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Directora de la Tesis Doctoral

Fdo.: Patricia González Gómez
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Resumo

Esta tese explora solucións para tolerancia a fallos e maleabilidade baseadas en

técnicas de checkpoint e reinicio para aplicacións de pase de mensaxes. No campo

da tolerancia a fallos, esta tese contribúe mellorando o factor que máis incrementa

a sobrecarga, o custo de E/S no envorcado dos ficheiros de estado, propoñendo dife-

rentes técnicas para reducir o tamaño dos ficheiros de checkpoint. Ademais, tamén

se propón un mecanismo de migración de procesos baseado en checkpointing. Esto

permite a migración proactiva de procesos desde nodos que están a piques de fallar,

evitando un reinicio completo da execución e mellorando a resistencia a fallos da

aplicación. Finalmente, esta tese presenta unha proposta para transformar de forma

transparente aplicacións MPI en traballos maleables. Esto é, programas paralelos

que en tempo de execución son capaces de adaptarse ao número de procesadores

dispoñibles no sistema, conseguindo beneficios, como maior productividade, mellor

tempo de resposta ou maior resistencia a fallos nos nodos.

Todas as solucións propostas nesta tese foron implementadas a nivel de aplica-

ción, e son independentes da arquitectura hardware, o sistema operativo, a imple-

mentación MPI usada, e de calquera framework de alto nivel, como os utilizados

para o env́ıo de traballos.
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Resumen

Esta tesis explora soluciones de tolerancia a fallos y maleabilidad basadas en

técnicas de checkpoint y reinicio para aplicaciones de pase de mensajes. En el cam-

po de la tolerancia a fallos, contribuye mejorando el factor que más incrementa la

sobrecarga, el coste de E/S en el volcado de los ficheros de estado, proponiendo

diferentes técnicas para reducir el tamaño de los ficheros de checkpoint. Además,

también se propone un mecanismo de migración de procesos basado en checkpoin-

ting. Esto permite la migración proactiva de procesos desde nodos que están a punto

de fallar, evitando un reinicio completo de la ejecución y mejorando la resistencia

a fallos de la aplicación. Finalmente, se presenta una propuesta para transformar

de forma transparente aplicaciones MPI en trabajos maleables. Esto es, programas

paralelos que en tiempo de ejecución son capaces de adaptarse al número de procesa-

dores disponibles en el sistema, consiguiendo beneficios, como mayor productividad,

mejor tiempo de respuesta y mayor resistencia a fallos en los nodos.

Todas las soluciones propuestas han sido implementadas a nivel de aplicación,

siendo independientes de la arquitectura hardware, el sistema operativo, la imple-

mentación MPI usada y de cualquier framework de alto nivel, como los utilizados

para el env́ıo de trabajos.
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Abstract

This Thesis focuses on exploring fault-tolerant and malleability solutions, based

on checkpoint and restart techniques, for parallel message-passing applications. In

the fault-tolerant field, this Thesis contributes to improving the most important

overhead factor in checkpointing performance, that is, the I/O cost of the state file

dumping, through the proposal of different techniques to reduce the checkpoint file

size. In addition, a process migration based on checkpointing is also proposed, that

allows for proactively migrating processes from nodes that are about to fail, avoiding

the complete restart of the execution and, thus, improving the application resilience.

Finally, this Thesis also includes a proposal to transparently transform MPI appli-

cations into malleable jobs, that is, parallel programs that are able to adapt their

execution to the number of available processors at runtime, which provides impor-

tant benefits for the end users and the whole system, such as higher productivity

and a better response time, or a greater resilience to node failures.

All the solutions proposed in this Thesis have been implemented at the application-

level, and they are independent of the hardware architecture, the operating system,

or the MPI implementation used, and of any higher-level frameworks, such as job

submission frameworks.
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Preface

The current trend in computer architecture is the use of large clusters, often

heterogeneous, in which the nodes are multi/many-core systems. These are highly

dynamic systems, with an everincreasing number of processors, which causes rel-

atively high hardware failure rates. For parallel programs executing on a large

number of processors, this translates into frequent execution failures and a decrease

in productivity.

Many fault tolerance methods for parallel applications on clusters exist in the

literature, checkpoint and rollback recovery being the most popular. This method

periodically saves the computation state to stable storage, so that the application

execution can be resumed by restoring such a state. The overhead of saving check-

points to disk is the main performance cost in checkpoint-recovery methods. This

cost could become prohibitive for parallel applications running on large-scale facil-

ities, where the I/O bandwidths do not increase as quickly as their computational

capability and the checkpoint frequency must be increased to manage the higher

failure rate.

This Thesis proposes and evaluates different techniques to reduce the size of

the checkpoint files, and, thus, the computational and I/O cost of checkpointing:

incremental checkpointing, zero-blocks exclusion, and data compression. The incre-

mental checkpointing technique reduces the size of the state files by storing only data

that has changed since the last checkpoint. Zero-blocks exclusion avoids storing null

elements. Data compression, in turn, removes redundant information. These tech-

niques have been implemented in CPPC (ComPiler for Portable Checkpointing),

an application level checkpointing tool focused on the insertion of fault tolerance

into long-running message-passing applications, obtaining important file size and

1



2 Preface

checkpoint latency reductions.

In case of failure, most of the current checkpointing and rollback solutions restart

all the processes from their last checkpoint. However, a complete restart is un-

necessary, since most of the nodes will still be alive. Moreover, it has important

drawbacks. First, full restart implies a job requeueing, with the consequent loss of

time. Secondly, since the assigned set of execution nodes is, in the general case,

different from the original one, checkpoint data must be moved across the cluster in

order to restart the computation, usually causing significant network contention and

therefore high overheads. These limitations can be overcome if affected processes

are individually restarted in case of a single node failure.

In this Thesis a solution to proactively migrate message passing interface (MPI)

processes when impending failures are notified, without having to restart the en-

tire application, is proposed. Its main features are: low overhead in failure-free

executions, avoiding the checkpoint dumping associated to rolling-back strategies;

low overhead at migration time by means of the design of a light and asynchronous

protocol to achieve a consistent global state; transparency for the user, thanks to

the use of the CPPC framework; and portability, as it is not locked into a particular

architecture, operating system or MPI implementation.

Moreover, two additional techniques to reduce the I/O overhead in the checkpoint-

based migration approach have been proposed. First, to take advantage of network

speeds and to avoid the bottleneck of disk accesses, the storage to disk is substituted

by in-memory checkpoint files and network transfers. Second, a pipeline technique

is applied to overlap the different phases of a migration operation (state file writing

in the terminating processes, data transfer through the network, and state file read

and restart operations in the new processes) to reduce the migration time even more.

Finally, this PhD Thesis proposes a solution to automatically transform message-

passing parallel applications into malleable applications, that is, parallel programs

that are able to modify the number of required processors at run-time. This will

allow to improve the use of resources, which will have a direct effect on the energy

consumption required for the execution of applications, resulting in both cost savings

and greener computing. The solution proposed is based on checkpointing and process

migration and it is implemented on top of CPPC. It includes: automatic code



Preface 3

transformation of the parallel applications, a system to reschedule processes on

available nodes, and migration capabilities based on checkpoint/restart techniques

to move selected processes to target nodes.

The Thesis is organized into five chapters:

Chapter 1 describes the checkpoint and restart technique and its main fea-

tures. It also introduces CPPC, the application-level checkpointing tool used

to implement the ideas proposed in this Thesis, outlining its most important

characteristics.

Chapter 2 focuses on reducing the overhead of the checkpointing operation.

It analyzes different techniques to reduce the checkpoint file size: incremental

checkpoint, zero-blocks exclusion, and data compression. The chapter also

describes how to implement these techniques in CPPC and discusses the results

obtained.

Chapter 3 describes how to extend CPPC to provide process migration based

on checkpointing techniques. This process migration is performed by storing

the application data into checkpoints and creating new application processes

that will be in charge of resuming the job. The chapter also includes details

on how the proposed solution maintains the checkpoint consistency by means

of a negotiation protocol between processes. It also provides an evaluation of

the scalability and overhead of the migration proposal.

Chapter 4 presents two improvements to the basic migration procedure. The

first one avoids dumping the checkpoint files to stable storage during migra-

tions. The second one splits the checkpoint files in order to overlap the transfer

of the checkpoint files with its reading in the new processes.

Chapter 5 describes the malleability solution proposed. It includes a schedul-

ing algorithm that is in charge of automatically analyzing which processes have

to migrate and calculate the target nodes. A description of the implementation

using CPPC and the evaluation of the experimental results are also provided.

Finally, the work is concluded by summarizing the main contributions of this

PhD Thesis and discussing the main research lines that can be derived from it.





Chapter 1

Background

This chapter introduces the checkpoint and restart techniques and their main

properties. The CPPC (ComPiler for Portable Checkpointing) framework, used for

the implementations of the proposals in this Thesis, is also briefly described in this

chapter.

1.1. Checkpointing

The execution times of large-scale parallel applications on current multi/many-

core systems are usually longer than the mean time between failures. Therefore,

parallel applications must tolerate hardware failures to ensure that not all compu-

tation done is lost on machine failures. Checkpointing and rollback recovery is one

of the most popular techniques to implement fault-tolerant applications. It period-

ically saves the application state to stable storage, so that, in case of failure, the

stored data allows for restarting the application and continuing the execution from

such state.

However, the dimension, heterogeneity, and dynamic nature of today’s large

computer infraestruturas open new research challenges that must still be solved,

requiring proposals that are scalable, to be executed on hundreds of cores; portable,

so they can deal with the heterogeneity of the platforms; and malleable to adapt to

the dynamic nature thereof. To this end, we considered the following as the main

5
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features to take into account when exploring new checkpoint solutions for parallel

message-passing applications.

Granularity

There are two fundamental approaches to checkpointing: system-level check-

pointing (SLC), implemented at the operating system level, and application-level

checkpointing (ALC), where the application program saves and restores its own

state. In SLC, the whole state of the processes (program counter, registers and

memory) is saved to stable storage. The most important advantage of this approach

is its transparency. However, it has two important drawbacks. First, storing the

whole application state will have a higher associated cost than storing just nec-

essary data. Second, it is inherently non-portable. A checkpointing technique is

portable if it allows the use of state files to recover the state of a failed process on

a different machine, potentially binary incompatible, or using different operating

systems or libraries. The basic condition that has to be fulfilled in order to achieve

potential portability is not to store any low-level data along with the process state.

Therefore, all SLC approaches are not portable. ALC, on the other hand, is able to

obtain better performance by storing only necessary data. Additionally, it enables

both data portability, by storing data using portable representation formats, and

communication-layer independence, by implementing the solution at a higher level

of abstraction. The drawback is the need for analyses of the application code in

order to identify the state that needs to be stored.

Transparency

It refers to how the users perceive the checkpointing technique. Generally, SLC

corresponds with a transparent solution, because the user does not need to provide

information about the application. The ALC approach is, in theory, a non trans-

parent solution as, in this case, the user needs to have a deep knowledge of the

application in order to select those variables that need to be saved in the checkpoint

files. However, using compilers to automatize the variable selection process, the

ALC approaches could become a transparent solution.
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Portability

This property indicates if the checkpoint files can be used to recover the state

of a failed process on a different machine, or using different operating systems or

libraries. SLC approaches are non portable solutions because they store low level

information, such as program counters, registers, etc. Furthermore, to achieve to-

tal portability in an ALC approach the checkpoint files have to be stored in an

architecture independent format.

Coordination

A global state of a parallel application is a collection of individual states of

all participating processes and the state of the communication channels between

them. A consistent global state can be seen as one that may occur during a fault-

free execution. The main difference, in terms of consistency, between parallel and

sequential applications is the dependency imposed by the communications among

the processes. An inconsistency could occur if the checkpoints are located in the

middle of two communication sentences between processes. Note that, if the first

sentence is a send sentence, at restart time the message will not be resent, although

the other process involved in the communication expects to receive it. These kinds

of messages are called in-transit messages. On the other hand, if the non-executed

sentence is a receive sentence, the message will not be received, although it will

be sent again. These messages are called inconsistent or ghost messages. Both

types of messages are shown in Figure 1.1. In this figure every msg represents a

communication between two processes. In the example in Figure 1.1(b) the process

P2 has received the message msg 3 while the state of P1 does not reflect its shipping.

This global state is inconsistent since it can not occur in a fault-free situation. In a

consistent global state, if the state of a process reflects the reception of a message,

then the state of the corresponding issuer reflects the sending of this message [12].

In uncoordinated checkpoint protocols processes decide independently when to

store the checkpoints without negotiate with the other processes. Uncoordinated

solutions have low overhead in the case of fault-free executions, but in case of failure

they are susceptible to the so-called domino effect, which means that processes may
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Figure 1.1: Example of valid and invalid recovery lines

be forced to rollback up to the beginning of the execution in case of restart if incon-

sistent messages exist. Besides, since the processes dump their states independently

of each other, many of these checkpoints may be useless, as they will not be part of

any valid recovery line. For these reasons, uncoordinated protocols have not been

widely used in practice. As an alternative, uncoordinated checkpointing may be

combined with message logging to avoid the domino effect at the expense of a high

overhead in communication latencies [25].

In coordinated systems, all processes coordinate their checkpoints to produce

a consistent global state, so in case of failure all processes come back to the same

point. Coordinated checkpointing simplifies recovery and prevents the domino effect,

since every process always restarts from its most recent checkpoint. Also, coordi-

nated checkpointing only requires each process to maintain one checkpoint in stable

storage, reducing storage overhead.

Straightforward approaches to coordinated checkpointing are the blocking coor-

dinated solutions. In these approaches an initiator, which may be an application

process or an external entity, sends a broadcast message requesting that the pro-

cesses checkpoint. Upon receiving this message, each process stops its execution,

flushes all communication channels, and creates its local checkpoint. Then, each

process sends an acknowledgment to the initiator and waits for a commit message

before resuming its execution. The initiator will broadcast a commit message af-

ter receiving acknowledgments from all processes. This approach may lead to a

significant overhead in fault-free executions.
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Fault-Tolerant 
Parallel Application

Figure 1.2: Integration of a parallel application with the CPPC framework

To reduce this overhead, non-blocking coordinated solutions have been proposed,

the most popular being the distributed snapshots protocol by Chandy and Lam-

port [12]. This protocol starts with the initiator broadcasting a checkpoint request.

Upon receiving the request, each process takes its checkpoint and rebroadcasts the

request before sending any more application messages. Message logging is used to

deal with in transit messages. The goal is to ensure that processes do not receive any

message that could make the global state inconsistent. However, in order for this

protocol to work, the communication channels need to be FIFO and reliable. For

systems with non-FIFO channels some approaches resort to techniques like piggy-

backing [5], which causes an unacceptably high overhead in communication-intensive

codes [80].

1.2. The CPPC Framework

CPPC (ComPiler for Portable Checkpointing) [74, 75] is an ALC tool focused

on the insertion of fault tolerance into long-running message-passing applications.

CPPC appears to the user as a compiler tool and a runtime library. The integration

between the application and the CPPC framework is automatically performed by

the CPPC compiler, that translates the application source files into derived files

with added checkpointing capabilities. The global process is depicted in Figure 1.2.
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At compile time, the CPPC compiler is used to automatically transform a parallel

application into a fault-tolerant parallel application with calls to the CPPC library.

As for checkpoint consistency, CPPC minimizes the runtime overhead of classical

consistency protocols by using a non-blocking spatially coordinated approach [73].

A SPMD (Simple Program Multiple Data) programming model is assumed and

checkpoints are taken at the same relative code locations by all processes, but not

forcibly at the same time. This ensures that all processes can select the same relative

code point for restarting the parallel application, instead of restarting from different

points which would render the global state inconsistent. To avoid problems caused

by messages between processes, checkpoints must be inserted at points where it is

guaranteed that there are no in-transit, nor ghost messages. These points will be

called safe points.

Regarding memory requirements, CPPC works at the variable level (i.e. storing

user variables only) and performs a live variable analysis that identifies which vari-

able values are needed for the correct restart of the execution. Live variables are

automatically detected by the CPPC compiler and marked using a CPPC function

(CPPC Register()) to provide such information to the CPPC controller. This pro-

cess is referred to as “variable registration”. Working at the variable level allows

both to reduce the amount of data to be saved, which is one of the most performance

impacting factors in checkpointing, and to store only portable data, hence making

restart possible on different architectures. Storing only portable data on state files

introduces the need for some kind of recovery mechanism, capable of regenerating

the non-portable state that is not stored into state files. This mechanism is further

described in the next subsection.

CPPC is designed with a special focus on portability: it uses portable code and

protocols, and generates portable checkpoint files, allowing for execution restart

on different architectures and/or operating systems. Currently, CPPC writes check-

point files using the 5th version of the Hierarchical Data Format (HDF5) [85], a data

format and associated library for the portable transfer of graphical and numerical

data between computers.

Finally, CPPC provides multithreaded dumping, overlapping the checkpoint file

writing with the computation of the application, and thus, reducing the checkpoint-
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ing overhead. All the registered variables are copied to a new memory region in

order to preserve their initial state while the application execution can continue.

Then, the duplicated memory is stored into disk by a new thread without blocking

the original MPI execution.

1.2.1. The CPPC Compiler

The CPPC compiler transforms the parallel code into fault-tolerant parallel code

adding the calls to the CPPC library. The compiler is based on the Cetus plat-

form [44].

To perform the code analysis and insert the library calls the compiler execute

the next steps:

Find safe points. To automatically identify safe points, the compiler performs

a static analysis of inter-process communication.

Insert the effective checkpoint function calls. A heuristic analysis, based on

code complexity, identifies the most expensive loops and inserts a checkpoint

function (CPPC Do checkpoint()) in the first safe point of these loops [73].

However, not all checkpoint function calls will generate checkpoint files. Dur-

ing runtime a checkpoint frequency may be defined in terms of number of calls

to the checkpoint function.

Analyze the data flow. The compiler performs a live variable analysis to store

only the variables necessary to restore the application. Avoiding, for example,

to store variables with temporary buffers or intermediate results. Depending

on the considered application, applying this technique can significantly reduce

checkpoint file sizes.

The identification of these variables can be performed at compile-time through

a standard live variable analysis. A variable x is said to be live at a given

statement s in a program if there is a control flow path from s to a use of x

that contains no definition of x prior to its use. The set LVin of live variables

at a statement s can be calculated using the following expression:
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LVin(s) = (LVout(s)−DEF (s)) ∪ USE(s) (1.1)

where LVout(s) is the set of live variables after executing statement s, and

USE(s) and DEF (s) are the sets of variables used and defined by s, respec-

tively. The live variable analysis should take into account interprocedural data

flow.

Checkpoints in application-level approaches are usually triggered by an explicit

call to a checkpoint function in the application code. This guarantees that

checkpoints are not performed during a system call, which may have internal

state unknown to the checkpointer, but rather inside user-level code. In this

way, checkpoint callsites are limited and known at compile time, which allows

for the live variable analysis to be bounded and not span the whole application

code. For each checkpoint callsite ci, it is only necessary to store the set of

variables which are live when the control flow enters the callsite, LVin(ci).

Currently, CPPC does not perform optimal bounds checks for pointer and

array variables. This means that some arrays and pointers are registered in a

conservative way: they are entirely stored if they are used at any point in the

re-executed code.

1.2.2. CPPC Operation

For illustrative purposes, Figure 1.3 shows the C code of an MPI application (a

matrix diagonalization) and Figure 1.4 details the fault-tolerant version of the same

code obtained by using the CPPC source-to-source compiler.

CPPC has two operation modes: checkpoint and restart. A checkpoint mode is

used during regular execution. Processes execute the code sequentially and create

checkpoints according to their specified checkpoint frequency. Note that not all the

calls to the checkpoint function generates a checkpoint file. This behaviour can

be seen in Figure 1.5. This checkpoint frequency parameter and other execution

related parameters can be easily modified between executions changing the CPPC

configuration file. An example of this file is shown in Figure 1.6. The restart mode

is used after the original execution has aborted to recover the computation state
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1 int main ( int argsc , char ∗∗ argsv ) {
2 // Var iab l e d e f i n i t i o n s
3 . . .
4
5 MPI Init(&argsc , &argsv ) ;
6
7 // Matrix data input and d i s t r i b u t i o n
8 . . .
9

10 for ( i =0; i < n i t e r s ; i++ ) {
11 // Matrix d i a g ona l i z a t i o n
12 . . .
13 }
14 . . .
15
16 MPI Final ize ( ) ;
17 }

Figure 1.3: Skeleton of an example of MPI code: a matrix diagonalization

of all processes from a previously saved snapshot. Only portable state is stored

into the checkpoint files. CPPC uses code re-execution to recover the application

state. A section of code is defined as required execution code (REC) if it must be

re-executed during a process restart to ensure correct state recovery. Each REC

recovers some part of the original application state. The fundamental REC types

are non-portable calls, variable registrations and checkpoint calls. A typical example

of a non-portable call is a call to a function manipulating opaque library state, such

as an MPI function which creates or modifies a communicator.

The CPPC compiler divides applications into pieces formed by: a block of non-

relevant code, a jump target (CPPC EXEC labels in the figure), a block of restart-

relevant code (REC), and a conditional jump to the next jump target, which will be

placed right before the following REC. Conditional jumps will only be taken when

in restart mode. In this way, after a failure, CPPC is able to re-execute only relevant

parts of the code, skipping the non-relevant ones.

Following the example in Figure 1.4, during checkpoint operation the MPI envi-

ronment is initialized, then the CPPC controller through the CPPC Init() function;

matrix data are read and distributed; relevant variables are registered by every pro-

cess (loop index, loop limit and matrix data); next the core computation of the
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1 int main ( int argsc , char ∗∗ argsv ) {
2 // Var iab l e d e f i n i t i o n s
3 . . .
4
5 MPI Init(&argsc , &argsv ) ;
6
7 CPPC Init(&argsc , &argsv ) ;
8 // Cond i t iona l jump to CPPC EXEC 1
9 i f ( CPPC Jump next ( ) ) {

10 goto CPPC EXEC 1 ;
11 }
12
13 // Matrix data input and d i s t r i b u t i o n
14 . . .
15
16 CPPC EXEC 1 :
17 CPPC Register(&i , . . . ) ;
18 . . .
19 // Cond i t iona l jump to CPPC EXEC 2
20
21 for ( i =0; i < n i t e r s ; i++){
22 CPPC EXEC 2 :
23 CPPC Do checkpoint ( 0 ) ;
24
25 // Matrix d i a g ona l i z a t i o n
26 . . .
27 }
28
29 . . .
30 CPPC Shutdown ( ) ;
31 }

Figure 1.4: CPPC-instrumented matrix diagonalization example code

application begins with calls to the checkpoint function in every iteration and ac-

tual checkpoint dumping every n iterations depending on the specified checkpoint

frequency; and, finally, the results are written and CPPC is shutdown.

In restart operation the execution starts normally. Upon calling the CPPC

initialization function the restart is detected, and a negotiation phase is performed

to identify the most recent recovery line, that is, the set of checkpoint files to be

used for restart. These files are verified and read, and restart mode is entered, which

activates the conditional jumps that direct the execution through the identified

RECs and skip nonrelevant sections of code. In the example, the matrix data input
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Figure 1.5: Spatial coordination for checkpointing

1 CPPC/ C o n t r o l l e r /RootDir=˜/ckpt cppc
2 CPPC/ C o n t r o l l e r /ApplicationName=.
3 CPPC/ C o n t r o l l e r / Restart=fa l se
4 CPPC/ C o n t r o l l e r /Frequency=40
5 CPPC/ C o n t r o l l e r / Ful lFrequency=1
6 CPPC/ C o n t r o l l e r /CheckpointOnFirstTouch=fa l se
7 CPPC/ C o n t r o l l e r / S u f f i x =.cppc
8 CPPC/ C o n t r o l l e r / StoredRecoverySets=10
9 CPPC/ C o n t r o l l e r / DeleteCheckpoints=fa l se

10 . . .

Figure 1.6: Example of the CPPC configuration file

will be skipped. The variable registration REC recovers variable values. Finally,

the execution reaches the checkpoint inside the computational loop, the library is

reconfigured to checkpoint mode and the application continues regular execution.





Chapter 2

I/O Optimization in the

checkpointing of parallel

applications

This chapter proposes and evaluates different techniques to reduce the check-

point file sizes and, thus, the computational and I/O cost of checkpointing in ALC

approaches.

2.1. Introduction

Although checkpoint/restart is the most common solution to endow scientific

applications with fault tolerance, its cost in terms of computing time, network uti-

lization or storage resources can be a limitation for large scale systems.

Checkpoint file size is the most important factor in determining checkpointing

performance. As such, the reduction of the amount of stored state is one of the

most frequent goals of checkpoint optimizations. However, most of the techniques

described in the literature are applied to SLC approaches, since ALC solutions

are less general, and they already achieve smaller checkpoint files. Nevertheless,

in order to be useful for today’s large scale systems, ALC approaches will also

need to minimize checkpoint file sizes. The following sections describe different and

17
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complementary techniques to optimize the checkpoint sizes in ALC solutions [21]:

incremental checkpointing to store only modified data; zero-blocks exclusion to avoid

storing null elements; and data compression to remove redundant information. The

final sections explain the implementation details of those techniques on CPPC and

evaluate the performance of the proposed methods.

2.2. Incremental checkpointing

The most popular technique for checkpoint file size reduction in SLC approaches

is incremental checkpointing [2, 32, 71]. This technique involves creating two dif-

ferent types of checkpoints: full and incremental. Full checkpoints contain all the

application data. Incremental checkpoints only contain data that has changed since

the last checkpoint. Usually, a fixed number of incremental checkpoints is created

in between two full ones. During a restart, the state is restored by using the most

recent full checkpoint file, and applying, in an ordered manner, all the differences

before resuming the execution.

There exists in the literature different solutions to implement incremental check-

pointing in SLC approaches. One of them is to use the virtual memory page pro-

tection mechanisms [71]: upon starting to checkpoint, pages to be saved are marked

read-only. When the page is effectively saved into the checkpoint its original sta-

tus is recovered. When the application tries to write to a read-only page, the race

condition is resolved by the fault handler. Another option is to use a kernel-level

memory management module that employs a page table dirty bit scheme [32]. Both

solutions require memory protection support from the underlying hardware along

with support from the OS to be able to handle page-fault exceptions. This feature,

although very common, is not universally available. An alternative to page-used

checkpoint is hash-based checkpoint [2], which uses a secure hash function to obtain

a unique identifier for each block of application memory to be written into state files.

This value is stored and compared against the value calculated for the same block

upon creating a new checkpoint. If the two hash values differ, the block contents

have changed and it is stored again in the new checkpoint file.

The basic difference between SLC and ALC emerges from the fact that SLC sees
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the application memory as a single continuum, while ALC distinguishes a disperse

set of contiguous memory blocks. Each block contains memory allocated to one

or more variables, depending on the aliasing relationships of the application data.

Thus, in ALC it is not recommendable to track changes to memory blocks using the

virtual memory page protection mechanism or dirty bits, as array variables do not

necessarily start at page boundaries.

The solution proposed in this chapter is inspired by the hash-based approaches

but is intended for ALC. The array variables are divided into chunks of memory

of a previously specified size, assumed to be constant, and the changes into these

chunks are detected using a secure hash function. The calculated hash value for

each chunk is stored in memory and used for comparison when creating incremental

checkpoints. Using an application-level approach the number of memory blocks to

be checked at runtime is reduced, which minimizes the size of the hash tables to be

calculated and stored, improving the overhead.

2.3. Zero-blocks exclusion

When working with real scientific applications it is well known that quite often

many elements of the arrays are null, resulting in memory blocks that contain only

zeros. Therefore, a possible optimization to further reduce the checkpoint file size

is to avoid storage of those zero-blocks.

In addition, to control the changes into memory blocks, the hash function de-

scribed in the previous section may also be used to detect zero-blocks. When a

zero-block is detected, a small marker is saved into the checkpoint file to indicate

that the block is null, instead of dumping its contents. During restart this marker

is identified and the target memory is filled with zeros, which recovers the original

state at a negligible cost in terms of both performance and disk usage.

The idea of not storing zero-blocks has a certain similarity to the technique used

in the SLC tool Berkeley Lab’s Checkpoint/Restart (BLCR) Library [49] to exclude

zero pages, that is, those that have never been touched and logically contain only

zeros.
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2.4. Data compression

Another means to reduce checkpoint file sizes is data compression. This tech-

nique has been implemented, for instance, in the ickp checkpointer [69], ErrMgr [42],

and the CATCH compiler [51]. In ickp, a predictive algorithm is presented that offers

very low overhead, but only performs well with some highly compressible sources,

as it often produces data expansion. ErrMgr uses DEFLATE (gzip) [43] and shows

good results mainly for highly-compressible data. For less compressible data, the

overhead offsets any compression benefit. In CATCH, the general purpose LZW [43]

algorithm is used, which typically offers slightly worse performance than DEFLATE

with similar overhead.

In this work a new and faster compression algorithm is proposed. It is based on

particular features observed in checkpoint files and addresses the trade-off between

compression efficiency and overhead. We use the well-known technique of substitut-

ing repeated chains of bytes by special codes that mark the position of the chain

and its length. A string of bytes is processed sequentially. For each incoming byte,

a match within the last 16 processed bytes is sought. The aim is finding the longest

possible chain of matches, avoiding encoding each byte individually. Those bytes

for which a match cannot be found, are known as literals. The compressed stream

consists of a description of the literals, and the position and size of the matched

chains. Additionally, entropy coding is applied, using shorter codes for the most

common descriptors.

Figure 2.1 shows an example of the encoding process, where alphabet letters

are used instead of numeric 8-bit values. A 16-byte buffer keeps the last processed

bytes. A new incoming byte is compared with the content of the buffer, producing

a 16-bit mask. The buffer is then updated by shifting-in the new byte. In Figure

2.1 we can see that 2 literals (’k’ and ’l’) are found first. Next, there are 3 candidate

positions that match ’a’ and ’b’. The length of the match keeps growing, but only

1 candidate remains. A logic AND between the current mask and the previous one

is a simple way of detecting the end of the matching string. In the example, a new

match starts, but it could also be a literal. Note that the length of the matches is

not limited to the size of the buffer.

The number of literals (2) and their values are encoded, together with the size of
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k ,
l ,
a 1 1 1 ,
b ,
c 0 ,
d 0 ,
e ,
h 0 1 ,
j , 

efab cabc defg abhj     0000 0000 0000 0000 no match  1 literal
fabc abcd efga bhjk     0000 0000 0000 0000 no match  2 literals
abca bcde fgab hjkl     00  0000 00 0 0000 new match  2 literals
bcab cdef gabh jkla     1001 0000 0010 0000 2 matches  2 literals
cabc defg abhj klab     1001 0000 00 0 0000 3 matches  2 literals
abcd efga bhjk labc     001 0000 0000 0000 4 matches  2 literals
bcde fgab hjkl abcd     0001 0000 0000 0000 5 matches  2 literals
cdef gabh jkla bcde     000  000  0000 0000 new match  0 literals 
defg abhj klab cdeh     0000 0001 0000 0000 2 matches 0 literals 

 16-byte buffer           new          comparison mask               match evolution

Figure 2.1: Example of pattern matching for data compression

the matching string (5) and its position (12 bytes from the starting point). The way

in which those values are encoded was guided by the analysis of many gigabytes of

data.

Essentially, an 8-bit token is built by combining the number of literals (up to

15 in a row) and the size of the match (from 1 to 16), as these values show strong

correlation. Escape codes are used for longer chains of literals or matches. The

tokens are then compressed using static Huffman codes [40]. The literals are not

compressed, as they exhibit high entropy. And, finally, the positions are compressed

using a semi-adaptive scheme.

In the example in Figure 2.1, the inputs from ’k’ to ’e’ would be encoded as: (2,5)

+ k + l + 12. The resulting bit pattern could be: 111111110100000 KKKKKKKK

LLLLLLLL 111100. Hence, 7 bytes would be encoded using 37 bits instead of 56, a

34% gain.

Compared to general purpose algorithms, this proposal allows fast parallel search

instead of using iterative search guided by hash keys. Focusing on just the nearest

16 values performs well as matches separated by large distances are not as common

in checkpoints as they are in text files. In general, the most common patterns are:

runs of values, and repeated exponents in floating point arrays.

Also, we use static Huffman codes combined with simple adaptability. Static

means that the codes are the same for all the files, assuming that they all have

the same statistical distribution of positions and lengths. We have found that this

is a reasonable assumption for checkpoint files, contrarily to the general case. Us-
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ing fixed, static codes is significantly faster than using dynamic ones and enables

building optimized decoders.

2.5. Implementation

The techniques described in previous sections have been implemented on CPPC.

This section describes these implementations.

2.5.1. Incremental checkpointing and zero-blocks exclusion

For the implementation of incremental checkpointing, CPPC divides array vari-

ables into blocks of memory. The size of these memory blocks may have a great

impact on the performance of the incremental checkpointing technique. CPPC al-

lows the user to choose the size to be used for each particular application. A block

size of 8K elements is selected by default when the user does not specify any size.

It experimentally proved to be a good compromise value.

CPPC also calculates the hash value of each memory block. The choice of the

hash function impacts upon the correctness, since many hash functions present a

significant probability of collisions, that is, situations where two different memory

blocks are assigned the same hash value. Secure hash functions should be used to

implement reliable incremental checkpointing techniques [61]. The implementation

of incremental checkpointing in CPPC allows the user to choose between different

secure hash functions, such as MD5 or SHA. The MD5 function is selected by default.

The calculated hash functions are used to detect both zero-blocks that can be

excluded in the next checkpoint, and changes in memory blocks from previous check-

points. In order to detect zero-blocks the calculated hash values are compared to

the known hash value of a zero-block. To detect changes in the memory blocks, the

hash values calculated in previous checkpoints have to be stored to be compared

with the new ones. In our implementation, the hash codes are stored into main

memory rather than on disk to improve the performance of the technique.

Only the modified blocks with non-zero elements will be stored in the checkpoint
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Figure 2.2: Construction of an incremental checkpoint.

file. The construction of an incremental checkpoint is depicted in Figure 2.2. In

order to enable full data recovery during restart, some meta-information needs to

be stored together with the checkpoint data. Specifically, an identifier is stored in

the checkpoint file for each modified memory block, including modified zero-blocks.

This identifier indicates the original position of the block in memory relative to the

start of the array. The high-order bit of the identifier is used to mark the zero-blocks

that are not included in the checkpoint file but should be restored during recovery.

CPPC uses an integer array called Block ID to store the meta-information. The

size overhead of storing this array can be calculated as:

Overhead = HDF5 labels + sizeof(Block ID) (2.1)

Being HDF5 labels the number of bytes used by HDF5 to store information

about the Block Id array (148 if the number of elements of Block ID is zero and

892 in any other case). The size of the array of identifiers can be calculated as:

sizeof(Block ID) = 4 bytes× (#MBlocks) (2.2)



24 Chapter 2. I/O Optimization in the checkpointing of parallel applications

Checkpoint 1
(Full)

HDD

Memory of array A

60 1 2 7 9 ...

0 1 2 6 7 9 ...

Data block Empty block

Checkpoint 2 (Incremental)
HDD

52 3 4 6

Overwritten block

3 4 5

Step 1

Step 2

...
Restart

8

Mark of 
empty block

Figure 2.3: Restart from an incremental checkpoint.

Being #MBlocks the number of modified blocks. Thus, the overhead varies

between 148 and 892 + (4 × #TBlocks) bytes, being #TBlocks the total number

of memory blocks of the application userspace.

In addition to the checkpointing mechanism, the restart mechanism when using

incremental checkpointing also varies. The process of restarting from incremental

checkpoints is shown in Figure 2.3. The last available full checkpoint is restored

first, and the updates contained in each incremental checkpoint are then applied in

an ordered manner.

2.5.2. Data compression

To compress the checkpoint files, the CPPC writing layer seen in Section 1.2

must be extended. The HDF5 library provides users with different file drivers which

map the logical HDF5 address space to different types of storage. In the current

CPPC version the default file driver (SEC2 driver) is used to dump the HDF5 data

directly to stable storage. This driver was substituted by the HDF5 core driver

which constructs the HDF5 file in memory.

The checkpoint and recovery processes using compressed files are shown in Fig-

ure 2.4. In order to perform the compression step without storing temporary data to
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Figure 2.4: Integration of the compression process in the CPPC writing layer

the process local disk first, the HDF5 File Image Operations available since HDF5

v1.8.9 are used. These are a set of functions that allow working with HDF5 files

directly in memory. Disk I/O is not required when files are opened, created, read

from, or written to. Once the state file is committed to memory, the compression

routine is invoked. Afterwards, the compressed data are stored into stable storage.

The decompression process is the reverse: the compressed file is read from stable

storage to local memory, data are decompressed, and finally the HDF5 is read in

place. Note that if compression is disabled, the HDF5 checkpoint file in memory is

directly stored into stable storage without compression.

Compression speed is crucial in order to minimize the introduced overhead. In

this sense, platform-specific optimizations, such as SIMD instructions, play an im-

portant role. Then, the following optimizations are possible: fitting the buffer into

one 128-bit register or two 64-bit ones; and performing 16 comparisons with 1 or 2

instructions that produce a 16-bit mask. SIMD instructions are primarily intended

to accelerate multimedia processing, and they are commonplace in modern architec-

tures. However, as they are not standardized, the optimized code is not portable.

Hence, plain ANSI C code was developed together with optimized code for x86 and

Itanium platforms. At compile time, directives will select which code will be used.

Note that CPPC creates a checkpoint file per process, each one containing a

subset of the total data to be stored. The different checkpoint files are simultaneously

compressed in the different processes. Thus, compression is implicitly performed in

parallel, and thus its overhead is expected to decrease when increasing the number

of processes.
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2.6. Experimental Evaluation

This section assesses the impact of the described optimization techniques in

the size of the checkpoint files and in the execution time overheads. A multicore

cluster, Pluton (located in the Faculty of Computer Science in the University of

A Coruña), was used to evaluate our proposal. Initially, it consisted of 8 nodes,

each one of them powered by two Intel Xeon E5620 quad-core CPUs with 16 GB

of RAM. The cluster nodes were connected through an Infiniband network and a

Gigabit Ethernet network. The front-end was powered by one Intel Xeon E5502

quad-core CPU with 4 GB of RAM. The connection between the front-end and the

execution nodes was an Infiniband network too. The working directory used for

storing checkpoints files is connected to the cluster by a Gigabit Ethernet network

and it consists of disks of 2 TB configured in RAID 6. During the realization of

this thesis, Pluton received an important upgrade, so nowadays it has 16 extra

computing nodes, each powered by two octa-core Intel Xeon E5-2660 CPUs with

64 GB of RAM. The cluster network was updated to an InfiniBand FDR network,

providing up to 56 Gbps. The working directory is mounted via network file system

(NFS) and it maintains their connection to the cluster via the Gigabit Ethernet

network. To avoid misunderstandings, henceforth the oldest nodes receive the name

Pluton N1 or N1, and the newest Pluton N2 or N2.

The application testbed was comprised of the eight applications in the MPI

version of the NAS Parallel Benchmarks v3.1 [62] (NPB). These are well-known and

widespread applications that provide a de-facto test suite. Out of the NPB suite,

the biggest problem size that would fit the available memory was selected for each

application. As such, the BT, LU and SP benchmarks were run using class B; the

rest were run using class C. All the experiments were executed using 16 and 32-36

processes (32 processes for all the applications except for BT and SP as they require

a square number of processes).

The experiments in this section were executed in Pluton N1. They can be divided

into two blocks. The first block analyzes the checkpoint size reductions obtained

through the use of the proposed techniques. The second block evaluates the execu-

tion overhead caused by the computation of the hash functions and data compres-

sion, and the restart overhead caused by the restart mechanism in the incremental
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Table 2.1: Baseline checkpoint sizes (in MB) per process
16 processes 32-36 processes

NPB SLC ALC Base SLC ALC Base

BT 97.45 31.36 83.61 17.50
CG 153.05 85.85 114.50 43.30
EP 67.42 1.18 67.42 1.18
FT 514.93 256.14 290.93 128.14
IS 210.50 144.13 138.57 72.13
LU 81.03 14.78 74.86 8.54
MG 288.56 222.32 181.00 114.70
SP 99.00 32.81 86.08 19.87

technique and data decompression.

2.6.1. Checkpoint file sizes

The reduction in checkpoint file size is the main goal of the techniques described

in this work. Table 2.1 allows comparing the baseline checkpoint sizes per process in

the Pluton cluster. The first column (SLC) shows results for an SLC approach, the

CKPT [89] checkpoint library was used. The second column (ALC Base) displays

results for an ALC approach without applying any optimization technique, that is,

all user variables are stored in the checkpoint file. As can be seen, ALC obtains

better results than the SLC approach. Additionally, the size of the checkpoint

files per process decreases more significantly for ALC approaches as the number of

processes increases, which helps obtain scalable fault tolerance. As commented in

Section 1.2.1, CPPC uses a method based in live variable analysis to select only those

variables that are necessary to restart the application. Depending on the considered

applications, this technique can significantly reduce checkpoint file sizes. Figures 2.5

and 2.6 show normalized checkpoint file sizes with respect to the ALC base case

when using the live variable analysis (LiveVar) and the incremental checkpointing

and zero-blocks exclusion techniques proposed in this work. Several incremental

checkpoints (Incr) are created after a full checkpoint (Full). However, since their

sizes are similar, only the first one is shown in the figures.

The live variable analysis significantly reduces checkpoint file sizes for CG (56%

reduction) and FT (25%). It can be concluded that this technique may have great
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Figure 2.5: Checkpoint sizes per process for 16 processes normalized with respect
to the ALC base case (see Table 2.1)
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Figure 2.6: Checkpoint sizes per process for 32-36 processes normalized with respect
to the ALC base case (see Table 2.1)

influence on reducing file sizes for certain applications and, as it introduces overhead

only at compile time, no application can be adversely affected by its use.

The incremental checkpointing and zero-blocks exclusion techniques achieve im-

portant file size reductions for almost all the applications. Note that these techniques

were applied together and in addition to the live variable analysis. Thus, reductions

achieved in the full checkpoint relative to the live variable technique are only due to

the elimination of zero-blocks. These reductions vary with the size of the memory

block. Figures 2.5 and 2.6 show results for the default value of 8K elements per

block. Reductions with respect to the ALC base case range from 3% (BT) to 65%
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Figure 2.7: Compressed checkpoint sizes per process for 16 processes normalized
with respect to the ALC base case (see Table 2.1)
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Figure 2.8: Compressed checkpoint sizes per process for 32-36 processes normalized
with respect to the ALC base case (see Table 2.1)

(CG) for the full checkpoint and from 12% (BT) to 98% (CG) for the incremental

checkpoints.

The results of compressing the checkpoints are given in Figures 2.7 and 2.8

(ALC Base Comp, Live Var Comp, Full Comp, Inc Comp). On average, size re-

ductions of 20% and 25% are achieved for 16 and 32-36 processes, respectively. For

some benchmarks, like IS (Integer Sort), it is easy to discern why compression per-

forms better for 32 processes: sorting removes entropy, helping the compressor to

find repeated patterns. For other benchmarks the underlying reason may not be

so obvious. There are also important differences among benchmarks, as some of
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Table 2.2: Baseline checkpoint latency (s)
16 proc. 32-36 proc.

NPB ALC Base ALC Base

BT 5.29 6.65
CG 14.38 15.33
EP 0.25 0.30
FT 37.67 38.56
IS 21.90 21.93
LU 2.56 2.69
MG 34.92 35.64
SP 5.71 7.08

them, like FT, are hardly compressible. Also, incremental checkpoints are generally

less compressible than the others, as much of the redundant data have already been

removed. Comparatively, DEFLATE and LZMA would offer an additional 7-10%

gain, but increasing overhead, as will be discussed in Section 2.6.2.

2.6.2. Checkpoint latency

The checkpoint latency is defined as the ellapsed time between the call to the

checkpointing function and the return of control to the application. Table 2.2 shows

the baseline checkpoint latency obtained for the different NPB applications for 16

and 32-36 processes. Note that the increase in the number of processes does not

have a great influence in the latency times, since a shared filesystem is used and the

total amount of data to be dumped remains almost constant. All tables and graphs

in this section and the next one display the average data of at least 10 executions.

As regards the incremental checkpointing, some extra time is spent in the compu-

tation of the hash functions and the inspections needed. The hash function selected

for these experiments was MD5. From the results shown in Figures 2.9 and 2.10,

it can be observed that the overhead introduced by the incremental checkpointing

technique is hidden by the gain obtained from the reduction in checkpoint size. Re-

sults for the creation of the full checkpoint in the incremental technique also allow

to assess the obtained gain when solely applying the zero-blocks exclusion.

Data compression (Figures 2.11 and 2.12) also allows reducing checkpointing
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Figure 2.9: Checkpoint latency for 16 processes normalized with respect to the ALC
base case (see Table 2.2)
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Figure 2.10: Checkpoint latency for 32-36 processes normalized with respect to the
ALC base case (see Table 2.2)

latency in virtually all the tests. The main exception is FT, which contains poorly-

compressible data. This gain is possible by the combination of two factors. Firstly,

compression allows a significant size reduction, as seen in Section 2.6.1. Conse-

quently, storage overhead is proportionally reduced. Secondly, compression speed

is 85-90 MB/s on average. That is close to the maximum bandwidth of the Gi-

gabit network on which the testbed storage system is based upon. Therefore, our

compression system adds very little overhead to checkpointing, 7% on average (the

compression overhead is labeled as Compression in the Figures). In comparison,

DEFLATE and LZMA are, respectively, 3 and 12 times slower, which makes them
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Figure 2.11: Compressed checkpoint latency for 16 processes normalized with respect
to the ALC base case (see Table 2.2)
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Figure 2.12: Compressed checkpoint latency for 32-36 processes normalized with
respect to the ALC base case (see Table 2.2)

impractical alternatives (the gain does not compensate the overhead introduced by

the compression).

Although the compression algorithm proposed in this chapter has been applied to

an ALC approach, it could equally be applied to SLC. We have experimentally tested

that it is also viable for compressing SLC checkpoint files as, unlike the DFLATE and

LZMA algorithms, it is fast enough to provide a performance benefit. Nevertheless,

compressing SLC checkpoint files will always be computationally more expensive

than compressing ALC files, due to the significantly larger sizes. Additionally, the

resulting compressed files will be also larger than their ALC counterparts. Thus,



2.6 Experimental Evaluation 33

Table 2.3: Baseline restart times (s)
16 proc. 32-36 proc.

NPB ALC Base ALC Base

BT 4.52 5.63
CG 12.23 12.88
EP 0.19 0.36
FT 36.54 36.39
IS 20.53 20.49
LU 2.15 2.46
MG 31.69 32.56
SP 4.73 6.38

starting from ALC checkpointing files will be always a better solution.

As can be seen by comparing Figures 2.11 and 2.12, compression overhead drops

as the number of processes is increased. This is due to the fact that the total

compression workload is shared by more processors. Hence, checkpoint compression

in large scale supercomputers will allow reducing the volume of stored data with

almost negligible overhead.

In general, all the proposed techniques perform better than the ALC base ap-

proach. In some cases the reduction in latency can be as high as 92 − 97% (IS or

CG).

As commented in Section 1.2, CPPC can be configured so that the checkpoint

file is created in parallel with the execution of the application by creating new

threads [74]. Thus, the application execution does not need to be stalled until the

checkpoints are created, and the latencies may be hidden.

2.6.3. Restart overhead

Restart times include the read of the checkpoint files and the restart of the ap-

plication up to the point where the checkpoint was dumped. In all the experiments,

write buffers were flushed before each execution to avoid the effect of page cache

and to guarantee that checkpoint files are read from disk.

Figures 2.13 and 2.14 show the normalized restart time with respect to the

baseline restart times shown in Table 2.3. Columns labeled Full show the restart
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Figure 2.13: Restart times for 16 processes normalized with respect to the ALC base
case (see Table 2.3)
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Figure 2.14: Restart times for 32-36 processes normalized with respect to the ALC
base case (see Table 2.3)

overhead when there are no incremental checkpoint files, just the full one. These

correspond to the overhead when applying only the zero-blocks exclusion, which is

always less than the overhead of the base approach.

The incremental checkpointing technique presents a higher restart overhead com-

pared to the others. This is due to a larger volume of data being moved and read,

which can be calculated as the sum of the incremental and full checkpoint file sizes.

In these experiments two incremental checkpoints were created after a full one.

Compression (Figures 2.15 and 2.16) has also a positive impact in restart over-
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Figure 2.15: Compressed restart times for 16 processes normalized with respect to
the ALC base case (see Table 2.3)
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Figure 2.16: Compressed restart times for 32-36 processes normalized with respect
to the ALC base case (see Table 2.3)

head. As data decompression is very fast, the restart process benefits from data

reduction with a minimal decompression overhead (see Decompression in the Fig-

ures). On average, a 20-25% time saving is achieved. When restarting from incre-

mental checkpoints, the overhead is large, and the benefits of compression are more

noticeable.

Due to the high influence that the read of the checkpoint files can have on the

performance of the restart operation, recent studies are focused on reducing this

impact. A post-checkpointing tracking mechanism is presented in [53] to reduce
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restart latency by overlapping application recovery with the retrieval of checkpoint

files. In the case of incremental approaches, the number of incremental checkpoints

has great influence in the restart overhead. There exist studies [60] that provide

a model to determine the optimal number of incremental checkpoints between two

consecutive full checkpoints. One possible approach to reduce the restart overhead

would be to merge the full checkpoint file and the incremental ones into a single

file at the checkpoint server before a restart is required [2]. Nevertheless, it must

be considered that in a traditional fault tolerance context the main objective is

accelerating checkpoints storage, which is performed several times per execution.

Restart, however, is a secondary target, as it may never be necessary.

2.7. Related work

All the techniques mentioned in this chapter focus on reducing checkpoint file

sizes. Another way to optimize the computational and I/O cost of checkpointing is

to avoid the storage of checkpoint files in a parallel file system. Plank et al. pro-

posed to replace stable storage with memory and processor redundancy [70]. Recent

works [13, 14, 34, 93] have adapted the technique, known as diskless checkpointing,

to contemporary architectures. The main drawback of diskless checkpointing are its

large memory requirements. As such, this scheme is only adequate for applications

with a relatively small memory footprint at checkpoint. Other recent solutions focus

on the use of non-volatile memory technology, like solid-state disks (SSDs) to keep

checkpoint data [52]. SSDs offer excellent read/write throughput when compared

to secondary storage and thus they can help to reduce disk I/O load. Moody et al.

propose a multi-level checkpoint system that writes checkpoints to RAM, Flash, or

disk on the compute nodes in addition to the parallel file system [57].

Other works focus on minimizing the network and file system contention caused

by the parallel checkpointing by reducing the number of simultaneous checkpoints.

Norman et al. identify at compile-time recovery lines formed by staggered check-

point calls so that the concurrent writing of checkpoint files is minimized at run-

time [63]. In [47] the data layout of the checkpoint files are rearranged to reduce

the number of files serviced by each I/O server. Additionally, the write operations

of concurrent checkpoints are serialized on each computer node to further improve
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the checkpointing performance.

Accelerators have been also considered for reducing checkpointing overhead [27,

31]. Mainly, these works focus on computing hash functions using GPUs. Whereas

significant speed-ups are obtained, hash calculation is not a bottleneck in the check-

pointing process. Data compression could be an interesting target for hardware

accelerators as up to the present moment, we have not found any implementation

in the literature.

2.8. Concluding remarks

This chapter has analyzed different alternatives to reduce the size of the check-

point files generated by ALC approaches: live variable analysis, incremental check-

pointing, zero-blocks elimination, and data compression. These techniques have

been implemented in an ALC tool, CPPC, obtaining important file size and check-

point latency reductions.

The reduction of the checkpoint sizes will be particularly useful for parallel ap-

plications with a large number of parallel processes, where the transference of a large

amount of checkpoint data to stable storage can saturate the network and cause a

drop in application performance.

The implementation in the application-level is a key aspect of the proposal. On

one hand, it allows a more efficient implementation of the proposed techniques. On

the other hand, it does not make any assumptions about the underlying system

hardware/software characteristics, thus enabling portable operation.

Though all these techniques were incorporated to CPPC, in the following chap-

ters only live variable analysis and zero-block exclusion will be used. Both incremen-

tal checkpoint and checkpoint compression present drawbacks with the techniques

explored in next chapters: the former concerning high restart overheads, and the

latter regarding portability issues.





Chapter 3

Checkpoint-based process

migration

This chapter extends CPPC to proactively migrate MPI processes when impend-

ing failures are notified, without having to restart the entire application.

3.1. Introduction

Most of the approaches present in the literature use the checkpoint files to re-

spond in the event of a failure. In a practical scenario, checkpoints should be fre-

quently stored in order to cope with unpredicted failures in a traditional reactive

way. The determination of optimal checkpointing intervals for reactive approaches

has been studied extensively in the past [28, 29, 88]. In these solutions, all the pro-

cesses are restarted from their last checkpoint in case of failure. However, a complete

restart is unnecessary, since most of the nodes will still be alive. Moreover, it has im-

portant drawbacks. First, full restart implies a job requeueing, with the consequent

loss of time. Second, since the assigned set of execution nodes is, in the general case,

different from the original one, checkpoint data must be moved across the cluster in

order to restart the computation, usually causing significant network contention and

therefore high overheads. These limitations can be overcome if affected processes

can be individually restarted in case of a single node failure [90].

39
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With the recent advances in monitoring systems, and thus in the prediction of

hardware failures [78], solutions that use checkpointing to implement proactive poli-

cies have emerged [11, 91]. In these approaches tasks are preemptively migrated

from processors that are about to fail. Thus, only terminating processes need to

dump their state, reducing the usually high I/O overhead associated to checkpoint-

ing solutions. Studies show failure avoidance to be more efficient than traditional

fault tolerance [9]. Moreover, both techniques can complement each other, reducing

checkpoint frequency when the success rate of failure prediction is high [91].

To be effective, proactive solutions require that failures can be anticipated ac-

curately. However, this issue should not be seen as a limitation nowadays. Health

monitoring has become a common feature in servers and HPC (High Performance

Computing) components. Such monitors range from processor temperature sen-

sors to baseboard cards with a variety of sensing capabilities, including fan speeds,

voltage levels and chassis temperatures. Recent studies show that, assisted by such

capabilities, node failures may be predicted in large-scale systems with a high degree

of accuracy [54, 77, 37, 83, 35].

The following sections describe how to extend the CPPC framework to proac-

tively migrate processes when impending failures are notified.

3.2. Process migration using CPPC

The basic idea behind dynamic migration in parallel applications is to spawn new

processes that will be in charge of continuing the work of the terminating processes

on other computation nodes. Migration is preferably performed to spare nodes,

although the use of already allocated ones is also possible. In a checkpoint-based so-

lution, when a signal with a migration request is received, the terminating processes

need to write their state to checkpoint files, while newly spawned processes need

to read these files and recover the state of the terminating processes. In addition,

before resuming the execution, communication groups must be rebuilt to exclude

terminating processes and include the newly spawned ones [15].

The reconstruction of the communication groups is a critical step, since replacing

communicators may lead to an inconsistent global state: messages sent/received us-
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Figure 3.1: Inconsistent global state after migration in processes that are running
asynchronously

ing the old communicators cannot be received/sent using the new ones. One possible

solution to this problem is to make the reconstruction of the communicators, and

thus the migration, in locations where there are no pending communications, i.e.

safe points. The CPPC compiler automatically detects safe points, thus facilitating

the implementation of this approach. Moreover, based in a heuristic evaluation of

computational cost, it places calls to the checkpoint function in selected safe lo-

cations. These calls could be used as migration points. However, conducting the

migration from different checkpoint calls in different processes may lead to inconsis-

tencies, since messages may be sent in the code executed in between the two calls.

The communication labeled msg. 3 in Figure 3.1 is an example of such a situation.

In order to implement proactive process migration, processes need to dynamically

engage in a negotiation to decide which checkpoint call to select as migration point.

Summarizing, there are two main phases on process migration using CPPC: a

negotiation to reach consensus on the migration point; and the process migration

itself, which includes the communicator reconstruction.

3.2.1. Negotiation protocol

The negotiation protocol must ensure that, when a migration is initiated, all

processes are able to converge to a single selected checkpoint location to achieve

global coordination. There are different approaches that can be used towards this
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end. A first possibility is backward negotiation, shown in Figure 3.2. Using this

strategy all processes agree to restart their execution from the most recent recov-

ery line. Another solution is forward negotiation, detailed in Figure 3.3, in which

processes agree to coordinate at the next checkpoint call to be reached by the pro-

cess that has advanced the farthest in the execution. Backward negotiation uses

previously created checkpoint files. As such, its greatest advantage is avoiding the

overhead of creating new snapshots during migration. This, in turn, incurs higher

overheads during a failure-free execution, given that processes need to checkpoint

often. Backward negotiation can be thought of as being roughly equivalent to a stop

and restart approach but avoiding the job requeueing. All processes need to recover

a previous state, causing a loss of computation and higher total execution overhead.

Due to these shortcomings of backward negotiation, forward negotiation will be the

approach followed in this work.

We are assuming that the mpirun process receives a migration request from a user

or batch scheduler and propagates it by sending a signal to each of the spawned MPI

processes. This external signal triggers a handler which activates a migration flag in

the CPPC controller to change to migration mode, a new operation mode added to

CPPC besides the already explained checkpoint and restart ones (see Section 1.2.2).

In migration mode each MPI process has to coordinate with the others to find out

the farthest checkpoint location that has been reached by any of them. As CPPC
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stores in an internal parameter (touchedCheckpoint variable) the number of times

the CPPC Do checkpoint() function is called in each process, a direct and simple

solution is to use an MPI reduction operation inside the signal handler to calculate

the maximum touchedCheckpoint value. Unfortunately, according to the MPI

standard, implementations may prohibit the use of MPI calls from signal handlers.

Thus, for the sake of robustness and portability an alternative negotiation protocol

was built outside of the signal handler.

One-sided MPI communications are used so that processes may continue running

asynchronously during the negotiation. Prior to invoke a one-sided MPI communi-

cation operation, each process has to specify the memory region (window) that it

exposes to others. The window for the proposed negotiation algorithm comprises

two values for each process: flag and touched. The flag value indicates whether

a process is actively engaged in the negotiation. It is activated when a checkpoint

function is reached after migration mode has been enabled. It will not be deacti-

vated until the migration is finished. The touched value contains the value of the

touchedCheckpoints parameter and it is kept up to date throughout the execution

when in checkpoint mode. When in migration mode this value is not updated, and

contains the value it had when the migration mode was enabled by the external

signal.

Algorithm 1 shows the pseudocode of the negotiation algorithm. This code is
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Algorithm 1: Pseudocode for the negotiation protocol

value[2];
for allRemoteProcesses do

flag = 0;
while !flag do

LockWindow();
GetRemoteWindow(&value);
UnlockWindow();

if value.touched > touchedCheckpoints then
return; %continue to next checkpoint

end
flag = value.flag;

end

end

included inside the checkpoint function and executed only in migration mode. Each

process p reads the exposed flag and touched values of every other process q

(GetRemoteWindow() in the figure). In this way, all processes have a global picture

of the execution status. As explained before, each process must advance up to the

farthest reached checkpoint location. If process q is more advanced than process

p (i.e. touchedq > touchedp), then p must continue its execution until the next

checkpoint location, regardless of the value of flagq. Otherwise, a deadlock would

occur if process q were waiting for a message from process p sent in the application

code in between the checkpoint call number touchedp and the one number touchedq

(hence unable to reach the next checkpoint location and activate its flag). If process

q has not yet advanced beyond checkpoint touchedp, then p waits for q to enable its

flag value. This indicates that q is aware that a migration is to take place. Once all

processes are verified to be aware of the negotiation process and not more advanced

than process p a consensus migration point has been discovered, and process p has

arrived at it. Note that other processes may be behind in their execution, and will

arrive later at the same migration location in an asynchronous way.

Local updates to the window values use exclusive locks (MPI LOCK EXCLUSIVE)

to guarantee consistency, whereas remote reads (Get operations on Figure 1) use

shared locks (MPI LOCK SHARED), which allow for concurrent read accesses.
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3.2.2. Process migration

At this point, a migration point has been agreed upon and processes begin arriv-

ing at that location independently. Still, several issues remain to be solved: saving

the terminating processes state; spawning new processes to continue the compu-

tation done by the terminating ones; updating and managing the communication

groups; and restoring the terminating processes state in the newly spawned pro-

cesses. Whenever possible, these actions will be taken by each process without

coordination. All the required steps are fully explained below.

The state of the terminating processes is saved using native CPPC capabilities.

Checkpoint file creation begins once the terminating process reaches the migration

point. Note that, due to the spatial coordination protocol employed by CPPC, there

is no need to coordinate processes at the migration point before the state dump can

start. Checkpoint creation is managed by a new ad-hoc thread, which allows for the

reconfiguration to occur concurrently.

The newly spawned processes are created using the MPI Comm spawn multiple()

MPI-2 function. This call is collective over the communicator, that is, it must be

performed by all the processes in the communication group involved in the mi-

gration (that is, the world communicator). Depending on the implementation,

MPI Comm spawn multiple() may not return until MPI Init() has been called in the

spawned processes. Similarly, MPI Init() in the spawned processes may not return

until all processes in the original communicator have called MPI Comm spawn multi-

ple(). As such, MPI Comm spawn multiple() in the original processes and MPI In-

it() in the spawned ones form a collective operation over the union of parent and

child processes that may imply a synchronization during the migration operation.

Spawning new processes creates an inter-communicator between the original and

the newly created processes. Old communicators should be reconstructed, replac-

ing terminating processes with the newly created ones. The approach used is to

reconfigure the world communicator (MPI COMM WORLD) using the dynamic commu-

nicator management facilities provided in MPI-2. Other communicators, which de-

rive from MPI COMM WORLD, will be reconstructed by re-executing the MPI calls used

for creating them in the original execution. Figure 3.4 details the reconfiguration

phase for the world communicator for an example where four processes take part
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Figure 3.4: World communicator reconfiguration. Process A0, in the world commu-
nicator A, migrates to a new execution node. B0 is the newly created process to
support the migration. The old world communicator A is reconfigured into a new
world communicator C

of the migration operation and only one process is migrated to a new execution

node. First, the two intra-communicators that contain the original and the new pro-
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cesses need to be merged into a single one. The MPI Intercomm merge() function is

used for this purpose. Afterwards, the group of processes that form the new intra-

communicator is extracted via MPI Comm group(). Ranks in this group are reordered

using MPI Group incl(), in such a way that the spawned processes will take over

the ranks of the terminating processes. Afterwards, terminating processes are ex-

cluded from the group using MPI Group range excl(). Finally, MPI Comm create()

is used to build the new world communicator from the reconfigured group.

As described, this process only reconfigures the world communicator. However,

in order for the migration to succeed, communicators which include any migrating

process have to be rebuilt as well. Using the same approach for reconfiguring these

communicators would require the participation of the terminating processes, which

would in turn require the soon-to-fail nodes to be up for a longer time, reducing the

chances of successful migration. In order to avoid this, the CPPC restart capabilities

are used. MPI calls that result in the creation of new communicators (such as

split operations) are identified and logged by CPPC both into memory and created

checkpoint files. The set of communicators in an MPI application can be seen as

a tree in which each node is created from another one by using a certain MPI

operation (i.e. MPI Comm split(), MPI Comm dup(), etc.). The root of this tree is

the world communicator. Taking advantage of the operation log provided by CPPC,

this communicator tree is reconstructed from its root by orderly re-executing the

logged operations. Regular processes (those that do not migrate) read the log from

memory and re-execute its contents right after the reconfiguration of the world

communicator. Spawned processes do so after reading the checkpoint file contents

during their restart phase. Note that if these MPI operations are blocking in the

MPI implementation used, a synchronization between the processes involved will be

imposed.

Terminating processes, in turn, participate in the reconfiguration of the world

communicator and wait until the creation of their checkpoint file is completed. When

this happens, they notify the spawned processes (using the inter-communicator cre-

ated by MPI Comm spawn multiple()) that checkpoints may now be read (assuming

a shared file system). Finally, they safely finish their execution.

Spawned processes still have to recover the terminating processes state from

their snapshots contents. This involves reading the appropriate checkpoint file and
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executing the necessary RECs to regenerate non-portable state. This is achieved by

delegating to CPPC and employing its native capabilities.

3.3. Experimental evaluation

Experiments were performed to evaluate both the scalability of the proposed

solution and the total overhead associated to the migration. Pluton N1 cluster (pre-

sented in Section 2.6) was used to carry out these experiments. All the checkpoint

files were stored into the working directory, mounted via NFS and connected to the

cluster by a Gigabit Ethernet network.

The application testbed was comprised of six out of the eight applications in the

NPBs compiled with the OpenMPI library version 1.5.4. The IS and MG bench-

marks were discarded due to their low execution times.

The experimental results obtained are classified in two subsections. The first

one evaluates the scalability of the solution, analyzing the duration of the different

phases of a migration operation in relation to different impacting factors. The

second subsection evaluates the migration overhead of the proposed approach, and

compares it with other different solutions.

3.3.1. Scalability

The scalability of the solution can be analyzed from three points of view: the

impact of the total number of processes in the execution, the effect of the number of

migrating processes, and the influence of the application memory footprint. In all

these experiments the migration time is broken down into 5 parts (see Figure 3.5):

Negotiation: execution time between the mpirun migration request and the

call to the spawn function. This time is measured in the worst possible case,

that is, when the signal is received by at least one of the processes just after

a checkpoint function call.

Spawn&Rec: execution time of the spawn function and the reconfiguration of

the world communicator.
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Figure 3.5: Actions and temporal sequence for four processes involved in a migration
operation. Process N0 migrates to a new execution node. NP is a newly created
process to support the migration. N1 − N3 are regular processes that passively
participate in the migration

WaitCkpt : average execution time between the end of the reconfiguration

phase in the newly spawned processes, and the start of the checkpoint file

read.

ReadCkpt : average time it takes to read the checkpoint file from disk in the

newly spawned processes.

Restart : average time for restarting the application once the checkpoint file

has been read. It includes the execution of the RECs.
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Impact of the number of processes

These tests measure the scalability of the migration solution when increasing

the number of total processes. Experiments were carried out using 4, 8, 16 and

32 processes, except for BT and SP that need a square number of processes, thus

using 4, 9, 16 and 36. Although each node was running at least 4 processes, in

this experiment only one process was migrated each time (equivalent to what would

occur if an imminent failure was predicted in one node with one process running

on it). In all the cases the terminating process was migrated to a spare node. The

results obtained using the NPB applications using class B are shown in Figure 3.6.

The Negotiation time depends on how often the CPPC checkpoint function is

called, the inherent synchronization between the processes during the execution

of the application, and the overhead introduced by the negotiation protocol. Given

that the migration signal is received just after a checkpoint call, the Negotiation time

will be at least the time between two consecutive checkpoint calls. In all NPB, the

CPPC checkpoint function is called once in each iteration of the main computational

loop. The Negotiation time, as well as the execution time per iteration, for 16

processes and class B, are shown in Table 3.1. Except for EP, the processes of

all the NPB applications are inherently synchronized in every internal iteration of

the application. This means that, during the negotiation phase, one process will

never advance more than one iteration before reaching the migration point. Results

in Table 3.1 prove that in these cases the overhead associated to the negotiation

protocol is almost negligible, the Negotiation time being mainly determined by the

iteration time. As the number of processes increases, the iteration time decreases,

thus achieving a reduction in the Negotiation time. Table 3.2 shows the execution

time per iteration for different number of processors. However, when the processes

are not synchronized, such as in EP, it may take several checkpoint calls to reach

the migration point.

The Spawn&Rec time increases slightly with the total number of processes, since

this phase involves different collective communications. However, as can be observed

in Figure 3.6, this time is at most 0.5 seconds in these experiments.



3.3 Experimental evaluation 51

Negotiation Spawn&Rec WaitCkpt ReadCkpt Restart Evacuation

4p 9p 16p 36p

0

1

2

3

4

5

6

Execution processes

M
ig

ra
tio

n 
tim

e 
(in

 s
)

(b) BT

4p 8p 16p 32p

0,0

0,5

1,0

1,5

2,0

2,5

Execution processes

M
ig

ra
tio

n 
tim

e 
(in

 s
)

(c) CG

4p 8p 16p 32p

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

Execution processes

M
ig

ra
tio

n 
tim

e 
(in

 s
)

(d) EP

4p 8p 16p 32p

0

2

4

6

8

10

12

Execution processes

M
ig

ra
tio

n 
tim

e 
(in

 s
)

(e) FT

4p 8p 16p 32p

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

Execution processes

M
ig

ra
tio

n 
tim

e 
(in

 s
)

(f) LU

4p 9p 16p 36p

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

5,0

Execution processes

M
ig

ra
tio

n 
tim

e 
(in

 s
)

(g) SP

Figure 3.6: Scalability impact when increasing the number of total processes. NPB
class B migrating one process



52 Chapter 3. Checkpoint-based process migration

Table 3.1: Negotiation times and iteration times, running 16 processes
NPB. Class B Negotiation (s) Iteration time (s)

BT 0.64 0.56
CG 0.21 0.20
EP 0.03 0.01
FT 1.00 1.00
LU 0.40 0.39
SP 0.33 0.28

Table 3.2: Iteration times (in s) for different number of total processes
NPB. Class B 4p 8/9p 16p 32/36p

BT 2.05 0.94 0.56 0.28
CG 0.73 0.38 0.20 0.15
EP 0.01 0.01 0.01 0.01
FT 3.59 1.85 1.00 0.61
LU 1.46 0.73 0.40 0.24
SP 1.14 0.50 0.27 0.14

Table 3.3: Checkpoint file size per process (in MB) and checkpoint write and read
times (in s)

NPB. Class B Size Write T. Read T.

BT 30.69 0.51 0.58
CG 14.23 0.33 0.25
EP 1.10 0.04 0.03
FT 48.10 0.87 0.79
LU 14.49 0.25 0.24
SP 30.93 0.52 0.53

As can be seen in the figure, in most of the cases, the biggest contribution to

the migration overhead is due to the write and read of checkpoint files. In these

experiments checkpoint files are stored to shared disk via NFS, using a Gigabit

Ethernet network. In this situation, checkpoint file sizes are critical to minimize

the I/O time. As explained in Chapter 2, CPPC applies live variable analysis and

identification of zero-blocks to decrease checkpoint file sizes [17]. These sizes, as

well as the checkpoint write and read times, for NPB class B and 16 processes, are

shown in Table 3.3. When the number of processes grows, the checkpoint files use
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Table 3.4: Checkpoint file sizes per process (in MB) for different number of total
processes

NPB. Class B 4p 8/9p 16p 32/36p

BT 106.61 52.10 30.69 17.27
CG 47.48 24.79 14.23 7.64
EP 1.10 1.10 1.10 1.10
FT 192.12 96.11 48.10 24.10
LU 48.79 26.62 14.49 8.24
SP 96.35 50.19 30.93 18.24

to become smaller and, thus, the time to write or read the file from disc decreases.

Table 3.4 shows the checkpoint file sizes for the different number of processes. Again,

the EP application is a special case, since the checkpoint file sizes does not decrease

when the number of processes grows. Thus, the checkpoint write and read times

for EP remains constant in Figure 3.6. Note that the write of the checkpoint file is

overlapped with the spawn and reconfiguration phase (see Figure 3.5), and the time

shown in these figures is the one consumed in the non overlapped part (WaitCkpt).

Finally, the Restart time is very small for all the tested applications. It depends

on the amount of state recovered using code re-execution (RECs) on the newly

spawned processes. As occurs for the checkpoint file sizes, by increasing the total

number of processes, the amount of state to be recovered usually decreases, and

likewise the Restart time.

Note that the sum of Negotiation, Spawn&Rec and WaitCkpt corresponds to the

evacuation time, that is, the time needed after the migration request to free the

nodes that are about to fail. This time is represented with a line in Figure 3.6.

Evacuation time decreases when scaling the number of processes, except for EP.

Although the evacuation time in EP increases slightly with the number of processes,

its variance in absolute value is lower than 0.1s. This behavior can be explained by

the negative impact of the scaling in the Negotiation time for the EP application.

In order to make the proposed solution practical, the evacuation time should

be smaller than the lead-time (time ahead of the potential occurrence of a failure)

of the prediction mechanism. In all the experiments the evacuation time was only

of a few seconds. In [83] lead-times between tens of seconds and several minutes
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are reported. Thus, the evacuation time observed in these experiments proves the

viability of the solution.

Impact of the number of terminating processes

When a node is about to fail, all the processes running on it have to be migrated

to a new location. The previous subsection shows experimental results obtained

assuming only one terminating process. In this subsection experiments were carried

out varying the number of terminating processes (from 1 to 8) and maintaining the

number of total processes at 16. In these experiments each node runs 2 processes

and the terminating processes are migrated to spare cores of nodes. The results are

shown in Figure 3.7.

As expected, the Negotiation time remains constant, as the execution time be-

tween two consecutive calls to the CPPC checkpoint function does not change.

The Spawn&Rec time increases with the number of migrating processes. It is

particularly low for migrating a single process and augments significatively when

going from 1 to 2 migrating processes. This is probably due to internal OpenMPI

optimizations of the MPI Comm spawn multiple() function when spawning only one

process.

The checkpoint write and read times also grow because the number of checkpoint

files dumped to the NFS shared directory increases. Note that, in most cases, the

WaitCkpt time is negligible because the time needed to dump the checkpoint files

is overlapped by the increase in the time spent in the Spawn&Rec phase.

Finally, the Restart time increases with the number of migrating processes for

those applications that recover non-world communicators during their restart phases

(BT, FT, and SP). The reason for this is that, as mentioned in Section 3.2.2, the

collective operations executed during this recovery are blocking. As such, these

operations impose a synchronization that becomes more costly as the number of

migrated processes increases.
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Figure 3.7: Scalability impact when increasing the number of migrating processes.
NPB class B and 16 processes
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Impact of the application size

In this subsection NPBs of classes A, B and C are used to evaluate the impact

in the migration time of different application memory footprints. Figure 3.8 depicts

the experimental results obtained when scaling the problem size, using 16 processes

and migrating only one.

As expected, for most cases an increase in the migration duration is observed,

since the problem scaling results in larger data per process. The Negotiation time

grows due to the increase of the iteration time. The Spawn&Rec time remains almost

constant, since it does not depend on the memory footprint of the application.

Both the checkpoint write and read times and the Restart time augment due to

the increase in the checkpoint file sizes and in the amount of state to be recovered,

respectively.

Though the problem scaling leads to an increase in the migration duration, con-

sidering the total execution time of the application, a decrease in percentage terms

is observed when the problem size increases.

3.3.2. Overhead

The overhead was studied for each of the NPB codes by running class C with

16 processes divided in 8 nodes. In this configuration, when a node is about to

fail, 2 processes are migrated. Class C was chosen to get a more realistic execution

time. The results are shown in Table 3.5 where the column labeled Orig. shows the

execution time of the original application in a fault-free execution and the Instr. one

the time of the application instrumented with CPPC, again in a fault-free execution.

In most cases the instrumentation overhead is minimal, generally less than 1%. The

application execution times when a failure is imminent and the migration of a node is

performed are shown in the Migr. column. As seen in the previous subsections, the

migration time is mainly dominated by the times to read and write the checkpoint

files. Thus, FT is the application with the highest relative overhead (10% with

respect to the original code) due to their larger checkpoint files (see Table 3.3).

Table 3.5 also includes the execution time of the checkpoint and rollback solu-

tion using CPPC. Checkpoint files are periodically dumped and, in case of failure,
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Figure 3.8: Impact of increasing application size via the NPB classes. Running on
16 processes
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Table 3.5: Execution times (in s) using 16 processes, with and without migration
CPPC Ckpt& MVAPICH

NPB. Class C Orig. Instr. Migr. Rollback Orig. Migr.

BT 449.94 450.55 459.63 482.27 471.48 486.39
CG 43.91 43.87 45.93 53.75 47.32 59.04
EP 33.27 33.29 34.59 33.70 34.35 36.01
FT 99.49 99.42 109.56 150.73 152.38 184.95
LU 418.41 419.17 425.47 433.39 435.47 444.47
SP 518.74 520.17 532.18 547.37 548.52 568.72

the complete execution is restarted in new nodes. The Checkpoint&Rollback times

shown in this table are the optimal ones for this approach, that is, only one check-

point file is dumped before the failure occurs, thus avoiding additional overhead

due to useless dumps; and the rollback is performed just after the checkpoint, thus

avoiding loss of work on restart. The overhead associated to proactive migration is

lower than the overhead associated to the checkpoint and rollback solution, the only

exception being EP. The relatively high overhead of the EP benchmark (1.21%) is

due to the high number of MPI window updatings as a consequence of the high num-

ber of internal iterations (more than 500 iterations in approximately 5.5 seconds).

Fortunately it is rather improbable to find this behavior in a real application. It can

be concluded that the proactive migration approach can significantly decrease the

cost to survive a node failure.

For comparative purposes, Table 3.5 also shows the execution time using MVA-

PICH version 1.8. MVAPICH provides process migration based on BLCR (Berkeley

Lab’s Checkpoint/Restart Library) [49] and FTB (Fault Tolerant Backplane) [36]

libraries for Infiniband, iWAPP and RoCE architectures [1]. The table shows the

MVAPICH original execution time, that is, a fault-free execution, and the execu-

tion time when one node needs to be migrated. When these experiments were

performed, MVAPICH process migration support was only available for Mellanox

Infiniband adapters. Unfortunately, cluster Pluton has a QLogic card, and the Mel-

lanox interface over the QLogic cards did not achieve its top performance, resulting

in a MVAPICH fault-free execution slower than the OpenMPI execution. Regard-

less, the solution proposed in this chapter results advantageous for all the NPB

applications also in percentage terms as shown in Figure 3.9. This figure shows the
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Figure 3.9: Overhead (in %) for NPB applications (class C - 16 processes) when a
node is preemptively migrated (case of CPPC and MVAPICH) and when a node
fails (case of Ckpt&Rollback)

Table 3.6: Checkpoint sizes (in MB) per process (running in 16 processes) for CPPC
and BLCR

NPB. Class C CPPC BLCR

BT 110,23 111.04
CG 27.74 72.19
EP 1.04 2.36
FT 192.12 450.36
LU 50,89 51.60
SP 103,14 100.61

overhead with respect to a fault-free execution. In order to provide a fair compari-

son, the MVAPICH overhead is calculated with respect to the MVAPICH fault-free

execution. The benefit obtained using CPPC versus MVAPICH can be in part ex-

plained by the smaller size of the checkpoint files. Table 3.6 shows the sizes of the

checkpoint files per process generated for each application using CPPC and BLCR.

Those applications where CPPC achieves significant reductions in checkpoint sizes

(CG and FT) also present lower overhead under migration.

In Section 3.3.1 it can be seen that EP migration time with 32 processes is
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negatively affected by an increase in the Negotiation time. Results in Figure 3.9

evidence that the coordination between processes to perform the migration operation

is a bottleneck for EP, since for this application the best performance is obtained by

the checkpoint and rollback approach, that avoids the coordination during execution

time.

When comparing MVAPICH with the CPPC-based proposal it must be noted

that one of the most important features of the latter, besides its efficiency, is its

portability, as it does not need any specific architecture, operating system (OS),

MPI implementation or system file to work.

Finally, results in Figure 3.9 also provide an idea of the impact that false-positives

associated with the failure prediction may have on system performance. The over-

head of migration is, for most of these benchmarks, less than 3% when migrating

only one process. In [35] a percentage of false positives smaller than 10% is re-

ported. Thus, we can conclude that the overhead due to this issue will not be very

significant.

3.4. Related work

Process migration may be implemented either through dynamic migration or

based on the simple stop-and-restart approach [55, 8]. In this section we will focus

on proposals that, like the one proposed in this chapter, address dynamic process

migration.

Some existing approaches rely on operating system virtualization techniques.

Hacker et al. [38] investigate the use of OpenVZ to perform dynamic migration

of parallel applications. Chackravorty et al. [11] use Charm++ [48] and Adaptive

MPI (AMPI) [39] to implement a transparent proactive fault tolerance approach.

In [59] the live migration mechanism in Xen [3] is exploited to implement a live

migration solution. However, the same authors reported in a later work [26] that,

in HPC, solutions at the process level are more widely accepted than those based

on virtualization, mainly due to the lower penalty in performance.

In [81] a process level solution through checkpointing using the previously men-
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tioned system level checkpointing tool BLCR is presented. The proposal extends

both BLCR and LAM/MPI to allow process migration. Although the authors do

not present experimental results, the paper explicitly states that the checkpoint

file writing has a high overhead. Wang et al. [91] reduce this overhead through a

live migration solution (execution proceeds while a process image is asynchronously

transferred to a spare node) at the expenses of an increase in evacuation time. The

migration mechanism implemented in MVAPICH2 [1] also relies on BLCR. It takes

advantage of the Remote Direct Memory Access (RDMA) in Infiniband to reduce

the I/O overhead [65]. Another proposal that uses a different migration mechanism

is MPI Mitten [22], an MPI library implemented on the HPCM (High Performance

Computing Mobility) middleware [23] which achieves some independence from the

underlying MPI implementation. All these solutions are based on a coordinated

checkpointing approach to reach a consistent global state.

3.5. Concluding remarks

The approach presented in this chapter extends CPPC to proactively migrate

processes from processors when impending failures are notified, without having to

restart the entire application. It has been proved to be more efficient than the

classical checkpoint and rollback solution. Besides, the proposed approach makes

improvements on the two most important overhead factors in other migration solu-

tions: process coordination and I/O overhead.

A light and asynchronous protocol has been designed to achieve a global consis-

tent state during the migration operation, avoiding, when possible, operations that

lead to stalls in the processes execution.

The approach improves efficiency through the reduction of the checkpoint read-

/write overhead, since the use of CPPC allows for reduction in the checkpoint file

sizes, and the dumping of the terminating processes state is overlapped to a certain

extent with other stages of the migration operation. The experimental validation

performed has shown the efficiency and scalability of the proposal.

Another remarkable feature is that the solution is implemented at the applica-

tion level, and it is independent of the hardware architecture, the OS or the MPI
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implementation used, and of any higher-level frameworks, such as job submission

frameworks.

Despite the reduced checkpoint file size of the CPPC migration approach, wri-

te/read of the processes state continues to be the main cause of overhead. For this

reason, the next chapter will focus on the reduction of the I/O cost of the migration

operation.



Chapter 4

Improving performance in process

migration

This chapter describes two optimizations to improve the performance in process

migration. The first one is the in-memory migration that avoids write checkpoint

files in disk. The second one optimizes the in-memory migration by splitting the

checkpoint files, overlapping write, transfer and read phases in a migration operation.

4.1. Introduction

Process migration provides many benefits for parallel environments including

dynamic load balance, by migrating processes from loaded nodes to less loaded

ones; data access locality, by moving processes closer to the data that they are

processing; and/or fault tolerance, by preemptively migrating processes from nodes

that are about to fail.

The previous chapter described an application-level checkpoint-based approach

to achieve process migration in MPI codes. The proposal was built on top of CPPC

and it was based on the dumping of the state of the migrating processes to disk.

The bandwidth of a hard disk is small as compared to network bandwidth, even

when using RAID configurations. To take advantage of network speeds and avoid the

bottleneck of disk accesses, a new migration approach is proposed in Section 4.2.

63
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The new solution substitutes storage to disk by in-memory checkpoint files and

network transfers.

In-memory migration significantly reduces the I/O cost of the disk migration

process. However, the significance of this reduction depends heavily on the net-

work used. Additionally, it has large memory requirements, as a copy of the whole

checkpoint has to be stored into memory.

Another way to optimize the I/O cost of migration based on checkpointing is to

overlap the I/O operations. Section 4.3 proposes the split of the generated check-

point files to overlap the different phases of a migration operation (state file writing

in the terminating processes, data transfer through the network, and state file read

and restart operations in the new processes), thus, reducing the migration time.

Moreover, the split of the state files also allows for reduction in memory consump-

tion, since it avoids storing the complete checkpoint file. Both improvements will

be especially important for those applications with large checkpoint files.

4.2. In-memory checkpoint-based migration

To reduce the I/O overhead of a process migration, CPPC can store its check-

point file in memory, instead of in disk, and sent it to the target node using the

network, via MPI functions. As HDF5 allows to store files in memory, CPPC can

use this in-memory HDF5 files to improve the migration operation.

The steps followed by the in-memory checkpoint-based solution for four pro-

cesses running on different nodes, one of which is having its process migrated to a

new node, are shown in Figure 4.1b). Figure 4.1a) shows the original behaviour. The

first step is the negotiation to reach a consensus on the migration point. This proto-

col was presented in Section 3.2.1. Then, the migrating processes save their process

state, storing it in memory (Ckpt creation in the figure). Afterwards, new pro-

cesses are spawned in the target nodes to replace the migrating ones and the global

communicator is reconstructed using the same MPI-2 functions as those mentioned

in Section 3.2.2. Afterwards, the checkpoint files of the terminating processes are

sent using MPI communications. At this point the terminating processes can safely

finalize. The new processes receive the checkpoint files via an MPI communication
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Figure 4.1: Checkpoint-based migration with CPPC.

and CPPC is used to recover the stored state.

For the implementation of this new approach, the CPPC writing layer has been

modified. As mentioned in Section 2.5.2, the HDF5 library provides different file

drivers which map the logical HDF5 address space to different types of storage. In

the original CPPC version the default file driver (SEC2 driver) was used to dump

the HDF5 data directly to stable storage. This driver is substituted by the HDF5

core driver which allows constructing the HDF5 files in memory. Additionally, the

HDF5 File Image Operations [84], available since HDF5 v1.8.9, are used to work

with these files in the same way that users currently work with HDF5 files on disk.

The new writing layer is shown in Figure 4.2. When a signal with a migration request

is received, the process state is stored in memory using the HDF5 core driver. Then,

the HDF5 H5Fget file image function is used to obtain a buffered copy of these

data in memory to be used as a file. This function returns a pointer to the buffer and

its size. This information is used to send the data through the network to the newly

spawned process using the MPI library. The data are received in a memory buffer in

the newly spawned process via an MPI function. Finally, the H5LTopen file image
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Figure 4.2: Modification of the CPPC Writing Layer

function is used by the new process to convert the buffered memory to an HDF5

file. Then, CPPC is used to read the file and restore the application state using its

standard mechanisms. The HDF5 core driver also allows storing the files directly

to disk. This feature is used to store the files to disk when creating a checkpoint file

in a non-migrating situation, thus enabling fault tolerance.

4.2.1. Experimental evaluation

In this section the efficiency of the in-memory solution is evaluated. Comparisons

with the disk-based approach are also shown. Both clusters, Pluton N1 and N2 (see

Section 2.6 for more details), were used to carry out these experiments. To remark

upon the time differences in this experimental evaluation, the files used in the in-

memory scheme were transferred via the Gigabit Ethernet network in N1 and the

InifiniBand FDR network in N2.

The application testbed was composed of the six out of the eight applications in

the NPBs. The MPI implementation used was OpenMPI v1.5.4 for Pluton N1 and

OpenMPI v1.6.4 for Pluton N2.

All the experiments were carried out using 16 and 32 processes and 8 processes

per node (except BT and SP that need a square number of processes and were ran

with 36) in order to also evaluate the scalability of the solution.
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Figure 4.3: Response time (in seconds) in Pluton N1.
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Figure 4.4: Response time for (in seconds) in Pluton N2.

Response Time

The response time is the execution time between the migration request and the

actual restart in the new process (see Figure 4.1). Experiments in both clusters

were carried out with two different configurations: migrating only one process and

migrating the eight processes of a node. Figures 4.3 and 4.4 show response times in

Pluton N1 and Pluton N2 respectively, migrating 1 and 8 processes via memory (1p

mem and 8p mem bars) and via hard disk (1p disk and 8p disk bars). The checkpoint

file sizes are also represented in the figures (line labeled Ckpt size referenced to the

right axis). They vary between 1.04 MB and 192.12 MB per process.

The biggest contribution to the response time is the write and read of checkpoint



68 Chapter 4. Improving performance in process migration

files. Thus, the response time increases with the checkpoint file size and the number

of migrating processes. When the total number of processes grows, the checkpoint

files tend to become smaller and, thus, the response time decreases. For the smallest

checkpoint files and migrating only 1 process the response time is negligible (see for

instance EP).

Note that the response time via hard disk is always higher than the time needed

to migrate via memory. The maximum benefits are obtained for applications with

large checkpoint files and, as expected, the differences are more significant for Plu-

ton N2 due to its faster network. For instance, the response time for FT with 16

processes, out of which 8 are migrated, decreases by 50% when using the in-memory

solution over the Gigabit Ethernet network (Pluton N1) and by 90% over the In-

finiBand one (Pluton N2).

Evacuation time

The evacuation time is the time needed after the migration request to safely finish

the migrating processes (see Figure 4.1). Reducing this time is specially important

when migration is used to implement proactive fault tolerance approaches (tasks are

migrated in a preventive way when node failures are anticipated).

In the migration via hard disk the evacuation time is the time between the

migration request and the dumping of the checkpoint files to stable storage. As for

the in-memory migration, the evacuation time is the time between the migration

request and the return of the MPI function used to send the in-memory checkpoint

file.

Figures 4.5 and 4.6 show the evacuation times in Pluton N1 and Pluton N2

respectively. As can be seen, the in-memory solution is always better than the disk-

based one except for the smallest checkpoint sizes, the difference in these last cases

not being significant (less than 0.5 seconds). The best results are obtained for ap-

plications with large checkpoint files using Pluton N2. For instance, the evacuation

time for FT in Pluton N2 with 16 processes, out of which 8 are migrated, decreases

from 16.34 s for the disk-based solution to 2.22 s for the in-memory one (an 86%).
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Figure 4.5: Evacuation time (in seconds) in Pluton N1.
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Figure 4.6: Evacuation time (in seconds) in Pluton N2.

Overhead

The total execution times of the NPBs were measured to analyze the overhead in-

troduced by the migration solutions. Figures 4.7 and 4.8 show the original execution

times (line labeled Execution time referenced to the right axis) and the overheads in

percentages of the memory-based (Memory bars) and disk-based (Disk bars) pro-

posals for 16 and 32/36 processes in Pluton N1 and Pluton N2 respectively and

migrating 8 processes. Note that the highest overheads are due to small execution

times and large checkpoint files. As expected, the in-memory migration approach is

always faster than the migration via hard disk. The benefit is more pronounced for

fast networks and applications with large checkpoint files. For instance, for the FT
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Figure 4.7: Overhead migrating 1 node (8 processes) in Pluton N1.
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Figure 4.8: Overhead migrating 1 node (8 processes) in Pluton N2.

application in the Pluton N2 with 16 processes the overhead decreases from 31.26 s

to only 2.47 s.

4.3. Splitting in-memory checkpoint files

Despite the reduction in the checkpoint file size obtained with the live variable

analysis and the zero-block exclusion techniques analyzed in Chapter 2, and the

in-memory optimization described in previous section, write/read of processes state

continues to be the main cause of overhead in the migration operation.

In the proposal described in the previous section the writing of the state file, the
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transfer of this file to the new process and the read and recovery of the saved state

are executed in a sequential way. When the size of the checkpoint files is large, the

time due to the serialized execution of these three phases may become unreasonable.

To reduce this time, these three steps could be executed in a pipeline fashion [76].

To that end, the checkpoint files are split into multiple smaller files so that the new

process can start with the read step while the original process continues to write

other checkpoint fragments. In this way, the time that the new process has to wait

to begin the restart operation is shortened, thus reducing the whole time of the

migration operation. Moreover, less memory storage is required, since only those

fragments that are being written and transferred in each step need to be temporarily

stored.

The following subsections describe the structure of the checkpoint files generated

by CPPC and how these files are split to make the pipeline operation possible.

4.3.1. Splitting the checkpoint files

In CPPC, checkpoint files are stored using HDF5 [85], a data format and as-

sociated library for the portable transfer of graphical and numerical data between

computers. HDF5 files consist of two primary types of objects: groups and datasets.

An HDF5 group is a container structure which can hold datasets and other groups.

An HDF5 dataset is a multidimensional array of data elements. Both types support

metadata. Any HDF5 group or dataset may have an associated attribute list, which

is a user-defined HDF5 structure that provides extra information about an HDF5

object.

CPPC checkpoint files contain not only the relevant data needed to continue with

the execution, but also all the context information needed for the correct restart

of the application. They are hierarchically structured using HDF5 as depicted in

Figure 4.9. Each state file is divided in two different parts: a metadata section and

an application data section. The metadata section consists of three main parts, a

dataset called Header and two groups: FileMap and Context. The dataset Header

contains information about the checkpoint file, such as the compression type. The

FileMap group records all the files opened during the execution. The Context group

keeps track of execution context changes. Each context object represents a call
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to a procedure, and contains the information required for recovering data in that

procedure scope. Contexts can contain subcontexts, created by nested calls to the

same or other procedures. This hierarchical representation allows for the sequence

of procedure calls made by the original execution to be recreated upon restart. In

this way, the application stack is rebuilt, and the relevant state is recovered inside

its appropriate scope. Finally, the application data section contains the MemBlocks

group, which includes the value of all the registered variables. This group contains a

subgroup, henceforth referred to as MemoryBlock, for each variable. Each subgroup

includes one or more datasets. The MemBlocks group is the largest portion of the
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checkpoint file.

Considering the CPPC restart operation, the checkpoint files are split into two

main parts. The first part includes three objects: Header, FileMap and Context.

Once the new process receives this part, it can begin to rebuild the application stack

and open the necessary files. Thus, this first part is transferred in a single fragment.

Although the size of this fragment depends on the application, and, more specifically,

on the context changes of the application, it is always negligible compared to the

total checkpoint file size (inferior to 1% for all the applications used in this chapter).

The second part contains the object MemBlocks, which represents the bulk of the

checkpoint file. This part, in turn, can be split in multiple chunks. The maximum

size of each chunk can be specified into the CPPC configuration file. Its default

value is set to 64 MB, that demonstrated a good cost/efficiency relation in the

experimental tests. Attending to the maximum size of each chunk, the MemBlocks

group will be split at a different structure level:

MemoryBlock level, when the MemBlocks group is split into two or more files,

each one containing one or more MemoryBlocks.

Dataset level, if a MemoryBlock contains several datasets, it can be split by

grouping one or more datasets in different files.

Element level, when each dataset is divided into two or more chunks. In this

level, when a dataset represents a block of zeros, it will never be split, since,

thanks to the zero-blocks exclusion technique applied by CPPC, it will only

contain one element.

When the splitting is done at dataset or element level, some extra information

has to be added to allow the new process to restore the MemoryBlock accurately.

This information is inserted in the checkpoint file using three new defined HDF5

attributes:

isNotFirstChunk, associated with de group Content, indicates that this Mem-

oryBlock has already been created. Therefore, during restart, the new process

should search for it rather than create a new one.
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Figure 4.10: CPPC migration with pipelined write-transfer-read steps

FragmentTotalElements, included only in the first fragment of a fragmented

dataset, it indicates total number of items in the dataset and it is used by the

new process to allocate memory for the complete dataset.

PositionOfFragment, indicates the starting position of the elements in the

dataset. This attribute is included in all dataset chunks except for the first.

4.3.2. Implementation issues

To implement the overlap in writing, transfer and read phases of the migration

process, the CPPC migration operation seen in Section 4.2 (see Figure 4.1) is mod-

ified as shown in Figure 4.10. Negotiation phase remains unchanged. However, the

spawn of the new process and the reconfiguration of communicators is brought for-

ward at the beginning of the operation. In this way, the original process is able to

send the different chunks, step by step, instead of sending the complete state file at

the end.

Additionally, the CPPC writing layer (see Figure 4.2) is modified to split the

MemoryBlocks complying with the chunk size specified in the CPPC configuration

file and to add the HDF5 attributes commented in previous subsection. Now, every

time a MemoryBlock is dumped, the writing function checks whether it should be

split at dataset level, or even at element level. The new writing layer is depicted in

Figure 4.11. The process state is stored chunk by chunk to memory using the HDF5

core driver. Then, a buffered copy of each chunk is sent through the network to the

newly spawned processes using the MPI library. In each step, HDF5 starts to dump
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Figure 4.11: Modification of the CPPC writing layer

the next chunk at the same time that the chunk copied into the buffer is sent to the

new process. Thus, the memory overhead is twice the chunk size.

The CPPC reading function is also modified. Now, whenever a chunk is read, it

is necessary to check if the MemoryBlock has been split, and at which level. If it

has been split, CPPC checks whether it is the first chunk or not. In the first case,

space for the whole MemoryBlock will be reserved. In the second case, the position

of that chunk in the MemoryBlock is stated.

After the checkpoint file is read, the memory addresses for the registered variables

will be back-calculated to point to the addresses containing its data. Therefore, the

memory used to store the transferred chunks will be the final memory used by

the restored variables, and there will be no memory overhead in the new spawned

process.

Finally, the blocking MPI communications used for the transfer of the checkpoint

files in the previous version [19, 20] are replaced by non-blocking MPI calls so that

they can be overlapped with writing and reading steps.

4.3.3. Experimental evaluation

This section explores the efficiency of the proposed solution in Pluton N2. The

MPI implementation used was OpenMPI v1.6.4.
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Figure 4.12: Checkpoint file size and memory consumption per process in a 32-
process execution (in GB).

The application testbed is composed of the same six out of the eight applications

in the NPBs shown in the previous section in this chapter. For all the executions,

the benchmark size used in this section is class D.

All the experiments were carried out using 32 processes in 2 nodes (except BT

and SP that need a square number of processes and, thus, they were executed with

36 processes using a third node). The experiments were focused on the performance

evaluation both in terms of reduction in memory consumption and reduction in

migration time with respect to the previous CPPC version. The experiments were

designed so that, for each application, the migration were triggered always at the

same point for all the executions.

Memory consumption

One of the most valuable goals associated with the proposed solution is that it

requires considerably less memory space than the serialized classical version, which

might be decisive to assure the feasibility of the migration.

Figure 4.12 shows the results of memory consumption per process for a 32-process

execution of: an execution without migration (Mig. free); an execution performing
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Figure 4.13: Memory consumption (in GB) per node (16 cores) in a 32-process
execution when different number of the 16 processes per node are migrated.

one migration based on dumping the complete checkpoint file into memory before

transferring it to the new spawned process (In-memory); and an execution perform-

ing one migration where the checkpoint file is split and the write, transfer and read

phases are overlapped (Split). The increase in memory consumption during the mi-

gration is due to the memory requirements to save the state file. In the previous

non-split version, the increase in the memory consumption is according to the size of

the checkpoint file per process (shown also in this figure). When the splitting tech-

nique proposed in this paper is applied, only the checkpoint data that corresponds

with the segment that is being written or read at that moment need to be stored.

In the experiments shown in this figure a chunk size of 64 MB (the default value)

has been used. In this case, the actual memory requirements are double that of

the segment size, since, as commented in Section 4.3.2, while a copy of the written

segment is being transferred, another segment begins to be dumped in the HDF5

buffer.

Note that the increase in memory consumption only arises in those processes

that are being migrated. Thus, the memory consumption per computational node

depends on the number of migrating processes in each node. Figure 4.13 shows the

memory consumption per node when different number of processes are migrated.

The system used has 64 GB of RAM per node which means that FT (class D) ap-

plication cannot be migrated using in-memory storage unless the splitting technique
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is employed. Therefore, the savings in memory consumption is particularly relevant

because, as illustrated in next subsection, if the size of the complete checkpoint file is

too large to fit into memory, the pipeline solution allows for avoiding the use of disk

storage that would represent a significant bottleneck in the migration operation.

Migration time

The migration time is the execution time between the migration request and the

completion of the restart operation in the new process. For the previous version,

the migration time is broken down into 5 parts (see Figure 4.1):

Negotiation: execution time between the mpirun migration request and the

arrival to the migration point.

WriteCkpt : time required for the checkpoint writing in memory.

Spawn: execution time of the spawn function and the reconfiguration of the

communicators.

TransferRead : time required for the transfer of the checkpoint files and the

read of these files in the newly spawned processes.

Restart : time required for the restart of the application once the checkpoint

files have been read. It includes the execution of the RECs, as explained in

Section 1.2.

Figure 4.14 shows the migration time in the previous CPPC approach in a 32-

process execution when all the processes of a node (16 processes) are migrated. The

breakdown of the migration time shown in the figure corresponds to the slowest

migrating process.

The contributions having the most impact on the migration overhead are: Write-

Ckpt, and TransferRead, despite the fact that checkpoint files are stored in memory.

Note that the migration using the original approach in FT cannot be performed

in-memory (see Figure 4.13), and disk storage is used instead, thus, significantly

increasing the WriteCkpt and TransferRead times.
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Figure 4.14: Migration time in the in-memory CPPC version in a 32-process execu-
tion when 16 processes are migrated.

In the new proposal WriteCkpt is overlapped with TransferRead in order to

reduce the migration times and it will be labeled as WriteTransferRead in the fo-

llowing figures. It corresponds to the time between the end of the reconfiguration

phase in the newly spawned processes and the actual restart (see Figure 4.10). Note

that the maximum improvement that can be achieved with the pipeline proposal is

limited by the minimum between the WriteCkpt time and the TransferRead time in

the in-memory one.

Subsequent subsections show the improvements obtained in the write-transfer-

read times with the split approach in function of: (a) the number of processes that

migrate from one node, and (b) the chunk size considered.

(a) Impact of the number of migrating processes

Note that the most realistic situation would be that in which several processes in

one node have to be migrated (if the node is overloaded), or even the whole node

needs to be migrated (if the node is about to fail). Figure 4.15 shows the results

for each benchmark using 32 processes and migrating 4, 8 and 16 processes from

the same node. The times shown in the figure correspond to the slowest migrating

process.

The amount of data to be dumped into the node memory and to be transferred

through the network increases with the number of migrating processes. Therefore,
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Figure 4.16: Times of the WriteTransferRead step of the split CPPC version for
different chunk sizes.

the overhead of the WriteCkpt and TransferRead phases in the previous approach,

and the WriteTransferRead step in the split solution increases when the number of

migrating processes per nodes grows.

The new approach outperforms the previous one in all the cases. The overall

improvement achieved with the split approach becomes bigger when the number

of migrating processes per node grows, since the contribution of the WriteCkpt

and TransferRead phases in the in-memory approach also increases. Particularly

significant is the case of FT, because in the previous version the checkpoint files

have to be written to disk due to insufficient memory.

(b) Impact of the chunk size

The impact of the chunk size in the WriteTransferRead time is analyzed in this

section. Figure 4.16 shows the WriteTransferRead times for each benchmark running

32 processes and migrating 16 processes from the same node, for chunk sizes from

16 to 256 MB. The times for FT with a chunk size of 256 MB are not shown as there

is not enough memory to store that chunk size.
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The biggest improvement have been obtained mainly using intermediate chunk

sizes, being 64 MB (the default value) the optimal value in most of the experiments.

For smaller chunks the migration time is higher because more messages are needed,

and, thus, the transfer overhead is bigger. On the other hand, when the chunks

are larger, the overlap between writing and reading is smaller, since the writing of

the first chunk and the reading of the last one cannot be overlapped. Regardless,

the sum of the WriteCkpt and the TransferRead in the previous CPPC approach

is always larger than the WriteTransferRead times of the pipeline version for all

the chunk sizes considered. Thus, the new proposal reduces the write-transfer-read

times in all the cases.

4.4. Related work

A significant part of the overhead in a checkpoint-based migration approach

is the long time required to write and read the checkpoint files. Techniques to

reduce the checkpoint file size present in the literature, such as data compression

of the checkpoint files [51, 69], or memory exclusion [68], could be used to improve

migration solutions.

Another way to optimize the I/O cost of migration based on checkpointing is

to overlap the I/O operations. In [66] a pipelined process migration with RDMA

is presented. The proposed protocol pipelines checkpoint writing, and checkpoint

transfer and read using data streaming through RDMA transport.

Other recent solutions focus on the use of non-volatile memory technology, such

as solid-state disks (SSDs) [52], to store checkpoint data. SSDs offer excellent read-

/write throughput when compared to secondary storage and thus they can help

reduce disk I/O load.

4.5. Concluding remarks

The main drawback of checkpoint-based migration is its high overhead, in terms

of I/O cost. To overcome this issue this chapter proposes two optimizations: transfer
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HDF5 checkpoint files directly to the remote memory without storing them to stable

storage; and split the checkpoint files into multiple smaller files, in order to overlap

the writing of the state in the terminating processes with the read and restarting

operation in the newly spawned processes.

The in-memory approach moves the bottleneck of the system to the network

bandwidth, reducing, in all cases, the overhead and the evacuation time. The ob-

tained benefits are more significant for fast networks. The main issue concerning

the in-memory migration is the high overheads in terms of memory consumption.

Experimental results also prove the efficiency of the splitting solution, both in

terms of reduction in memory consumption and I/O migration times. The solution

proposed conserves the hierarchy of checkpoint files used in the original version,

preserving the most important feature of the CPPC framework, the portability.

The reduction in migration time is always worthwhile, but it becomes of partic-

ular importance in solutions where the migration of processes are used to prevent

application failures proactively, i.e., the processes are migrated away from those

nodes that are about to fail. Also, the reduction in memory consumption, when the

application presents very large checkpoint files, allows for avoiding the use of disk

storage that would inflict a significant penalty in the migration time. Proposals like

this one, that aims to reduce the overhead of the migration operation, can make a

difference when determining whether the migration operation is viable or not.





Chapter 5

Checkpoint-based virtual

malleability

This chapter presents a proposal, based on checkpointing, to automatically trans-

form MPI applications into malleable applications, that is, parallel programs that

are able to adapt their execution to the number of available processors at runtime.

The proposal includes a mapping algorithm to reschedule processes on available

nodes.

5.1. Introduction

The resources availability of large-scale distributed systems may vary during a

job execution, making malleable applications specially appealing. Malleable jobs

provide important advantages for the end users and the whole system, such as

higher productivity and a better response time [7, 41], or a greater resilience to

node failures [30]. These characteristics will allow improving the use of resources,

which will have a direct effect on the energy comsuption required for the execution

of applications, resulting in both cost savings and greener computing.

Most MPI applications follow the SPMD programming model and they are exe-

cuted in HPC systems by specifying a fixed number of processes running over a fixed

number of processors. The resource allocation is statically specified during job sub-

85
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Figure 5.1: Steps in the reconfiguration operation: (1) Negotiation to select a single
safe location to trigger the reconfiguration; (2) Scheduling algorithm to decide the
processes to be migrated and the new allocations; (3) Spawning of new processes and
reconfiguration of the communicators; (4) Checkpointing of the migrating processes;
(5) Sending of the checkpoint files; (6) Recovering the state from the checkpoint files;
and (7) Execution of the RECs. Steps (4) to (6) are partially overlapped.

mission, and maintained constant during the entire execution. Thus, applications

are unable to dynamically adapt to changes in resource availability.

The objective of this chapter is to transparently transform MPI applications

into malleable jobs that are capable of adapting their executions, without user or

system interaction, to changes in the environment. The proposed solution is based

on process migration [16]. If a node becomes unavailable, the processes on that

node will be migrated to other available ones, overloading nodes when necessary.

To achieve this aim the application should: (a) be aware of the changes and trigger

the reconfiguration operation; (b) autonomously decide which processes should be

migrated and their new appropriate node allocations; and (c) migrate processes.

The main steps of the reconfiguration process are depicted in Figure 5.1. The

following sections describe the main new components of the proposed solution: the

triggering of the reconfiguration operation; and the scheduling algorithm imple-

mented to allow the application to decide which processes should be moved and to

which target nodes. The migration operation will be performed using the pipeline

in-memory approach described in Chapter 4.
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5.2. Triggering the reconfiguration operation

The reconfiguration operation will be triggered when a change in the availability

of the resources occurs. This proposal relies on a monitoring system that provides

dynamical information about the available resources. The reasons why a node be-

comes available/unavailable are varied. For instance, malleable jobs could be used

in a fault tolerance context to preemptively migrate processes from processors that

are about to fail, or in a non-dedicated environment to release nodes to be used

for a higher priority user. The monitoring information could be provided to the

running application through different methods. There are in the literature many

proposals for different environments and objectives [4, 56, 67, 72, 79]. For this work

we assume that an availability file is set up for each malleable MPI job. This file

contains the names of all the nodes that are likely to execute the MPI job together

with their number of available cores. The format of this file may be as simple as

hostname:numCores. If a node becomes unavailable, its number of cores will be set

to zero.

The MPI application will be aware of changes in the availability of the resources

through a periodical polling to the availability file. A change in this file activates a

flag in the CPPC controller to change to migration mode and to start the reconfig-

uration of the execution. The same negotiation protocol explained in Section 3.2.1

is used to select a single safe location to trigger the reconfiguration protocol.

5.3. Scheduling algorithm

Once the MPI processes reach the negotiated reconfiguration location, and pre-

vious to the start of the migration operation, the processes to be migrated and their

mapping to the available resources need to be selected.

5.3.1. Monitoring communications

To be able to migrate the process efficiently, it is important to have a pre-

cise knowledge of the application behavior. In particular, as will be shown in the
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next section, the affinity between the processes needs to be known so as to map

those with a high communication rate as close as possible. To this end, a dynamic

monitoring component included in OpenMPI is used1. It is integrated in an MCA

(Modular Component Architecture) framework called pml (point-to-point manage-

ment layer). This component, if activated at launch time (through the mpiexec

option --mca pml monitoring enable), monitors all the communications at the

lower level of OpenMPI (i.e. once collective communications have been decomposed

into send/recv communications). Therefore, contrary to the MPI standard profiling

interface (PMPI) approach where the MPI calls are intercepted, the actual point-to-

point communications that are issued by OpenMPI are monitored, which is much

more precise.

Internally, this component uses low-level process id and creates an associative

array to convert sender and receiver ids into ranks in MPI COMM WORLD. Therefore,

it is oblivious to communicator splitting and merging. Each time a message is sent,

the sending process increment two arrays: the number of messages and the size

(in bytes) sent to the receiver. Moreover, there are two temporary arrays (one for

number of messages and one for communication size) used to monitor communication

between two specified points in the application. Therefore, the memory overhead

of this component is 4 arrays of N x 64 bits items, where N is the number of MPI

processes. Several callback functions are made available at the application level to

gather the internal state of the monitoring. Therefore, at any moment, it is possible

to know the amount of data exchanged between two pairs of processes since either

the beginning or a given point of the application. It is also possible to gather all the

local view onto a given process to get the full communication matrix.

5.3.2. Mapping processes to cores

To optimize the mapping of processes to cores, TreeMatch [46] and Hwloc [6] are

used. TreeMatch is an algorithm that obtains the optimized process placement based

on the communication pattern among the processes and the hardware topology of

the underlying computing system. It tries to minimize the communications at all

1This monitoring component was developed by the Runtime team in the INRIA Bordeaux
research centre. It is under review by the OpenMPI consortium and is planed to be released this
year. A prototype is available on the OpenMPI github platform.
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Figure 5.2: TreeMatch example. Figure provided by Emmanuel Jeannot from the
Runtime team in the INRIA Bordeaux research centre.

levels, including network, memory and cache hierarchy. It takes as input both a

matrix modeling the communications among the processes, and a representation of

the topology of the system. CPPC obtains the matrix dynamically just before the

scheduling algorithm is triggered using the monitoring component explained in the

previous section. The topological information is provided by Hwloc (represented as

a tree) and it is also obtained dynamically during application execution. TreeMatch

returns as output an array with the core ID that should be assigned to each process.

An example of the output of TreeMatch is given in Figure 5.2. On the left, a

communication matrix representing the affinity between processes is given as input.

The darker the dot the higher the communication volume and hence the affinity.

TreeMatch computes the permutation of the processes such that the cores with high

affinity are mapped close together on the tree representing the target topology. In

this example, the permutation sigma says that process 0 is mapped on core 0, process

1 on core 2, 3 on 8, . . . , 9 on 3, etc. Thanks to this new mapping, processes 1 and

9, with a high communication rate, are mapped very close to each other. This can

be seen on the right when the permutation sigma is applied to the communication

matrix.

An interesting feature of TreeMatch is that the topology given as an input can

be a real machine topology or a virtual topology designed to separate groups of

processes into clusters such that communication within clusters are maximized while
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communication outside the clusters are minimized.

TreeMatch focuses on minimizing the communication cost in a parallel execu-

tion. Thus, if TreeMatch is directly applied to find the processes mapping during a

reconfiguration phase, it could lead to a complete replacement of all the application

processes. This would involve unnecessary process migrations and, thus, unneces-

sary overheads. To avoid this behavior, a two-step mapping algorithm was designed.

The first step decides the number and the specific processes to be migrated. The

second step finds the best target nodes and cores to place these processes.

Step1: identify processes to migrate. A process should be migrated ei-

ther because it is running in nodes that are going to become unavailable, or

because it is running in oversubscribed nodes and new resources have become

available. To know the number of processes that need to be migrated all pro-

cesses exchange, via MPI communications, the node and core in which they

are currently running. Then, using this information, each process calculates

the current computational load of each node listed in the availability file as-

sociated to the application. A load array is computed, where load(i) is the

number of processes that are being executed in node ni. Besides, each process

also calculates the maximum number of processes that could be allocated to

each node ni in the new configuration:

maxProcs(i) =

⌈
nCores(i)× N

nTotalCores

⌉
where nCores(i) is the number of available cores of node ni, N is the number

of processes of the MPI application, and nTotalCores is the number of total

available cores. If load(i) > maxProcs(i) then load(i) − maxProcs(i) pro-

cesses have to be migrated. If the node is no longer available, maxProcs(i)

will be equal to zero and all the processes running in that node will be identified

as migrating processes. Otherwise, TreeMatch is used to identify the migrat-

ing processes. The aim is to maintain in each node the most related processes

according to the application communication pattern. Figure 5.3 illustrates

an example with two 16-core nodes executing a 56-process application in an

oversubscribed scenario. When two new nodes become available, 12 processes

per node should be migrated to the new resources. To find the migrating pro-
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Figure 5.3: Step 1: identifying processes to be migrated. Virtual topology built
to migrate 12 processes from a 16-core node where 28 processes are running (16
processes remain and 12 processes migrate).

cesses in each oversubscribed node, a virtual topology that models two nodes is

built: one simulates the node for non-migrating processes, with maxProcs(i)

cores, and the other one simulates a target node for migrating processes, with

load(i) − maxProcs(i) cores. TreeMatch uses this virtual topology, and a

sub-matrix with the communication pattern between the processes involved,

to identify the processes to be migrated, that is, those mapped to the second

virtual node.

Step 2: identify target nodes. Once the processes to be migrated are

identified, CPPC has to find the target nodes (and the target cores inside the

target nodes) to place these processes. To find the best placement for each

migrating process, CPPC relies again on TreeMatch. It uses a sub-matrix

with the communication pattern of the migrating processes, and a virtual

topology built from the real topology of the system but restricted to use only

the potential target nodes in the cluster. The potential targets are those nodes

that satisfy load(i) < maxProcs(i). They can be empty nodes, nodes already

in use but with free cores, or nodes that need to be oversubscribed. Since

TreeMatch only allows the mapping of one process per core, if there are no

sufficient real target cores to allocate the migrating processes, CPPC will build

the virtual topology simulating maxProcs(i)− load(i) extra cores in the nodes

that need to be oversubscribed. Figure 5.4 illustrates the second step of the

algorithm for the same example of Figure 5.3. In this example, the virtual

topology used consists of the new available nodes in the system, two 16-core
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Figure 5.4: Step 2: identifying target nodes. Topology built to map the migrating
processes selected in step 1 to the empty cores in the system.

nodes to map the 24 processes. After executing TreeMatch, CPPC knows

the target cores and therefore, the target nodes for the migrating processes

obtained in the step 1.

Once the mapping of migrated processes to available resources is decided, the

migration operation can start. The processes to be migrated write their state to

checkpoint files and terminate their execution, while newly spawned processes read

these files and recover the state of the terminating ones. To minimize the overhead

associated to the I/O operations needed for the migration, the pipeline in-memory

technique seen in Chapter 4 is used. Note that initially, the newly spawned processes

are not bound to any specific core. The TreeMatch assignment is sent to the new

processes together with the checkpoint file and CPPC performs the binding via the

Hwloc library.

5.4. Experimental evaluation

This section aims to show the feasibility of the proposal and to evaluate the cost

of the reconfiguration whenever a change in the resource availability occurs. Pluton

N2 cluster described in Section 2.6 was used to carry out these experiments.

The application testbed is composed of six out of the eight applications in the

NPB. For all the executions the benchmark size used was class C. The Himeno
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Figure 5.5: Testbed scenarios

benchmark [45] was also tested. Himeno uses the Jacobi iteration method to solve

the Poissons’s equation, evaluating the performance of incompressible fluid analysis

code, being a benchmark closer to real applications.

The MPI implementation used was OpenMPI v1.8.1 [64]. The mpirun environ-

ment has been tuned using MCA parameters to allow the reconfiguration of the MPI

jobs. Specifically, the parameter orte allowed exit without sync has been set to

allow some processes to continue their execution when other processes have finished

their execution safely. The parameter mpi yield when idle was also set to force

degraded execution mode and, thus, to allow progress in an oversubscribed scenario.

To evaluate the feasibility of the proposed solution and its performance, different

scenarios have been forced during the execution of the applications. Figure 5.5

illustrates these scenarios and displays the representation of the iteration time over

the timeline. The applications were initially launched in a 64-process configuration
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running on 4 available nodes of the cluster (16 cores per node). Then, after a time,

one of the nodes becomes unavailable. In this scenario, the 16 processes running on

the first node should be moved to the empty node, and the application execution

continues in a 4 node configuration. After a while, the 4 nodes where the application

is running start to become unavailable sequentially, first one, then another, without

spare available nodes to replace them, until only one node is available and the 64

processes are running on it. Finally, in a single step, the last node fails but 4 nodes

become available again, and the processes are migrated to return again to using 4

nodes. In all benchmarks the CPPC compiler automatically detects a safe point at

the beginning of the iteration of the main loop of the application. Thus, this will be

the point where reconfiguration will take place. To demonstrate the feasibility of the

solution, the iteration time was measured across the execution in those scenarios.

Measuring iteration time allows us to have a global vision on the instantaneous

performance impact.

Figure 5.6 shows the benchmarks results in the scenarios illustrated in Figure 5.5.

These results demonstrate that, using the proposed solution, the applications are

capable of adjusting the execution to changes in the environment. The high peaks

in these figures correspond to reconfiguration points. As shown in Figure 5.1, the

iteration time when a reconfiguration is performed can be broken down into the

following stages:

Negotiation: execution time of the negotiation protocol used to reach consen-

sus on the reconfiguration point.

Scheduling : execution time of the scheduling algorithm to identify processes

to be moved and target nodes.

Spawn&Rec: execution time of the spawn function and the reconfiguration of

the communicators.

ChkptTransf&Recv : average time to write the checkpoint files in the terminat-

ing processes, transfer them to target nodes, and read them in newly spawned

processes.

Restart : average time to complete the restart of the application once the

checkpoint files have been read. It includes the execution of RECs.
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Figure 5.6: Iteration execution times in the scenarios illustrated in Figure 5.5
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Figure 5.7: Detailed iteration times in BT and FT benchmarks. Note the variation
in the Negotiation times.

Compute: the computational time of the iteration where the reconfiguration

takes place.

Figure 5.7 illustrates detailed iteration times for BT and FT benchmarks, break-

ing down the overhead of the iterations involved in a reconfiguration operation into

the aforementioned 6 parts. For comparison purposes, the compute times that would

be attained if the application could adjust its granularity to the available resources2,

instead of oversubscribing them without modifying the original number of processes

2This time is measured executing the application with different number of processes depending
on the hardware available (16 processes version when only 1 node is available, 32 processes version
when 2 nodes are available, etc.)
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Table 5.1: Execution time (s) of the reconfiguration phases.
NPB applications

scenarios BT CG FT LU MG SP Himeno

Negotiation

4→4 0.88 1.18 0.01 1.08 0.93 0.94 1.12
4→3 0.80 0.85 0.01 0.86 0.94 0.81 0.90
3→2 0.88 0.89 0.14 0.53 0.94 0.86 0.95
2→1 1.06 1.11 0.02 1.15 1.07 1.04 1.09
1→4 1.86 1.94 0.02 1.90 1.88 1.87 1.95

Spawn&Rec

4→4 1.32 1.18 1.44 1.61 1.28 1.29 1.13
4→3 1.15 1.18 1.11 1.08 1.09 1.14 0.99
3→2 1.43 1.43 1.32 1.31 1.35 1.59 1.48
2→1 2.23 2.14 2.14 2.17 2.38 2.07 2.12
1→4 3.27 3.19 3.25 3.28 3.20 3.22 3.23

ChkptTransf
&Recv

4→4 0.35 0.10 0.39 0.16 0.44 0.39 1.44
4→3 0.37 0.11 0.43 0.18 0.42 0.40 1.59
3→2 0.48 0.14 0.47 0.21 0.54 0.54 1.96
2→1 0.75 0.23 0.84 0.36 0.84 0.93 2.92
1→4 1.01 0.28 1.41 0.47 1.41 1.06 4.96

Restart

4→4 0.15 0.01 0.04 0.01 0.04 0.12 0.25
4→3 0.05 0.01 0.20 0.02 0.03 0.08 0.46
3→2 0.24 0.01 0.26 0.02 0.03 0.30 0.47
2→1 0.36 0.02 0.41 0.02 0.06 0.30 0.57
1→4 0.36 0.01 0.41 0.01 0.03 0.29 0.45

are also shown (black line). The overhead that would introduce the data distribu-

tion needed to adjust the application granularity is not shown in the figure. The

computational time of the iteration involved in the reconfiguration is higher than

the computational time of the rest of the iterations. This is in part due to the cache

misses caused by the data movement, and in part due to an overhead observed in

the first MPI communication after the communicators are reconfigured. The largest

contribution to the reconfiguration overhead is due to the Spawn&Rec step. Ta-

ble 5.1 details the main impacting steps in the reconfiguration overhead for all the

NPB applications.

The Negotiation phase depends on the application as in this phase MPI one-sided

communications are used and the progress of these remote operations is affected by

the MPI calls inside the application. These times could be lower using other MPI
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Table 5.2: Scalability of the Spawn&Rec step vs total number of processes in the
application.

Number of total processes
NPB 16 32/36 64 128/121

BT 0.97 0.99 1.32 1.57
CG 0.98 1.01 1.18 1.79
FT 0.96 1.07 1.44 1.75
LU 1.00 1.01 1.61 1.89
MG 1.02 1.01 1.28 1.63
SP 0.99 1.00 1.29 1.72

Himeno 0.99 1.01 1.13 1.96

implementations and/or computer architecture [18].

The time spent in the spawn function depends on the number of spawned pro-

cesses and the degree of oversubscription. The more processes to be migrated, the

larger the overhead of this phase. This can be observed comparing the overhead

associated to the reconfiguration from scenario 1 to scenario 2 (4 → 4), where 16

processes are moved to an empty target node, and the overhead associated with the

reconfiguration from scenario 5 to scenario 6 (1→ 4), where 64 processes are moved

to 4 empty target nodes. When target nodes are oversubscribed, the computation

time of each process is penalized and so is the Spawn&Rec phase, specially affected

due to their collective communications. This can be observed in the increase that

the overhead of the Spawn&Rec phase suffers in the reconfiguration from scenario

2 to scenario 3 (4 → 3), from scenario 3 to scenario 4 (3 → 2), from scenario 4 to

scenario 5 (2→ 1), and from scenario 5 to scenario 6 (1→ 4), where 16, 21, 32 and

64 processes are migrated each time, oversubscribing the surviving nodes. Finally,

since this phase involves different collective communications, its time depends on

the total number of processes in the application. This can be observed in Table 5.2

that shows the overhead of the Spawn&Rec step when migrating 16 processes to an

empty target node with different number of processes in the application.

The ChkptTransf&Recv step also impacts significantly in the reconfiguration

overhead. The I/O operations are recognized to be one of the main impacting

factors in the performance of migration operations, specially in those associated to

checkpoint solutions. Checkpoint file sizes are critical to minimize the I/O time. As
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Table 5.3: Transfer size (checkpoint size in MB).
Checkpoint size Total data size migrated

NPB per process 16 proc. 32 proc. 64 proc.

BT 33.15 530.45 1060.90 2121.80
CG 7.93 126.97 253.95 507.90
FT 48.09 769.50 1539.01 3078.02
LU 15.48 247.74 495.48 918.96
MG 39.26 628.19 1256.39 2512.78
SP 32.12 513.99 1027.99 2055.98

Himeno 166.71 2667.36 5334.72 10669.44

commented before, CPPC applies live variable analysis and identification of zero-

blocks to decrease checkpoint file sizes. Table 5.3 shows the checkpoint sizes per

process and the total data size transferred between nodes when migrating 16, 32

and 64 processes. The total amount of data varies between 127 MB for CG migrat-

ing a single node (16 processes) and 10.42 GB for Himeno when migrating 4 nodes

(64 processes). By means of the pipelined approach (see Section 4.3) that overlaps

the state file writing in the terminating processes, the data transfer through the

network, and the state file read in the new processes, the proposed solution is able

to significantly reduce this impact.

The Restart step is a small contributor to the reconfiguration overhead. An

important part of this time is due to the RECs associated to the negotiation proto-

col. During the negotiation phase each process specifies a memory region (window)

that it exposes to others. Since the MPI communicators of the application have

been reconfigured, at restart time the old MPI windows have to be closed and new

ones have to be created. Although not as impacting as the spawning function, the

overhead of this operation is not negligible.

Finally, the Scheduling phase, which includes the monitoring of communications

and the mapping of processes to cores, is negligible for all the NPB applications,

always being smaller than 0.1 s. For this reason, these times are not included in the

table.
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5.5. Related work

There exists in the literature two main approaches to provide malleability to

MPI applications. Virtual Malleability, where the number of processes is preserved

and the application adapts to changes in the number of resources by oversubscribing

processors; and Real Malleability, where the number of processes changes to adapt

to the number of available processors.

Regarding virtual malleability, AMPI [39] is an adaptive implementation of MPI

built on top of the CHARM++ runtime environment which supports dynamic load

balancing through processor virtualization. The computation is divided into a large

number of virtual processors, independent of the number of physical processors, the

number of virtual processors being typically much larger than of physical processors.

The runtime system takes over the responsibility for mapping virtual processors to

physical cores. Chakravorty et al. [11] propose a proactive fault tolerant solution

using AMPI. Utrera et al. [86] describe another strategy to obtain malleable MPI

applications based on the combination of moldability (a job can be executed with

different number of processes in different executions, but the number remains fixed

during the whole execution), folding (execution of processes overloading physical

cores) and co-scheduling techniques. Unfortunately it only works in shared memory

multiprocessors.

With respect to real malleability, all the proposals present in the literature

are very restrictive regarding the kind of applications they support. Only itera-

tive [24, 33, 58, 82, 87, 92] or master-slave [10, 50] applications are considered, as

the modification of the number of processes is much easier than in a general ap-

plication. Furthermore, in these approaches reconfiguration can only take place in

very specific points within the applications. This may not be a serious concern in

load balance contexts, however, for fault tolerance purposes reconfiguration points

should be selected in a much more flexible way to allow a fast reconfiguration when

needed.

The solution proposed in this chapter provides virtual malleability. It is imple-

mented at the application level, and thus it is independent of the hardware archi-

tecture, the OS or the MPI implementation used. As the number of processes is

preserved, there are no restrictions on the type of applications that can benefit from



5.6 Concluding remarks 101

this proposal.

5.6. Concluding remarks

This chapter presents an effective and comprehensive approach to achieve auto-

matic virtual malleability in MPI applications, including necessary code transforma-

tions, rescheduling, and migration capabilities. Using this proposal, applications are

capable of dynamically adapting themselves to the changing conditions of the under-

lying HPC environment, increasing application performance and system throughput.

The experimental evaluation of the proposal shows successful and efficient op-

eration, with an overhead of a few seconds during reconfiguration, which will be

negligible in large applications with a realistic reconfiguration frequency. The higher

impact in performance is observed to be due to the MPI operations involved in the

migration, specially the MPI spawn function. Future MPI-3 capabilities are ex-

pected to improve the performance of migration operations. The proposed schedul-

ing algorithm, based on TreeMatch and Hwloc, obtains well balanced nodes and

preserves performance as much as possible. The application-level nature of the

checkpoint-and-restart system provides not only good migration performance, but

also portability in heterogeneous environments.

Malleable jobs have multiple practical applications. For instance, they can be

used in a non-dedicated environment to release resources that need to be assigned

to other uses; in a fault tolerance context to implement a proactive fault-tolerant

approach through preemptive migration; or in an infrastructure with a bid-based

pricing model, as in the Amazon EC2 Spot Instances, to dynamically select the

most cost-effective option. They will be also of particular interest in future large

scale computing systems, since applications that are able to dynamically reconfigure

themselves to adapt to different resource scenarios will be key to achieve a tradeoff

between energy consumption and performance.
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High-performance computing systems tend to increase their number of proces-

sors from year to year. Failure rates depend mostly on system size and are roughly

proportional to the number of processors in a system. Thus, fault-tolerance tech-

niques need to be applied to parallel applications running in HPC environments to

guarantee computation progress.

Many fault tolerance methods for parallel applications exist in the literature,

checkpoint-recovery being the most popular. However, the dimension, heterogeneity

and dynamic nature of today’s large computer infrastructures open new research

challenges that must still be solved, requiring proposals that are scalable, to be

executed on hundreds of cores; portable, so they can deal with the heterogeneity of

the platforms; and malleable to adapt to the available resources. To this end, this

Thesis makes the following contributions:

Different optimization techniques to reduce the I/O cost of checkpointing in

application-level approaches: incremental checkpointing, zero-blocks exclusion

and data compression. The incremental checkpointing technique stores only

that data that have changed from the last checkpoint. The zero-blocks ex-

clusion avoids storing variable blocks with only zeros. Finally, the data com-

pression algorithm compresses the data before dumping it to disk. All the

techniques proposed reduce the total amount of data stored, which will be

particularly useful for parallel applications with a large number of parallel pro-

cesses, where the transference of a large amount of checkpoint data to stable

storage can saturate the network and cause a drop in application performance.

A proposal to allow the transparent migration of MPI processes when im-
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pending failures are notified, without having to restart the entire application.

The proposed solution attains: a low overhead in failure-free executions, by

avoiding the checkpoint dumping associated to rolling back strategies; a low

overhead at migration time, by means of the design of a light and asynchronous

protocol to achieve a consistent global state.

An in-memory checkpoint-based migration approach to reduce the I/O cost of

the migration processes. The in-memory migration avoids storing checkpoint

files in stable storage transferring them from memory to memory, and, thus,

it moves the bottleneck of the system to the communication network, which

in HPC systems is usually a high speed network with low latency.

A pipeline technique to overlap the different phases of the migration operation,

hiding the transferring time. The proposal consists on splitting the checkpoint

files into multiple smaller files to overlap the checkpoint file writing in the

terminating process, with data transferring through the network, and state

file read and restart operations in the new spawned processes.

A comprehensive proposal to automatically transform MPI applications into

malleable jobs. The proposed solution is based on checkpointing and migration

and it includes a scheduling algorithm based on the TreeMatch tool to move

selected processes to target nodes.

All the proposals were implemented at the application level using CPPC and

preserving its main characteristics: portability, not being locked into a particular

architecture, operating system or MPI implementation; and transparency for the

user.
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Failure avoidance in MPI applications using an application-level approach.

The Computer Journal. 57(1): 100–114, 2014.
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Future work

The proactive fault-tolerance approach presented in Chapter 3 has proved to

be useful to reduce the overhead of traditional checkpointing and rollback-recovery

solutions. Unfortunately, this proposal is not able to cope with already happened

failures. Recently, the Fault Tolerance Working Group within the MPI forum pro-

posed the ULFM (User Level Failure Mitigation) interface to integrate resilience

capabilities in the MPI 4.0. It includes new semantics for process failure detection,

and communicator revocation and reconfiguration. Thus, it enables the implemen-

tation of resilient MPI applications, that is, applications that are able to recover

themselves from failures. Nevertheless, incorporating the ULFM capabilities in al-

ready existing codes is a complex and time-consuming task.

As future work, the migration technique presented in Chapter 3 could be en-

hanced and extended to use the new functionalities provided by ULFM to trans-

parently obtain resilient MPI applications from generic MPI SPMD programs. The

solution would use ULFM to detect failures in one or more processes, whereas the

migration protocol proposed in Chapter 3 could be reused to generate new processes
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and continue the execution. This would allow to the MPI applications to recover

from failures, without stopping nor re-queuing the MPI job.
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2013.
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[73] G. Rodŕıguez, M. Mart́ın, P. González, and J. Touriño. A heuristic approach

for the automatic insertion of checkpoints in message-passing codes. Journal of

Universal Computer Science, 15(14):2894–2911, 2009.

[74] G. Rodŕıguez, M. J. Mart́ın, P. González, and J. Touriño. Analysis of
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[76] M. Rodŕıguez, I. Cores, P. González, and M. J. Mart́ın. Improving an MPI

application-level migration approach through checkpoint file splitting. In Pro-

ceedings of the 26th International Symposium on Computer Architecture and

High Performance Computing (SBAC-PAD 2014), pages 33–40, Paris, France,

2014.

[77] R. K. Sahoo, A. J. Oliner, I. Rish, M. Gupta, J. E. Moreira, S. Ma, R. Vilalta,

and A. Sivasubramaniam. Critical event prediction for proactive management

in large-scale computer clusters. In Proceedings of KDD 03, pages 426–435,

Washington, DC, USA, 24–27 August 2003.

[78] F. Salfner, M. Lenk, and M. Malek. A survey of online failure prediction meth-

ods. ACM Comput. Surv., 42(3):10:1–10:42, 2010.



118 BIBLIOGRAPHY

[79] J. M. Schopf, L. Pearlman, N. Miller, C. Kesselman, I. Foster, M. D’Arcy, and

A. Chervenak. Monitoring the Grid with the Globus Toolkit MDS4. In Journal

of Physics: Conference Series, volume 46, page 521, 2006.

[80] M. Schulz, G. Bronevetsky, and B. Supinski. On the performance of transpar-

ent MPI piggyback messages. In A. Lastovetsky, T. Kechadi, and J. Dongarra,

editors, Recent Advances in Parallel Virtual Machine and Message Passing In-

terface, volume 5205 of Lecture Notes in Computer Science, pages 194–201.

2008.

[81] R. Singh and P. Graham. Performance driven partial checkpoint/migrate for

LAM-MPI. In Proceedings of HPCS 08, pages 110–116, Québec City, Canada,
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Appendix A

Summary in Spanish

La tendencia en arquitectura de computadores hoy en d́ıa es la utilización de

grandes clusters de computación, en muchos casos heterogéneos, en los cuales los

nodos son sistemas multi/many-núcleo, siendo la mayoŕıa de las aplicaciones de

computación intensiva que se ejecutan en estos entornos programas paralelos, y más

concretamente de paso de mensajes.

En la bibliograf́ıa existen muchos métodos de tolerancia a fallos para sistemas

distribuidos, siendo el checkpoint y la replicación los métodos más populares. Sin

embargo, la dimensión, heterogeneidad y naturaleza dinámica de las grandes infra-

estructuras de computación actuales abren nuevos retos de investigación que deben

ser todav́ıa resueltos, necesitándose propuestas que sean: escalables, para poder ser

ejecutadas sobre cientos de núcleos; portables, para que puedan tratar con la he-

terogeneidad de las plataformas; y maleables, para que se adapten a la naturaleza

dinámica de las mismas. Esta tesis se centra en desarrollar soluciones de tolerancia

a fallos y maleabilidad para aplicaciones paralelas de paso de mensajes basadas en

checkpoint.

A.1. Antecedentes

Con el aumento constante del tamaño de los grandes sistemas de computación

la probabilidad de fallos en los componentes hardware también se incrementa. Para
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evitar que estos fallos causen la pérdida de la computación realizada hasta ese mo-

mento, surgen las técnicas de tolerancia a fallos, siendo el checkpointing una de las

más utilizadas. El checkpointing es una técnica de tolerancia a fallos que consiste

en almacenar periódicamente en el disco duro (u otros medios de almacenamiento

permanente) todo el estado de la computación para, en caso de fallo, poder reiniciar

la aplicación desde el último punto guardado.

Las principales caracteŕısticas a tener en cuenta a la hora de diseñar una solución

de checkpointing son:

Granularidad. Hace referencia al nivel en el que se guardan los datos de la

aplicación. En el checkpointing a nivel de sistema (o SLC) se almacena todo el

estado de la aplicación, incluyendo contadores de programa, registros, etc. Esto

se corresponde con una granularidad gruesa. La otra opción es el checkpointing

a nivel de variable (o ALC) que corresponde con una granularidad fina, donde

se guardan únicamente los datos que se corresponden con las variables que

utiliza la aplicación.

Transparencia. Se refiere a cómo los usuarios ven la técnica. Generalmente

las técnicas SLC son soluciones transparentes porque el usuario no necesita

conocer la aplicación para generar los checkpoints, simplemente se vuelca toda

la memoria a disco. Por contra, las técnicas ALC son soluciones generalmente

no transparentes, pues se necesita conocer qué variables de la aplicación es

necesario guardar en los checkpoints y cuáles no.

Portabilidad. Indica si los ficheros de checkpoint permiten reiniciar las aplica-

ciones en máquinas con hardware y/o software distintos a los de la máquina

en la que fueron generados.

Coordinación. En sistemas no coordinados cada proceso genera los checkpoints

independientemente de los demás. En los sistemas coordinados todos los pro-

cesos se coordinan para generar los checkpoints al mismo tiempo o en el mismo

punto del código.

Las soluciones propuestas en esta tesis son todas a nivel de aplicación, portables y

transparentes al usuario. Además, se evita, siempre que sea posible, la coordinación
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en tiempo de ejecución entre los procesos, o, cuando no es posible, se proponen algo-

ritmos de consenso ligeros y aśıncronos que no afecten negativamente al rendimiento

de la aplicación.

Todas las soluciones propuestas se han implementado y evaluado en entornos

reales, extendiendo para ello CPPC (ComPiler for Portable Checkpointing), una

herramienta de checkpointing a nivel de aplicación que se centra en la inserción de

tolerancia a fallos en aplicaciones de pase de mensajes.

CPPC está compuesta por un compilador y una libreŕıa. El compilador transfor-

ma una aplicación paralela en una aplicación tolerante a fallos insertando llamadas a

la libreŕıa. Mientras que la libreŕıa, ya en tiempo de ejecución, genera los ficheros de

checkpoint en función de las llamadas previamente introducidas por el compilador.

Para garantizar la consistencia, CPPC utiliza un protocolo no bloqueante coor-

dinado espacialmente. Se asume un modelo de programación SPMD y todos los

procesos generan los checkpoints en los mismos puntos de la aplicación, pero no

necesariamente al mismo tiempo. Para evitar los problemas que podŕıan causar los

mensajes entre procesos, los checkpoints se insertan en puntos seguros, es decir, en

puntos en los que no existen mensajes en tránsito ni inconsistentes. Estos puntos

son detectados automáticamente por el compilador. Los ficheros de checkpoint tie-

nen un tamaño reducido gracias a que CPPC trabaja a nivel de variable, por lo que

solo guarda las variables de la aplicación necesarias para el reinicio. Este análisis

de variables lo realiza también de forma automática el compilador de CPPC. Por

último, los ficheros de checkpoint se guardan en disco utilizando HDF5, una libreŕıa

y un formato de datos para la transferencia portable de datos gráficos y numéricos

entre computadores. Esto proporciona a CPPC la capacidad de guardar y leer los

ficheros independientemente de la arquitectura hardware y/o software subyacente,

lo que convierte a los ficheros en portables.
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A.2. Optimización de la E/S en el checkpointing

de aplicaciones paralelas

Aunque el checkpoint/restart es la solución más utilizada para proporcionar to-

lerancia a fallos a aplicaciones cient́ıficas, su coste en términos de tiempo de compu-

tación, utilización de la red de comunicaciones y ocupación de los recursos de alma-

cenamiento puede ser un serio problema para los sistemas HPC (High Performance

Computing) de grandes dimensiones.

El tamaño de los ficheros de checkpoint es el factor que más influye en el rendi-

miento de la operación de checkpointing. Cuanto más grande sea un fichero, mayor

será el tiempo necesario para almacenarlo en disco. Si se consigue disminuir el ta-

maño de los ficheros de estado, el tiempo para guardarlos y leerlos desde los sistemas

de almacenamiento será menor. Los sistemas de checkpointing a nivel de aplicación

ya presentan por śı mismos tamaños de ficheros de checkpoint menores a los sis-

temas que trabajan a nivel de sistema. Sin embargo, estos ficheros siguen siendo

demasiado grandes. En esta tesis se proponen técnicas que disminuirán el tamaño

de los ficheros, optimizando aśı las operaciones de E/S y disminuyendo la sobrecarga

de la aplicación.

Una técnica que ya aplica inicialmente el compilador de CPPC es el análisis de

variables vivas, que se encarga de seleccionar para su almacenamiento únicamente

aquellas variables de la aplicación que son necesarias para garantizar un reinicio

correcto. Las otras técnicas propuestas e implementadas en CPPC para optimizar

la E/S son: checkpointing incremental, exclusión de bloques cero y compresión de

datos.

Checkpointing incremental

Es la técnica más utilizada para reducir el tamaño de los ficheros de checkpoint

en soluciones SLC. Implica crear dos tipos de checkpoint: completos e incrementales.

Los checkpoints completos contienen todos los datos de la aplicación, mientras que

los checkpoints incrementales solo contienen aquellos datos que han sido modificados

desde el último checkpoint. Los checkpoints incrementales tendrán un tamaño me-
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nor que los completos, pues generalmente entre dos checkpoints consecutivos no se

modifican todas las variables de una aplicación. Por lo tanto, guardar un checkpoint

incremental en disco será más rápido que guardar uno completo. El mayor inconve-

niente de esta técnica surge a la hora de ejecutar un reinicio, pues será necesario no

solo leer el último checkpoint incremental, sino todos los incrementales anteriores

hasta el último completo. De esta forma el reinicio se vuelve una operación muy

costosa, pues será necesario leer más de un fichero de checkpoint por proceso. Debe

tenerse en cuenta que el reinicio será, a priori, una operación muy poco frecuente,

por lo que disponer de una técnica que genere checkpoints de forma rápida puede

resultar muy conveniente aunque el reinicio sea lento.

Hasta donde nosotros conocemos, no existe ningún sistema ALC que utilice

checkpointing incremental. A diferencia de los sistemas SLC, en las soluciones ALC

no podemos trabajar a nivel de página de memoria. En esta tesis se propone una

solución basada en el uso de funciones hash. Esta propuesta divide las variables a

guardar en bloques de un tamaño constante, y genera un valor único que identifica

a cada bloque en función de su contenido con una función hash. Para saber si un

bloque debe ser guardado en un checkpoint, es suficiente con calcular el nuevo valor

hash de ese bloque y compararlo con el antiguo. Si el hash vaŕıa, es que los datos

han sido modificados y se debe guardar el bloque. Si el hash no vaŕıa, el bloque no

ha sido modificado y no se guardará en el nuevo checkpoint incremental.

Exclusion de bloques cero

En aplicaciones cient́ıficas reales es común que muchos de los elementos en ma-

trices y estructuras tengan valores nulos o ceros, lo que conlleva grandes trozos de

memoria sin información útil. Por lo tanto, una optimización para reducir el tamaño

de los checkpoints es evitar que estos grandes bloques de memoria que solo contienen

ceros se guarden en disco.

Partiendo del checkpoint incremental descrito anteriormente es fácil identificar

los bloques cero. Antes de decidir si un bloque de datos debe ser guardado en el

checkpoint, tan solo hay que comparar el hash de dicho bloque con el valor hash de

un bloque de referencia que contiene todo ceros. Si los valores coinciden, el bloque

que está siendo analizado contendrá todo ceros y se descarta su almacenamiento
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en el checkpoint. En este caso se almacenará como metadatos una indicación para

que en el reinicio se identifique ese bloque como un bloque con ceros, y se pueda

regenerar esa sección de la memoria de la aplicación.

Compresión de datos

La última técnica que ayuda a reducir el tamaño de los ficheros de estado es la

compresión de datos. En este caso, se comprimen todos los datos a medida que se van

volcando a disco, consiguiendo disminuir el tamaño final del fichero de checkpoint.

En contrapartida, se pierde tiempo en la propia compresión. En el reinicio hay que

leer el fichero de checkpoint y descomprimirlo (gastando tiempo de CPU) antes de

guardar los datos en memoria.

Existen en la bibliograf́ıa un gran número de algoritmos para llevar a cabo la

compresión de ficheros de datos. En esta tesis se propone un nuevo algoritmo basa-

do en las caracteŕısticas particulares observadas en los ficheros de checkpoint, que

representa un compromiso entre eficiencia de la compresión y sobrecarga. Esta técni-

ca resultará más atractiva cuanto más lentos sean la red de comunicaciones y los

medios de almacenamiento permanente. En estas condiciones, generar ficheros más

pequeños compensará la posible sobrecarga causada por la pérdida de ciclos de CPU

empleados en la compresión.

A.3. Migración de procesos basada en checkpoin-

ting

En un escenario que realmente quiera sacar partido a aplicaciones con check-

pointing en caso de fallo, estos deben ser generados con una cierta frecuencia, lo

que implica una gran sobrecarga debido a la E/S. Además, tras un fallo, todos los

procesos tienen que reiniciarse desde el último checkpoint generado. Sin embargo, un

reinicio completo es innecesario, ya que muchos procesos se estarán ejecutando en

nodos de cómputo que no han sufrido ningún fallo. Por otra parte, reiniciar trabajos

conlleva otras desventajas. Primero, el trabajo debe ser reenviado a colas de ejecu-

ción, con la consecuente pérdida de tiempo. Y segundo, como la asignación de nodos
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puede variar en la nueva ejecución, los ficheros de checkpoint deberán reenviarse a

estos nuevos nodos, sobrecargando la red de comunicaciones.

Con los avances recientes en monitorización de sistemas y, por lo tanto, en la

predicción de fallos hardware, han surgido soluciones que utilizan checkpointing

para implementar poĺıticas proactivas. Esto significa que los procesos se migran de

forma preventiva a nuevos recursos en caso de detectar algún problema en los nodos

en los que las aplicaciones se están ejecutando. Una de las principales ventajas de

estas aproximaciones es que las aplicaciones aún no han fallado cuando se detecta

el problema, y solo los procesos en esos nodos necesitan almacenar su estado y

reiniciarse en otro nodo. Todo esto implica una disminución del volumen de datos

almacenados y/o volcados a disco, provocando una disminución de las operaciones

de E/S.

En esta tesis se ha extendido CPPC para permitir la migración de procesos

cuando se notifica que un fallo está a punto de ocurrir. La migración será iniciada

por una señal externa. Cuando los procesos que deben migrar reciben la señal,

guardan su estado a disco. A continuación se generan los procesos encargados de

suplir a los originales. Estos, gracias a los mecanismos de reinicio propios de CPPC,

leerán los ficheros de checkpoint y continuarán la ejecución. Un punto a destacar es

que, justo después de generar los nuevos procesos y antes de iniciar el reinicio, los

comunicadores globales encargados de gestionar las comunicaciones tienen que ser

reconfigurados. Esta reconfiguración es obligatoria porque, a nivel de comunicadores,

los procesos nuevos deben ser exactamente iguales a los que substituyen para poder

continuar comunicándose con el resto de procesos.

Para evitar problemas de consistencia, la reconfiguración de los comunicadores

se llevará a cabo en puntos seguros del código. El compilador de CPPC ya detecta

de forma automática estos puntos, facilitando por tanto la implementación de esta

aproximación. Sin embargo, no basta con llevar a cabo la reconfiguración en puntos

seguros, sino que también habrá que garantizar que todos los procesos realizan di-

cha reconfiguración en el mismo punto seguro. Se necesita, por tanto, un protocolo

de negociación que asegure que todos los procesos convergen a un único punto de

checkpoint para llevar a cabo la migración. En este trabajo se propone un algoritmo

de negociación hacia adelante de forma que todos los procesos se coordinan en la

siguiente llamada a la función de checkpointing común a todos. Desde este punto



128 Appendix A. Summary in Spanish

se podrá llevar a cabo el volcado a disco por parte de los procesos que migran, la

generación de los nuevos procesos y la reconfiguración de los comunicadores. Tras

esta reconfiguración, los procesos que no migran podrán continuar libremente su

ejecución, por lo menos hasta que lleguen a alguna comunicación bloqueante (en

caso de existir).

Se utilizaron funciones one-sided y ventanas MPI para el algoritmo de negocia-

ción, de forma que los procesos pueden continuar su ejecución de forma aśıncro-

na durante el proceso de negociación. La generación de nuevos procesos se reali-

za mediante la función MPI Comm spawn multiple, que es colectiva y bloqueante.

Además, la reconfiguración de los comunicadores necesita utilizar las funciones de

gestión de grupos y comunicadores propias de MPI-2.

A.4. Mejorando el rendimiento en la migración

de procesos

La migración de procesos basada en checkpointing hereda uno de los mayores

problemas del checkpointing, que es su dependencia de la velocidad de los sistemas

de almacenamiento. Dicho de otro modo, el tiempo de migración se ve limitado por

la escritura y lectura de los ficheros de checkpoint en disco. Esto puede tener con-

secuencias graves, pues no se debe olvidar que la migración se realiza generalmente

cuando se recibe una señal indicando que un recurso hardware está próximo a fa-

llar, por lo que la migración deberá ser lo más rápida posible. Para acelerarla, se

proponen dos optimizaciones: migración memoria a memoria y particionado de los

ficheros de checkpoint.

Migración memoria a memoria

Para reducir la sobrecarga de E/S en las migraciones, CPPC ha sido modificado

para almacenar los ficheros de checkpoint en memoria en lugar de en disco. La mayor

diferencia será que, ahora, en lugar de que los nuevos procesos lean los ficheros

directamente de disco, los procesos que van a migrar deberán enviar los ficheros de

checkpoint desde su memoria a la memoria del proceso que lo va a substituir. Este



A.4 Mejorando el rendimiento en la migración de procesos 129

env́ıo se realizará mediante mensajes MPI.

Implementar este nuevo tipo de migración en CPPC requirió realizar cambios en

la capa de escritura.

Particionado de los ficheros de checkpoint

Incluso con la migración de memoria a memoria, la escritura y lectura de los fiche-

ros de checkpoint sigue siendo la causa principal de sobrecarga en la migración. Para

reducir esta sobrecarga, en lugar de escribir todo el fichero para luego transferirlo a la

memoria remota, la solución propuesta particiona el fichero de checkpoint en múlti-

ples ficheros de menor tamaño, de forma que mientras el primer fichero está siendo

transferido, el siguiente fichero ya puede comenzar a ser creado en memoria. De esta

forma se solapan la escritura de los ficheros de estado con la transferencia y lectura

por parte del proceso nuevo.

La solución propuesta en esta tesis utiliza la libreŕıa HDF5 y respeta la jerarqúıa

de los ficheros de checkpoint utilizada en la versión original de CPPC, preservando

una de las caracteŕısticas más importantes de la herramienta de checkpoiting, su

portabilidad.

La técnica propuesta no solo permite disminuir el tiempo de migración, sino que

también permite reducir el consumo de memoria. En la versión previa de migración

memoria a memoria era necesario generar todo el fichero HDF5 en memoria para

luego enviarlo como un buffer de memoria. Al aplicar la técnica de particionado,

primero se ocupa un bloque de memoria con el primer fragmento del checkpoint

para, al mismo tiempo que este primer bloque se está enviando, ocupar otro bloque

en memoria para ir generando el segundo fragmento de checkpoint. Una vez que

el primer bloque es enviado, se libera la memoria para ser utilizada por sucesivos

fragmentos y se procede a enviar el segundo. De este modo la memoria total por

proceso nunca se incrementará en más de dos veces el tamaño de bloque, haciendo

posible migrar procesos en sistemas que no disponen de mucha memoria. Sin esta

técnica la memoria se incrementaŕıa en el mismo tamaño que ocupan los ficheros de

checkpoint, siendo en algunos casos aumentos del orden de GB.
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A.5. Maleabilidad virtual basada en checkpoin-

ting

Las aplicaciones maleables son aquellos programas paralelos que son capaces de

adaptar su ejecución al número de procesadores disponibles en tiempo de ejecución.

Existen en la literatura dos aproximaciones diferentes para proporcionar maleabili-

dad a las aplicaciones MPI. Maleabilidad Virtual, donde se preserva el número de

procesos y la aplicación se adapta a los cambios en el número de recursos repar-

tiendo los procesos entre los procesadores disponibles; y Maleabilidad Real, donde el

número de procesos cambia para adaptarse al número de procesadores disponibles.

La solución propuesta en esta tesis proporciona maleabilidad virtual.

Una vez que las aplicaciones tienen la capacidad de migrar procesos, lo único que

las separa de obtener maleabilidad virtual es la capacidad de decisión autónoma, es-

to es, decidir cuándo migrar y a qué recursos deben ir los procesos que abandonan su

actual ubicación. Para esta tarea se introducirá en CPPC un algoritmo de planifica-

ción, que analizará la localización actual de los procesos y los recursos disponibles,

para decidir si es necesario migrar y, en caso afirmativo, qué procesos migran y a

dónde.

La información de monitorización del entorno está fuera de los objetivos de esta

tesis, por lo que, a efectos prácticos, supondremos que los cambios en la disponibili-

dad se verán reflejados en un fichero de texto. Este fichero de texto contendrá todos

los nodos disponibles junto con el número de núcleos de cómputo que ofrece cada

uno. Por lo tanto, cada vez que CPPC vea un cambio en este fichero iniciará el pro-

ceso de migración de forma automática, sin intervención por parte de los usuarios.

Una vez que los procesos advierten que deben migrar, se utiliza el algoritmo de

negociación explicado anteriormente para decidir en que punto seguro se llevará a

cabo dicha migración. A continuación será necesario ejecutar el algoritmo de plani-

ficación para averiguar qué procesos tienen que migrar y los nodos de cómputo de

destino.

Un proceso puede migrar por dos motivos: que esté en un nodo que desaparece del

fichero de nodos disponibles, lo que significa que todos los procesos en ese nodo deben

abandonarlo; que su nodo esté sobrecargado y aparezcan nuevos nodos libres en el
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fichero de disponibilidad. En este último caso, algunos procesos debeŕıan migrar a los

recursos libres para equilibrar la carga, y habrá que decidir cuáles son los procesos

ideales para migrar y cuáles debeŕıan quedarse. En nuestra propuesta se realiza

una distribución de forma que los procesos que más comunicaciones intercambian

permanezcan en el mismo nodo, minimizando aśı el número de mensajes que se

intercambian entre nodos y aliviando la carga en la red de comunicaciones. Para ello

se utilizó un componente de monitorización de las comunicaciones ya existente en

OpenMPI y las herramientas TreeMatch y Hwloc para optimizar la asignación de

procesos a núcleos de ejecución.

TreeMatch es un algoritmo que obtiene el mejor emplazamiento de procesos

a núcleos basándose en una matriz de comunicaciones de la aplicación y en una

representación de la topoloǵıa hardware subyacente. TreeMatch trata de minimizar

las comunicaciones en todos los niveles, incluyendo red, memoria y jerarqúıa de

caché. Por otro lado, Hwloc permite obtener fácilmente una representación de la

topoloǵıa hardware de todo el sistema de cómputo, facilitando también la asignación

de procesos a núcleos.

El algoritmo de planificación se ha incorporado a CPPC, proporcionando una

solución completa para alcanzar maleabilidad virtual en aplicaciones MPI de forma

totalmente automática y transparente al usuario.

Conclusiones y trabajo futuro

Los sistemas de computación de alto rendimiento incrementan el número de

recursos hardware año a año. Con esta tendencia, la probabilidad de fallos también

crece, pues es proporcional al número de procesadores del sistema. Por lo tanto, es

necesario aplicar técnicas de tolerancia a fallos a las aplicaciones que se ejecutan en

este tipo de sistemas para garantizar que los programas finalicen.

La técnica de checkpointing y recuperación es el método de tolerancia a fallos pa-

ra aplicaciones paralelas más popular en la bibliograf́ıa. Sin embargo, la dimensión,

heterogeneidad y naturaleza dinámica de las grandes infraestructuras de compu-

tación actuales abren nuevos desaf́ıos que todav́ıa deben ser resueltos, requiriéndose

propuestas: escalables, para ser ejecutadas en cientos de núcleos de computo; por-
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tables, para que puedan adaptarse a la heterogeneidad de los sistemas; y maleables,

para adaptarse a la disponibilidad de los recursos. Para este fin, esta tesis hace las

siguientes contribuciones:

Diferentes técnicas de optimización para reducir el coste de E/S del checkpoin-

ting a nivel de aplicación: checkpointing incremental, exclusión de bloques cero

y compresión de datos. La técnica de checkpointing incremental almacena so-

lamente la información que ha sido modificada desde el último checkpoint. La

exclusión de bloques cero evita almacenar bloques de memoria que contengan

solo ceros. Finalmente, el algoritmo de compresión de datos comprime los datos

antes de volcarlos a disco. Todas las técnicas propuestas reducen el volumen

total de datos a guardar, que será especialmente beneficioso en sistemas con un

gran número de procesos paralelos, donde almacenar toda la información de

todos los procesos puede saturar la red y provocar una cáıda en el rendimiento

de las aplicaciones.

Una propuesta que permite la migración transparente de procesos MPI cuando

se notifican fallos inminentes, sin tener que reiniciar por completo la aplicación.

La solución propuesta tiene una sobrecarga casi despreciable en ejecuciones

libres de migraciones, ya que evita generar checkpoints con la alta frecuencia

que seŕıa necesaria en las soluciones tradicionales de checkpoint y recuperación.

Además, la sobrecarga de esta técnica en caso de fallo también es mı́nima,

gracias a un protocolo de coordinación entre procesos ligero y aśıncrono.

Una propuesta para reducir el coste de E/S de la migración de procesos basa-

da en el checkpoint memoria a memoria. La migración memoria a memoria

evita almacenar los ficheros de checkpoint en almacenamiento estable, trans-

firiéndolos directamente de la memoria del nodo inicial a la del nodo destino.

Por lo tanto, el cuello de botella se traslada a la red de comunicaciones, que,

en sistemas de computación de alto rendimiento, suele tener alta velocidad y

baja latencia.

Una técnica que permite solapar las diferentes fases del proceso de migración,

ocultando el tiempo de transferencia. La propuesta consiste en dividir los fiche-

ros de checkpoint en múltiples ficheros más pequeños, de forma que se solapa
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la escritura en memoria de los ficheros, con el env́ıo y recepción por parte de

los nuevos procesos.

Una solución para transformar automáticamente aplicaciones MPI en traba-

jos maleables. La solución utiliza la técnica de checkpointing y la migración,

junto con un algoritmo de planificación basado en TreeMatch, para mover los

procesos seleccionados a los nodos destino de forma automática y transparente.

Todas las propuestas fueron implementadas a nivel de aplicación utilizando

CPPC y manteniendo las principales caracteŕısticas de esta herramienta: transpa-

rencia para el usuario y portabilidad, al no estar asociada a ninguna arquitectura,

sistema operativo o implementación MPI.
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High-performance process-level migration of MPI applications. En Proc.

of the 2013 International Conference on Computational and Mathemati-

cal Methods in Science and Engineering (CMMSE’13). Páginas 456–466.
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Trabajo futuro

La solución de tolerancia a fallos proactiva propuesta en esta tesis consigue re-

ducir la sobrecarga de las soluciones de checkpointing y recuperación tradicionales.

Por desgracia, esta propuesta no puede manejar fallos que ya han ocurrido. Recien-

temente, el grupo de trabajo encargado de la tolerancia a fallos (Fault Tolerance

Working Group) dentro del MPI forum propuso una interfaz denominada ULFM

(User Level Failure Mitigation) para dotar a MPI 4.0 con la capacidad de adaptarse

y sobrevivir a determinados fallos. Esta interfaz incluye una nueva semántica para

la detección de fallos en procesos y la reconfiguración y anulación de comunicadores.

Por lo tanto, habilita la implementación de aplicaciones MPI resistentes a fallos,

esto es, aplicaciones que tienen la habilidad de recuperarse a śı mismas tras un fallo.

El principal problema de ULFM es que la incorporación de sus caracteŕısticas a los

códigos existentes es un proceso complejo y arduo.

Como trabajo futuro, la técnica de migración descrita en esta tesis se puede ex-

tender y mejorar para utilizar las funciones proporcionadas por ULFM y obtener

aplicaciones MPI resistentes a fallos a partir de programas MPI genéricos. La solu-

ción podŕıa usar ULFM para detectar fallos en uno o más procesos, mientras que

el algoritmo de migración seŕıa utilizado para generar nuevos procesos con los que

continuar la ejecución. Esto dotaŕıa a los programas MPI de la capacidad de recu-

perarse de fallos sin parar la ejecución y sin la necesidad de re-encolar los trabajos

MPI en el sistema.
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