuración da serie pode manipularse de dúas maneiras, unha vez que a intensidade da 

carga e o volume total téñense escollido: Polo número de repeticións realizadas en cada serie 

e polo tempo de descanso entre cada serie ou grupo de series. Mentres que o número de 

repeticións realizadas indica o preto ou lonxe que se está do fallo muscular, e polo tanto da 

intensidade do esforzo, o tempo de descanso entre series indica a reposición metabólica que 

se quere permitir para unha recuperación máis ou menos completa. As configuracións da serie 

curtas permiten un rendemento mecánico maior cunha menor participación metabólica, 

hormonal e neural en comparación coas series longas. Sen embargo, os efectos crónicos das 

configuracións curtas e longas son comparables nas melloras en forza máxima, resistencia á 

forza e hipertrofia, con maiores incrementos en potencia con series curtas, especialmente 

preto da carga de potencia óptima (é dicir, potencia máxima) e co membro superior. Mentres 

que a maioría dos estudos revelan que non hai diferenzas crónicas no adestramento de forza 

con configuracións da serie curtas ou longas, as respostas cardiovascular e perceptivas son 

posiblemente diferentes. 

As reducións observadas no control autónomo e barroreflexo do corazón despois do exercicio 

de forza, débense controlar en determinadas poboacións xa que estas perdas están 

relacionadas cun aumento transitorio do risco de sufrir un evento cardíaco. A configuración da 

serie posiblemente permita modular a perda do control cardíaco xa que a implicación 

glicolítica está relacionada coa retirada vagal, e a duración da serie determina a producción 

glicolítica da sesión. Ademáis, o estudo da interacción co tipo de exercicio permitirá un maior 

entendemento da configuración da serie en relación ao control cardíaco, xa que o tipo de 

exercicio tamén determina a implicación glicolítica. 
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En relación ao efecto hipotensivo despois do exercicio de forza, parece que a fatiga e o fallo 

muscular poden ter un efecto importante na súa aparición. Para iso, deseñar protocolos que 

permitan comparar configuracións da serie máis preto ou lonxe do fallo muscular, así como 

chegando ou sin chegar ata o fallo muscular, mentres manteñen igualados o resto de 

parámetros da carga, é de crucial importancia para elucidar esta cuestión. As series longas, 

próximas ou ata o fallo muscular, provocan contracción musculares máis longas, un fluxo de 

sangue empeorado e unha maior fatiga que as configuracións da series curtas, lonxe da 

aparición do fallo muscular. Estos factores mencionados son contribuíntes na producción de 

histamina ou na activación dos receptores de histamina, un importante determinante do 

efecto hipotensivo postexercicio. A activación dos receptores de histamina proporcionan 

protección contra a fatiga durante o exercicio e xogan un rol importante durante a 

recuperación, polo que é plausible que as configuracións da serie longas poidan axudar a 

aparición do efecto hipotensivo postexercicio. Ademáis, a interacción co tipo de exercicio pode 

ser de interese xa que a inclusión de membros inferiores tense amosado como un importante 

modulador do efecto hipotensivo. 

En relación ao esforzo percibido durante o exercicio, esta tese proponse estudar por primeira 

vez o efecto da configuración da serie na percepción de esforzo. Ademáis, este estudo pode 

contribuír a elucidar como outros parámetros da carga inflúen na percepción de esforzo, xa 

que mentres a duración da serie é diferente en cada configuración, a relación entre o traballo 

e a pausa, a intensidade da carga e o volume total realizado están igualados. Previamente 

intentouse resolver esta cuestión cun protocolo que igualaba a relación entre o traballo e a 

pausa, sin ter en conta o número total de repeticións que se podían realizar. Con este deseño, 

tendo en conta o número total de repeticións realizable, esta eiva elimínase. Ademáis, 

estudarase a súa interacción co tipo de exercicio, co fin de obter un coñecemento máis 

profundo da configuración da serie, contribuíndo así a convertir as escalas de esforzo percibido 

en ferramentas útiles para monitorizar a percepción de esforzo durante o exercicio de forza. 
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Os obxectivos e hipóteses prantexados nos tres estudos realizados nesta tese son: 

Estudo I: A shorter set reduces the loss of cardiac autonomic and baroreflex control after resistance exercise. 

O obxectivo foi analizar o efecto de distintas configuracións da serie submáximas dun exercicio 

de forza (leg press) no control cardíaco parasimpático autónomo e barorreflexo e na presión 

arterial postexercicio. Hipotetizouse que as configuracións da serie máis longas sen chegar ata 

o fallo muscular producirán unha perda maior no control cardíaco e unha maior redución da 

presión arterial despois do exercicio en comparación coas configuracións da serie máis curtas. 

Estudo II: Exercise type affects cardiac vagal autonomic recovery after a resistance training session. 

O obxectivo foi analizar o efecto dunha configuración da serie máxima en comparación cunha 

configuración da serie submáxima cun deseño de descanso entre repeticións no control 

cardíaco vagal e na presión arterial postexercicio e a súa interacción con dous tipos de 

exercicio con diferente cantidade de masa muscular implicada (bench press e parallel squat). 

Hipotetizouse que a configuración da serie máxima e o exercicio con máis masa muscular 

implicada (parallel squat) producirán unha maior retirada vagal cardíaca e un maior efecto 

hipotensivo en comparación cunha configuración da serie submáxima cun deseño de descanso 

entre repeticións e co exercicio con menos masa muscular implicada (bench press). 

Estudo III: Effects of set configuration of resistance exercise on perceived exertion. 

O obxectivo foi analizar o efecto dunha configuración da serie máxima en comparación cunha 

serie submáxima cun deseño de descanso entre repeticións no esforzo percibido e a súa 

interacción con dous tipos de exercicio con diferente cantidade de masa muscular implicada 

(bench press e parallel squat). Hipotetizouse que a configuración da serie máxima e que o 

exercicio con máis masa muscular (parallel squat) producirán un maior esforzo percibido en 

comparación cunha configuración da serie curta cun deseño de descanso entre repeticións e 

co exercicio con menos masa muscular implicada (bench press). 
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Os principais achados da tese foron que: a) as configuracións da serie longas máximas e 

submáximas produciron unha redución maior da actividade parasimpática cardíaca, como foi 

observado pola perda de control autónomo e barorreflexo, en comparación con configuracións 

da serie curtas. b) unha configuración da serie curta cun deseño de descanso entre repeticións 

preservou o control parasimpático do corazón, como foi observado polas reducións non 

significativas no control autónomo e barorreflexo despois do exercicio. c) o efecto da 

configuración da serie no control autónomo vagal está afectado polo tipo de exercicio 

realizado durante un deseño con descanso entre repeticións, cun maior mantemento da 

actividade parasimpática no exercicio con menos masa muscular implicada (bench press), en 

comparación co exercicio con máis masa muscular implicada (parallel squat), mais non durante 

as configuracións da serie máximas. d) as configuracións da serie máximas, mais non as 

submáximas, producen a aparición do efecto hipotensivo postexercicio nunha sesión cun 

volume total reducido. e) o efecto da configuración da serie no efecto hipotensivo 

postexercicio non está modulado polo tipo de exercicio realizado nunha sesión con volume 

total reducido. f) unha configuración da serie máxima produce un esforzo percibido maior en 

comparación cunha configuración da serie curta como o deseño con descanso entre 

repeticións, indicando que a configuración da serie determina o esforzo percibido. g) o efecto 

da configuración da serie no esforzo percibido foi dependente do exercicio realizado, con 

diferenzas observadas entre os protocolos con menos masa muscular implicada (bench press) 

mais non entre os protocolos con máis masa muscular implicada (parallel squat). 

Os resultados dos estudos realizados mostraron que cando se igualan a intensidade de carga, o 

volume total realizado e a relación entre o traballo e a pausa, a configuración da serie 

determina a perda de control parasimpático autonómo e barorreflexo, independentemente da 

comparación entre protocolos submáximos ou entre protocolos submáximos e máximos. 
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O maior candidato para a perda do control autónomo cardíaco de orixe vagal é a participación 

glicolítica da sesión, con maiores reducións na actividade parasimpática con maiores 

produccións de lactato. Neste sentido, observaronse relacións entre o control parasimpático 

cardíaco e a participación glicolítica tanto despois de inxeccións de lactato como despois da 

realización de exercicios de forza. Aínda que a producción de lactato non se analizou neste 

estudo, previamente amosáronse diferenzas na participación glicolítica entre configuracións 

da serie curtas e longas despois dunha sesión de adestramento de forza. Ademáis, a 

producción de lactato correlaciona fortemente co rendemento mecánico, unha variable que 

foi maior nas configuracións da serie curtas. As configuracións da serie curtas cun deseño con 

descanso entre repeticións produciron unha redución non significativa da actividade vagal, 

posiblemente debido a elevacións non signficativas da producción de lactato. As diferenzas 

entre deseños son posiblemente debidas a unha rexeneración parcial da fosfocreatina nas 

configuracións da serie curtas, permitindo unha menor demanda da glicólese anaeróbica. 

Cando se ten en conta o tipo de exercicio realizado no deseño de configuración de serie curta 

con descanso entre repeticións, non se observan reducións cando se realizaron os exercicios 

leg press ou bench press, mais si cando se realizou parallel squat. Aínda que neste momento 

trazar inferencias que xustifiquen estas diferenzas pode levar a conclusións erróneas, semella 

que a habilidade das configuracións da serie curtas como o deseño con descanso entre 

repeticións para reducir a perda de control vagal cardíaco é dependente do exercicio realizado. 

Por outra banda, o efecto dos diferentes tipos de exercicio realizados no control autónomo 

vagal tamén depende das configuracións da serie empregadas. Neste sentido, os nosos 

resultados mostran diferenzas entre exercicios cando foron realizados con configuracións 

curtas, mais non se atoparon diferenzas cando os exercicios se realizaron ata o fallo muscular. 

Isto suxire que procesos fisiolóxicos como os que acontecen durante o fallo muscular poden 

afectar ao control autónomo cardíaco, relegando a un segundo plano o efecto da implicación 

glicolítica. 
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A configuración da serie tamén afectou o control parasimpático cardíaco de orixe reflexo, con 

maiores reducións na sensibilidade barorreflexa con configuracións da serie longas en 

comparación cun deseño con descanso entre repeticións. O noso estudo é o primeiro en 

mostrar como un só exercicio de forza é capaz de afectar ao control barorreflexo. Así mesmo, 

cunha configuración da serie curta como o deseño con descanso entre repeticións, é posible 

realizar unha sesión de forza sen afectar ao control cardíaco barorreflexo. O control na 

redución da actividade parasimpática cardíaca mediante a configuración da serie ten 

aplicacións prácticas en individuos con risco cardiovascular, xa que a perda de control 

parasimpático cardíaco postexercicio ten de ser interpretada como un efecto perxudicial 

transitorio xa que 30 minutos despois dun exercicio existe un risco maior de sufrir un avento 

cardíaco como consecuencia desta perda na actividade vagal. 

A configuración da serie tamén determinou a hipotensión postexercicio. Os resultados 

amosaron que cando a configuración é máxima, é dicir, ata o fallo muscular, produce unha 

redución da presión arterial sistólica e diastólica en comparación cunha sesión control. Pola 

contra, sesións submáximas tanto longas como curtas non produciron hipotensión 

postexercicio. Por outra lado, a interacción entre a configuración da serie e o tipo de exercicio 

(é decir, bench press ou parallel squat) non produciu diferenzas. Esta falta de diferenzas entre 

tipos de exercicio chegando ata o fallo muscular é consistente coa literatura, suxerindo que o 

efecto da masa muscular é relevante con volúmenes maiores e que seguramente sexa manos 

importante coa aparición do fallo muscular. Estudos previos reportaron que un mínimo 

volume é necesario, incluso coa aparición do fallo muscular, para a aparición da hipotensión 

postexercicio despois do exercicio de forza. No nosos estudos, cunha configuración da serie 

ata o fallo muscular e cunha redución progresiva do número de repeticións en cada nova serie 

como consecuencia da fatiga muscular, observouse o efecto hipotensivo cun volume total 

excesivamente baixo en comparación con estudos anteriores. 
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Isto desafía en parte a premisa de que un volume total elevado é crucial na aparición do efecto 

hipotensivo. Sen embargo, non é contradictorio co anteriormente reportado, xa que ambas 

variables pódense deber ao mesmo efecto fisiolóxico. Neste sentido, un dos mecanismos 

obligatorios na aparición da hipotensión postexercicio, a vasodilatación dependente da 

activación dos receptores histaminérxicos, pode que aconteza tanto chegando ao fallo 

muscular como realizando grandes volumes. Tendo isto en conta, pode que o fallo muscular 

intencionado e deliberado da configuración da serie máxima utilizada poda desprazar a 

importancia do volume total realizado a un rol secundario. Esta redución na presión arterial 

postexercicio observada nos deseños ata o fallo muscular ten unha aplicación práctica como 

estratexia non farmacolóxica para o tratamento ou a prevención da hipertensión, xa que os 

efectos agudos postexercicio observados contribúen ás reducións crónicas da tensión arterial. 

Por último, a configuración da serie tamén determina o esforzo percibido. Os resultados 

indican que cando a intensidade da carga, o volume e a relación entre o traballo e a pausa 

están igualados, unha configuración da serie máxima produce un esforzo percibido maior que 

unha configuración da serie curta cun deseño de descanso entre repeticións. Así, os resultados 

obtidos apoian investigacións previas que argumentan que a duración das repeticións e da 

serie median a percepción de esforzo. Deste xeito, a aparición do fallo muscular é o gran 

determinante do esforzo percibido, xa que a duración das repeticións e da serie son 

lóxicamente máis extensas con cada configuración da serie máis longa. En relación a 

interacción entre a configuración da serie e o tipo de exercicio, para una mesma configuración 

da serie observáronse diferenzas no exercicio con menos masa muscular implicada (bench 

press), con valores máis altos na configuración da serie máis longa, pero non se atoparon 

diferenzas no exercicio con máis masa muscular implicada (parallel squat). Os mecanismos 

fisiolóxicos que explican esas diferenzas son descoñecidos, sen embargo, os resultados obtidos 

reflexan as diferenzas obtidas no rendemento mecánico. 
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Neste sentido, aínda que as correlacións entre os valores de esforzo percibido e diferentes 

parámetros fisiolóxicos son difíciles de atopar, o esforzo percibido foi previamente capaz de 

reflexar as diferenzas na producción de lactato ou na actividade muscular, ambos indicadores 

de fatiga neuromuscular. Da mesma maneira, as diferenzas entre exercicios foron observadas 

para a configuración da serie cun deseño con descanso entre repeticións, mais non na 

configuración da serie máxima. Na configuración da serie curta, o exercicio con máis masa 

muscular implicada (parallel squat) produciu maiores valores que o exercicio de menos masa 

muscular (bench press). Unha maior producción de lactato e un porcentaxe maior en relación a 

máxima manifestación de forza poden ter mediado nos resultados obtidos para esa 

configuración da serie. Pola contra, na configuración da serie máxima non se atoparon 

diferenzas entre exercicios. Unha serie ata o fallo muscular ten que dar, por definición, valores 

máximos de esforzo percibido, o que xustifica a falta de diferenzas observadas entre ambos. O 

coñecemento de como a configuración da serie e outros parámetros da carga determinan e 

modulan o esforzo percibido poderá axudar a controlar a carga externa durante a sesión, o 

que permitirá unha maior adherencia ao exercicio así como evitar procesos de 

sobreadestramento e enfermidade coa axuda de outras ferramentas do control da carga. 

Os principais conclusións deste tese son: 

 Un exercicio de forza con configuracións da serie longas produce unha retirada vagal 

cardíaca e unha perda de sensibilidade barroreflexa maior en comparación con 

configuracións da serie curtas. 

 Unha configuración da serie curta cun deseño con descanso entre repeticións produce 

unha redución non significativa da actividade parasimpática, observada por valores 

comparables na actividade vagal cardíaca e na sensibilidade barorreflexa. 

 



154 
 

 O efecto da configuración da serie é modulado polo tipo de exercicio realizado, con 

maiores reducións no control vagal cardíaco nas configuracións da serie longas en 

comparación coas curtas para bench press, mais non para parallel squat. 

 O efecto do tipo de exercicio é modulado pola configuración da serie utilizada, con grandes 

reducións no control vagal cardíaco no exercicio con máis masa muscular implicada 

(parallel squat) en comparación co exercicio con menos masa muscular implicada (bench 

press) realizando unha configuración da serie curta, mais non realizando series ata o fallo. 

 A diferenza dos exercicios leg press e bench press, unha configuración curta con descanso 

entre repeticións realizando parallel squat produce reducións no control cardíaco, 

suxerindo que a aplicabilidade das configuracións curtas depende do exercicio realizado. 

 Un só exercicio de forza é suficiente para producir unha redución na actividade vagal 

cardíaca e na sensibilidade barorreflexa despois dunha sesión. 

 Un exercicio de forza cun volumen pequeno realizado con configuracións da serie 

submáximas, curtas ou longas, non produce hipotensión postexercicio, mentres que 

realizándoo cunha configuración longa, ata o fallo muscular, si que a produce. 

 Un exercicio de forza realizado cun volumen pequeno produce un efecto hipotensivo 

comparable e independente do tipo de exercicio realizado. 

 Un exercicio de forza cunha configuración da serie longa produce un esforzo percibido 

maior en comparación cunha configuración da serie curta. 

 O efecto da configuración da serie está modulado polo tipo de exercicio empregado, con 

maiores valores de esforzo percibido na configuración da serie longa en comparación coa 

curta cando se realiza bench press, mais non cando se realiza parallel squat. 

 O efecto do tipo de exercicio realizado está modulado pola configuración da serie 

empregada, con valores máis altos de esforzo percibido no exercicio con máis masa 

muscular implicada (parallel squat) en comparación co exercicio con menos masa muscular 

implicada (bench press) realizando unha configuración da serie curta, mais non realizando 

unha configuración da serie ata o fallo. 
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Anexo I 

Información e consentimento informado. 

 

Información ao participante 

TÍTULO: 

Effect of the set configuration of resistance exercise on cardiovascular control and perceived exertion: Interaction 

with the type of exercise. 

 

INVESTIGADOR PRINCIPAL: 

Este documento ten por obxecto ofrecerlle información sobre un estudo de investigación no que se lle invita a 

participar. Este estudo estase realizando dende a Facultade de Ciencias do Deporte e a Educación Física, 

Universidade da Coruña. 

Se decide participar no mesmo, debe recibir información persoalizada do investigador, ler antes este documento e 

facer todas as preguntas que necesite para comprender os detalles sobre o mesmo. Si así o desexa, pode levar o 

documento, consultalo con outras persoas e tomarse o tempo que sexa necesario para decidir si participar ou non. 

A participación neste estudo é completamente voluntaria. Podes decidir non participar, ou si desexas paricipar, 

cambiar de opinión retirando o consentimento informado en calquera momento sen obriga de dar explicacións. 

 

CAL É O PROPÓSITO DO ESTUDO? 

O obxectivo é coñecer o efecto cardiovascular agudo na configuración dos tres protocolos de forza coa mesma 

intensidade e carga total en dous tipos diferentes de exercicio. Para iso realizaranse unhas medicións antes, durante e 

despois que analizarán parámetros hemodinámicos e mecánicos.  

 

POR QUE ME OFRECEN PARTICIPAR A MIN NESTE ESTUDO? 

Porque cumpres cos criterios que se especifican no deseño da investigación de ser un suxeito san, adulto e non 

medicado e con coñecemento no adestramento de forza. 

 

EN QUE CONSISTE A MIÑA PARTICIPACIÓN? 

En 12 sesións, 3 formativas, 1 de toma de datos, 2 de control e 6 de avaliación relacionadas co obxecto de estudo. As 

sesións realizaránse polo menos con 72 horas entre elas. 

Valoraranse diferentes variábeis como respostas cardiovasculares (frecuencia cardiaca, variabilidade da frecuencia 

cardiaca e presión arterial), mecánicas (velocidade de execución e tempo de traballo) y fisiopsicolóxicas (esforzo 

percibido). 

Para garantir unhas condicións experimentais adecuadas deberase: 

 Realizar todas as probas na mesma franxa horaria segundo a dispoñibilidade individual. 

 Non tomar medicamentos de ningún tipo pola posibilidade de interferir nos resultados. 

 Non inxerir alimentos nas 3 horas anteriores nin cafeína no mesmo día. 

 Non realizar actividade física nas 24 horas anteriores. 

 Levar roupa e calzado apropiados. 
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É necesario que se decide participar neste estudo, comprométase a asistir as sesións de toma de datos. No momento 

en que a falta de asistencia sexa repetida e provoque que non se cumplan os periodos de tempo fixados, decidirase 

apartalo do estudo. 

 

QUE RISCOS OU INCONVINTES TEN? 

A realización das distintas sesións producirán fatiga e maniotas. Para reducir cualquer risco de lesión, todas as 

valoracións irán precedidas por un quecemento específico deseñado e dirixido por un especialista. As execucións dos 

exercicios serán supervisadas polo menos por dous investigadores, que prestarán a axuda necesaria ao deportista. No 

periodo formativo realizaranse as correccións e recomendacións oportunas para minimizar os riscos. 

Se durante o transcurso do estudo se coñecera información relevante que afecte a relación entre o risco e o beneficio 

da participación, se lle transmitirá para que poida decidir abandoar ou continuar. 

 

OBTEREI ALGÚN BENEFICIO POR PARTICIPAR? 

Non obterá ningún beneficio, máis aló da información recollida se desexa coñecela. Aprenderá certos aspectos do 

adestramento e avaliación polos que mostre interés. 

 

RECIBIREI A INFORMACIÓN QUE SE OBTEÑA DO ESTUDO? 

Facilitarase un resumo cos resultados do estudo e dos resultados das probas se así o solicita. Os resultados poden non 

tener unha aplicación clínica nin unha interpretación clara, polo que se quer dispoñer deles, deberían ser comentados 

có investigador principal do estudo. 

 

PUBLICARANSE OS RESULTADOS DESTE ESTUDO? 

Os resultados serán publicados en publicacións científicas para a súa difusión, pero non se transmitirá ningún dato 

que poida levar a identificación dos participantes. 

 

COMO SE PROTEXERÁ A CONFIDENCIALIDADE DOS MEUS DATOS? 

O tratamiento, comunicación e cesión dos seus datos farase conforme ao disposto pola Lei Orgánica 15/1999, do 13 

de decembro, de protección de datos de carácter persoal. En todo momento, poderá acceder aos datos, correxilos ou 

cancelalos. 

Só o equipo investigador terá acceso a todos os datos obtidos no estudo. Poderase transmitir a terceiros información 

que non sexa identificada. No caso de que algunha información sexa transmitida a outros paises, realizarase con un 

nivel de protección de datos equivalente, como mínimo, ao esixido pola normativa do noso país. A transmisión de 

datos a terceiros ten por finalidade realizar unha análise máis exhaustiva dalgúns parámetros rexistrados que por 

razóns técnicas non poidan ser analizadas no noso laboratorio. 

 

EXISTEN INTERESES ECONÓMICOS NO ESTUDO? 

Non será retribuido por participar. 

É posíbel que os resultados dos estudos deriven en productos comerciais ou patentes. Neste caso, non participará nos 

beneficios económicos orixinados. 

Todas as medicións levaranse a cabo nas instalacións da Facultade de Ciencias do Deporte e a Educación Física da 

Universidade da Coruña, polo que en ningún momento contemplarase o alquiler ou arrendamento de instalacións. 

 

QUEN PODE DARME MÁIS INFORMACIÓN? 
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Pode contactar con Eliseo Iglesias Soler no teléfono 696462950 ou na dirección de correo eliseo@udc.es para máis 

información. 

 

 

MOITAS GRAZAS POLA SÚA COLABORACIÓN 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Consentimento informado 
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TÍTULO:  

Effect of the set configuration of resistance exercise on cardiovascular control and perceived exertion: Interaction 

with the type of exercise. 

Eu, 

 Lín a folla de información ao participante do estudo anteriormente nomeado que se me entregou, falei co 

investigador principal e fíxenlle todas as preguntas sobre o estudo necesarias para comprender as condicións e 

considero que recibín suficiente información sobre o estudo. 

 Comprendo que a miña participación é voluntaria, e que podo retirarme do estudo cando queira, sen ter que dar 

explicacións. 

 Accedo a que se utilicen os meus datos nas condicións detalladas na folla de información ao participante. 

 Presto libremente a miña conformidade para participar no estudo. 

Respecto á conservación e utilización futura dos datos e/o mostras detalladas na folla de información ao participante: 

 NON accedo a que os meus datos sexan conservados unha vez terminado o presente estudo. 

 Accedo a que os meus datos consérvense unha vez terminado o estudo, sempre e cando non sexa posíbel, 

mesmo polos investigadores, identificalos por ningún medio. 

 Accedo a que os datos e/ou mostras consérvense para usos posteriores en liñas de investigación relacionadas 

coa presente, e nas condiciones anteriormente sinaladas. 

En canto aos resultados das probas realizadas: 

 DESEXO coñecer os resultados das miñas probas.  NO DESEXO coñecer os resultados das miñas probas. 

 

O/a participante,    O/a investigador/a principal,   

Fdo.:      Fdo.:      

Data:       Data:       
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