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Abstract

Wildfires are one of the main causes of forest destruction, specially in Galicia (north-west of

Spain), where the burned area by forest fires in spring and summer is quite high. This work

uses two semiparametric time series models to describe and predict the weekly burned area in a

year: ARMA modellling after smoothing and smoothing after ARMA modelling. These models can

be described as a sum of a parametric component modelled by an autoregressive moving average

process and nonparametric one. To estimate the nonparametric component local linear and kernel

regression, B-Splines and P-Splines have been considered. The methodology and software have been

applied to a real data set of burned area in Galicia in the period 1999− 2008. The burned area in

Galicia increases strongly during summer periods. Forest managers are interested in knowing the

burned area (in advance) to manage resources more efficiently. The two semiparametric models are

analysed and compared against a purely parametric model. In terms of error, the most successful

results are provided by the first semiparametric time series model.

Table of contents: Semiparametric models provide a tool to predict the burned area in a particular

time. The predictions obtained are competitive. The two bootstrap prediction intervals given are

fast computationally. The methodology used can be applicable to other hazard risk.
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Introduction

A wildfire is any uncontrolled fire that affects forested and wooded areas. According to Schmuck et al

(2014), in Mediterranean Europe there has been an increase in the number of fires and in the burned

area. Figure 1 shows the distribution of annual wildfires every 10 sqkm of wildland. Galicia, the

region where this study was carried out, is in the Northwest of the Iberian Peninsula. It is one of the

regions most seriously affected by wildfires in Europe.

Recent literature shows that 95% arson fires are related to human activities, see among others, Chu-

vieco et al (2010); González-Olabarria et al (2011); Juan et al (2012); San Miguel-Ayanz et al (2013);

Rodrigues et al (2013); Fuentes-Santos et al (2013) and Rodrigues and de la Riva (2014). The main

causes are: 1) Changes in agricultural land use caused by increased activity or abandonment (Moreira

et al, 2009; Verde and Zêzere, 2010; Badia et al, 2011; Ricotta et al, 2012; Pausas and Fernández-

Muñoz, 2012; Ganteaume and Jappiot, 2013). 2) Increase of forest area (Seidl et al, 2011; Rego et al,

2013). 3) Expansion of shrubland surface (Koutsias et al, 2009; Fernandes et al, 2012; Curt et al,

2013). 4) Forestry operations, garbage dumps, power line accidents (Rodrigues et al, 2014; Cardil and

Molina, 2015). 5) Behaviour-related factors (delinquency, smoking,...) (Sebastián-López et al, 2008;

Ganteaume and Jappiot, 2013; Reis and Domingues, 2014) and 6) Ineffective forest policies (Rego

et al, 2010; Montiel-Molina, 2013; Galiana et al, 2013). Lack of prevention is a fundamental problem.

Medium and long-term solutions need to be found considering different aspects.

Numerous methods have been applied to assess the likelihood of fires for each forest, town or region.

Generalized linear regression models (GLMs) are used in Viedma et al (2009) to analyse wildfire

ignition and in Ordóñez et al (2012) to identify variables that have a significant influence on fire

occurrence. Among the most used GLMs, logistic regression models were applied to socioeconomic

variables at municipal or provincial level (Vasconcelos et al, 2001; Mart́ınez et al, 2008, 2009; Catry

et al, 2009; Chuvieco et al, 2010; Padilla and Vega-Garćıa, 2011; Verdú et al, 2012; Vicente López

and Crespo Abril, 2012; Chas-Amil et al, 2015; Gudmundsson et al, 2014; Preisler and Westerling,

2007). Mandallaz and Ye (1997) use Poisson regression models to predict forest fires and Boubeta

et al (2015) consider an extension of the classical Poisson regression models including forest areas as

random effects. Serra et al (2008) used multiple linear regression models to explain the main driving

forces of land-cover and land-use, and the relationship with wildfire occurrence in an area of the coast
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of Catalonia (Spain). Other commonly used methods in the analysis of forest fires are: generalized

additive models (Vilar et al, 2010; Loepfe et al, 2012), generalized linear spatial models (Ordóñez

et al, 2012) and weights of evidence (WofE) using Bayes probability theorem to measure the spatial

association between evidence variable maps and ignition wildfire maps (Stoyan and Penttinen, 2000;

Romero-Calcerrada et al, 2010; Rohde et al, 2010; Vega-Orozco et al, 2012; Penman et al, 2015). In

the non-parametric context, we cite (Schoenberg et al, 2009) among others, who explore the kernel

smoothing and parametric estimation of the relation between incidence and meteorological variables.

In this study, we focused on the application of time-series analysis (Box and Jenkins, 1970), specifically

ARIMA processes (Hamilton, 1994) to assess forest fire behaviour. Schroeder (1969) first introduced

time-series models between climate antecedents and wildfire variability. Podur et al (2002) employed

time-series methods to look for cycles or trends in series of annual fire occurrence and burned area

in Ontario (Canada) between 1918 and 2000. Crimmins and Comrie (2004) identified the importance

of antecedent climatic conditions for wildfire variability (total burned area and total number of fires)

in Arizona. Miller et al (2009) studied fire severity using Autoregressive Integrated Moving Average

(ARIMA) in Sierra Nevada (California). They calculate trends in the percentage of burned area at high

severity per year. Also for Sierra Nevada, Taylor and Scholl (2012) identify the influence of interannual

and interdecadal climate variation and changes in land use on fire regimes using autocorrelation

functions (ACF) and auto-regressive moving average (ARMA).

The aim of the present study is to implement and validate a temporal analysis model with one-year

predictive capacity for variables related to forest fires. In this case, we take the weekly burned surface

by forest fires in Galicia from 1999 until 2008.

In section Study area and fire database we describe the study area, the criteria for this choice and

its specific features, and the wildfire database. The techniques of temporal process analysis used are

introduced in section Semiparametric models in time series. Finally, in section Application to real

data we present the results of wildfire dataset analyses. Conclusions and future lines of investigation

outlined are shown in section Conclusions.
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Materials and methods

Study area and fire database

The forest area of Galicia is 2, 060, 453 ha, 69% of the region, which makes it one of the Spanish

communities with more woodland. Several authors have studied the characteristics of forest owners and

the productive capacity of the region (Marey-Pérez et al, 2006; Marey-Pérez and Rodŕıguez-Vicente,

2008; Rodŕıguez-Vicente and Marey-Pérez, 2009, 2010; Marey-Pérez et al, 2012). They concluded that

there are many owners with small and very productive plots and a significant presence of collective

forest land and no presence of public forest ownership. The first problem of the forestry sector is

forest fires: there were 249, 387 wildfires registered since 1968, the year in which forest fire statistics

started, until December 2012. These fires swept an area of 1, 794, 578 ha, equivalent to 63% of the

geographical area of the region.

We have a total of 85, 134 fire events registered in the database for the period 1999-2008, regardless

of their size. In addition to the spatial location and the date of occurrence of the ignition points, we

use two marks: burned area and cause. We denote by S the burned area and consider small fires

when S < 1 ha (72.66%), regular fires when 1 ≤ S < 25 ha (25.41%) and large fires when S ≥ 25 ha

(1.90%). Regarding the causes, the main one is arson fires (82.5%), with unknown cause (8.49%) and

other causes (9.02%).

The alphanumerical information about the wildfires registered in the study area corresponded to

the ignition point coordinates, which were translated to the actual land area with the aid of GIS.

Subsequent data quality control confirmed the information about the attributes of the burned area

(forest species composition, parish and land use) with existing data from the area in the year of fire.

Therefore, Ignition Point UTM (Universal Transverse Mercator) coordinates were available for each

fire and other measures of interest attached to these coordinates. These measures are related to burned

material, vegetation type, fire behaviour, fire extinction, fire damage and possible fire causes.

Semiparametric models in time series

Although in recent years the development of nonlinear time series models has made great progress,

Box-Jenkins methodology is still the most parametric model family employed nowadays. The impor-

tance of this class of models is in its generality and its good performance as they provide optimal
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linear predictions in some contexts. When parametric assumptions about the noise are not flexible,

semiparametric models has particular interest since they can capture the variability not processed by

parametric models. In this section we propose a prediction interval based on a bootstrap mechanism

to study the burned areas in time t, that we denote by Yt in general notation in the methodology

section, and by St relative to burned area in the real application section for easy understanding of the

sections. We show two alternatives to construct the prediction interval based on nonparametric and

parametric components: ARMA modelling after smoothing and smoothing after ARMA modelling.

ARMA modelling after smoothing

Let (Zt, Yt), t = 1, . . . , T a time series, where Zt is an r-dimensional series and Yt is an one-dimensional

response series. In Zt one can consider intrinsic or exogenous information of the response time series

Yt. In our case of study, we consider as Zt the burned area in the previous week, Yt−1. Let be the

model

Yt = ϕ(Zt) + et,

where et has an ARMA(p, q) structure independent of Zt, and

ϕ
(
z0
t

)
= E

[
Yt|Zt = z0

t

]
is the dynamic regression function. First we estimate the nonparametric part ϕ consistently, and

second we estimate the error et. Thus, ϕ
(
z0
t

)
is approximated nonparametrically from a sample of

size n at time t as

ϕ̂n
(
z0
t

)
=

n∑
i=1

Wni

(
z0
t ,
(
Zt

1, Y
t
1

)
, . . . ,

(
Zt
n, Y

t
n

))
Yi. (1)

The succession of weights {Wni} can be obtained by kernel smoothers or splines between others. The

choice of random weights {Wni} allows us to incorporate various semiparametric models, for example

kernel and local linear regressions, B-Splines and P-Splines. There is much literature about these

smoothers, see the monographs Hastie and Tibshirani (1990); Wand and Jones (1995); Ruppert et al

(2003), among others. To facilitate understanding of the proposed methodology and for simplicity, we
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consider the kernels weights

Wni

(
z0
t , (Z

t
1, Y

t
1 ), . . . , (Zt

n, Y
t
n)
)

=

K

(
z0
t −Zt

i

hn

)
n∑
j=1

K

(
z0
t −Zt

j

hn

) , (2)

being K (K ≥ 0) the kernel function and hn the bandwidth parameter.

Then, assuming both time series have been observed up to time t− k, the prediction Ŷt of Yt at time

t is

Ŷt = ϕ̂n(Zt) + êt, (3)

where ϕ̂n is the nonparametric estimator of ϕ given in (1), considering for instance weights of type

(2), and êt is the Box-Jenkins prediction to k lags built from the estimated ARMA component of the

series

êt = Yt − ϕ̂n(Zt).

Usually, predictions (3) obtained with the semiparametric model are generally better than those ob-

tained by only nonparametric models because the first can capture dependence structures not modelled

by the nonparametric component. Garćıa Jurado et al (1995) propose a prediction interval for Yt based

on the bootstrap distribution obtained from the ARMA component,

(
ϕ̂n(Zt) + q̂

∗(α/2)
t , ϕ̂n(Zt) + q̂

∗(1−α/2)
t

)
, (4)

where q̂
∗(α/2)
t and q̂

∗(1−α/2)
t denote the α/2 and 1− α/2 quantiles of the bootstrap distribution of ê∗t ,

respectively. Here, we consider an adaptation of the bootstrap method proposed in Cao et al (1997)

to get the bootstrap quantiles. The steps are the following:

Bootstrap algorithm for prediction with dependent data

1. Fit one ARMA(p,q) model to the error time series {et}t=1,...,T ,

et = c+ φ1et−1 + φ2et−2 + · · ·+ φpet−p + at + θ1at−1 + θ2at−2 + · · ·+ θqat−q,

where {at} is white noise and calculate the estimates of the model parameters ĉ, φ̂1, . . . , φ̂p, θ̂1, . . . , θ̂q.
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2. Construct the empirical distribution of the corrected forward residuals, F â
′

T , being â′ = {ât− a}

and a = 1
T−(p+q)

∑T
t=p+q+1 ât.

3. Repeat B times (b = 1, . . . , B)

(a) Generate â∗i with distribution F â
′

T , i = T − q + k, . . . , T + k.

(b) For each bootstrap sample, construct the future bootstrap replications to k lags,

ê∗T+k = ĉ+φ̂1eT+k−1+φ̂2eT+k−2+· · ·+φ̂peT+k−p+â∗T+k+θ̂1â∗T+k−1+θ̂2â∗T+k−2+· · ·+θ̂qâ∗T+k−q.

Given that the residual time series is not observed in practice, the bootstrap algorithm for prediction

with dependent data is applied to the estimated residual time series {et = êt}t=1,...,T .

Smoothing after ARMA modelling

Given an ARMA stationary process {Yt}t=1,...T , its optimal linear predictor can be expressed as a

linear combination of past values obtained from the ARMA model

EL [Yt| (Yu, u < t)] =
∞∑
i=1

aiYt−i,

but sometimes this optimal linear predictor does not match the optimal predictor,

E [Yt| (Yu, u < t)] = φ (Yt−1, Yt−2, . . .) . (5)

To estimate the optimal predictor, Dabo Niang et al (2010) propose a semiparametric model using

the ARMA residuals as regressors in the nonparametric approach. More precisely, they use the

decomposition of the optimal predictor given in (5) as the sum of the optimal linear predictor and the

(nonlinear) optimal predictor of innovation process

E [Yt| (Yu, u < t)] = EL [Yt| (Yu, u < t)] + E [εt| (εu, u < t)] ,

where

εt = Yt − EL [Yt| (Yu, u < t)] .
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Since innovations εt are unknown, these are replaced by the ARMA model residuals. Therefore, the

prediction of Yt at time t is given by

Ŷt = Ŷ L
t + ϕ̂ (ε̂u, u < t) , (6)

where Ŷ L
t denotes the ARMA prediction at time t, ε̂u the estimated ARMA residual at time u and

ϕ̂ the nonparametric estimator of ϕ (x) = E [εt| (εu, u < t) = x]. In this case, the error structure is

predicted nonparametrically. In this framework, we propose a prediction interval for Yt+1 following

the idea of (4), i.e. adjustment nonparametric plus parametric bootstrap:

(
q̂
∗(α/2)
t + ϕ̂n(εt), q̂

∗(1−α/2)
t + ϕ̂n(εt)

)
. (7)

Where q̂
∗(α/2)
t and q̂

∗(1−α/2)
t denote the α/2 and 1−α/2 quantiles of the bootstrap distribution of Ŷ ∗t+1,

respectively. This bootstrap distribution is obtained by using the previous bootstrap algorithm for

prediction with dependent data in Section ARMA modelling after smoothing. In this case we replace

the time series {et} by {Yt}.

Data analysis was performed using the statistical software R 3.1.1, using the mgcv package to obtain

the B-Splines and P-Splines estimators, and np package for kernel and linear local smoothers.

Application to real data

A reliable prediction of the weekly burned area in forest fires of Galicia has vital importance to forest

managers, as this allows us to anticipate in time and enable prevention systems for fire fighting. To

predict this variable, the semiparametric models seen above are used. Figure 2 shows the sequential

graph of weekly burned area in Galicia for 1999− 2008. We denote by St the burned areas at time t.

Its behaviour is approximately constant, incorporating sharp increases in summers mainly.

To set the model we consider the training sample (S1, . . . ST ) , with T = 468, and we reserve the

remaining portion (year 2008) for further validation. The optimal nonparametric estimation chosen to

incorporate into the semiparametric models will be chosen among: kernel and local linear regressions,

B-Splines and P-Splines. To do this, we use the following steps:
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General algorithm for the nonparametric component selection

i) Given the training sample with size T , {X1, . . . , XT }, we consider the historical matrix generated

by this sample,

HM = {(Xt, Xt+1)}, t = 1, . . . , T − 1.

ii) From the above historical matrix, we randomly selected 75% of its observations (historical train-

ing matrix), leaving the remaining 25% for subsequent validation (historical validation matrix).

iii) With the historical training matrix we construct the corresponding nonparametric estimates of

the regression function.

iv) We calculate the empirical MSE in the historical validation matrix,

MSE =
1

K

K∑
i=1

(
Xi − X̂i

)2
,

where K is the dimension of this matrix.

v) We repeat steps ii)− iv) M = 1000 times.

We choose the nonparametric regression model that provides a lower empirical MSE for more times.

This algorithm will be used to choose the nonparametric component in both semiparametric models,

taking {Xt} = {St} for the first semiparametric model and {Xt} = {ε̂t} for the second one. In the

following sections we study the prediction interval of burned areas at time St, for each procedure

explained in Section Semiparametric models in time series.

ARMA modelling after smoothing

For adjustment of the ARMA modelling after smoothing (hereinafter we will be denoted by SP1), we

take a particular expression of (3), where Yt = St+1 and Zt = St. Thus, the model can be rewritten

as

Ŝt+1 = ϕ̂(St) + êt. (8)

Since the historical matrix suggests the presence of heteroscedasticity, we propose a logarithmic trans-
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formation to stabilize the variability (see Figure 3). Thus, the regression function is

ϕ(x) = E [log(St+1 + 1) | log(St + 1) = x] ,

that is estimated by kernel and local linear regressions, B-Splines and P-Splines. In the first two cases,

we take the Gaussian density function as kernel function and the bandwidth parameter is selected

using cross validation (CV). For both B-Splines and P-Splines, degrees of freedom are chosen by GCV

criterion.

Table 1 presents the number of times in the general algorithm for the nonparametric component

selection described on previous page that each nonparametric estimator has a lower empirical MSE.

The results show that the SP1 with P-Splines provides a lower MSE in 486 of M = 1000 times.

Figure 4 shows the residual series obtained applying P-Splines. For modelling this series, we consider

the ARMA(p, q)× (P,Q)s class, that is a combination of AR(p)×AR(P )s and MA(q)×MA(Q)s with

stationary patterns in s, and we select the proposed model by Bayesian Information Criteria (BIC)

taking a grid of values with maximum orders of 10 for (p, q) and 3 for (P,Q).

Table 2 presents the significant parameter estimates for the optimal model proposed by BIC approach

and that has successfully passed the diagnosis test, ARMA(9, 9)× (2, 0)50.

Figure 5 (left) displays the predictions to one lag of weekly burned area in wildfires of Galicia by

model SP1 (8) on a log scale. These are reasonably good as predicted values are close to observed real

values. Before getting a new prediction, the series is updated by incorporating the observation of the

previous week once it is already known and we repeat the process as many times as instants we want

to predict. In this case we want to obtain the predictions of 2008, so during 52 weeks. Figure 5 (right)

compares the obtained values by the model and the future observed values (validation sample) in the

original scale. The predictions given by SP1 capture the dynamics of the observed series, except in

week 7 where there is a clear outlier data. It was due to the high concentration of fires in this week,

with 474 forest fires when the weekly average for the rest of the year is approximately 43.

In addition, we have incorporated the bootstrap prediction interval (4) on a log scale (see Figure 6).

We consider the bootstrap algorithm proposed in Section Semiparametric models in time series as an

alternative to Tombs and Schucany (1990) for being faster computationally and also consistent.
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Smoothing after ARMA modelling

We consider a particular expression for the second semiparametric model, denoted by SP2, given in

(6),

ŜT+1 = ŜLT+1 + ϕ̂(ε̂T ), (9)

where ŜLT+1 denote the optimal linear predictor (Box-Jenkins) and ϕ(ε̂T ) = E [εT+1|ε̂T ]. The para-

metric component of the model is calculated using a log transformation

{log(S1 + 1), . . . , log(ST + 1)} , with T = 468

and we apply BIC approach with maximum orders of 3 for p and q. Table 3 presents the parameter

estimates of optimal model, AR(1), given by this criterion.

The model residuals (ε̂1, . . . , ε̂T ) are used for calculating the nonparametric component in (9). By

reasoning analogous to the first case, we estimate the regression function of εt+1 on εt, using the four

considered nonparametric estimators (kernel, linear local, B-splines, P-Splines). Table 4 suggests the

use of P-Splines as the nonparametric estimator of the regression function, because it provides the

best results in 526 of M = 1000 times.

Figure 7 shows the predictions for 2008 given by SP2 to one lag on a log (left) and original (right) scale.

The observations of the series are automatically updated once we know what happened in the previous

instant. As occurred with the previous model, the predictions obtained for 2008 are reasonably good,

except for the outlier value observed in week 7.

Figure 8 shows the bootstrap prediction interval proposed in (7).

Comparative analysis

Adjusted the two semiparametric models, one can perform a comparative analysis between both

approaches for studying which one provides better predictions. For this, we use the mean squared

error (MSE), the relative root-MSE (RRMSE), the absolute error (AE) and the relative absolute error

(RAE). Furthermore, as reference we take the purely parametric model (Box-Jenkins, BJ), that it has

been an ARIMA(3, 0, 0)× (2, 1, 3)52.
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Table 5 suggests that the first semiparametric model (SP1) provides better results because their errors

are smaller in all cases. Thus, for this data, we recommend first to estimate the regression function

by P-Splines and then fit the ARMA (p, q) model to the residual series.

Conclusions

Forest fires are a major environmental, economic and social threat. In Southern Europe they have

become the main problem for environmental authorities. In the case of Galicia, they have a remarkable

impact on certain areas of the autonomous community and pose a challenge for the future of the region.

The development of different methodologies, especially those contrasted by the evidence of the data,

allow a more efficient organization and planning of fire fighting, which will result in a lower burned

area and a lower risk for lives.

In this work two semiparametric models are reviewed for time series which divide the prediction

into two components. One is estimated by nonparametric regression techniques, while the other is

performed with Box-Jenkins models. The behaviour of these prediction approaches is competitive in

comparison with other temporal models, such as nonparametric models or Box-Jenkins methodology.

In addition, the SP1 model allows the inclusion in the r-dimensional time series Zt of all the auxiliary

information available to explain the response time series Yt since this approach starts with a regression

model. By contrast, the SP2 model focuses on time series approach and does not allow the inclusion

of auxiliary information outside of the studied time series. The predictions obtained by SP1 are better

since their errors are lower. In this framework we give two bootstrap prediction intervals, which are

easy to implement, faster computationally and consistent.

Both semiparamtric time series models are used taking the historical burned area data in the au-

tonomous community of Galicia. Another interesting alternative approach is to study an integrated

model that calculates the number of ignitions and the burned area jointly or just the burned area by

subregions. It requires incorporating geographic information of fires. This issue will be addressed in

a future study.
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Vasconcelos MJP, Silva S, Tomé M, Alvim M, Pereira JMC (2001) Spatial prediction of fire ignition

probabilities: Comparing logistic regression ans nueral network. Photogrametric Engineering &

Remote Sensing 67:73–81

Vega-Orozco C, Tonini M, Conedera M, Kanveski M (2012) Cluster recognition in spatial-temporal

sequences: the case of forest fires. Geoinformatic 16:653–673
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Figure 1: Situation of Galicia in Europe and wildfire annual density for province. Source: Birot, 2009.
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Figure 2: Sequential graph of weekly burned area in Galicia (1999− 2008).
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Table 1: Accountants of best nonparametric estimator in M = 1000 iterations.

Model Kernel Linear local B-Splines P-Splines

SP1 209 207 98 486
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Table 2: Significant parameter estimates of ARMA(9, 9)× (2, 0)50 model estimated by least squares.

φ1 φ3 φ9 θ3 θ5 θ7 θ8 θ9 Φ1 Φ2

coef. -0.094 -0.350 0.494 0.414 0.111 0.193 0.156 -0.512 0.102 0.096

s.e. 0.040 0.069 0.074 0.065 0.039 0.034 0.039 0.063 0.046 0.046
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Figure 5: Predicted values by SP1 model (8) on a log (left) and original (right) scale.
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Table 3: Parameter estimates of AR(1) model by least squares.

φ1 c

coef. 0.644 3.917

s.e. 0.035 0.247
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Table 4: Accountants of best nonparametric estimator in M = 1000 iterations.

Model Kernel Linear local B-Splines P-Splines

SP2 231 179 64 526
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Figure 7: Predicted values by SP2 model (9) on a log (left) and original (right) scale.
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Figure 8: Bootstrap prediction interval for SP2 model (α = 0.05).
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Table 5: Mean squared error (MSE), relative root-MSE (RRMSE), absolute error (AE) and relative absolute

error (RAE).

Model MSE RRMSE AE RAE

BJ 190913.60 4.22 111.94 4.22

SP1 144796.60 3.92 104.20 3.92

SP2 188610.40 4.70 115.62 4.70
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