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Abstract 

The surfaces of 63 extracted premolar teeth were processed with intense ultrashort laser pulses (λ = 795 nm; pulse 

duration, 120 fs; repetition rate, 1 kHz) to produce cross patterns with different pitches (s) in the micrometer range in 

order to evaluate the influence of such microstructures on the shear bond strengths of orthodontic brackets to enamel. 

The samples were classified in nine groups corresponding to the control group (raw samples) and eight different 

laser-processed groups (cross patterns with s increasing from 15 to 180 μm). Brackets were luted with TransbondTM 

XT adhesive resin to all the samples; after 72 h, they all were submitted to strength test in a universal testing 

machine. Additionally, a third of the samples underwent morphological analysis of the debonded surface by means of 

scanning electron microscope microscopy and an analysis of the failure mode based on the adhesive remnant index. 

The results showed that enamel microstructuring with ultrashort laser pulses remarkably increase the bond strength of 

brackets. Dense cross patterns (s < 90 μm) produce the highest increase of bond strengths as compared to control 

group whereas light ones (s  > 90 μm) give rise to smaller improvements of the bond strength. A strong correlation of 

this behavior with the predominant failure mode in both scenarios was found. So far, the best compromise between 

suitable adhesive efficiency, processing time minimization, and enamel surface preservation suggests the 

performance of cross patterns with pitches in the order of 90 μm. 
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Introduction 

The brackets are the basis of contemporary orthodontics on which treatments are built to treat all types 

of malocclusions [1–5]. A proper bracket–enamel adhesion is essential to successfully complete these 

treatments. However the enamel–bracket interface still needs to be improved and requires further research 

and looking for new materials and techniques. 

Despite some currently available adhesive systems can dissolve the smear layer, the most common 

technique used for orthodontic brackets to enamel is still the total etch adhesive using orthophosphoric 

acid [5, 6]. This adhesive system generates a rough area on the surface and microporosities for 

micromechanical retention which allows the incorporation of small resin “tags” within the enamel 

surface, thereby creating microscopic mechanical interlocks between the enamel and resin [7, 8]. The 

process provides good bond strengths but may cause decalcifications, exposing the enamel to caries attack 

and loss of enamel [9–12]. Because of these drawbacks, researchers look for a surface conditioner which 

could match the adhesive effectiveness in bracket bonding but without producing these collateral effects. 

Ultrashort pulsed laser sources have attracted increasing interest for processing all kind of materials 

[13]. These laser pulses, amplified up to energies of the order of millijoule [14] and focused on the 

surface of materials, allow the ablation of thin layers with extreme precision and reproducibility, causing 

much less collateral damage to the adjacent material than any other thermal, chemical or mechanical 

process as it has been already demonstrated for dental tissues [15–22]. These outstanding features are a 

consequence of the nature of the interaction of such laser pulses with matter, which is based on nonlinear 

processes of light absorption and ionization of the material which depend mostly on the peak intensity of 
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the pulses followed by fast ejection due to phase explosion processes without remarkable thermal 

coupling with the surrounding material. This is far different from the conventional thermal ablation 

provided by continuous and pulsed laser sources above hundreds of picoseconds, which is based on linear 

absorption of the radiation, subsequent conversion of the laser energy into heat and increase of the 

temperature up to the vaporization point of water in the material causing explosive removal of enamel. 

The total time spent in the bracket bonding is an important factor for the orthodontist in the choice of 

the materials and procedure for conditioning the enamel surface and the subsequent bracket adhesion. 

Notwithstanding the remarkable properties of ultrashort laser processing of dental tissues, processing time 

is probably the main bottleneck to open the orthodontic treatment to the technique. Full conditioning of 

one of the surfaces of a dental piece may take hours, what is unacceptable from the point of view of the 

clinical practice. Ultrashort laser sources with repetition rates up to tens of megahertz are available 

(commonly known as oscillators) but the pulses are short of energy to induce ablation of dental tissues. 

However, sources providing pulses with energies high enough to induce ablation at repetition rates of 

some hundred kilohertz have recently broken into the market. These new systems will allow reduction of 

the processing time in orders of magnitude, although some problems associated to heat accumulation as a 

result of the repetition rate may arise and should be studied. Regardless of the current and future 

development of laser sources with higher repetition rates, other factors affect directly the processing time 

and have a great influence on the adhesion properties. Namely, the geometrical features of the 

microstructured patterns, particularly the “density” (which accounts for the fraction of the surface that is 

effectively modified by laser irradiation) and the scanning speed which is at the same time limited by the 

pulse energy and the number of pulses needed to achieve the optimal geometry for improving the 

adhesion properties and to respect the integrity and mechanical properties of the original surface. Since 

the latter is constricted by the ablation requirements and the minimization of the collateral effects of the 

laser irradiation, it is the density of the microstructured pattern and its influence on the adhesion 

properties which is susceptible to be investigated in order to shorten the processing time. To our 

knowledge, there is no research focused on this issue and these studies are needed to optimize the use of 

this tool as an alternative to traditional conditioners in order to (1) improve bracket–enamel adhesive 

effectiveness, (2) minimize the problems associated to current conditioners, and (3) match or even reduce 

the conditioning time of the existing adhesive systems. 

So far, a study of the influence of the density of ultrashort pulsed laser microstructured patterns on the 

shear bond strengths (SBS) of orthodontic brackets to enamel was carried out. Cross patterns with 

different pitches were written by ultrafast laser ablation on the surfaces of premolars that were later 

submitted to SBS tests, scanning electron microscope (SEM) observations, and failure mode analysis. A 

discussion based on the results of such analysis allows us to identify the best choice of parameters for 

enamel conditioning with ultrashort pulsed lasers. 

Materials and methods 

Sample preparation and storage 

Sixty-three extracted human premolar teeth were collected and stored in a 0.5 chloramine T solution 

for a maximum of 6 months after extraction. Exclusion criteria included previously restored premolars 

and premolars with defects or cracking and delamination of the enamel. 

Premolar teeth were examined with an Axio M1 light microscope (Carl Zeiss, Oberkochen, Germany) 

operating in the dark-field mode. Epiplan 20× and 50× HD objectives (Carl Zeiss Vision) were attached 

to a 1,300 × 1,030 pixel digital camera (AxioCam HR, Carl Zeiss Vision). Consistent with the exclusion 

criteria, the selected premolar teeth were mounted in self-cured acrylic blocks. The buccal surfaces were 

oriented perpendicularly to the bottom of the molds so that the bonded interfaces were parallel to the 

force applied during SBS tests. 

Before laser irradiation, the buccal crown surface of each premolar was polished for 15 s with 

fluoride-free pumice slurry, washed for 30 s, and dried for 10 s with a moisture-free air spray. 

Experimental groups 

Prior to bonding the metal brackets, the premolar teeth were randomly assigned to nine groups, 

consisting of seven premolars per group, depending on the density of the laser microstructured pattern 



determined by the pitch (s): (1) no laser (control), (2) s = 15 μm, (3) s = 30 μm, (4) s = 45 μm, (5) 

s = 60 μm, (6) s = 90 μm, (7) s = 120 μm, (8) s = 150 μm, and (9) s = 180 μm. 

Ultrashort laser processing 

The laser system consists of a commercial Ti:Sapphire oscillator (Tsunami; Spectra Physics, 

Mountain View, CA, USA) which provides pulses in the near infrared (λ = 795 nm) and a regenerative 

amplifier (Spitfire; Spectra Physics) based on the chirped pulse amplification technique [14] which allows 

to increase the pulse energy up to 1 mJ. The system delivers pulses with a duration of approximately 

120 fs (1 fs = 10
−15

 s) at a repetition rate of 1 kHz and a maximum mean output power of 1 W. 

The pulse energy is finely controlled by a half-wave plate and a linear polarizer. Neutral density filters 

were used when further energy reduction was required. The transversal mode is nearly a Gaussian 

TEM00 with a 9 mm beam diameter (1/e
2
). The laser pulses were focused by means of an achromatic 

doublet lens (f = 100 mm). 

The specimens were fixed on a computer-controlled XYZ motorized stage (Micos ES100; Nanotec 

Electronic GMBH & Co Munich, Germany). The laser pulses impinged always perpendicular to the 

enamel surfaces. Therefore, the optimum focalization of the pulses on the teeth surfaces was provided by 

Y motion and scanning by XZ motion. 

For processing the enamel surfaces, a computer code was developed driving the three motors in a way 

that the three-dimensional surface of each premolar could be homogeneously scanned across the region of 

interest (ROI). Such an ROI area is in the range of 15–40 mm
2
 depending on the tooth morphology. 

Whenever possible, we processed a larger area than bracket bases in order to ensure that adhesive 

deposition and bracket bonding was entirely performed within the laser-processed surface of the tooth. 

We have to bear in mind that the processed area in excess does not have any detrimental effect on the 

bonding strengths. Since the processing setup does not allow beam motion, the angle between the sample 

surface and the beam axis must be minimized in order to maximize the absorption of the pulse energy. 

Otherwise, there would be a substantial difference between the structuring at the apex and at the slopes of 

the surface. So far, the sample is tilted so that the laser pulses face the flatter surface possible. 

The enamel was processed in tight-focusing conditions. The laser parameters were programmed 

according to previous works on ultrashort laser processing of hard dental tissues [15, 16]. The focal 

length of the lens, the pulse energy (0.03 mJ), and the scanning velocity (0.5 mm/s) were chosen to 

generate smoothly overlapping and swallow ablated microstructures. These parameters give a peak 

fluence of approximately 30 J/cm
2
 (the ablation threshold fluence for enamel being 0.58 J/cm

2
 [19]. With 

the focusing configuration used, the spot size has a diameter of approximately 12 μm (1/e
2
), whereas the 

grooves generated on the surfaces are approximately 40 μm provided the ablation threshold fluence for 

enamel is well below 1/e
2
 times the peak fluence in our experiments. 

All these parameters remain constant for all the processed specimens. The pitch between adjacent 

scans was gradually increased from 15 up to 180 μm generating the eight groups for further analysis as it 

was stated before. 

The teeth samples were laser processed in a saturated vapor atmosphere to preserve the dental tissues 

from drying. All of the tested specimens were stored in distilled water before and after laser irradiation. 

Bonding procedure 

Sixty-three brackets having micro-etched bases (3M Unitek, Monrovia, CA, USA) were randomly 

bonded to the premolars' buccal surfaces using a total etch adhesive system to enamel consisting of a 

combination of a primer and an orthodontic adhesive resin (Transbond TM XT; 3M-Unitek, St. Paul, MN, 

US). The manufacturer's composition and application mode of the materials used in the experiment are 

detailed in Table 1. 
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Table 1 Mode of application, composition, and manufacturer of the materials 

Material Manufactured Composition Mode/steps of application 

    

    Primer: Bis-GMA, TEGDMA 

Primer: Air dry tooth thoroughly. Place small amount of 

Transbond XT primer in well. Apply thin uniform coat of 
primer on each tooth surface to be bonded. 

Transbond 

XT 

3M ESPE, St. 

Paul, MN, USA 

Adhesive paste: Silane-treated quartz, 
Bis-GMA, dichlorodimethylsilane 

reaction product with silica. 

Adhesive: Aply a small bead of Transbond XT in the 

transfer tray. Seat the tray holding firmly in place. Cure the 

mesial and occlusal sides of each tube for 10 s. Scale the 
excess resin from around the tubes. 

    

 
TEGDMA triethylene glycol-dimethacrylate, Bis-GMA bysphenyl glycidyl methacrylate 

The adhesive resin was applied to each bracket base (area, 9.15 mm
2
) after priming both the tooth and 

the bracket surfaces [23]. Brackets were then positioned onto the buccal enamel surfaces and pressed 

firmly with a Hollenback carver to expel the excess adhesive. Each bracket was subjected to a 300-g 

compressive force using a force gauge (Correx, Berne, Switzerland) for 10 s, after which excess bonding 

resin was removed using a sharp scaler. Then, the composite was light cured for 20 s from the occlusal 

and gingival bracket edges. 

The bonding resin was photocured with a LED unit (Bluephase G2; Ivoclar-Vivadent, Schaän, 

Liechtenstein) emitting in the wavelength range 380–515 nm and a light intensity of 1,000 mW/cm
2
 

measured with a built-in radiometer (Bluephase Meter, Ivoclar-Vivadent) which was calibrated every 

10 min to ensure consistent light intensity. 

Shear bond strength test 

The bracketed teeth were immersed in sealed containers of deionized water and placed in an incubator 

at 37 °C for 72 h to permit adequate water absorption and equilibration. To conduct the SBS test, the 

specimens were secured in a jig attached to the base plate of a universal testing machine (Autograph 

AGS-X 10 KN, Shimadzu, Tokyo, Japan). 

The teeth were set at the base of the machine so that the sharp end of the rod incised in the area 

between the base and the wings of the bracket, exerting a force parallel to the tooth surface in an occluso-

apical direction (crosshead speed, 0.5 mm/min). The force required to debond each bracket was registered 

in Newtons and converted into megapascals as a ratio of N to the bracket's surface area. 

Failure mode analysis 

After the SBS test, each specimen was examined with an optical microscope (Axio M1; Carl-Zeiss) at 

50× magnification to identify the location of the bond failure. The adhesive layers left on the premolar 

surfaces were assessed by using the adhesive remnant index (ARI), where each specimen was scored 

according to the amount of material remaining on the enamel surface as follows: 0 = no adhesive 

remaining, 1 = less than 50 % of the adhesive remaining, 2 = more than 50 % of the adhesive remaining, 

and 3 = all adhesive remaining with a distinct impression of the bracket base. 

Scanning electron microscope analysis 

Three specimens per group underwent surface morphological analysis with a variable pressure SEM 

(Zeiss EVO MA25; Carl Zeiss, Germany). Specific regions across the surface were explored to obtain a 

paramount view of the effect of laser processing. 

In addition, representative fractured specimens from each group were dehydrated for 48 h in a 

desiccator (Sample Dry Keeper Simulate Corp., Japan) and then mounted on aluminum stubs with carbon 

cement. They were sputter coated with 10-nm platinum layer by means of a sputter-coating Unit E500 

(Polaron Equipment Ltd., Watford, UK) and then observed with the same scanning electron microscope 

in order to examine the morphology of the debonded interfaces. 
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Statistical analysis 

Descriptive statistics including means and standard deviations were calculated for the SBS values. 

Differences in SBS among the experimental groups were examined using analysis of variance (ANOVA) 

and Bonferroni multiple comparisons test. 

To assess the influence of the laser surface treatment on SBS, a step-wise multiple linear regression 

was run, the SBS being the dependent variable. The determination coefficient (R 
2
) was taken as the 

indicator of the model fit. The visualization of the relationship between SBS and pitch was performed by 

crossing data in a scatter plot and a quadratic regression fit plot. 

The ARI scores were analyzed for percentage and frequency of fracture type, and a Chi-square test 

was used to match up the laser-processed groups with the control group. The ARI scores were categorized 

as ARI = 0–1 vs. ARI = 2–3 for statistical comparisons. 

All of the statistical analyses were performed using the SPSS v.20 software for Windows (Statistical 

Package for the Social Sciences, Chicago, IL, USA). Significance for all statistical tests was 

predetermined at p < 0.05. Graphics were obtained by the Stata/SE v11.1 (StataCorp LP, Lakeway Drive, 

TX, USA). 

Results 

Shear bond strength 

Mean values and standard deviations of SBS for the different groups are presented in Table 2. 

Whereas control group provides values close to those obtained in the literature, approximately 8 MPa, the 

laser-processed groups present much higher values. The results obtained are in the order of two and three 

times those of the control group, respectively, if we gather the laser-processed specimens in two families. 

The first one, the specimens where a cross pattern with s > 90 μm was performed and a second one 

including those processed with s ≤90 μm. 

Table 2. Mean and standard deviation (SD) of the shear bond strength (SBS) values (MPa) obtained among the experimental 

groups. ANOVA with Bonferroni correction 

 
Control s = 180 μm s = 150 μm s = 120 μm s = 90 μm s = 60 μm s = 45 μm s = 30 μm s = 15 μm 

          

ANOVA F = 7.149 

p < 0.001 

7.8 (1.8) 

a 
15.5 (3.3) ab 15.2 (3.2) ab 15.1 (5.1) ab 25.1 (6.0) b 24.5 (8.4) b 24.9 (3.6) b 23.6 (4.7) b 24.4 (6.7) b 

          

 
Similar letters in rows indicate the absence of significant differences after Bonferroni post hoc intergroups comparisons 

The ANOVA test showed that the variance of SBS within the groups was significantly discrepant 

(F = 7.149; p  < 0.001). The Bonferroni post hoc intergroups comparisons indicated that all laser-

processed groups obtained significantly higher SBS than the control group. However, s = 120 μm, 

s = 150 μm, and s  = 180 μm were not significantly discrepant with regard to all the subgroups. The best 

adhesive performance was shown between the range 15–90 μm. 

The multiple linear regression model that attempted to predict the SBS values according to the laser 

treatment (yes/no) and the quantitative variable “pitch” was highly significant (F = 20.952; df = 2; 

p < 0.001) and highly predictive (R 
2
 = 0.50). From this model, we observed that the intersection 

(representing the control group, since it is coded as laser = 0 and density = 0) has on average a SBS of 

7.79 (95 % CI = 2.9–12.7 MPa), but the laser treatment significantly enhanced the SBS values (95 % 

CI = 12.8–24.4 MPa; p < 0.001). Based on the standarized coefficients, the predictor “Laser” is stronger 

than density of the cross pattern (β = 0.79 vs. β  = −0.42, respectively), but this could be attributed to the 

fact that the relationship is not linear but quadratic, as it is depicted in Fig. 1, thus its influence is 

underestimated using a linear approach. But we have chosen the linear model for parsimonious 
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interpretation of the relationship and because the effect of the dichotomous variable laser treatment 

performs better in a linear model. 

 
 
 

Fig. 1 Fit plot with 95 % confidence interval of the fitted 

values of SBS according to a cuadratic regression based only 
on the cross pattern pitch (s) 

SEM observations 

Representative SEM images of the enamel surface for specimens of the different groups before 

bonding brackets and of the debonded enamel surfaces after SBS testing are reported in Figs. 2 and 3. 

Morphological analysis of laser-processed surfaces 

Figure 2b–i correspond to SEM micrographs of laser-processed surfaces. Cross patterns with the 

desired pitches are achieved by ultrafast ablation and the ablation grooves exhibit clean and sharp edges 

without a recasting layer and no apparent damage to the original enamel surface beyond the limits of the 

microstructure. The absence of melted and scattered debris and cracks demonstrates the negligible 

thermal coupling of the laser pulses with the bulk material and the small influence of the propagation of 

shockwaves on the integrity of the enamel surface. 

Since the laser parameters were not changed for the different groups, the grooves should be identical 

from one specimen to the others. They are approximately 40 μm wide. This can be confirmed looking at 

the images corresponding to the less dense patterns (Fig. 2b–f) where most of the original enamel surface 

was preserved. However, the smaller the pitch value the more surface is removed by laser ablation so that 

for a certain value of the pitch, most of the original surface has been removed (Fig. 2g–i). The shape of 

the processed area changes drastically, becoming a homogeneous surface some tens of microns below the 

raw surface of enamel and remarkably with a roughness in the micrometer range which has nothing to do 

with the smoothness of the original enamel surface (see Fig. 2i which corresponds to the extremal case 

with s  = 15 m). Obviously, the different features of the processed surfaces for the different groups should 

have a relevant role on the adhesion properties. 

ARI analysis 

SEM micrographs of the enamel surface after debonding are shown in Fig. 3a–i. Following the criteria 

of Årtun y Bergland [24], we assigned an ARI value to each one of the specimens after SEM observation 

of the adhesion area. Table 3 shows the result of these observations grouping ARI = 0–1 and 2–3, 

respectively, and splitting the different laser-processed groups. In addition, Fig. 3a–i shows a micrograph 

of the debonded area for a representative specimen out of each group. 
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Fig. 2 SEM micrographs of enamel surface (30 μm). a Control group and after ultrashort laser processing with the 
following pitches: b s = 180 μm, c s = 150 μm, d s = 120 μm, e s = 90 μm, f s = 60 μm, g s = 45 μm, h s = 30 μm, i 

s = 15 μm 

 

 



 
 

 
Fig. 3 SEM images of debonded specimens (200 μm). a Control group and laser processed b s = 180 μm, 

c s = 150 μm, d s = 120 μm, e s = 90 μm, f s = 60 μm, g s = 45 μm, h s = 30 μm, i s = 15 μm 

 



Table 3 Cross-tabulation of the effect of surface treatment groups according to a dichotomous variable generated from the ARI 

scores (0–1 score vs. 2–3 scores). No laser subgroup was used as reference for the two-by-two comparisons 

 
Laser groups 

ARI 
Control 

(%) 

s = 180 μm 

(%) 

s = 150 μm 

(%) 

s = 120 μm 

(%) 

s = 90 μm 

(%) 

s = 60 μm 

(%) 

s = 45 μm 

(%) 

s = 30 μm 

(%) 

s = 15 μm 

(%) 

          

0–1 scores 100 100 100 100 40 0 20 0 80 

2–3 scores 0 0 0 0 60 100 80 100 20 

Two-by-two 
comparisons (no laser 

as reference) 

a a a a B B B B a 

          

 
Chi-square: 33.333 (df: 8); p < 0.001 

ARI = 0 is the failure mode associated to brackets bonded directly to the raw enamel surface (Fig. 3a). 

The debonded surfaces do not show any residual of adhesive. The failure mode of the laser-processed 

specimens exhibits a behavior which is correlated to the density of the pattern. The lower the density 

(s = 150, 180 μm), the more similar is the failure mode to that of the control group (Fig. 3b, c) what is 

consistent with surfaces very similar to the original enamel surface. Although it is not discriminated in 

Table 3, the failure mode evolves to ARI = 1 as we increase the density of the pattern (s = 120 μm; 

Fig. 3d) where some of the adhesive remained on the enamel surface (but covering less than 50 % of the 

total surface). In the resin-free areas, the footprint of the cross pattern can be clearly observed although 

the grooves appear less remarkable since the adhesive has filled them. 

Increasing the density of the pattern leads to failure modes which correspond mainly to ARI = 2 

(s = 60 and 90 μm; Fig. 3e,f) and finally ARI = 3 (s = 30, 45 μm; Fig. 3c,d). In such cases, more than 50 % 

of the surface (ARI = 2) or the full surface (ARI = 3) shows the residuals of adhesive. However, a further 

increase of the pattern density seems to break the debonding trend. For s = 15 μm (Fig. 3i), the index 

come back to values 0–1, indicating that, concerning failure mode, the behavior of an almost fully 

microstructured surface resembles the enamel raw surface. 

Discussion 

Acid etching is routinely used in orthodontics as conditioner of the enamel surface to obtain a high 

bracket–enamel adhesive efficiency. However, this procedure results in chemical changes that may 

produce modification of the organic matter and decalcification of the inorganic component of enamel 

[10]. By the way, acid etching lacks selectivity and therefore the enamel surface is completely modified. 

In a previous study [17], it was demonstrated that ultrashort pulsed laser microstructuring of enamel 

surfaces could substitute acid etching as conditioning procedure as far as the SBS values obtained were 

comparable. As it is now well known, this laser microstructuring is very respectful with the chemical and 

physical properties of the original material that surrounds the processed area, specially as compared to 

other laser sources, avoiding almost all of the collateral effects derived from the thermal load to the 

material as microcracks, charring, chemical modifications, and so on [15–21, 25–27]. 

Nevertheless, ultrashort pulsed laser processing has a clear disadvantage as compared to acid etching 

as a conditioning technique. For the experiments reported in the aforementioned previous work [17], the 

processing took a remarkably longer time than the acid conditioning. So far, our goal in the present work 

was to explore how the processing parameters (in this case, the pitch of a cross pattern which was as 

small as 15 μm in Lorenzo et al. [17]) could affect the adhesion efficiency whereas the processing time 

was reduced and the largest portion of enamel surface was preserved. In Table 4, we report the average 

laser processing time for a complete premolar surface for the different cross patterns carried out on 

enamel. Since the processed surface was different for each specimen, we have estimated the time to 

process the minimum area (~15 mm
2
). Obviously, the denser the pattern, the longer it takes to be realized. 
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Table 4 Average laser processing time for a complete premolar surface for the different cross patterns carried out on enamel. These 

times were estimated for the minimum area processed (15 mm2) 

         

S (microns) 15 30 45 60 90 120 150 180 

T (minutes) 120 90 60 45 30 25 20 15 

         

 

For the new tests, the pitch was increased from 15 μm (what we have called a very dense cross 

pattern) to 180 μm. We did not process with larger pitches because in those cases, the effect of the pattern 

on the enamel surface was almost negligible. For the specimens processed, SBS tests and SEM 

observations were carried out. From the SBS tests, we have observed that dense cross patterns (s  

≤ 90 μm) give rise to values three times (~25 MPa) higher than for the control group, which corresponds 

to raw enamel surfaces. As we increased the pitch, we found a different behavior (s  > 90 μm); the values 

obtained in SBS tests decreasing to just twice (~15 MPa) those of the control group. For the latter, the 

portion of original enamel surface is still very large and the adhesion takes place due to the infiltration of 

the adhesive within the laser-processed grooves (Fig. 2b–d), which present rough walls and bottom that 

favor adhesion. The larger the pitch, the less original surface remains unaltered and is substituted by the 

laser-processed grooves (Fig. 2e–i). These surfaces foster adhesive penetration and therefore stronger 

bracket–enamel adhesion. 

Anyway, the analysis of shear bond strengths indicates that all the specimens exhibit values beyond 

the clinically acceptable values (6–8 MPa) suggested by Reynolds and von Fraunhofer [28] regardless of 

the density of the pattern and these values are similar to those obtained with acid etching [29, 30]. 

In vitro studies on adhesion tests of direct bonding demonstrated that the fracture site in debonding 

metallic orthodontic brackets is usually located in the resin–bracket interface [31]. The ARI index 

provides information that has notable clinical implications for clean-up following debonding of brackets. 

A low ARI score implies that there is a minimal risk of iatrogenic damage to the enamel surface when 

residual resin composite is removed following debonding and clean-up procedures [32]. 

In our study, SEM observations of the failure region provide useful information (Fig. 3). We have 

found a clear correlation between the density of the cross pattern and the failure mode. For slightly 

modified surfaces, the failure mode resembles raw enamel surface behavior as expected. As we increased 

the density of the pattern, the ARI index evolved first to 1 (Fig. 3d) indicating that some resin is still 

adhered to the tooth after debonding and to 2 and 3 for s ≤ 90 μm, when a remarkable amount of adhesive 

remains adhered to the specimen after debonding or the fracture takes place in the interface between resin 

and bracket. Finally, for extremely dense cross patterns (s =  15 μm), ARI values come back to 0–1. These 

results are consistent and compatible with the discussion concerning SBS tests. In the case of the less 

dense cross patterns, the surface behaves mostly as the unaltered enamel surface. As soon as we increase 

the density of the cross pattern, stronger adhesion induces the appearance of higher ARI scores. Finally, 

for the densest pattern, the bracket adheres to a surface that is no longer the original surface but an 

alternative surface some microns below the original one, homogeneous and much rougher than the 

polished enamel surface. So far, the adhesion is very strong but concerning failure, the debonding takes 

place uniformly all across the new surface and the result is that the remnant adhesive is scarce. 

Conclusions 

The introduction of an ultrashort pulsed laser cross pattern on the enamel surfaces improves bonding 

strengths of brackets whatever the pitch and the more the denser the pattern. Concerning the iatrogenic 

damage of the enamel surfaces, dense patterns lead to surfaces exhibiting large amounts of resin after 

debonding whereas large pitches give rise to surfaces almost free of adhesive residuals and obviously, the 

proportion of unaltered enamel surface is larger. With regard to time processing, since it mainly depends 

on scanning velocity (that was a fixed parameter in the study in order to ensure suitable ablation of 

enamel) and the total length of scanning for a fixed area of the specimen, it increases with the density of 

the pattern. 

So far, although some relevant improvements in ultrashort laser technology should be expected in the 

near future that will shorten the time to condition the enamel surfaces for bracket bonding, up to date, the 

best compromise is to achieve high bond strengths, avoid excessive iatrogenic damage, and preserve a 

large portion of the original enamel surface is to perform cross patterns with pitches in the order of 
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90 μm. If the requirements concerning bond strengths are not so demanding, less dense patterns provide 

shorter processing times, less risk of iatrogenic damage, and an outstanding preservation of the original 

enamel surface. 
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