

UNIVERSIDADE DA CORUÑA

Escola Politécnica Superior - Ferrol

TRABAJO FIN DE GRADO

GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

Título:

PROYECTO TÉCNICO DE DISEÑO DE UN EVAPORADOR DE 540 TON/H DE GNL

Autor:

ADRIÁN ÁLVAREZ RIOLA

Fecha:

DICIEMBRE 2015

UNIVERSIDADE DA CORUÑA

Escola Politécnica Superior - Ferrol

TRABAJO FIN DE GRADO

GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

Título:

PROYECTO TÉCNICO DE DISEÑO DE UN EVAPORADOR DE 540 TON/H DE GNL

Autor:

ADRIÁN ÁLVAREZ RIOLA

Tutor:

ALBERTO ARCE CEINOS

Fecha:

DICIEMBRE 2015

ÍNDICE GENERAL

DOCUMENTO 1: MEMORIA Y ANEXO DE CÁLCULOS DOCUMENTO 2: PLANOS DOCUMENTO 3: PRESUPUESTO

DOCUMENTO 1: MEMORIA

ÍNDICE

1.	OBJI	ETO DEL PROYECTO	1
2.	INTE	RODUCCIÓN	2
	2.1.	Características gas natural	2
	2.2.	Breve historia del gas natural	2
	2.3.	Situación actual del gas natural y perspectivas	3
	2.4.	Cadena del gas natural	4
	2.4.2	1. Extracción del gas natural	5
	2.4.2	2. Almacenamiento del gas natural	7
	2.4.3	3. Transporte de gas natural licuado	9
	2.5.	Instalaciones gasistas en España	11
	2.6.	Tipos de vaporizadores de GNL	15
	2.6.1	1. Vaporizadores atmosféricos, AAV (Ambient Air Vaporizer)	15
	2.6.2	2. Vaporizadores de tablero abierto, ORV (Open Rack Vaporizer)	15
	2.6.3	3. Vaporizadores de combustión sumergida, SCV (Submerged Combustion	
	Vapo	orizer)	16
	2.6.4	4. Vaporizadores de carcasa y tubo	17
3.	CLAS	SIFICACIÓN TEMA DE INTERCAMBIADORES DE CALOR DE CARCASA Y TUBO	19
	3.1.	Tipos de carcasa	20
	3.1.1	1. Tipo E	20
	3.1.2	2. Tipo F	20
	3.1.3	3. Tipo G	20
	3.1.4	4. Tipo H	20
	3.1.5	5. Tipo J	20
	3.1.6	6. Тіро К	20
	3.1.7	7. Tipo X	20
	3.2.	Tipos de cabezal frontal	21
	3.2.1.	Тіро А	21
	3.2.2	2. Tipo B	21
	3.2.3	3. Tipos C y N	21

	3.2.	4.	Tipo D	21
	3.3.	Тіро	s de cabezal posterior	21
	3.3.	1.	De espejo fijo	21
	3.3.	2.	De espejo flotante	21
	3.3.	3.	Tubos en U	22
4.	DIS	EÑO T	ΓÉRMICO	25
	4.1.	Mét	odo de la efectividad - NUT	25
	4.1.	1.	NUT	25
	4.1.	2.	Efectividad	26
	4.2.	Proc	cedimiento	29
	4.2.	1.	Caudal de agua necesario	29
	4.2.	2.	Temperaturas intermedias del agua	30
	4.2.	3.	Área de transferencia necesaria	31
	4.2.	4.	Diámetro de los tubos	31
	4.2.	5.	Disposición de los tubos	31
	4.2.	6.	Número de tubos y diámetro de la carcasa.	32
	4.2.	7.	Longitud de los tubos	38
	4.2.	8.	Coeficiente de transferencia de calor por convección interno	38
	4.2.	9.	Parámetros geométricos de la carcasa y el haz de tubos	44
	4.2.	10.	Coeficiente de transferencia de calor por convección externo	49
	4.2.	11.	Resistencia de ensuciamiento	53
	4.2.	12.	Comprobación del coeficiente global de transferencia de calor	54
5.	CAÍI	DA DE	E PRESIÓN	56
	5.1.	Caíd	la de presión en la carcasa	56
	5.2.	Caíd	la de presión en los tubos	58
6.	VIB	RACIÓ	ÓN DEL HAZ DE TUBOS	59
	6.1.	Ines	tabilidad fluidoelástica	59
	6.1.	1.	Velocidad de referencia	59
	6.1.	2.	Cálculo de la velocidad crítica	61
	6.2.	Desp	prendimiento de vórtices	65
7.	DIS	EÑO N	MECÁNICO	67
	7.1.	El có	ódigo ASME	67

7.2.	Las	normas TEMA	67
7.3.	Care	casa	68
7.3	.1.	Espesor por presión interna	68
7.3	.2.	Carga por viento	71
7.3	.3.	Carga combinada de la presión interna y el viento	72
7.3	.4.	Margen por corrosión	73
7.4.	Tub	905	73
7.5.	Bafl	les	74
7.5	.1.	Tipos de bafles	74
7.5	.2.	Espacio entre bafles	77
7.5	.3.	Espesor	78
7.5	.4.	Holgura entre bafle y carcasa	78
7.5	.5.	Agujeros para los tubos	79
7.5	.6.	Tirantes	79
7.6.	Esp	ejo o placa portatubos	
7.6	.1.	Tipos de uniones	
7.6	.2.	Diseño	81
7.6	.3.	Cálculo de la presión efectiva	83
7.6	.4.	Agujeros en el espejo	
7.7.	Cub	viertas del intercambiador	
7.7	.1.	Cubierta plana	
7.7	.2.	Cubierta semiesférica	93
7.7	.3.	Cubierta elipsoidal	93
7.7	.4.	Cubierta torisférica	94
7.7	.5.	Cubierta cónica y toricónica	94
7.8.	Brid	las	94
7.8	.1.	Diseño de bridas	95
7.9.	Boq	uillas	103
7.10.	V	/ibración	104
7.11.	S	oportes para intercambiadores verticales	104
7.1	1.1.	Patas	105
7.1	1.2.	Ménsula	105

	7.11	.3.	Faldón	106
8.	RES	ULTA	ADOS DEL DISEÑO TÉRMICO	111
	8.1.	Dec	isión entre operación en contracorriente y en corriente directa	111
	8.2.	Res	ultados operando en contracorriente	112
	8.3.	Vibr	ración de los tubos	113
9.	RES	ULTA	ADOS DEL DISEÑO MECÁNICO	114
	9.1.	Тірс	o de intercambiador	114
	9.2.	Card	casa	115
	9.2.3	1.	Espesor por presión interna	115
	9.2.2	2.	Espesor debido a la presión del viento	115
	9.2.3	3.	Espesor debido a la combinación de cargas	116
	9.3.	Tub	OS	116
	9.4.	Bafl	les	116
	9.5.	Espe	ejos	117
	9.6.	Can	al inferior	117
	9.7.	Cub	viertas	118
	9.7.3	1.	Cubierta inferior	118
	9.7.2	2.	Cubierta del cabezal flotante	118
	9.7.3	3.	Cubierta superior de la carcasa	118
	9.8.	Brid	las	119
	9.8.3	1.	Brida canal-carcasa	119
	9.8.2	2.	Brida espejo-cabezal flotante	120
	9.8.3	3.	Brida carcasa-cubierta	120
	9.9.	Boq	Juillas	121
	9.9.3	1.	Boquillas para el agua de mar	121
	9.9.2	2.	Boquilla gas natural	122
	9.10.	Ρ	eso y altura un evaporador	123
	9.11.	S	oporte	124
	9.12.	A	islante térmico	124
	9.13.	C	ubetos de retención	125
	9.14.	Р	intura	126
1(). CON	ICLU	SIONES	127

11.	BIBLIOGRAFÍA1	28	3
-----	---------------	----	---

ÍNDICE DE FIGURAS

Figura 1: Consumo mundial de energía primaria 2010	3
Figura 2: Distribución de las reservas mundiales de gas natural 2013, datos de Enagas	4
Figura 3: Cadena del gas natural	4
Figura 4: Perforación por percusión	6
Figura 5: Perforación rotatoria	7
Figura 6: Metanero con depósito de membrana	. 10
Figura 7: Metanero con depósito esférico	. 10
Figura 8: Mapa de las infraestructuras gasistas en España	. 14
Figura 9: Vaporizadores de GNL atmosféricos	. 15
Figura 10: Esquema de un vaporizador de tablero abierto	. 16
Figura 11: Vaporizador de combustión sumergida	. 17
Figura 12: Intercambiador de calor de carcasa y tubos	. 18
Figura 13: Vaporizador de tipo IFV	. 18
Figura 14: Clasificación intercambiadores de calor de carcasa y tubos	. 19
Figura 15: Ejemplos de tipos de intercambiadores de calor: (a) BEM, (b) CFU, (c) AJW, (d) A	۹EP,
(e) AES, (f) AKT	. 24
Figura 16: Tipos de arreglo de tubos	.31
Figura 17: Evolución del cambio de fase en un conducto vertical	. 42
Figura 18: Parámetros geométricos del haz de tubos y la carcasa	. 45
Figura 19: Espacio entre la carcasa y el haz de tubos	. 46
Figura 20: Holguras y zonas de flujo en la carcasa	. 46
Figura 21: Parámetros del arreglo de tubos	. 47
Figura 22: Factor de corrección <i>j</i> ^{<i>i</i>} para grupos de tubos ideales	. 50
Figura 23: Tiras de sellado	. 52
Figura 24: Distancias entre bafles	. 53
Figura 25: Factor de fricción para distintas configuraciones de tubos ideales	. 56
Figura 26: Tipo de sujeción de los tubos: (a) pinned-pinned, (b) fixed-pinned, (c) fixed-fixed .	. 62
Figura 27: Número de Strouhal para arreglos de tubos de 90°	. 65
Figura 28: Número de Strouhal para arreglos de tubos de 30°, 45° y 60°	. 66
Figura 29: Dimensiones del vaporizador	.71
Figura 30: Corte de los bafles	. 75
Figura 31: Cortes de bafles de doble y triple segmento	. 75
Figura 32: Flujo a través de bafles segmentados	. 75
Figura 33: Intercambiador sin tubos en la ventana	. 76
Figura 34: Bafles disco y doughnut	. 76
Figura 35: Bafles de varilla	. 77
Figura 36: Uniones entre espejo y canal	.81
Figura 37: Perímetro C para arreglo triangular y cuadrado	. 82
Figura 38: Factor F	. 83
Figura 39: Tipo de uniones de cubierta plana	. 89

Figura 40: Tipos de brida
Figura 41: Tipos de juntas: (a) junta de cara plana, (b) de cara levantada, (c) de cara empotrada,
(d) confinada, (e) junta tipo macho y hembra, (f) de anillo, (g) junta tórica
Figura 42: Dimensiones y fuerzas de una brida con cuello
Figura 43: Valores de <i>T, U, Y y Z</i> 99
Figura 44: Valores de <i>F</i> , bridas integrales100
Figura 45: Valores de V, bridas integrales101
Figura 46: Valores de $F_L y V_L$, bridas de tipo suelto
Figura 47: Valores de f103
Figura 48: Área de refuerzo requerida104
Figura 49: Soporte tipo patas 105
Figura 50: Soporte tipo ménsula 106
Figura 51: Soporte tipo faldón cilíndrico106
Figura 52: Tipos de soldadura del faldón al cabezal107
Figura 53: Deflexión 108
Figura 54: Parámetros geométricos del anillo base 110
Figura 55: Gráfico de temperaturas del evaporador en contracorriente
Figura 56: Detalle de la carcasa y el cabezal flotante 114
Figura 57: Dimensiones brida canal-carcasa 119
Figura 58: Dimensiones brida espejo-cabezal flotante
Figura 59: Dimensiones brida carcasa-cubierta
Figura 60: Brida tipo 01
Figura 61: Junta de expansión metálica 123
Figura 62: Balance de calor para obtener espesor de aislante 124
Figura 63: Ejemplo de vaporizadores verticales de gas natural de carcasa y tubos 125

ÍNDICE DE TABLAS

Tabla 1: Demanda de gas natural en España 2013	. 11
Tabla 2: Importaciones de gas natural en España	. 11
Tabla 3: Capacidades de las plantas de regasificación en 2012	. 12
Tabla 4: Capacidades de los almacenamientos subterráneos en 2012	. 13
Tabla 5: Relaciones ε(NUT,Cr)	. 27
Tabla 6: Relaciones NUT(ε,Cr)	. 28
Tabla 7: Diámetro de tubos	. 33
Tabla 8: Tubos de 5/8 in de diámetro exterior con paso cuadrado de 13/16 in	. 34
Tabla 9: Tubos de 3/4 in de diámetro exterior con paso triangular de 15/16 in	. 34
Tabla 10: Tubos de 3/4 in de diámetro exterior con paso cuadrado de 1 in	. 35
Tabla 11: Tubos de 3/4 in de diámetro exterior con paso triangular de 1 in	. 35
Tabla 12: Tubos de 1 in de diámetro exterior con paso cuadrado de 1 ¼ in	. 36
Tabla 13: Tubos de 1 in de diámetro exterior con paso triangular de 1 ¼ in	. 36
Tabla 14: Tubos de 1 ¼ in de diámetro exterior con paso cuadrado de 1 9/16 in	. 37
Tabla 15: Tubos de 1 ¼ in de diámetro exterior con paso triangular de 1 9/16 in	. 37
Tabla 16: Valores comunes de espaciamiento entre tubos	. 38
Tabla 17: Expresiones para el número de Nusselt para flujo turbulento desarrollado	en
conductos de sección circular	. 39
Tabla 18: Expresiones para coeficiente de fricción para flujo turbulento desarrollado	. 40
Tabla 19: Constantes para la ecuación (71)	. 44
Tabla 20: Resistencias de ensuciamiento para gas natural y gasolina	. 54
Tabla 21: Resistencias de ensuciamiento para agua	. 54
Tabla 22: Términos para calcular la velocidad de referencia	. 60
Tabla 23: Cálculo del término a ₈	. 60
Tabla 24: Valores de λ_n y F_{cr}	. 62
Tabla 25: Fórmulas para obtener D	. 64
Tabla 26: Espesor mínimo de carcasa	. 69
Tabla 27: Tipos de juntas soldadas	. 70
Tabla 28: Presión de estancamiento del viento a la altura estándar de 30 pies	. 72
Tabla 29: Coeficiente C _e	. 72
Tabla 30: Diámetros y espesores de tubo más habituales	. 73
Tabla 31: Máxima longitud de tubo sin soporte	. 77
Tabla 32: Espesor de bafles para intercambiadores tipo R	. 78
Tabla 33: Espesor de bafles para intercambiadores tipo C y B	. 78
Tabla 34: Holgura de bafles y placas soporte	. 79
Tabla 35: Número y diámetro de los tirantes para intercambiadores tipo R	. 79
Tabla 36: Número y diámetro de los tirantes para intercambiadores tipo C y B	. 80
Tabla 37: Diámetros y tolerancias de los agujeros para los tubos en el espejo	. 87
Tabla 38: Tipos de cubiertas para recipientes sometidos a presión: (a) plana, (b) elipsoidal,	(c)
toriesfésica, (d) semiesférica, (e) toricónica, (f) cónica	. 88

Tabla 39: Brazo del momento de la junta	90
Tabla 40: Factor m según el material de la junta	91
Tabla 41: Factor m según el material de la junta (continuación)	92
Tabla 42: Ancho efectivo de la junta	93
Tabla 43: Mínimos recomendados para pernos	97
Tabla 44: Brazos de los momentos para bridas	98
Tabla 45: Tamaño, número y esfuerzo máximo de los pernos	110
Tabla 46: Resultados del diseño térmico en contracorriente	112
Tabla 47: Espesor por presión interna	115
Tabla 48: Espesor por la carga del viento	115
Tabla 49: Características de los bafles	116
Tabla 50: Características del espejo flotante	117
Tabla 51: Características del canal inferior	117
Tabla 52: Características de la cubierta plana	118
Tabla 53: Características de la cubierta del cabezal flotante	118
Tabla 54: Características de la cubierta superior de la carcasa	118
Tabla 55: Características brida canal-carcasa	119
Tabla 56: Características brida espejo-cabezal flotante	120
Tabla 57: Características brida carcasa-cubierta	120
Tabla 58: Características boquilla agua de mar	121
Tabla 59: Características brida boquilla agua de mar	122
Tabla 60: Características boquilla gas natural	122
Tabla 61: Características brida boquilla gas natural	122
Tabla 62: Peso del evaporador	123

1. OBJETO DEL PROYECTO

El objeto del presente proyecto es el diseño térmico y mecánico de un intercambiador de carcasa y tubo para su aplicación en el proceso de vaporización de gas natural licuado.

El evaporador usará agua de mar como fuente de calor, que entrará a una temperatura de 20°C y saldrá a 10°C.

Por su parte el gas natural será suministrado a -155°C y dejará el evaporador a 8°C.

La presión de operación del gas natural serán 53 bar y la del agua de mar serán 3 bar.

2. INTRODUCCIÓN

2.1. Características gas natural

El gas natural es un combustible de origen fósil contenido en el subsuelo compuesto por una mezcla de hidrocarburos gaseosos. Su composición varía según el yacimiento del que se extraiga, siendo el metano el componente mayoritario con un porcentaje que varía entre el 79% y el 97% y valores más habituales de entre el 90 y el 95%. El metano suele estar acompañado por hidrocarburos saturados (sin dobles o triples enlaces entre átomos de carbono) como, por ejemplo; etano, propano, iso-butano, butano normal, iso-pentano y pentano normal, e incluso gasolina natural y pequeñas proporciones de otros gases como anhídrido carbónico, nitrógeno, oxígeno, hidrógeno, componentes sulfurados y gases nobles.

El gas natural puede contener hidrocarburos líquidos en suspensión, cuando esto sucede se denomina gas natural húmedo y en caso contrario se denomina gas natural seco.

Debido a la variabilidad en su composición, el poder calorífico del gas natural también varía en un rango de entre 9000 kcal/Nm³ y 12000 kcal/Nm³. Se admite como referencia un poder calorífico de 10000 kcal/Nm³ lo que implica que 1 tep (tonelada equivalente de petróleo) equivale a 1000 Nm³ de gas natural. La densidad, lógicamente, también varía, siendo un valor típico 0,83 kg/m³ en estado gaseoso. En estado líquido, la densidad aumenta del orden de unas 600 veces.

2.2. Breve historia del gas natural

El gas natural ha sufrido un desarrollo tardío y lento. Aunque la industria petrolera se desarrolla internacionalmente desde principios del siglo XX, no será hasta finales de 1950 cuando comience el interés por el gas natural. El retraso se prolongó todavía más en Europa, debido a una falta de producción propia que fuese significativa y a las dificultades técnicas y económicas del transporte marítimo.

Fue considerado durante mucho tiempo un subproducto del petróleo, carente de valor comercial y era corriente quemarlo en antorchas cuando estaba asociado al petróleo.

Cuatro factores marcaron el desarrollo del mercado del gas natural:

- La aparición de tecnologías que permiten su extracción y transporte
- Descubrimiento de un mercado potencial para la generación de electricidad
- La necesidad de reducir la dependencia del petróleo

- La ejecución de las inversiones necesarias para su transporte y distribución.

La crisis del petróleo de 1973 provocó preocupación ante la posible escasez de la energía y llevó a la Unión Europea en 1975 a imponer la limitación del uso de gas natural en centrales eléctricas (esta limitación de aboliría en 1991). Esto provocó una reducción en su desarrollo.

A pesar de ello, los gobiernos vieron que el petróleo abundante y barato llegaba a su fin y aumentó el interés por el gas. Podía explotarse en la mayoría de países industrializados y mejoraba la distribución de los aprovisionamientos energéticos. El incremento de los precios del petróleo, sobre todo a partir de la segunda crisis del petróleo (1979) aumentó la rentabilidad del gas e hizo posible que se llevasen a cabo las inversiones necesarias.

Se iniciaron prospecciones por todo el mundo (mar del Norte, Brasil, México, Alaska, Siberia...) y se financiaron considerables infraestructuras que convirtieron al gas natural en un elemento indispensable en el ajuste del balance energético mundial y particularmente en el europeo.

2.3. Situación actual del gas natural y perspectivas

Actualmente el gas natural es una de las principales fuentes de energía primaria, siendo la tercera de mayor importancia a nivel mundial (ver Figura 1) y se prevé que la demanda continúe en aumento gracias a sus ventajas, sobre en todo en la generación de electricidad.

Figura 1: Consumo mundial de energía primaria 2010, datos de BP Statistical Review of World Energy [http://www.madrimasd.org/blogs/energiasalternativas/2012/01/10/131443]

Está considerado el combustible fósil más limpio, ya que en su combustión libera una cantidad de óxidos de nitrógeno mucho menor de la que liberan otros combustibles como el carbón, el petróleo o la biomasa.

Además de su uso como combustible en la generación de electricidad y de calor, el gas natural es la base de muchos productos petroquímicos y de abonos.

En el futuro es probable que el gas natural se use cada vez más para producir carburantes líquidos, mediante la reacción química de Fischer-Tropsch, que produce combustibles similares a las gasolinas y gasóleos. Este proceso se conoce con el nombre de Gas to Liquid (GTL).

En cuanto a las reservas, éstas se encuentran más distribuidas que las de petróleo, siendo Rusia y Oriente Medio las regiones con la mayor cantidad de reservas (ver Figura 2). Se estima que,

manteniendo el ritmo actual de consumo, las reservas mundiales de gas natural tengan una duración superior a 60 años, cifra que puede verse incrementada a medida que mejoren las técnicas de extracción.

Teniendo todo esto en cuenta, no cabe duda de que el gas natural seguirá teniendo una gran importancia en los próximos años.

Figura 2: Distribución de las reservas mundiales de gas natural 2013, datos de Enagas [Elaboración propia]

2.4. Cadena del gas natural

Se denomina cadena del gas natural al conjunto de procesos e instalaciones que van desde su extracción del yacimiento hasta el suministro al usuario final.

Figura 3: Cadena del gas natural [http://www.energiaysociedad.es/ficha/3-1-la-cadena-de-valor-del-gas-natural]

2.4.1. Extracción del gas natural

Cuando se explota un yacimiento de petróleo, se produce una cantidad más o menos grande de gas, que se denomina gas asociado y representa alrededor de un cuarto de las reservas mundiales probadas. Este tipo de gas se produce a baja presión y debe comprimirse y tratarse en instalaciones especializadas. Es uno de los gases naturales más costosos y difíciles de explotar, por lo que a menudo se quema en antorchas sin aprovecharlo, se expulsa directamente a la atmósfera o se reinyecta en los pozos para aumentar la presión y facilitar la extracción de petróleo.

También existen yacimientos de gas natural no asociados a los yacimientos de petróleo. Este gas se conoce como gas no asociado y es mayoritario en el mercado. Los yacimientos de gas natural suelen ser de gran tamaño y estar perfectamente definidos, al contrario que los yacimientos petrolíferos, que suelen ser difusos y de menor dimensión.

Las técnicas de exploración más primitivas se basaban en la detección de la presencia de emanaciones en la superficie. Con el tiempo, los métodos de exploración han ido evolucionando hacia técnicas más avanzadas.

Los métodos prospectivos geofísicos son actualmente los más utilizados para la identificación y definición de los yacimientos de petróleo y gas. Se basan en las variaciones de distintas propiedades físicas que se detectan entre las rocas que configuran el almacén geológico y las rocas adyacentes. Destacan los métodos gravitacionales, magnéticos, sísmicos (refractivos y reflexivos), electro-resistivos y radioactivos.

Solamente es posible determinar si una localización contiene efectivamente petróleo o gas mediante perforación. Un equipo de perforación se compone de una torre de perforación, maquinaria específica y alojamiento para la protección de maquinaria y trabajadores. El tipo de equipo y herramientas utilizados depende del tipo de formaciones rocosas y de la profundidad de los depósitos.

Los principales tipos de maquinaria de perforación utilizados son por percusión y rotativa.

La maquinaria de perforación por percusión se utiliza para la perforación de pozos de petróleo y gas hasta profundidades de 1500 metros, llegando a alcanzar profundidades del orden de 2000 metros.

Este sistema consiste en fracturar la roca golpeándola con una broca o barrena suspendida de un cable, extrayéndose los fragmentos, en suspensión en agua, con un sistema de achique. Según la perforación avanza, el pozo se va protegiendo mediante la inserción de tubería de acero y hormigonándose el pozo para una mejor estabilidad e impermeabilidad.

La maquinaria de perforación rotativa se utilizó por primera vez en Texas, en 1901, para evitar la formación de cavidades en la excavación de pozos en areniscas pobremente consolidadas. Con el desarrollo de brocas especiales, el sistema ha demostrado ser útil para taladrar la mayor parte de tipos de rocas, siendo el sistema preferido para profundidades superiores a los 2000 metros.

Consiste en un sistema de tubos acoplados unos a continuación de otros que, impulsados por un motor, van girando y perforando hacia abajo. En el extremo se halla una broca o trépano con dientes que rompen la roca, cuchillas que la separan y diamantes que la perforan, dependiendo del tipo de terreno. La roca se va horadando con el avance de la broca que gira en el extremo de la perforadora, mientras por su interior se inyecta agua y fangos, que actúan como lubricantes y refrigerantes de la barrena y refrigerantes y sellantes del pozo en avance, a la vez que extraen del pozo los fangos resultantes de la perforación que, una vez decantados los principales sólidos, son reintroducidos en el proceso.

Figura 4: Perforación por percusión [https://usmpetrolero.wordpress.com/2012/06/13/explotacion-petrolera-en-venezuela-grupo-2/]

Proyecto técnico de diseño de un evaporador de 540 ton/h de GNL

Figura 5: Perforación rotatoria [https://usmpetrolero.wordpress.com/2012/06/13/explotacion-petrolera-en-venezuela-grupo-2/]

2.4.2. Almacenamiento del gas natural

El gas natural extraído de los yacimientos en fase gaseosa, se acondiciona (depurándolo y regulando su presión) y, o bien se transporta hacia los diferentes centros de consumo en fase gaseosa por medio de gasoductos (gas natural canalizado), o se almacena en fase gaseosa o líquida (gas natural licuado).

2.4.2.1. Almacenamiento del gas natural en estado gaseoso

La dependencia de aprovisionamiento de gas natural del exterior y las variaciones estacionales en la demanda de gas natural (debido a los usos industriales y al uso del gas para calefacción en periodos invernales) hacen necesario contar con almacenamientos de gas que impidan que haya un desabastecimiento. El tipo de almacenamiento más habitual es el almacenamiento subterráneo en formaciones geológicas adecuadas, aprovechando la compresión del gas a bajas profundidades y la poca porosidad de estas formaciones.

Los almacenamientos subterráneos de gas natural se localizan en yacimientos de gas o petróleo ya agotados, en acuíferos o en cavernas salinas que cumplan las condiciones de porosidad y permeabilidad requeridas para almacenar este gas.

En función de la capacidad de almacenamiento existen tres tipos de almacenamientos:

- Almacenamientos operacionales: pequeña capacidad y alto caudal de producción diaria. Su función es la de responder de manera efectiva a las puntas de demanda amortiguando sus oscilaciones, por lo que se sitúan próximos a los centros de consumo.

- Almacenamientos estacionales: capacidad media. Están destinados a hacer frente a las grandes oscilaciones periódicas de la demanda.

- Almacenamientos estratégicos: gran capacidad. Su función es constituir las reservas necesarias para paliar los efectos de una posible interrupción en el suministro.

2.4.2.2. Almacenamiento del gas natural licuado

El proceso de licuefacción del gas natural que más se utiliza actualmente consiste en sucesivas etapas de compresión y enfriamiento mediante agentes frigoríficos con una expansión posterior a cada una de las etapas de enfriamiento. De este modo se subenfría el gas y se consigue mantener en estado líquido a presión atmosférica.

El gas natural licuado está a una temperatura aproximada de -160 ºC y su densidad es alrededor de 455 kg/m³, lo que supone reducir su volumen cerca de 600 veces.

Este proceso de licuefacción se lleva a cabo en las instalaciones criogénicas de almacenamiento, que en función de su tamaño y forma de almacenaje se clasifican en:

- Plantas de regasificación: son de capacidad muy variable y su función es la adquisición de gas natural para su posterior comercialización. En general, se componen de uno o varios depósitos de superficie construidos para la recepción, almacenamiento y regasificación de gas natural licuado. El gas natural licuado llega a través de barcos especializados, conocidos con el nombre de metaneros, y en la planta se regasifica para su distribución a través de gasoductos o se distribuye en estado líquido mediante camiones cisterna.

- Almacenamientos operacionales: su función es la misma que la de los almacenamientos operaciones de gas natural en estado gaseoso, comentados anteriormente.

- Plantas satélite: son un conjunto de instalaciones de almacenamiento y regasificación de gas natural licuado, de capacidad muy pequeña, para el suministro a consumidores locales.

El gas natural licuado se almacena en depósitos criogénicos, que básicamente pueden ser de dos tipos: baja presión (presión muy próxima a la atmosférica) o media presión (el gas se almacena a unos 5 bar de presión).

Para mantener las bajas temperaturas necesarias, se recurre a la extracción y reinyección de gas (revaporización, autorrefrigeración o "boil-off") en los tanques de almacenamiento con el siguiente ciclo: el gas extraído se evapora absorbiendo calor de la masa líquida que se enfría; el gas evaporado se vuelve a licuar y a reinyectar posteriormente en los tanques de almacenamiento.

Otro método de enfriamiento consiste en la inyección de gas natural licuado en el interior de los tanques, en forma de ducha a presión. Al evaporarse bruscamente el gas licuado inyectado, se produce un descenso de temperatura en el interior del tanque.

2.4.3. Transporte de gas natural licuado

La principal forma de transporte del gas natural licuado es el transporte por mar. Para ello se emplean buques especializados que se conocen con el nombre de gaseros o metaneros. Este tipo de buques están especialmente construidos con casco doble y transportan el gas natural licuado a una presión ligeramente superior a la atmosférica.

El gas contenido en los tanques de carga se mantiene a su temperatura de saturación a lo largo de toda la navegación, pero se permite que una pequeña cantidad de vapor se disipe por ebullición con el fin de refrigerar el gas contenido en los tanques. El gas evaporado en se utiliza para como combustible en los motores del barco.

Hay dos tipos fundamentales de metaneros, en función del tipo de tanques que poseen:

- Con depósitos de membrana: están constituidos por una pared delgada estanca (membrana) sostenida, con aislante intermedio, por la estructura del barco. El peso de la carga se trasmite al casco interior a través de las membranas y aislamientos. Aproximadamente el 60% de los buques de GNL actuales tiene sistemas de contención de carga de tipo membrana.

- Con depósitos esféricos: también conocidos como metaneros Kvaerner Moss, están construidos en acero inoxidable o aluminio y no forman parte de la estructura del barco, ni contribuyen a su resistencia.

Los buques metaneros cuentan con bombas criogénicas sumergidas en los depósitos, para asegurar la transferencia del gas natural licuado hacia los brazos de descarga y los circuitos de las instalaciones terrestres. También tienen compresores para el gas natural vaporizado para el envío del gas vaporizado a las calderas para utilizarlo como combustible y para el trasvase a los tanques de tierra durante las operaciones de carga y puesta en frío.

Figura 6: Metanero con depósito de membrana [http://maquinasdebarcos.blogspot.com.es/2014/07/buques-de-transporte-de-gas-natural.html]

Figura 7: Metanero con depósito esférico [http://maquinasdebarcos.blogspot.com.es/2014/07/buques-de-transporte-de-gas-natural.html]

2.5. Instalaciones gasistas en España

El desarrollo de las infraestructuras gasistas en España se ha visto condicionado por la escasa producción nacional de gas natural y por la situación geográfica de España alejada de los yacimientos europeos del Mar del Norte y Rusia. Esto ha provocado un desarrollo tardío del sistema de gas natural, que comenzó a finales de los sesenta con la construcción de la primera planta de regasificación en Barcelona, abastecida a partir de GNL libio y argelino, seguida de las de Huelva (1988) y Cartagena (1989). En 1993 se realiza la conexión por gasoducto con Francia, que conecta la red española con el yacimiento francés de Lacq. En 1996 se finaliza el gasoducto del Magreb que conecta la Península Ibérica con los yacimientos de gas argelinos, atravesando Marruecos y el estrecho de Gibraltar. La planta de regasificación en marzo de 2011. Habrá futuras ampliaciones de las interconexiones con Francia, a finalizar en distintas fases en 2013 y 2015, que proporcionarán mayor flexibilidad de suministro y permitirán la vehiculación del gas desde España hacia los mercados europeos.

El sistema de gas español tiene una elevada dependencia de las importaciones y las plantas de regasificación tienen un papel muy importante en el aprovisionamiento. El desarrollo de instalaciones de almacenamientos subterráneos es de gran importancia; a fin de proporcionar mayor autonomía, seguridad y flexibilidad al sistema.

	2013 (GWh)	Estructura %
Doméstico-comercial	63896	21,1%
Industrial	105064	34,6%
Matria prima	6260	2,1%
Cogeneración	38140	12,6%
Generación eléctrica	69452	22,9%
Consumos propios, pérdidas y dif.	20466	6,7%
estadísticas		
Total gas natural	303278	100,0%

Tabla 1: Demanda de gas natural en España 2013 [1]

Tabla 2: Importaciones de gas natural en España [1]

	2011 (GWh)	%	2012 (GWh)	%	2013 (GWh)	%
Argelia GN	103970	36,90%	118638	40,59%	155338	51,15%

Argelia GNL	43359		41658		36702	
Qatar GNL	51540	12,91%	46181	11,69%	40639	10,82%
Omán GNL	1918	0,48%			2805	0,75%
Nigeria GNL	74180	18,58%	59928	15,17%	37106	9,88%
Egipto GNL	25933	6,49%	7153	1,81%	464	0,12%
Noruega GNL	13916	3,49%	19563	4,95%	13366	3,56%
Francia GN	25482	6,38%	35328	8,95%	44215	17 1 / 10/
Francia GNL					1350	12,14%
Libia GNL	967	0,24%				
Trinidad y Tobago	27640	6,92%	27493	6,96%	22440	5 <i>,</i> 98%
GNL						
EEUU GNL	1850	0,46%				
Perú GNL	21086	5,28%	28299	7,17%	16898	4,50%
Bélgica GNL	2965	0,74%	7462	1,89%	2174	0,58%
Portugal GNL	4485	1,12%	3225	0,82%	1924	0,51%
Total	399291	10%	394928	100%	375421	100%

Las infraestructuras actuales de gas natural en España (ver Figura 8) se componen de seis plantas de regasificación de gas natural licuado, con otras tres en construcción (Asturias, Tenerife y Gran Canaria), más de 10.000 km de gasoductos de transporte, más de 60.000 km de gasoductos de distribución, dos almacenamientos subterráneos, con otros tres preparados para entrar en operación (Marismas, Yela y Castor), tres yacimientos y seis conexiones internacionales (con Argelia, con Marruecos, dos con Francia y dos con Portugal). Aparte de la existencia de otras instalaciones auxiliares, estaciones de compresión y plantas satélite de GNL.

Tabla 3: Capacidades de las plantas de regasificación en 2012 [http://www.cne.es/cne/doc/publicaciones/CapacidadesInstalaciones2012.pdf]

Terminal	Capacidad de almacenamiento		Capacidad de emisión	
	nº de tanques	m³ de GNL	Nm³/h	bcm/año
Barcelona	8	840000	1950000	17,082
Cartagena	5	587000	1350000	11,826
Huelva	5	610000	1350000	11,826
Bilbao	2	300000	800000	7,008
Sagunto	4	600000	1000000	8,76
Mugardos	2	300000	412800	3,616
Total	26	3237000	6862800	60,118

Tabla 4: Capacidades de los almacenamientos subterráneos en 2012 [http://www.cne.es/cne/doc/publicaciones/CapacidadesInstalaciones2012.pdf]

Almacenamiento	Capacidad de almacenamiento NMm ³			Capacidad de vehiculación NMm³/día	
	Gas inmovilizado	Gas útil	Gas total	Inyección	Extracción
Serrabio	280	820	1100	4,4	6,8
Gaviota	1135	1546	2681	4,5	5,7
Total	1415	2366	3781	8,9	12,5

Proyecto técnico de diseño de un evaporador de 540 ton/h de GNL

Figura 8: Mapa de las infraestructuras gasistas en España [http://www.cne.es/]

2.6. Tipos de vaporizadores de GNL

El gas natural licuado almacenado en las plantas de regasificación necesita convertido a fase gaseosa para su posterior transporte por gasoducto. El proceso de regasificación se lleva a cabo en intercambiadores de calor diseñados específicamente para este proceso, conocidos como vaporizadores o evaporadores. Existen múltiples tipos de vaporizadores de GNL, siendo los más habituales los siguientes: vaporizadores atmosféricos, vaporizadores de tablero abierto, vaporizadores de combustión sumergida, y vaporizadores de carcasa y tubo.

2.6.1. Vaporizadores atmosféricos, AAV (Ambient Air Vaporizer)

Este tipo de vaporizadores emplean la energía térmica del aire para vaporizar el GNL. El gas natural licuado se introduce por la parte inferior de un banco de tubos y sale, ya en estado gaseoso, por la parte superior. El aire frío, más denso, fluye de forma descendente y sale por el fondo del vaporizador.

Los tubos pueden estar construidos de acero o aluminio.

Para aumentar la transferencia de calor y minimizar el área de transferencia necesaria, los vaporizadores pueden contar con ventiladores que aumentan la velocidad del aire y, por lo tanto, el coeficiente de transferencia de calor.

Debido a la baja temperatura a la que se encuentra el GNL, es habitual que se forme una neblina alrededor de estos aparatos y escarcha en la parte inferior de los tubos.

Figura 9: Vaporizadores de GNL atmosféricos [http://cryoquip.com/lng-systems/lng-vaporizer/]

2.6.2. Vaporizadores de tablero abierto, ORV (Open Rack Vaporizer)

Utilizan la energía del agua de mar para vaporizar el GNL. El agua de mar cae sobre la superficie externa del intercambiador de calor. El intercambiador de calor está formado por paneles de tubos de aluminio aleteados o acero inoxidable. Los paneles están recubiertos con una aleación

de aluminio-zinc que actúa como ánodo de sacrificio para impedir que la corrosión afecte al material base. El GNL entra por la parte inferior y a través de un colector se envía al conjunto de paneles, saliendo el gas natural ya vaporizado por la parte superior.

Cada panel consiste en unos cientos de tubos, estos paneles (entre 3 y 8 generalmente) se unifican en un bloque, unidos por un colector de entrada y otro de salida y se cuelgan de un bastidor sobre una estructura de hormigón.

[http://www.kobelco.co.jp/english/ktr/pdf/ktr_32/064-069.pdf]

2.6.3. Vaporizadores de combustión sumergida, SCV (Submerged Combustion Vaporizer)

En estos vaporizadores el fluido caliente es agua calentada mediante la combustión de gas natural. El GNL circula por el interior de un serpentín formado por tubos lisos de acero inoxidable austenítico, que está sumergido en el agua.

Figura 11: Vaporizador de combustión sumergida [http://www.lindeus-engineering.com]

Los gases de combustión son inyectados en el agua por parte inferior del arreglo de tubos por donde circula el GNL, lo que genera un efecto burbujeante que permite mantener una temperatura uniforme en el agua, impidiendo el congelamiento de ésta alrededor de los tubos. Además, el coeficiente de transmisión de calor en el lado exterior del serpentín es muy alto por la agitación que provoca en el agua el paso de los gases de combustión, llegando a valores entre 2 y 3 veces superiores a los que se consigue en los vaporizadores de agua de mar. Sin embargo, el coste de operación de estos vaporizadores es muy alto, ya que además del coste del gas combustible, la energía requerida para la compresión del aire de combustión a la presión requerida por los quemadores es grande.

2.6.4. Vaporizadores de carcasa y tubo

Los intercambiadores de calor de carcasa y tubos son los intercambiadores más comunes gracias a su gran versatilidad. Están formados por una carcasa cilíndrica, generalmente de acero, en cuyo interior hay un haz de tubos paralelo a la carcasa, que pueden ser de acero o aleaciones de aluminio, cobre u otros metales. Uno de los fluidos circula por el interior de los tubos mientras que el otro circula por el exterior de estos.

Según el tipo de flujo pueden trabajar en corriente directa (los dos fluidos circulan en el mismo sentido) o en contracorriente (los fluidos entran por extremos opuestos y circulan en sentido contrario).

Los principales componentes de estos intercambiadores son la carcasa, los tubos, los cabezales frontal y posterior, las placas que sirven de soporte a los tubos (llamadas espejos) y unos bafles que aproximan las condiciones de flujo a las de flujo cruzado, mejorando así la transferencia de calor. Los tubos pueden ser rectos o en forma de U.

El fluido que fluye por la carcasa puede atravesar el haz de tubos una o dos veces (uno o dos pasos por carcasa). El fluido que circula por los tubos puede realizar varios pasos por los tubos (lógicamente, en el caso de los tubos en U solo es posible un paso por tubos).

En los intercambiadores de carcasa y tubos empleados en la vaporización de gas natural licuado, el GNL circula por el interior de los tubos y el fluido de la carcasa suele ser agua de mar, agua caliente o vapor. La carcasa suele estar construida en acero inoxidable y los tubos en aleación de aluminio.

Figura 12: Intercambiador de calor de carcasa y tubos [2]

Un caso especial de intercambiadores de carcasa y tubos usados para la vaporización de GNL son los vaporizadores de fluido intermedio o IFV (Intermediate Fluid Vaporizer). Este tipo de vaporizadores consiste en un intercambiador de calor con tres fluidos en cascada. El GNL se vaporiza absorbiendo calor, que es cedido por un fluido intermedio en estado gaseoso (habitualmente propano o butano), de manera que este fluido se enfría y se condensa, transfiriendo calor a un tercer fluido que suele ser agua de mar.

Figura 13: Vaporizador de tipo IFV [http://www.kobelco.co.jp/english/machinery/products/ecmachinery/Ing/ifv.html]

3. CLASIFICACIÓN TEMA DE INTERCAMBIADORES DE CALOR DE CARCASA Y TUBO

Las normas TEMA [3] (Tubular Exchanger Manufacturers Association) clasifican los intercambiadores de calor de carcasa y tubo mediante letras, según el tipo de cabezal frontal y posterior y el tipo de carcasa (Figura 14).

Figura 14: Clasificación intercambiadores de calor de carcasa y tubos [4]

3.1. Tipos de carcasa

3.1.1. Tipo E

Es el tipo de carcasa más común y más el más barato debido a su simpleza y facilidad de fabricación. Tiene un solo paso, el fluido entra por uno de los lados de la carcasa y sale por el contrario. Pueden ser de un solo paso por tubos o de múltiples. Los tubos están soportados por bafles transversales.

3.1.2. Tipo F

Es de dos pasos por carcasa y se usa habitualmente con dos pasos por los tubos. El flujo en la carcasa se divide mediante un bafle longitudinal. Las boquillas de entrada y salida del fluido se encuentran alineadas.

3.1.3. Tipo G

Tiene una boquilla de entrada en la parte central y otra en el lado opuesto, con un bafle longitudinal entre ambas. El fluido entra en la carcasa por la parte central y se divide en dos corrientes. Se utiliza sobre todo en intercambiadores con cambio de fase en la carcasa o cuando el fluido que circula por ésta es un gas.

3.1.4. Tipo H

Su diseño es similar a la de tipo G, pero tiene dos boquillas de entrada y otras dos de salida y dos bafles longitudinales, resultando un flujo partido doble. Se utiliza cuando quiere limitarse la caída de presión

3.1.5. Tipo J

Tiene dos entradas y una única salida en el centro o bien, dos salidas y una entrada central. Se emplea para reducir la caída de presión. La velocidad del flujo en este tipo de carcasa será aproximadamente la mitad que en una de tipo E y la caída de presión será unas ocho veces menor.

3.1.6. Tipo K

Se emplea para la generación de vapor. Se deja un espacio por encima del nivel de líquido para que la velocidad del vapor producido sea lo suficientemente baja para que no arrastre partículas líquidas. El líquido que se quiere vaporizar entra por la parte inferior, el vapor sale por la boquilla superior y el exceso de líquido se drena por la boquilla inferior que se encuentra al final.

3.1.7. Tipo X

Se caracteriza por tener un flujo puramente cruzado. No se utilizan bafles transversales, pero sí cuenta con platos que dan soporte a los tubos. Los pasos por tubos pueden ser uno o dos. Es la que menor pérdida de carga presenta y suele ser utilizada para aplicaciones de condensación.

3.2. Tipos de cabezal frontal

3.2.1. Tipo A

Consiste en un cilindro con bridas en ambos extremos. Una de las bridas se atornilla a la cubierta y la otra a la carcasa o al espejo. Se utiliza cuando se necesita limpiar habitualmente el interior de los tubos.

3.2.2. Tipo B

Es de cubierta integrada y tiene forma semiesférica. En el otro extremo tiene una brida que va atornillada a la carcasa o al espejo. Para acceder a los tubos deben desconectarse las tuberías de las boquillas, por lo que se utiliza en aplicaciones que no requieren de una limpieza frecuente del interior de los tubos.

3.2.3. Tipos C y N

Van unidos integralmente al espejo o a la carcasa y atornillados a la cubierta. En el caso del tipo C el haz de tubos es desmontable.

3.2.4. Tipo D

Se utilizan para altas presiones, generalmente más de 70 bar.

3.3. Tipos de cabezal posterior

Según el tipo de cabezal posterior con el que cuentan, los intercambiadores de calor pueden ser de espejo fijo, de espejo flotante o con haz de tubos en U.

3.3.1. De espejo fijo

Son los más utilizados y a este grupo pertenecen los cabezales de tipo L, M y N. El espejo está unido integralmente a la carcasa. Este tipo de construcción minimiza las uniones con juntas y minimizan el mantenimiento. El interior de los tubos puede ser limpiado por medios mecánicos pero, como los espejos no son desmontables, no se tiene acceso al exterior de los tubos y la limpieza mecánica del lado de la carcasa no es posible.

Cuando las diferencias de temperatura entre los tubos y la carcasa sean grandes este diseño no es adecuado, ya que se crean fuertes tensiones debido a la expansión térmica.

3.3.2. De espejo flotante

Los intercambiadores de este tipo tienen un espejo estacionario y otro flotante que se acomoda a las expansiones térmicas de los tubos.

3.3.2.1. Tipo P

Usa el faldón del espejo flotante como parte del cabezal. La empaquetadura sella el fluido del lado de la carcasa a la vez que permite el movimiento del cabezal flotante. El haz de tubos es desmontable y el mantenimiento es muy sencillo ya que todos los tornillos son exteriores. Los

fluidos del lado de la carcasa y los tubos se mantienen separados en todo momento y, aún en caso de fugas, no hay posibilidad de contaminación entre ellos. El espacio entre la carcasa y el haz de tubos es grande (alrededor de 38 mm) y se requieren tiras de sellado. Se usa para aplicaciones de baja presión y temperatura en la carcasa y fluidos no peligrosos.

3.3.2.2. Tipo W

Usa un anillo alrededor del espejo para sellar los dos fluidos, de modo que en caso de fugas no es posible la mezcla de ambos fluidos en el interior del intercambiador. El número de pasos está limitado a uno o dos. El haz de tubos es extraíble. Es el cabezal flotante más barato y está recomendado para bajas presiones y temperaturas y fluidos no peligrosos.

3.3.2.3. Tipo T

Una cubierta separada está atornillada al espejo flotante dentro de la carcasa. En este diseño, el haz de tubos se puede desmontar sin necesidad de desmontar las juntas del espejo flotante. Es el que cuenta con una mayor distancia entre la carcasa y el haz de tubos.

3.3.2.4. Tipo S

En este tipo, la cubierta del cabezal flotante, en lugar de estar directamente atornillada al espejo flotante, es atornillada a un anillo de respaldo. La cubierta del cabezal flotante tiene un diámetro mayor que la carcasa. No suele requerir tiras de sellado. El haz de tubos no es extraíble. Está recomendado para altas presiones y fluidos no peligrosos.

3.3.3. Tubos en U

En este tipo de construcción, el haz de tubos es libre de expandirse y es extraíble. Debido a la complejidad de la limpieza del interior de los tubos, deben usarse con fluido limpios por el lado de los tubos.

Proyecto técnico de diseño de un evaporador de

540 ton/h de GNL

- 1. Cabezal estacionario, canal
- 2. Cabezal estacionario, casquete 3. Brida de cabezal estacionario, canal o casquete
- 4. Cubierta de canal
- 5. Tobera de cabezal estacionario 6. Espejo estacionario
- 7 Tubos
- 8. Coraza
- 9. Cubierta de la coraza
- 10. Brida de la coraza, extremo del cabezal estacionario 11. Brida de la coraza, extremo del cabezal posterior
- 12. Tobera de la coraza 13. Brida de la cubierta de la coraza
- 14. Junta de expansión
- 15. Espejo flotante
- 16. Cubierta del cabezal flotante
- 17. Brida del cabezal flotante
- 18. Dispositivo de apoyo del cabezal flotante 19. Anillo de corte dividido

- 20. Brida de apoyo deslizante
- 21. Cubierta del cabezal flotante, externa
- 22. Faldón del espejo flotante
- 23. Brida del prensaestopas
- 24. Empaque
- 25. Prensaestopas
- 26. Anillo de cierre hidráulico
- 27. Bielas y espaciadores 28. Deflectores transversales o placas de apoyo
- 29. Placa de choque
- 30. Deflector longitudinal
- 31. Separación de paso
- 32. Conexión de ventila 33. Conexión de drenaje
- 34. Conexión de instrumentos
- 35. Albardilla de soporte
- 36. Talón elevador
- 37. Ménsula de soporte
- 38. Vertedero
- 39. Conexión del nivel del líquido

Figura 15: Ejemplos de tipos de intercambiadores de calor: (a) BEM, (b) CFU, (c) AJW, (d) AEP, (e) AES, (f) AKT [3]

4. DISEÑO TÉRMICO

Para la realización del diseño térmico de intercambiador de calor, los métodos más utilizados son dos: el método de la diferencia media de temperaturas y el método de la efectividad - NUT (Número de Unidades de Transferencia). Ambos métodos son ampliamente conocidos y están bien referenciados en la bibliografía especializada [5][6][7][8][9][10].

El método utilizado en este trabajo ha sido el método efectividad - NUT, del cual se describen a continuación sus conceptos más relevantes.

4.1. Método de la efectividad - NUT

4.1.1. NUT

El concepto de Número de Unidades de Transferencia (*NUT*) es un parámetro adimensional que caracteriza el tamaño del intercambiador. Se define como la relación entre el producto del coeficiente global de transferencia de calor (*U*) y el área de transferencia (*A*), y la capacidad térmica de menor valor de entre las de los dos fluidos presentes en el intercambiador (C_{min}).

$$NUT = \frac{UA}{C_{min}} \tag{1}$$

El numerador (*UA*), se relaciona con la tasa de transferencia de calor (q) mediante la ecuación (2) y C_{min} está relacionado con la tasa de transferencia de calor por la ecuación de la conservación de la energía para el fluido con una menor capacidad térmica (4).

$$q = UA\Delta T_m \tag{2}$$

El valor de ΔT_m (diferencia media de temperaturas entre el fluido caliente y frío) se define como:

$$\Delta T_m = \frac{\left[(T_C)_e - (T_F)_s \right] - \left[(T_C)_s - (T_F)_e \right]}{\ln \left[\frac{(T_C)_e - (T_F)_s}{(T_C)_s - (T_F)_e} \right]}$$
(3)

Los subíndices e y s corresponden con entrada y salida y C y F con fluido caliente y frío.

$$q = C_{min} \Delta T_{max} \tag{4}$$

Si dividimos entre sí las ecuaciones (2) y (4) y reordenamos obtenemos una nueva expresión para calcular *NUT*, en la que observamos que *NUT* es igual a la variación de temperatura en el intercambiador del fluido de menor capacidad térmica entre la diferencia media de temperaturas entre los dos fluidos.

$$NUT = \frac{UA}{C_{min}} = \frac{\Delta T_{max}}{\Delta T_m}$$
(5)

De la ecuación (5) se deduce que un valor de *NUT* elevado corresponde a un intercambiador con una elevada área de transferencia de calor o una diferencia media de temperaturas entre los fluidos reducida.

4.1.2. Efectividad

La efectividad de un intercambiador de calor se define como:

$$\varepsilon = \frac{q}{q_{max}} \tag{6}$$

Siendo q la tasa de transferencia de calor entre los fluidos del intercambiador; que, según se haga referencia al fluido caliente o al frío, se calcula como:

$$q = C_{c}[(T_{C})_{e} - (T_{C})_{s}] = C_{F}[(T_{F})_{s} - (T_{F})_{e}]$$
(7)

Y q_{max} es la tasa máxima de transferencia de calor posible, que se puede obtener mediante la siguiente expresión:

$$q_{max} = C_{min}[(T_{\rm C})_{\rm e} - (T_{\rm F})_{\rm e}]$$
 (8)

Introduciendo las ecuaciones (7) y (8) en la ecuación (6) obtenemos dos nuevas expresiones para la efectividad, en función si el fluido de menor capacidad térmica es el caliente o el frío.

Si
$$C_c = C_{min}$$

$$\varepsilon = \frac{(T_{\rm C})_{\rm e} - (T_{\rm C})_{\rm s}}{(T_{\rm C})_{\rm e} - (T_{\rm F})_{\rm e}}$$
(9)

Si $C_F = C_{min}$

$$\varepsilon = \frac{(T_F)_s - (T_F)_e}{(T_C)_e - (T_F)_e}$$
(10)

El parámetro *NUT* y la efectividad están relacionados, dependiendo esta relación del tipo de intercambiador. Si, por ejemplo, se parte de un intercambiador de tubos concéntricos (construido simplemente por dos tubos concéntricos, circulando un fluido por el tubo interior y otro por el exterior) y se supone que la menor capacidad térmica corresponde al fluido caliente, la ecuación (5) quedaría de la siguiente forma:

$$NUT = \frac{UA}{C_C} = \frac{\Delta T_{max}}{\Delta T_m} = \frac{(T_C)_e - (T_C)_s}{\frac{[(T_C)_e - (T_F)_s] - [(T_C)_s - (T_F)_e]}{\ln \left[\frac{(T_C)_e - (T_F)_s}{(T_C)_s - (T_F)_e}\right]}}$$

Utilizando la igualdad de la ecuación (7) y denominando C_r al cociente entre la capacidad térmica del fluido caliente y la del fluido frío, surge la siguiente transformación:

$$[(T_C)_e - (T_F)_s] - [(T_C)_s - (T_F)_e] = [(T_C)_e - (T_C)_s] - [(T_F)_s - (T_F)_e]$$

= $[(T_C)_e - (T_C)_s] - \frac{C_C}{C_F}[(T_C)_e - (T_C)_s] = (1 - C_F)[(T_C)_e - (T_C)_s]$

Transformando el término que se encuentra dentro del logaritmo, sumando y restando T_{Fe} en el numerador y sumando y restando T_{ce} en el denominador e introduciendo la efectividad se obtiene lo siguiente:

$$\frac{(T_C)_e - (T_F)_s}{(T_C)_s - (T_F)_e} = \frac{[(T_C)_e - (T_F)_e] - [(T_F)_s - (T_F)_e]}{[(T_C)_s - (T_C)_e] + [(T_C)_e - (T_F)_e]} = \frac{[(T_C)_e - (T_F)_e] - C_r[(T_C)_e - (T_C)_s]}{[(T_C)_s - (T_C)_e] + [(T_C)_e - (T_F)_e]} = \frac{-[(T_C)_e - (T_F)_e] + C_r[(T_C)_e - (T_F)_e]}{1 - \frac{1}{\varepsilon}} = \frac{1 - C_r \varepsilon}{1 - \varepsilon}$$

Con lo cual:

$$NUT = \frac{(T_C)_e - (T_C)_s}{\frac{(1 - C_r)[(T_C)_e - (T_C)_s]}{\ln\left(\frac{1 - C_r \varepsilon}{1 - \varepsilon}\right)}} \rightarrow -NUT(1 - C_r) = \ln\left(\frac{1 - \varepsilon}{1 - C_r \varepsilon}\right)$$

Finalmente queda la siguiente expresión:

$$\varepsilon = \frac{1 - \exp[-NUT(1 - C_r)]}{1 - C_r \exp[-NUT(1 - C_r)]}$$
(11)

Esta relación se puede generalizar como:

 $\varepsilon = \varepsilon(NUT, C_r, tipo \ de \ intercambiador)$

A continuación se muestran las relaciones entre la efectividad y el *NUT* para diferentes tipos de intercambiadores de calor.

Tabla 5:	Relaciones	ε(NUT,Cr)	[5]
----------	------------	-----------	-----

Característica del flujo	$\boldsymbol{\varepsilon} = \boldsymbol{\varepsilon}(NUT, \boldsymbol{C}_r)$	
Tubos concéntricos		
Flujo paralelo	$\varepsilon = \frac{1 - exp[-NUT(1 + C_r)]}{1 + C_r}$	(12)
Contraflujo	$\varepsilon = \frac{1 - exp[-NUT(1 - C_r)]}{1 - C_r exp[-NUT(1 - C_r)]}$	(13)
Carcasa y tubos		

1 paso por la carcasa (2,4 pasos por los tubos)	$\varepsilon_{1} = 2 \left\{ 1 + C_{r} + (1 + C_{r}^{2})^{1/2} \frac{1 + exp[-NUT(1 + C_{r}^{2})^{1/2}]}{1 - exp[-NUT(1 + C_{r}^{2})^{1/2}]} \right\}^{-1}$	(14)
n pasos por la carcasa(2n, 4n pasos por los tubos)	$\varepsilon = \left[\left(\frac{1 - \varepsilon_1 C_r}{1 - \varepsilon_1} \right)^n - 1 \right] \left[\left(\frac{1 - \varepsilon_1 C_r}{1 - \varepsilon_1} \right)^n - C_r \right]^{-1}$	(15)
Flujo cruzado (1 solo paso)		
Ambos fluidos sin mezclar	$\varepsilon = 1 - exp\left[\left(\frac{1}{C_r}\right)(NUT)^{0,22} \{exp[-C_r(NUT)^{0,78}] - 1\}\right]$	(16)
C _{max} mezclado, C _{min} sin mezclar	$\varepsilon = \left(\frac{1}{C_r}\right) (1 - exp\{-C_r[1 - exp(-NUT)]\})$	(17)
C _{min} mezclado, C _{max} sin mezclar	$\varepsilon = 1 - exp(-C_r^{-1}\{1 - exp[-C_r(NUT)]\})$	(18)
Todos los intercambiadores, C _r =0	$\varepsilon = 1 - exp(-NUT)$	(19)

Característica del flujo	$NUT = NUT(\varepsilon, C_r)$	
Tubos concéntricos		
Flujo paralelo	$NUT = -\frac{ln[1 - \varepsilon(1 + C_r)]}{1 + C_r}$	(20)
	$NUT = \frac{1}{C_r - 1} ln \left(\frac{\varepsilon - 1}{\varepsilon C_r - 1} \right) \ (C_r < 1)$	(21)
Contraflujo		
	$NUT = \frac{\varepsilon}{1-\varepsilon} (C_r = 1)$	(22)
Carcasa y tubos		
1 paso por la carcasa	$NUT = -(1 + C_r^2)^{-1/2} ln\left(\frac{E-1}{E+1}\right)$	(23) (a)
(2,4 pasos por los tubos)	$E = \frac{2/\varepsilon_1 - (1 + C_r)}{\left(1 + C_r^2\right)^{1/2}}$	(24) (b)

n pasos por la	Ecuaciones (a) y (b) con	
carcasa(2n, 4n pasos por los tubos)	$\varepsilon_1 = \frac{F-1}{F-C_r}$ $F = \left(\frac{\varepsilon C_r - 1}{\varepsilon - 1}\right)^{1/n}$	(25)
Flujo cruzado (1 solo		
paso)		
C _{max} mezclado, C _{min} sin mezclar	$NUT = -\ln\left[1 + \left(\frac{1}{C_{\rm r}}\right)\ln(1 - \varepsilon C_{\rm r})\right]$	(26)
C _{min} mezclado, C _{max} sin mezclar	$NUT = -\left(\frac{1}{C_{\rm r}}\right)\ln[C_{\rm r}\ln(1-\varepsilon) + 1]$	(27)
Todos los intercambiadores, C _r =0	$NUT = -\ln(1-\varepsilon)$	(28)

4.2. Procedimiento

A continuación se explican los pasos realizados para el diseño térmico del evaporador.

4.2.1. Caudal de agua necesario

El evaporador está formado por tres zonas distintas. En la primera zona (zona A) el gas natural se encuentra en fase líquida. En la zona intermedia (zona B) en gas natural se alcanza su temperatura de ebullición y pasa a estado gaseoso. Finalmente, en la última parte (zona C) el gas se calienta hasta alcanzar la temperatura adecuada y salir del evaporador.

Si se desprecian las posibles pérdidas, el calor absorbido por el gas natural en el proceso será el mismo que el calor cedido por el agua de mar.

El calor cedido por el agua de mar puede ser calculado por la siguiente expresión:

$$\dot{m}_{ag}c_{p_{ag}}\left(T_{s_{ag}}-T_{e_{ag}}\right) \tag{29}$$

En la que \dot{m}_{ag} es el caudal másico de agua de mar, $c_{p_{ag}}$ el calor específico y $T_{s_{ag}}$ y $T_{e_{ag}}$ las temperaturas de salida y entrada del agua de mar respectivamente.

Por otro lado, el calor absorbido por el gas natural será la suma del calor absorbido en cada una de las tres zonas.

$$\dot{m}_{GN}c_{p_{GNL}}(T_{e_{GN}} - T_{vap}) + \dot{m}_{GN}h_{vap} + \dot{m}_{GN}c_{p_{gn}}(T_{s_{GN}} - T_{vap})$$
(30)

Donde \dot{m}_{GN} es el caudal másico de gas natural, $c_{p_{GNL}}$ es el calor específico del gas natural licuado, $c_{p_{an}}$ el calor específico del gas natural en estado gaseoso, h_{vap} el calor latente de

vaporización y T_{vap} , $T_{e_{GN}}$ y $T_{s_{GN}}$ son, respectivamente, las temperaturas de vaporización, entrada y salida del gas natural.

Igualando las ecuaciones (29) y (30) y despejando, se obtiene una expresión para el cálculo del caudal de agua de mar necesario.

$$\dot{m}_{ag} = \frac{\dot{m}_{GN}c_{p_{GNL}}(T_{e_{GN}} - T_{vap}) + \dot{m}_{GN}h_{vap} + \dot{m}_{GN}c_{p_{gn}}(T_{s_{GN}} - T_{vap})}{c_{p_{ag}}(T_{s_{ag}} - T_{e_{ag}})}$$
(31)

4.2.2. Temperaturas intermedias del agua

Es necesario conocer la temperatura del agua cuando el GNL alcanza su temperatura de ebullición, es decir, cuando termina la zona A y comienza la zona B. Se denominará esta temperatura como T_A . También será necesario saber la temperatura del agua cuando termina el proceso de ebullición, es decir, cuando acaba la zona B y comienza la zona C. Se denominará esta temperatura como T_B .

Ambas temperaturas se calculan fácilmente haciendo un balance de calor de la zona A y de la zona C. Las temperaturas T_A y T_B serán diferentes para el caso de que el evaporador opere en corriente directa o en contracorriente.

Si el intercambiador funciona en corriente directa:

$$\dot{m}_{ag}c_{p_{ag}}\left(T_{e_{ag}} - T_{A}\right) = \dot{m}_{GN}c_{p_{GNL}}\left(T_{vap} - T_{e_{GN}}\right)$$
(32)

$$T_{A} = \frac{\dot{m}_{ag}c_{p_{ag}}T_{e_{ag}} - \dot{m}_{GN}c_{p_{GNL}}(T_{vap} - T_{e_{GN}})}{\dot{m}_{ag}c_{p_{ag}}}$$
(33)

$$\dot{m}_{ag}c_{p_{ag}}\left(T_{B}-T_{s_{ag}}\right) = \dot{m}_{GN}c_{p_{gn}}\left(T_{s_{GN}}-T_{vap}\right)$$
(34)

$$T_B = \frac{\dot{m}_{ag} c_{p_{ag}} T_{s_{ag}} + \dot{m}_{GN} c_{p_{gn}} (T_{s_{GN}} - T_{vap})}{\dot{m}_{ag} c_{p_{ag}}}$$
(35)

En el caso de que opere en contracorriente:

$$\dot{m}_{ag}c_{p_{ag}}\left(T_{A}-T_{s_{ag}}\right) = \dot{m}_{GN}c_{p_{GNL}}\left(T_{vap}-T_{e_{GN}}\right)$$
(36)

$$T_{A} = \frac{\dot{m}_{ag} c_{p_{ag}} T_{s_{ag}} + \dot{m}_{GN} c_{p_{GNL}} (T_{vap} - T_{e_{GN}})}{\dot{m}_{ag} c_{p_{ag}}}$$
(37)

$$\dot{m}_{ag}c_{p_{ag}}\left(T_{e_{ag}}-T_{B}\right) = \dot{m}_{GN}c_{p_{gn}}\left(T_{s_{GN}}-T_{vap}\right)$$
(38)

$$T_B = \frac{\dot{m}_{ag} c_{p_{ag}} T_{e_{ag}} - \dot{m}_{GN} c_{p_{gn}} (T_{s_{GN}} - T_{vap})}{\dot{m}_{ag} c_{p_{ag}}}$$
(39)

4.2.3. Área de transferencia necesaria

El siguiente paso es calcular el área de transferencia necesaria en cada una de las tres zonas. Para ello necesitamos primero obtener el valor de *NUT* en cada zona. Usando las ecuaciones (9) y (10) se obtienen los valores de la efectividad y usando la relación adecuada de la Tabla 6 se consigue el valor de *NUT* para cada zona.

A continuación, usando la ecuación (1) se calcula el área. Para ello se necesita suponer unos valores del coeficiente global de transferencia de calor (U) en cada zona que serán posteriormente comprobados.

4.2.4. Diámetro de los tubos

Los diámetros de tubo típicos y sus espesores están tabulados en la tabla 7. Es más recomendable usar tubos de poco diámetro y aumentar el número de tubos, ya que así se mejora la transferencia de calor.

4.2.5. Disposición de los tubos

El tipo de arreglo de los tubos y las distancias entre ellos son un parámetro importante a la hora de diseñar un intercambiador de calor.

Figura 16: Tipos de arreglo de tubos [3]

La disposición triangular a 30° es la que permite una mayor densidad de tubos. Cuando la caída de presión en la carcasa es grande o se prevé la necesidad de limpieza mecánica, se suelen usar arreglos de tipo cuadrado.

En la Tabla 16 se muestran los valores más comunes de espaciamiento entre tubos.

Las normas TEMA recomiendan una distancia mínima entre los centros de los tubos de 1,25 veces el diámetro externo de estos.

4.2.6. Número de tubos y diámetro de la carcasa.

El número de tubos necesarios en el intercambiador es función del diámetro de la carcasa, el diámetro externo de los tubos, el arreglo de los tubos y el tipo de intercambiador. Pude ser calculado mediante la siguiente expresión [8]:

$$N = 0,785 \left(\frac{CTP}{CL}\right) \frac{D_c^2}{(p'/D_e)^2 d^2}$$
(40)

Donde p' es la distancia transversal entre centros de tubos (Tabla 16), N es el número de tubos, D_c y d son respectivamente el diámetro de la carcasa y el diámetro exterior de los tubos. *CTP* es un parámetro que depende del número de pasos y cuyo valor es 0,93 para un paso por tubos. *CL* es una constante que depende del arreglo de los tubos, cuyo valor es 1 (para arreglos de 90° o 45°) o 0,87 (arreglos de 30° o 60°).

En las Tablas desde la 8 a la 15 se encuentran tabulados valores del número de tubos (número de orificios para un tubo en el espejo) para distintos diámetros de carcasa, diámetros externos de tubo, arreglos de tubos, número de pasos por tubo y tipo de intercambiador.

Tabla 7: Diámetro de tubos [4]

idmetics tionice di tabo, h in ang	Calibre BWG	Espesor de la pa- red, en in	Áres, int, de corte transv., en in ²	ft" de su- perficie externa por ft de longitad	fi de su- perficie interna por fi de longitud	Peso por ti de lon- gitad, de acero, en Ib ⁺	Diámetro interno del tubo, en in	Momen- to de inercia, en in	Módulo de sec- ción en in ³	Radio de giro, en iñ	Constan- te	Duimetro exte- riocidui- metro in- torior	Área me- tálica transv. er ta ²
8.4	22	0.025	0.0295	0.0655	0.0508	0.065	0.194	0.00012	0.00098	0.0792	46	1.255	0.0195
- N	24	022	.0353	.0655	.0539	.054	214	.00001	.00053	.0810	56	1.155	0130
- <u>R</u>	27	016	.0373	.0655	.0570	.040	218	.00005	.00054	.0529	58	1.146	.0117
80	18	.049	.0603	.0962	.0725	40.171.38	277	.00065	.0036	.1164	94	1.354	.0502
- X	20	.035		.0982	.0798	127	305	.00055	.0029	1213	114	1.233	.0374
- 5	22	.028	.0860	.0982	.0535	.083	331	.00046	.0025	1221	125	1.133	0244
- U	16	065	1075	1309	- 0959	302	370	0022	0095	1556	168	1.351	0958
- 8 (18	.049	.1269	.1309	.1052	.236	402	.0018	.0072	1606	198	1.244	.0694
- <u>8</u>	20	.035	.1452	.1309	.1126	.174	430	0014	.0056	1649	227	1.163	.0511
<u></u>	200 C	.020	1040	1000	1002	.141		0001	0000	1991	211	1.120	.0413
- 8 -	12	095	1495	.1636	.1139	.537	435	.0051	.0183	.1903	232	1.437	158
- N	14	.085	.1655	.1636	.1202	.479	.459	.0053	.0170	.1938	258	1.362	.141
- <u>X</u>	15	.072	1817	1636	.1259	425	481	.0049	.0155	.1971	283	1.299	125
- 87	10	.065	.2035	.1636	.1333	.350	.509	.0043	.0145	2016	317	1.265	.103
8	18	.049	.2181	.1636	.1380	.303	.527	.0037	0118	.2045	540	1.195	.089
N.	19	.042	2298	.1636	.1416	.262	541	0033	.0105	2068	358	1.155	065
	20	.000	1044	1000	1000	004	100	0100	00.44	2000	ace	1.000	000
8	10 11	.134	2043	.1903	1335	809	.510	.0129	0325	2229	319	1.559	238
5	-12 C	.109	2223	1963	1393	.748	.532	0116	.0309	2299	347	1.410	.220
S	: 1 3	.095	.2463	1963	1466	.665	560	0107	0285	2340	384	1,339	196
5	15	.083	.2679	.1963	.1529	520	606	0089	0235	2410	450	1.238	153
× .	16	.065	.3019	.1963	.1623	476	.620	.0083	0221	.2433	471	1.210	140
X	17	.055	.3157	1963	.1660	428	634	0076	0203	2455	492	1.183	126
ŝ	20	.035	.3632	.1963	.1780	.269	.680	.0050	.0134	2532	567	1.103	079
8	10	.134	2892	2291	.1589	1.061	.607	.0221	.0505	2662	451	1.441	.312
× .	12	.109	.3390	.2291		.891	.657	.0196	.0449	.2736	529	1.332	.262
X	::: 13 :::.	.095	3685	.2291	.1793	.792	685	.0180	.0411	.2778	575	1.277	.233
ି କ୍ଲି ା	16	.065	4359	.2291	.1950	.561	745	.0137	.0312	2873	680	1.174	.165
8	18	.049	4742	.2291	.2034	.432	.777	.0109	.0249	.2925	740	1.126	.127
*	20	.035	.5090	.2291	.2107	.313	.805	.0092	.0187	.2972	794	1.087	.092
1	8	.165	.3526	2618	1754	1.462	670 792	.0392 0350	0784	3009	550	1.493	.430
i - I	- ii	.120	.4536	.2619	.1990	1.129	.760	.0327	.0654	.3140	708	1.316	.332
$-1 \ge 1$	12	109	.4903	.2618	.2047	1.037	.782	0307	.0615	.3174	749	1.279	.305
	13	.095	.5153	2618	.2121	.918	834	0250	.0507	3255	852	1.199	239
i I	15	.072	.5755	.2815	2241	714	.856	0227	.0455	.3291	895	1.167	.210
1	16	.065	.5945	.2618	.2278		.870	0210	.0419	3314	927	1.149	191
1	20	.049	.6793	.2618	.2435	.360	930	.0185	0247	.3414	1060	1.075	.106
18	7	180	6221	3272	2330	2.057	. 890	0890	1425	3836	970	1.404	605
1%	8	.105	.0045	-0272	.2409	1.921	.920	.0847	1055		1037	1.850	565
15	10	.134	.7574	3272	-2571	1.598	1.010	.0741	.1186	3974	1182	1.273	470
18	12	.109	.8365	.3272	.2702	1.329	1.032	.0642	.1027	.4052	1305	1.211	.391
18	13	.095	.8825	3272	.2775	1.173	1.060	.0579	.0926	.4097	1377	1.179	345
15	16	.055	.9229	3272	2932	.823	1.120	.0425	.0553	.4196	1537	1.116	1242
15	18	.049	1.042	3272	.3016	.629	1.152	.0634	.0534	4250	1626	1.055	185
1%	20.00	.035	1.094	.3272	.3069	.456	1.180	.0247	.0395	.4297	1707	1.059	.134
18	10	.134	1.192	.3927	5225	1.955	1.232	1354	1806	.4853	1860	1.218	575
18	12	.109	1.291	3927	.3356	1.258	1.262	.0931	1241	5018	2181	1.124	370
1%	16	.065	1.474	3927	.\$587	.996	1.370	.0756	1008	.5079	2299	1.095	293
2	n	.120	2.433	.5236	.4608	2.410	1.760	.3144	.3144	.6660	3795	1.136	.709
2	14	.038	2.642	5236	.4801	1.699	1.834	.2300	2300	.6754	4121	1.090	.500
28	÷	.148	3.815	6540	.5770	3.719	2.204	7592	.6074	.8332	5951	1.134	1.094
* Norm * Los p Alumiz Titanic	as de la Tu esos se bas nio	bular Excha ian en actro (nger Manufac de bajo conter	turers Associ iido de carbo	iation, 5a ed no con uta e	., 1968 y 6a lensidad de 0.35 0.58	ed., 1978. 0.2833 lb/in Latón de a Niquel-cro	⁹ . Para otros i laminio omo-hierro	metales, multij	pliquese por la	s factores qu	e siguen: 1.06 1.07	nicense sq. 2005 sindrights sindrights sindrights
Aceros	inexidable	es, AISI serie	400			0.99	Latón Adr Níored e c	nirally unropicust				1.09	
the second se	unoxidable	es, AISI sene	000			1.02	 widges A.c. 	ahiomdael				- COLUMN - 1112	

Brence de aluminio Brence de alumino ** Velocidad de líquido = $\frac{\text{To por tubo por hora}}{\text{densidad relativa de agua a 16°C (60°F) = 1.0] sp gr de agua$ $de agua a <math>\times C$

Diámeti de la	ro interno coraza		TEM/	PoS			TEMAU	J	
			Número	de pasos		Número de pasos			
mm	in	1	2	4	6	2	4	6	
203	8	55	48	34	24	52	40	32	
254	10	88	78	62	56	90	80	74	
305	12	140	138	112	100	140	128	108	
337	13%	178	172	146	136	180	164	148	
387	15%	245	232	208	192	246	232	216	
438	17%	320	308	274	260	330	312	292	
459	19%	405	392	352	336	420	388	368	
540	21%	502	484	442	424	510	488	460	
591	23%	610	584	536	508	626	596	562	
635	25	700	676	618	600	728	692	644	
686	27	843	812	742	716	856	816	780	
737	29	970	942	868	840	998	956	920	
787	31	1127	1096	1014	984	1148	1108	1060	
838	33	1288	1250	1172	1148	1318	1268	1222	
889	35	1479	1438	1330	1308	1492	1436	1388	
940	37	1647	1604	1520	1480	1684	1620	1568	
991	39	1840	1794	1700	1664	1882	1816	1754	
1067	42	2157	2112	2004	1968	2196	2136	2068	
1143	45	2511	2458	2326	2288	2530	2464	2402	
1219	48	2865	2808	2686	2656	2908	2832	2764	
1372	54	3656	3600	3462	3404	3712	3624	3556	
1524	60	4538	4472	4310	4256	4608	4508	4426	

Tabla 8: Tubos de 5/8 in de diámetro exterior con paso cuadrado de 13/16 in [4]

Tabla 9: Tubos de 3/4 in de diámetro exterior con paso triangular de 15/16 in [4]

Diámetro ini cora	terno de la za		TEM	ALOM			TEM	APoS			TEMA U		
	1		Número	de pasos			Número de pasos				Número de pasos		
mm	in	1	2	4	6	1	2	4	6	2	4	6	
203	8	64	48	34	24	34	32	16	18	32	24	24	
254	10	85	72	52	50	60	62	52	44	64	52	52	
305	12	122	114	94	96	109	98	78	68	98	88	78	
337	13%	151	142	124	112	126	120	106	100	126	116	108	
387	15%	204	192	166	168	183	168	146	136	180	160	148	
438	17%	264	254	228	220	237	228	202	192	238	224	204	
489	19%	332	326	290	280	297	286	258	248	298	280	262	
540	21%	417	396	364	348	372	356	324	316	370	352	334	
591	23%	495	478	430	420	450	430	392	376	456	428	408	
635	25	579	554	512	488	518	498	456	444	534	500	474	
686	27	676	648	602	584	618	602	548	532	628	600	570	
737	29	785	762	704	688	729	708	650	624	736	696	668	
787	31	909	878	814	792	843	812	744	732	846	812	780	
838	33	1035	1002	944	920	962	934	868	840	978	928	904	
889	35	1164	1132	1062	1036	1090	1064	990	972	1100	1060	1008	
940	37	1304	1270	1200	1168	1233	1196	1132	1100	1238	1200	1152	
991	39	1460	1422	1338	1320	1365	1346	1266	1244	1390	1336	1290	
1067	42	1703	1664	1578	1552	1611	1580	1498	1464	1632	1568	1524	
1143	45	1960	1918	1830	1800	1875	1834	1736	1708	1882	1820	1770	
1219	48	2242	2196	2106	2060	2132	2100	1998	1964	2152	2092	2044	
1372	54	2861	2804	2682	2660	2730	2684	2574	2536	2748	2680	2628	
1524	60	3527	3476	3360	3300	3395	3346	3228	3196	3420	3340	3286	
1676	66	4292	4228	4088	4044	10000	2000	100000	1022	1000000	1.222200	10024000	
1829	72	5116	5044	4902	4868	1	1		1				
1981	78	6034	5964	5786	5740				1				
2134	84	7005	6934	6766	6680				1				
2286	90	8093	7998	7832	7708								
2438	96	9203	9114	8896	8844						1		
2743	108	11696	11618	11336	11268				1				
3048	120	14459	14378	14080	13984				1			1	

Diámetro de la co	oraza		TEM	APoS			TEMAU			
			Número	de pasos		Núr	Número de pasos			
mm	in	1	2	4	6	2	4	6		
203	8	28	26	16	12	28	24	12		
254	10	52	48	44	24	52	44	32		
305	12	80	76	66	56	78	72	70		
337	13%	104	90	70	80	96	92	90		
387	15%	136	128	128	114	136	132	120		
438	17%	181	174	154	160	176	176	160		
489	19%	222	220	204	198	224	224	224		
540	21%	289	272	262	260	284	280	274		
591	23%	345	332	310	308	348	336	328		
635	25	398	386	366	344	408	392	378		
686	27	477	456	432	424	480	468	460		
737	29	554	532	510	496	562	548	530		
787	31	637	624	588	576	648	636	620		
838	33	730	712	682	668	748	728	718		
889	35	828	812	780	760	848	820	816		
940	37	937	918	882	872	952	932	918		
991	39	1048	1028	996	972	1056	1044	1020		
1067	42	1224	1200	1170	1140	1244	1224	1212		
1143	45	1421	1394	1350	1336	1436	1408	1398		
1219	48	1628	1598	1548	1536	1640	1628	1602		
1372	54	2096	2048	2010	1992	2108	2084	2068		
1524	60	2585	2552	2512	2476	2614	2584	2558		

Tabla 10: Tubos de 3/4 in de diámetro exterior con paso cuadrado de 1 in [4]

Tabla 11: Tubos de 3/4 in de diámetro exterior con paso triangular de 1 in [4]

Diámetro i	ntemo de la		TEMA	LoM			TEM/	APoS			TEMAU	
			Número	de pasos			Número	de pasos		Número de pasos		
mm	in	1	2	4	6	1	2	4	6	2	4	6
203	8	42	40	26	24	31	26	16	12	32	24	24
254	10	73	66	52	44	56	48	42	40	52	48	40
305	12	109	102	88	80	88	78	62	68	84	76	74
337	13%	136	128	112	102	121	106	94	88	110	100	98
387	15%	183	172	146	148	159	148	132	132	152	140	136
438	17%	237	228	208	192	208	198	182	180	206	188	182
489	19%	295	282	258	248	258	250	228	220	226	248	234
540	21%	361	346	318	320	320	314	290	276	330	316	296
591	23%	438	416	382	372	400	384	352	336	400	384	356
635	25	507	486	448	440	450	442	400	392	472	440	424
686	27	592	574	536	516	543	530	488	468	554	528	502
737	29	692	668	632	604	645	618	574	556	648	616	588
787	31	796	774	732	708	741	716	666	648	744	716	688
838	33	909	886	836	812	843	826	760	740	852	816	788
889	35	1023	1002	942	920	950	930	878	856	974	932	908
940	37	1155	1124	1058	1032	1070	1052	992	968	1092	1056	1008
991	39	1277	1254	1194	1164	1209	1184	1122	1096	1224	1180	1146
1067	42	1503	1466	1404	1372	1409	1378	1314	1296	1434	1388	1350
1143	45	1726	1690	1622	1588	1635	1608	1536	1504	1652	1604	1560
1219	48	1964	1936	1870	1828	1887	1842	1768	1740	1894	1844	1794
1372	54	2519	2466	2380	2352	2399	2366	2270	2244	2426	2368	2326
1524	60	3095	3058	2954	2928	2981	2940	2932	2800	3006	2944	2884
1676	66	3769	3722	3618	3576				(i)			
1829	72	4502	4448	4324	4280			1				
1981	78	5309	5252	5126	5068							
2134	84	6162	6108	5964	5900							1
2286	90	7103	7040	6898	6800							
2438	96	8093	8026	7848	7796							
2743	105	10260	10206	9992	9940							
3048	120	12731	12648	12450	12336							

Diámetro de la c	oraza		TEM	APoS		0	TEMAL	J
			Número	de pasos	Número de pasos 6			
mm	in	1	2	4	6	2	4	6
203	8	17	12	8	12	14	8	6
254	10	30	30	16	18	30	24	12
305	12	52	48	42	24	44	40	32
337	13%	61	56	52	50	60	48	44
387	15%	85	78	62	64	80	72	74
438	17%	108	108	104	96	104	100	100
489	19%	144	136	130	114	132	132	120
540	21%	173	166	154	156	172	168	148
591	23%	217	208	194	192	212	204	198
635	25	252	240	230	212	244	240	230
686	27	296	280	270	260	290	284	274
737	29	345	336	310	314	340	336	328
787	31	402	390	366	368	400	384	372
838	33	461	452	432	420	456	444	440
889	35	520	514	494	484	518	504	502
940	37	588	572	562	548	584	576	566
991	39	661	640	624	620	664	644	640
1067	42	776	756	738	724	764	748	750
1143	45	900	882	862	844	902	880	862
1219	48	1029	1016	984	972	1028	1008	1004
1372	54	1310	1296	1268	1256	1320	1296	1284
1524	60	1641	1624	1598	1576	1634	1616	1614

Tabla 12: Tubos de 1 in de diámetro exterior con paso cuadrado de 1 ¼ in [4]

Tabla 13: Tubos de 1 in de diámetro exterior con paso triangular de 1 ¼ in [4]

Diámetro interno de la coraza			TEM	ALOM			TEM	APoS			TEMA U	1	
2		Número de pasos				Número de pasos			N	Número de pasos			
	mm	in	1	2	4	6	1	2	4	6	2	4	6
	203	8	27	26	8	12	18	14	8	12	14	12	6
	254_	10	42	40	34	24	33	28	16	18	28	24	24
	305	12	64	66	52	44	51	48	42	44	52	40	40
	337	13%	81	74	62	56	73	68	52	44	64	56	52
	387	15%	106	106	88	92	93	90	78	76	90	80	78
	438	17%	147	134	124	114	126	122	112	102	122	112	102
	489	19%	183	176	150	152	159	152	132	136	152	140	136
	540	21%	226	220	204	186	202	192	182	172	196	180	176
	591	23%	268	262	236	228	249	238	216	212	242	224	216
	635	25	316	302	274	272	291	278	250	240	286	264	246
	686	27	375	360	336	324	345	330	298	288	340	320	300
	737	29	430	416	390	380	400	388	356	348	400	380	352
	787	31	495	482	452	448	459	450	414	400	456	436	414
	838	33	579	554	520	504	526	514	484	464	526	504	486
	889	35	645	622	586	576	596	584	548	536	596	572	548
	940	37	729	712	662	648	672	668	626	608	668	636	614
	991	39	808	792	744	732	756	736	704	692	748	728	700
	1067	42	947	918	874	868	890	878	834	808	890	856	830
	1143	45	1095	1068	1022	1000	1035	1008	966	948	1028	992	972
	1219	48	1241	1220	1176	1148	1181	1162	1118	1092	1180	1136	1100
	1372	54	1577	1572	1510	1480	1520	1492	1436	1416	1508	1468	1442
	1524	60	1964	1940	1882	1832	1884	1858	1800	1764	1886	1840	1794
	1676	66	2390	2362	2282	2260			1	10000	100000	0.000	
	1829	72	2861	2828	2746	2708		1					
	1981	78	3368	3324	3236	3216							
	2134	84	3920	3882	3784	3736							
	2286	90	4499	4456	4370	4328	1 2						
	2438	96	5144	5104	4986	4936				0			
	2743	108	6546	6494	6360	6300							
	3048	120	8117	8038	7870	7812	1.0	10.0	1			1.00	

Diámetro interno de la coraza			TEM	APoS		TEMA U		
			Número) de pasos	Número de pasos			
mm	in	1	2	4	6	2	4	6
203	8	12	12	4	0	4	4	6
254	10	21	12	8	12	12	8	12
305	12	29	28	16	18	26	20	12
337	13%	38	34	34	24	36	28	15
387	15%	52	48	44	48	44	44	32
438	17%	70	66	56	50	60	60	56
489	19%	85	84	70	80	82	76	79
540	21%	108	108	100	96	100	100	100
591	23%	136	128	128	114	128	120	120
635	25	154	154	142	136	154	148	130
686	27	184	180	158	172	176	172	160
737	29	217	212	204	198	212	204	198
787	31	252	248	234	236	242	240	234
838	33	289	276	270	264	280	280	274
889	35	329	316	310	304	324	312	308
940	37	372	368	354	340	358	352	350
991	39	420	402	402	392	408	400	392
1067	42	485	476	468	464	480	476	464
1143	45	565	554	546	544	558	548	550
1219	48	653	636	628	620	644	628	632
1372	54	837	820	812	804	824	808	808
1524	60	1036	1028	1012	1008	1028	1016	1008

Tabla 14: Tubos de 1 ¼ in de diámetro exterior con paso cuadrado de 1 9/16 in [4]

Tabla 15: Tubos de 1 ¼ in de diámetro exterior con paso triangular de 1 9/16 in [4]

Diámetro interno de la coraza			TEMA	LoM			TEM	APoS			TEMA U	
	Número de pasos -				Número de pasos				Número de pasos			
mm	in	1	2	4	6	1	2	4	6	2	4	6
203	8	15	10	8	12	13	10	4	0	6	4	6
254	10	27	22	16	12	18	20	8	12	14	12	1 19
305	12	38	36	26	24	33	26	26	18	28	20	15
337	13%	55	44	42	40	38	44	34	24	34	28	30
387	15%	66	64	52	50	57	58	48	44	52	48	40
438	17%	88	82	78	68	81	72	62	68	72	68	64
489	19%	117	. 106	98	96	100	94	86	80	90	84	78
540	21%	136	134	124	108	126	120	116	102	118	112	105
591	23%	170	164	146	148	159	146	132	132	148	132	120
635	25	198	188	166	168	183	172	150	148	172	160	152
686	27	237	228	208	192	208	206	190	180	200	188	180
737	29	268	266	242	236	249	238	224	220	242	228	216
787	31	312	304	284	276	291	282	262	256	282	264	250
838	33	357	346	322	324	333	326	298	296	326	308	292
889	35	417	396	372	364	372	368	344	336	362	344	336
940	37	446	446	422	408	425	412	394	384	416	396	384
991	39	506	490	472	464	478	468	442	432	472	444	428
1067	42	592	584	552	544	558	546	520	512	554	524	510
1143	45	680	676	646	632	646	634	606	596	636	624	593
1219	48	788	774	736	732	748	732	704	696	736	708	692
1372	54	1003	980	952	928	962	952	912	892	946	916	890
1524	60	1237	1228	1188	1152	1194	1182	1144	1116	1176	1148	1110
1676	66	1520	1496	1448	1424	1.00		1.201.000	100000		200000000	1.000
1829	72	1814	1786	1736	1724		1				1	
1981	78	2141	2116	2068	2044				1			
2134	84	2507	2470	2392	2372							
2286	90	2861	2840	2764	2744							
2438	96	3275	3246	3158	3156							
2743	108	4172	4136	4046	4020							
3048	120	5164	5128	5038	5000							

P.,				
Diám.ext.de tubo, D ₀ in,	Especiamiento p ^r in.	Config.	ρ _p , in.	ρ _n , in.
0.625	0.812 -	- 🎝	0.704	0.406
0.750	0.938 -	- ⊲°	0.814	0.469
0.750	t -	+ II	1.000	1.000
0.750	1 -	+ 💠	0.707	0.707
0.750	1 -	-⊲	0.866	0.500
1.000	1.250 -	+]]	1.250	1.250
1.000	1.250 -	- \$	0.684	0.894
1.000	1.250 -	+ ≪3	1.082	0.625

4.2.7. Longitud de los tubos

Una vez obtenida el área de transferencia necesaria y que se han escogido el diámetro y número de tubos, puede calcularse la longitud de los tubos necesaria.

$$A = N\pi d_i L \tag{41}$$

4.2.8. Coeficiente de transferencia de calor por convección interno

El coeficiente de transferencia de calor por convección interno está relacionado con el número de Nusselt de la siguiente forma:

$$Nu = \frac{h_i d_i}{k} \tag{42}$$

Donde h_i es el coeficiente de transferencia de calor por convección interno, d_i el diámetro interno de los tubos y k la conductividad del fluido que circula por los tubos (en este caso GNL o gas natural en estado gas)

Por lo tanto, despejando h_i:

$$h_i = \frac{k \, N u}{d_i}$$

El número de Nusselt se calcula en función de otros dos números adimensionales, que son el número de Reynolds y el número de Prandlt. Las expresiones para obtener estos números adimensionales son las siguientes:

$$Re = \frac{\rho V d_i}{\mu} = \frac{4\dot{m}_t}{\pi d_i \mu} \tag{43}$$

$$Pr = \frac{\mu c_p}{k} \tag{44}$$

Siendo ρ y μ la densidad y viscosidad del fluido que fluye por los tubos, V la velocidad del fluido en un tubo y \dot{m}_t el caudal másico que circula por un tubo.

El producto del número de Reynolds y el Prandlt es otro número adimensional llamado número de Peclet.

$$Pe = RePr \tag{45}$$

Las expresiones para calcular el número de Nusselt en distintas condiciones aparecen en la Tabla 17, donde *C_f* es el coeficiente de fricción.

Expresión		Condiciones
Nu _D = $0.023 \text{Re}_{D}^{4/5} \text{Pr}^{n}$ n = 0.4 si el fluido se calienta n = 0.3 si el fluido se enfría	(46)	Pr > 0,6 $Re_D > 10^4$

Tabla 17: Expresiones para el número de Nusselt para flujo turbulento desarrollado en conductos de sección circular [10]

(Dittus-Boelter)

$Nu_D = 0.022 Re_D^{4/5} Pr^{0.5}$	(47)	
(Kays-Crawford)		
$Nu_{D} = 0.027 Re_{D}^{4/5} Pr^{1/3} (\mu/\mu_{p})^{0.14}$ (Sieder-Tate)	(48)	0.7 < Pr < 16700 $Re_D > 10^4$
$Nu_{D} = \frac{(C_{f}/2)Re_{D}Pr}{1,07 + 12,7(C_{f}/2)^{1/2}(Pr^{2/3} - 1)}$ (Botukhov Krilov)	(49)	$\begin{array}{l} 0,5 < Pr < 2000 \\ 10^4 < Re_D < 5 \cdot 10^6 \end{array}$
(Petuknov-kniov)		
$Nu_{D} = \frac{(C_{f}/2)(Re_{D} - 10^{3})Pr}{1 + 12,7(C_{f}/2)^{1/2}(Pr^{2/3} - 1)}$	(50)	0.5 < Pr < 2000 $2300 < Re_D < 5 \cdot 10^6$
(Gnielinski)		
$Nu_D = 4,82 + 0,0185 Pe_D^{0,827}$	(51)	Flujo de calor constante en la pared $10^2 < Pe_D < 10^4$ $3,6\cdot 10^3 < Re_D < 9,05\cdot 10^5$
$Nu_D = 5.0 + 0.025 Pe_D^{0.8}$	(52)	Temperatura de la pared constante $Pe_D > 100$

 Tabla 18: Expresiones para coeficiente de fricción para flujo turbulento desarrollado [10]

	Expresión		Condiciones
(Blasius)	$C_{f} = 0.079 Re_{D}^{-1/4}$	(53)	Tubos lisos $1000 < Re_D < 5 \cdot 10^4$
	$C_{f} = 0.046 \text{Re}_{D}^{-1/5}$	(54)	Tubos lisos $3 \cdot 10^4 < Re_D < 1 \cdot 10^6$
$\frac{1}{C_{f}^{1/2}} =$	$= 1,739 \ln (C_{\rm f}^{1/2} { m Re}_{ m D}) - 0,391$	(55)	Tubos lisos $2000 < Re_D < 1 \cdot 10^6$

(Karman-Nikuradse)

$$\frac{1}{(4C_{f})^{1/2}} = -1.8 \log \left[\frac{6.9}{\text{Re}_{\text{D}}} + \left(\frac{\epsilon/\text{D}}{3.7} \right)^{1.11} \right] \quad (56)$$
(Haaland)

$$C_{f} = [3.64 \log(\text{Re}_{\text{D}}) - 3.28]^{-2} \quad (57) \qquad 1 \cdot 10^{4} < Re_{D} < 5 \cdot 10^{5}$$
(Petukhov-Popov)

4.2.8.1. Coeficiente de transferencia de calor por convección interno con cambio de fase

En la zona intermedia del vaporizador (zona B), el fluido, en este caso GNL, sufre un cambio de fase. En esta situación, las expresiones anteriores no son válidas y se necesita otra forma de calcular el coeficiente de transferencia de calor.

La transferencia de calor en cambio de fase es un tema complejo y existen múltiples correlaciones, tanto teóricas como empíricas, que tienen como objetivo el cálculo de los coeficientes de transferencia de calor.

En este trabajo se empleará una correlación empírica denominada correlación de Shah.

Hay que diferenciar dos tipos de ebullición en conductos: la ebullición nucleada y la estrictamente convectiva. La ebullición nucleada se caracteriza por la presencia de burbujas y por la fuerte dependencia del coeficiente de transferencia de calor del flujo de calor específico. En la ebullición estrictamente convectiva, el cambio de fase ocurre a lo largo de una interfaz líquido-vapor relativamente extensa y sin presencia de burbujas.

La correlación de Shah [10] se desarrolla en función de tres números adimensionales:

Número convectivo:

$$C_o = \left(\frac{1-x}{x}\right)^{0.8} \left(\frac{\rho_v}{\rho_l}\right)^{0.5}$$
(58)

Relacionado con los efectos convectivos. *x* es el título (masa de vapor entre masa total del fluido) y ρ_v y ρ_l son la densidad de la fase vapor y de la fase líquida.

Número de ebullición:

$$Bo = \frac{q''}{Gh_{lv}} \tag{59}$$

Está relacionado con los efectos de ebullición nucleada. q'' es el flujo específico de calor, G es el caudal entre la sección transversal del conducto (caudal por tubo) y h_{lv} el calor latente de vaporización.

Número de Froude:

$$Fr_l = \frac{G^2}{\rho_l^2 g d_i} \tag{60}$$

Este número se relaciona con los efectos de superficie libre, condición que puede ocurrir en conductos horizontales.

La correlación de Shah se expresa en términos de la relación entre coeficientes de transferencia de calor, que representan los efectos de ebullición nucleada y estrictamente convectiva.

El proceso es el siguiente:

1) Determinación del parámetro adimensional N

Para conductos verticales y horizontales con $Fr_l > 0,04$:

$$N = C_o \tag{61}$$

Figura 17: Evolución del cambio de fase en un conducto vertical [10]

Para conductos horizontales con $Fr_l < 0.04$:

$$N = 0.38Fr_l^{-0.3}C_o (62)$$

2) Determinación del coeficiente de transferencia de calor bifásico (*h*_b)

a) Si *N* > 1,0

El coeficiente de transferencia de calor relativo a la ebullición nucleada se calcula con las siguientes expresiones:

$$\frac{h_{en}}{h_l} = 230Bo^{0,5} \tag{63}$$

Si $Bo \le 0,0003$

$$\frac{h_{en}}{h_l} = 1 + 46Bo^{0,5} \tag{64}$$

El coeficiente de transferencia de calor relativo a la ebullición estrictamente convectiva se obtiene de:

$$\frac{h_{ec}}{h_l} = \frac{1.8}{N^{0.8}} \tag{65}$$

 h_l es el coeficiente de transferencia de calor del líquido de la película y se calcula por las expresiones correspondientes al flujo interior (Tabla 17) usando el número de Reynolds y el Prandlt referidos a la fase líquida. De este modo el Reynolds se puede calcular como:

$$Re_l = \frac{G(1-x)d_i}{\mu_l} \tag{66}$$

b) Si 0,1 < N < 1,0

El valor de h_{ec} se determina por la expresión anterior y h_{en} del siguiente modo:

$$\frac{h_{en}}{h_l} = F_s Bo^{0,5} \exp(2,74N^{-0,1})$$
(67)

Donde F_s valdrá 14,7 si Bo es mayor de 0,0011 y 15,43 en caso contrario.

c) Si *N* < 0,1

 h_{ec} se determina de nuevo por la ecuación (65) y h_{en} por:

$$\frac{h_{en}}{h_l} = F_s Bo^{0.5} \exp(2,74N^{-0.15})$$
(68)

El valor del coeficiente de transferencia de calor bifásico será el mayor de entre el coeficiente referido a ebullición nucleada o el referido a ebullición estrictamente convectiva.

4.2.9. Parámetros geométricos de la carcasa y el haz de tubos

El método elegido para el cálculo del coeficiente de transferencia de calor por convección externo y la pérdida de carga en la carcasa es el método de Bell-Dellaware [7][9].

Antes de proceder al es necesario definir y calcular una serie de parámetros geométricos y áreas referentes a la carcasa y al haz de tubos. Para ello es necesario tener definidas las geometrías de los bafles y el haz de tubos.

En la figura 18 aparecen algunos de estos parámetros. D_{otl} es el diámetro externo del haz de tubos, D_{ctl} es el diámetro que forman los centros de los tubos exteriores, θ_{ds} es el ángulo de corte de un bafle y L_{bb} es la holgura total entre un bafle y la carcasa.

$$\theta_{ds} = 2\cos^{-1}\left(1 - \frac{2B_c}{100}\right) \tag{69}$$

 B_c es el porcentaje de corte de un bafle. Habitualmente oscila entre el 20% y el 40%.

 D_{ot} se obtiene de restar al diámetro interno de la carcasa la holgura entre la carcasa y el haz de tubos (L_{bb}).

$$D_{otl} = D_s - L_{bb} \tag{70}$$

El diámetro externo del haz de tubos puede obtenerse con la siguiente ecuación [9]:

$$D_{otl} = d \left(\frac{N}{K_1}\right)^{1/n_1} \tag{71}$$

Los valores de las constantes n_1 y K_1 se obtienen de la Tabla 19

El número de tubos presente en la fila central del intercambiador puede calcularse dividendo el diámetro del haz de tubos entre la distancia entre los centros de los tubos.

Tabla 19: Constantes para la ecuación (71) [9]

Triangular pitch, $p_t = 1.25d_o$									
No. passes	1	2	4	6	8				
K_1 n_1	0.319 2.142	0.249 2.207	0.175 2.285	0.0743 2.499	0.0365 2.675				
Square pitch, p	$= 1.25d_{o}$								
No. passes	1	2	4	6	8				
K_1 n_1	0.215 2.207	0.156 2.291	0.158 2.263	0.0402 2.617	0.0331 2.643				

El valor de L_{bb} depende del tamaño de la carcasa y del tipo de cabezal utilizado, siendo mayor en cabezales con espejos flotantes. En la Figura 19 se puede ver una representación gráfica de valores típicos de este parámetro.

El ángulo formado por la intersección del corte del bafle y el diámetro del haz de tubos (θ_{ctl}), se calcula con la siguiente expresión:

$$\theta_{ctl} = 2\cos^{-1}\left[\frac{D_s}{D_{ctl}}\left(1 - \frac{2B_c}{100}\right)\right]$$
(72)

Figura 19: Espacio entre la carcasa y el haz de tubos [http://tesis.ipn.mx/bitstream/handle/123456789/2253/1716_2007_ESIMEZAC_MAESTRIA_flores_gonzalez_rafael. pdf?sequence=1]

Figura 20: Holguras y zonas de flujo en la carcasa [9]

El área de flujo cruzado en la carcasa es:

$$S_m = L_{bc} \left[L_{bb} + \frac{D_{ctl}}{L_{tp,eff}} \left(L_{tp} - d \right) \right]$$
(73)

Donde L_{bc} es la distancia entre bafles, *d* es el diámetro externo de un tubo y $D_{ct/}$ es el diámetro externo del haz de tubos menos el diámetro externo de un tubo.

El parámetro L_{tp} puede verse en la Figura 21. Para arreglos de tubos de 30° y 90° $L_{tp,eff}$ es igual a L_{tp} . Para arreglos de 45°, $L_{tp,eff}$ es igual a 0,707 L_{tp} .

Figura 21: Parámetros del arreglo de tubos [7]

El siguiente paso es obtener las áreas de flujo en la zona de la ventana de los bafles.

El área bruta en la ventana es:

$$S_{wg} = \frac{\pi}{4} D_s^2 \left(\frac{\theta_{ds}}{2\pi} - \frac{\sin \theta_{ds}}{2\pi} \right)$$
(74)

Siendo D_s el diámetro interno de la carcasa.

La fracción del número de tubos en la zona de la ventana viene dada por:

$$F_w = \frac{\theta_{ctl}}{2\pi} - \frac{\sin\theta_{ctl}}{2\pi}$$
(75)

La fracción de tubos en flujo cruzado puro es:

$$F_c = 1 - 2F_w \tag{76}$$

El área ocupada por los tubos en la zona de la ventana es:

$$S_{wt} = N_{tw} \frac{\pi}{4} d^2 \tag{77}$$

Donde *N*_{tw} es el número de tubos en la ventana, calculado como:

$$N_{tw} = NF_w \tag{78}$$

Siendo N el número total de tubos en el intercambiador.

El área neta de flujo cruzado a través de la ventana de un bafle será la diferencia entre el área bruta y el área ocupada por los tubos.

$$S_w = S_{wg} + S_{wt} \tag{79}$$

Lo siguiente es calcular el número de filas de tubos en flujo cruzado (N_{tcc}) y en la ventana de un bafle (N_{tcw}).

$$N_{tcc} = -\frac{D_s}{L_{pp}} \left(1 - \frac{2B_c}{100} \right)$$
(80)

$$N_{tcw} = \frac{0.8}{L_{pp}} \left[\frac{D_s B_c}{100} - \frac{D_s - D_{ctl}}{2} \right]$$
(81)

*L*_{pp} es la distancia efectiva entre filas de tubos en la dirección del flujo (figura 21).

Es necesario también calcular el área de bypass entre la carcasa y el haz de tubos:

MEMORIA

$$S_b = L_{bc}(D_s - D_{otl}) \tag{82}$$

La relación entre el área de bypass y el área total en flujo cruzado es:

$$F_{sbp} = \frac{S_b}{S_m} \tag{83}$$

Por último se necesitan calcular las áreas de fugas entre bafle-carcasa y entre tubos-bafle.

El área de fugas entre la carcasa y el bafle es:

$$S_{sb} = \pi D_s \frac{L_{sb}}{2} \left(\frac{2\pi - \theta_{ds}}{2\pi} \right) \tag{84}$$

L_{sb} es la holgura entre la carcasa y el diámetro del bafle.

El área de fugas entre los tubos y los agujeros para los tubos en un bafle se calcula del siguiente modo:

$$S_{tb} = \frac{\pi}{4} [(d + L_{tb})^2 - d^2] N(1 - F_w)$$
(85)

Donde *L*_{tb} es la holgura entre el diámetro externo de los tubos y el diámetro de agujero del bafle.

4.2.10. Coeficiente de transferencia de calor por convección externo

El coeficiente de transferencia de calor por convección externo, al igual que la caída de presión en el lado de la carcasa, será obtenido mediante el método conocido como método de Bell-Delaware [7][9]. Este método se basa en el flujo sobre bancos de tubos ideales y se añaden los efectos de las fugas, la corriente de bypass y el flujo en la zona de las ventanas mediante factores de corrección. Ofrece una predicción satisfactoria tanto del coeficiente de transferencia de calor como de la caída de presión y es más exacto que otros métodos, como por ejemplo el método de Kern [7][9].

El coeficiente de transferencia de calor por convección externo se calcula como:

$$h_s = h_i J_c J_l J_b J_r J_s \tag{86}$$

 h_i es el coeficiente de transferencia de calor calculado para un banco de tubos ideal en flujo cruzado (sin fugas ni bypass).

 J_c expresa los efectos del flujo en la ventana de los bafles en el coeficiente de transferencia de calor h_i .

 J_l es el factor de corrección para los efectos de las fugas en los bafles.

J^b es el factor de corrección para el flujo de bypass.

 J_s es el factor de corrección para el caso de un espacio entre bafles variable en las secciones de entrada y salida.

 J_r es el factor de corrección para el gradiente adverso de temperatura en flujo laminar.

 μ_p la viscosidad del agua calculada en la pared externa del tubo. Para obtener este número se necesita la temperatura media de la pared del tubo en cada zona. Esta temperatura se obtiene haciendo un balance de calor.

El coeficiente de transferencia para un banco de tubos ideal (*h_i*) se calcula como:

$$h_i = \frac{j_i C_{ps} G_s(\varphi_s)^n}{P r_*^{2/3}}$$
(87)

Donde j_i es parámetro adimensional denominado factor de Colburn que depende del número de Reynolds y de la distribución de los tubos. Se obtiene de la figura 22.

Figura 22: Factor de corrección j_i para grupos de tubos ideales [4]

 G_s se define como el caudal másico en la carcasa entre el área de flujo cruzado.

$$G_s = \frac{\dot{m}_s}{S_m} \tag{88}$$

El número de Reynolds en la carcasa es:

$$Re_s = \frac{dG_s}{\mu_s} \tag{89}$$

 μ_s es la viscosidad dinámica del fluido que circula por la carcasa y Cp_s es el calor específico.

Prs es el número de Prandlt en la carcasa:

$$Pr_s = \frac{\mu_s C p_s}{k_s} \tag{90}$$

Donde k_s es la conductividad térmica del fluido de la carcasa.

MEMORIA

El término $(\varphi_s)^n$ es un factor de corrección que relaciona la viscosidad del fluido de la carcasa a su temperatura media entre la viscosidad a la temperatura de la pared de tubo (μ_p) .

$$(\varphi_s)^n = \left(\frac{\mu_s}{\mu_p}\right)^{0.14} \tag{91}$$

Para obtener μ_p se necesita la temperatura media de la pared del tubo en cada zona. Esta temperatura se obtiene haciendo el siguiente balance de calor:

$$(UA)(T_{mGN} - T_{mag}) = h_e A_e (T_p - T_{mag})$$
(92)

 T_{mGN} y T_{mag} son las temperaturas medias del gas natural y del agua en la zona considerada y A_e es el área externa de la zona en cuestión (área externa de un tubo multiplicada por el número de tubos).

Se suponen valores de T_p hasta que el resultado del lado derecho de la ecuación (92) coincida con el del lado izquierdo de la igualdad.

Ahora se procede al cálculo de los factores de corrección.

El factor de corrección J_c, para cortes de bafle de entre 15% y 45%, se calcula como:

$$J_c = 0.55 + 0.72F_c \tag{93}$$

El factor J_l es:

$$J_l = 0.44(1 - r_s) + [1 - 0.44(1 - r_s)]e^{-2.2r_{lm}}$$
(94)

Donde:

$$r_s = \frac{S_{sb}}{S_{sb} + S_{tb}} \tag{95}$$

$$r_{lm} = \frac{S_{sb} + S_{tb}}{S_m} \tag{96}$$

El factor *J*^{*b*} se calcula con la siguiente expresión:

$$J_b = \exp\{-C_{bh}F_{sbp}[1 - (2r_{ss})^{1/3}]\}$$
(97)

 C_{bh} es 1,25 para números de Reynolds menores o iguales a 100 y 1,35 para Reynolds mayores. r_{ss} es:

$$r_{ss} = \frac{N_{ss}}{N_{tcc}} \tag{98}$$

Donde N_{ss} es el número de pares de tiras de sellado, si las hay (Figura 23).

MEMORIA

Figura 23: Tiras de sellado [11]

La expresión para obtener el factor J_r depende del número de Reynolds en la carcasa.

Si *Res* < 20

$$J_r = \frac{1,51}{N_c^{0,18}} \tag{99}$$

Donde N_c es el número total de filas de tubos cruzadas en el intercambiador entero.

$$N_c = (N_{tcc} + N_{tcw})(N_b + 1)$$
(100)

Siendo N_b el número total de bafles en el intercambiador.

Si 20 < *Re*_s < 100

$$J_r = \frac{1.51}{N_c^{0.18}} + \left(\frac{20 - Re_s}{80}\right) \left(\frac{1.51}{N_c^{0.18}} - 1\right)$$
(101)

Para números de Reynolds mayores a 100, *J*_r vale 1.

Por último *se calcula J*_s usando la siguiente expresión:

$$J_s = \frac{(N_b - 1) + (L_i^*)^{1 - n} + (L_o^*)^{1 - n}}{(N_b - 1) + (L_i^* - 1) + (L_o^* - 1)}$$
(102)

Donde n = 0,6 para flujo turbulento.

$$L_i^* = \frac{L_{bi}}{L_{bc}} \tag{103}$$

$$L_o^* = \frac{L_{bo}}{L_{bc}} \tag{104}$$

 L_{bi} y L_{bo} son las distancias entre el espejo y el primer bafle a la entrada y salida.

Figura 24: Distancias entre bafles [7]

4.2.11. Resistencia de ensuciamiento

Con el paso del tiempo, se va depositando suciedad en las superficies del intercambiador, lo que provoca una disminución en el coeficiente global de transferencia de calor. A la hora de diseñar un intercambiador de calor hay que tener en cuenta una resistencia térmica extra debida a este ensuciamiento, para que el intercambiador pueda seguir operando de manera adecuada.

En este caso se tendrán en cuenta dos resistencias por ensuciamiento: una interna debida al gas natural (R_{fi}) y otra externa debida al agua de mar (R_{fe}).

De las Tablas 20 y 21 pueden obtenerse valores para las resistencias térmicas del gas natural y del agua.

Tabla 20: Resistencias de ensuciamiento para gas natural y gasolina [8]

Fouling Resistances for Natural Gas-Gasoline Processing Streams

•	0
Streams	R _f (m ² • K/W)
Gases and Vapors	
Natural Gas	0.000176-0.000352
Overhead products	0.000176-0.000352
Liquids	
Lean oil	0.000352
Rich oil	0.000176~0.000352
Natural gasoline and liquefied petroleum gases	0.000176-0.000352

From Standards of the Tubular Exchanger Manufacturers Association (1988). ©1988 by Tubular Exchanger Manufacturers Association. With permission.

Tabla 21: Resistencias de ensuciamiento para agua [8]

Fouling Resistances for Water

Temperature of Heating Medium Temperature of Water	Up to 2 50°	115°Ç C	R ₁ (m ² · K/W) 115 to 205°C Over 50°C		
Water Velocity (m/s)	0.9 and Less	Over 0,9	0.9 and Less	Over 0.9	
Seawater	0.000088	0.000088	0.000176	0.000176	
Brackish water	0.000352	0.000176	0.000528	0.000352	
Cooling tower and artificial spray pond					
Treated make up	0.000176	0.000176	0.000352	0.000352	
Untreated	0.000528	0.000528	0.000881	0.000705	
City or well water	0.000176	0.000176	0.000352	0.000352	
River water					
Minimum	0.000352	0.000176	0.000528	0.000352	
Average	0.000528	0.000352	0.000705	0.000528	
Muddy or stilty	0.000528	0.000352	0.000705	0.000528	
Hard (over 15 grains/gal)	0.000528	0.000528	0.000881	0.000881	
Engine jacket	0.000176	0.000176	0.000176	0.000176	
Distilled or closed cycle					
Condensate	0,000088	0.000088	0.000088	0.000088	
Treated boiler feedwater	0,000176	0.000088	0.000176	0.000176	
Boller blowdown	0.000352	0.000352	0.000352	0.000352	

From Standards of the Tubular Exchanger Manufacturers Association (1988). ©1988 by Tubular Exchanger Manufacturers Association. With permission.

4.2.12. Comprobación del coeficiente global de transferencia de calor

Una vez obtenidos todos los parámetros anteriores es necesario comprobar si el coeficiente global de transferencia de calor supuesto para cada zona es el correcto. Para ello se calculan los dos términos de la igualdad presente en la ecuación (105). Si los dos términos no son iguales, se itera probando diferentes valores de *U* hasta que la ecuación (105) se cumpla.

$$\left(\frac{1}{UA}\right)_{i} = \frac{1}{h_{i}A_{i}} + \frac{ln\frac{D_{e}}{D_{i}}}{N2\pi kL} + \frac{1}{h_{e}A_{e}} + \frac{R_{fi}}{A_{i}} + \frac{R_{fe}}{A_{e}}$$
(105)

5. CAÍDA DE PRESIÓN

5.1. Caída de presión en la carcasa

El cálculo de la caída de presión en la carcasa se ha realizado también con el método de Bell-Delaware [7][9], que descompone la caída de presión total en la suma de la caída de presión en los extremos, la caída de presión en las zonas de flujo cruzado y las caídas de presión en las ventanas de los bafles.

El primer paso es calcular la caída de presión para un banco de tubos ideal que viene dada por:

$$\Delta P_i = 2f_s N_{tcc} \frac{G_s^2}{\rho_s(\varphi_s)^n} \tag{106}$$

Donde ρ_s es la densidad del fluido de la carcasa y f_s es un factor de fricción en función del número de Reynolds de la carcasa y la configuración de los tubos que se obtiene de la figura 25.

Figura 25: Factor de fricción para distintas configuraciones de tubos ideales [4]

A continuación se calcula la caída de presión de todas las secciones interiores de flujo cruzado.

$$\Delta P_c = (N_b - 1)(\Delta P_i R_b R_l) \tag{107}$$

R^b es un factor que tiene en cuenta los efectos de las corrientes de bypass en la caída de presión.

$$R_b = exp[-C_{bp}F_{sbp}(1 - (2r_{ss})^{1/3})]$$
(108)

Donde C_{bp} vale 4,5 para Reynolds menores o iguales a 100 y 3,7 para Reynolds mayores.

*R*_les un factor que tiene en cuenta el efecto de las fugas en los bafles.

$$R_{l} = \exp\left[-1,33(1+r_{s})r_{lm}^{[-0,15(1+r_{s})+0,8]}\right]$$
(109)

Lo siguiente es calcular las caídas de presión en las secciones de entrada y salida.

$$\Delta P_e = 2\Delta P_i \left(1 + \frac{N_{tcw}}{N_{tcc}} \right) R_b R_s \tag{110}$$

*R*_s es un factor de corrección para cuando es espaciado de los bafles a la entrada y salida no es el mismo que en el resto del intercambiador.

$$R_{s} = \left(\frac{1}{L_{i}^{*}}\right)^{2-n} + \left(\frac{1}{L_{o}^{*}}\right)^{2-n}$$
(111)

Con n = 1 para Reynolds menores o iguales a 100 y n = 0,2 para Reynolds superiores.

Por último se calcula la caída de presión en las zonas de ventana de los bafles.

Para Reynolds iguales o superiores a 100:

$$\Delta P_w = \frac{(2+0.6N_{tcw})G_w^2}{2\rho_s}$$
(112)

Para Reynolds inferiores a 100:

$$\Delta P_{w} = 26 \frac{G_{w} \mu_{s}}{\rho_{s}} \left[\frac{N_{tcw}}{L_{tp} - d} + \frac{L_{bc}}{D_{w}^{2}} \right] + 2 \frac{G_{w}^{2}}{\rho_{s}}$$
(113)

Donde:

$$G_w = \frac{\dot{m}_s}{\sqrt{S_m S_w}} \tag{114}$$

$$D_w = \frac{4S_w}{\pi dN_{tw} + \pi D_s \theta_{ds}/(2\pi)}$$
(115)

Finalmente, la expresión de la caída de presión total en la carcasa es:

MEMORIA

$$\Delta P_s = \left[(N_b - 1)\Delta P_i R_b + N_b \Delta P_w \right] R_l + 2\Delta P_i \left(1 + \frac{N_{tcw}}{N_{tcc}} \right) R_b R_s$$
(116)

5.2. Caída de presión en los tubos

El valor de la caída de presión en los tubos se obtiene con la ecuación (117) [9].

$$\Delta p_t = \left(4f \frac{LN_p}{d_i} + 4N_p\right) \rho \frac{u_m^2}{2} \tag{117}$$

Donde:

 N_p es el número de pasos del fluido por los tubos, *L* la longitud total de los mismos, *d*_isu diámetro interno y ρ la densidad del fluido que circula por su interior.

El coeficiente de fricción (f) para flujo turbulento en conductos de sección circular puede ser aproximado por las ecuaciones (118) y (119).

$$f = 0.046Re^{-0.2} \qquad 3 \cdot 10^4 < Re < 10^6 \tag{118}$$

$$f = 0.079 R e^{-0.25} \qquad 4000 < R e < 10^5 \tag{119}$$

 u_m es la velocidad media del fluido:

$$u_m = \frac{\dot{m}_{GN}}{\rho A_{tp}} \tag{120}$$

*A*_{tp} es la sección de un tubo multiplicada por el número de tubos:

$$A_{tp} = \frac{\pi}{4} d_i^2 N \tag{121}$$

6. VIBRACIÓN DEL HAZ DE TUBOS

El flujo de fluido en la carcasa puede causar vibración en el haz de tubos. Este fenómeno es muy complejo y su solución puede ser difícil. Los dos factores más importantes de los que depende este fenómeno son la máxima longitud de tubo sin soporte y la velocidad del fluido que circula por la carcasa. Esta vibración puede dañar gravemente los tubos y es necesario minimizarla.

Existen varios mecanismos que inducen vibración en el haz de tubos. El presente trabajo se centra en dos de ellos (los más frecuentes y dañinos): la inestabilidad fluidoelástica y el desprendimiento de vórtices.

6.1. Inestabilidad fluidoelástica

Este fenómeno es el más perjudicial de todos y se produce cuando existen grandes amplitudes de vibración. Las normas TEMA [3] indican que para impedir la aparición de este fenómeno la velocidad de referencia de flujo cruzado debe ser menor que una determinada velocidad crítica.

6.1.1. Velocidad de referencia

El método utilizado en las normas TEMA para el cálculo de la velocidad de referencia de flujo cruzado es el denominado método de Tinker [3][7].

La velocidad se calcula del siguiente modo:

$$u_s = \frac{F_h \dot{m}_s}{M A_x \rho_s} \tag{122}$$

Donde:

A_x es el área de flujo cruzado dentro de los límites del haz de tubos

 F_h es la fracción total de fluido fluyendo a través de A_x

M es un factor de multiplicación

 \dot{m}_s y ρ_s son respectivamente el caudal másico y la densidad del fluido en la carcasa.

A continuación se procede al cálculo de los términos que aparecen en la ecuación (122).

$$A_x = a_x L_{bc} D_3 \tag{123}$$

 L_{bc} es la distancia entre bafles, D_3 el diámetro externo del haz de tubos y a_x un factor que puede sr obtenido de la Tabla 22 en función de la distancia entre tubos (p) y el diámetro externo de un tubo (d).

$$F_h = \frac{1}{1 + N_h \sqrt{D_1/p}}$$
(124)

(125)

 D_1 es el diámetro interno de la carcasa.

Tabla 22: Términos para calcular la velocidad de referencia [7]

Terms to Find Crossflow Velocity

	30°	90°	45°	60°
a _x	0.97(p-d)	0.97(p-d)	1.372(p-d)	0.97(<i>p</i> - <i>d</i>)
	р	p	Р	p
a ₄	1.26	1.26	0.90	1.09
a ₅	0.82	0.66	0.56	0.61
a_6	1.48	1.38	1.17	1.28
М	0.85	0.93	0.80	0.87

Source: Tinker, T., Trans. ASME, vol. 80, 36, 1958. Note: Values for 60° have been taken from TEMA [2].

Tabla 23: Cálculo del término a₈ [7]

Baffle Cut Ratio and the Term a₈ for Crossflow Velocity

h/D_1	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50
78	0.94	0.90	0.85	0.80	0.74	0.68	0.62	0.54	0.49

Source: Tinker, T., Trans. ASME, vol. 80, 36, 1958.

Para obtener N_h y M_w es necesario el cálculo previo de una serie de factores.

$$a_1 = \frac{D_1}{D_3}$$
 (126)

En el caso de intercambiadores con tiras de sellado a1 será:

$$a_{1} = 1 + \left[\frac{D_{1}}{D_{3}} - 1\right] + 1.5 \left[\frac{D_{1} - D_{2}}{D_{1}}\right]$$
(127)

 D_2 es el diámetro de bafle.

$$a_2 = \frac{d_b - d}{d} \tag{128}$$

 d_b es el diámetro de los agujeros de los bafles.

MEMORIA

$$a_3 = \frac{D_1 - D_2}{D_1} \tag{129}$$

$$b_1 = \frac{(a_1 - 1)^{1,5}}{\sqrt{a_1}} \tag{130}$$

$$b_2 = \frac{a_2}{a_1^{1,5}} \tag{131}$$

$$b_3 = a_3 \sqrt{a_1}$$
 (132)

$$a_7 = a_4 \left(\frac{p}{p-d}\right)^{1.5}$$
(133)

$$A = a_5 a_8 \left(\frac{D_1}{L_{bc}}\right) \left(\frac{d}{p}\right)^2 \left(\frac{p}{p-d}\right)$$
(134)

$$E = a_6 \left(\frac{p}{p-d}\right) \left(\frac{D_1}{L_{bc}}\right) \left(1 - \frac{h}{D_1}\right)$$
(135)

Donde *h* es la altura del corte del bafle.

Finalmente:

$$N_h = a_7 b_1 + A b_2 + b_3 E (136)$$

$$M_w = m a_1^{0,5} (137)$$

6.1.2. Cálculo de la velocidad crítica

Las normas TEMA definen la velocidad crítica como:

$$u_{cr} = Df_n d \tag{138}$$

Donde d es el diámetro externo de un tubo, D es un factor adimensional y f_n la frecuencia natural del haz de tubos.

La expresión de f_n es la siguiente:

$$f_n = \frac{1}{2\pi} \frac{\chi_\beta \lambda_n^2}{L_i^2} \left(\frac{EI}{m}\right)^{0.5}$$
(139)

m es la masa de tubo por unidad de longitud.

E e I son respectivamente el módulo de elasticidad y de inercia de los tubos.

*L*_{*i*} es la máxima longitud de tubo sin soporte.

 χ_{θ} es un factor de esfuerzo axial.

 λ_n es una constante que depende del tipo de sujeción de los tubos (Figura 26 y Tabla 24).

Figura 26: Tipo de sujeción de los tubos: (a) pinned-pinned, (b) fixed-pinned, (c) fixed-fixed [7]

Tabla 24: Valores de λ_n y F_{cr} [7]

Frequency Constant, λ_n , and Euler Buckling Load, F_{cr}

	Pinned–Pinned	Fixed-Pinned	Fixed-Fixed
λ	nπ	$0.25 (4n + 1)\pi$	$0.5(2n+1)\pi$
$F_{\rm cr}$	$\pi^2 EI/L^2$	$2\pi^2 EI/L^2$	$4\pi^2 EI/L^2$

Se procede al cálculo de los términos presentes en la ecuación (139).

$$m = \frac{\pi d^2 C_m \rho_s}{4} + \frac{\pi d_i^2 \rho_i}{4} + \frac{\pi (d^2 - d_i^2) \rho}{4}$$
(140)

Donde ρ_i es la densidad del fluido que circula por los tubos, d_i es el diámetro interno del tubo y C_m el coeficiente de masa hidrodinámico.

$$C_m = \frac{(d_e/d)^2 + 1}{(d_e/d)^2 - 1} \tag{141}$$

d_e es un diámetro equivalente:

$$d_e = \left(1 + \frac{0.5p}{D}\right)p\tag{142}$$

El momento de inercia de un tubo será:

$$I = \frac{\pi}{64} \left(d^4 - d_i^4 \right) \tag{143}$$

El área de la sección de un tubo (A_t) es:

$$A_t = \frac{\pi \left(d^2 - d_i^2 \right)}{4} \tag{144}$$

Se calcula la fuerza acial en un tubo como (F_a):

MEMORIA

$$F_a = S_t A_t \tag{145}$$

 S_t es el máximo esfuerzo longitudinal en la periferia del haz de tubos.

$$S_{t} = \frac{C_{t}F_{q}P_{t}^{*}G^{2}}{4Nt_{t}(d-t_{t})}$$
(146)

Donde t_t es el espesor de un tubo, *N* el número total de tubos, *G* el diámetro sobre el cual actúa la presión. *P*_t*es la mayor presión en valor absoluto de las siguientes:

$$P_t^* = P_2 \tag{147}$$

$$P_t^* = -P_3$$
 (148)

$$P_t^* = P_d \tag{149}$$

$$P_t^* = P_2 - P_3 \tag{150}$$

$$P_t^* = P_2 + P_d$$
(151)

$$P_t^* = -P_3 + P_d$$
(152)

$$P_t^* = P_2 - P_3 + P_d \tag{153}$$

Siendo P_2 y P_3 lo siguiente:

$$P_2 = P_t' - \left(\frac{f_t P_t}{F_q}\right) \tag{154}$$

$$P_3 = P_s' - \left(\frac{f_s P_s}{F_q}\right) \tag{155}$$

Las expresiones para obtener P_t' , P_s' , P_d , f_t , f_s y F_q se muestran en el apartado 7.6.3.

El valor de C_t es 1,0 cuando el signo de P_t *es negativo y 0,5 cuando es positivo.

A continuación se obtiene la expresión F_{cr} de la tabla 23. Donde *L* representa la máxima longitud de tubo sin soporte.

Lo siguiente es calcular χ_{β} :

$$\chi_{\beta} = \sqrt{1 + \frac{F_a}{F_{cr}}} \tag{156}$$

Una vez calculada la frecuencia natural, solamente resta calcular el factor *D* para obtener el valor de la velocidad crítica.

La expresión para obtener *D* varía en función de la disposición de los tubos.

Tabla 25: Fórmulas para obtener D [3]

Tube Pattern (See Figure RCB-2.4)	Parameter Range for x	Dimensionless Critical Flow Velocity Factor, D			
208	0.1 to 1	$8.86\left(\frac{P}{d_0}-0.9\right)x^{0.34}$			
30-	over 1 to 300	$8.86 \left(\frac{P}{d_0} - 0.9\right) x^{0.5}$			
60°	0.01 to 1	2.80 x ^{0.17}			
60	over 1 to 300	2.80 x ^{0.5}			
an°	0.03 to 0.7	$2.10 x^{0.15}$			
50	over 0.7 to 300	2.35 x ^{0.5}			
45°	0.1 to 300	$4.13\left(\frac{P}{d_0}-0.5\right)x^{0.5}$			
P = Tube p	litch				
d_0 = Tube OD or fin root diameter for integrally finned tubes					

FORMULAE FOR CRITICAL FLOW VELOCITY FACTOR, D

En la Tabla 25, x es:

$$x = \frac{m\delta_t}{\rho_s d^2} \tag{157}$$

$$\delta_t = 2\pi\xi_n \tag{158}$$

$$\xi_n = \frac{\pi}{\sqrt{8}} \frac{1 + (d/d_e)^3}{[1 - (d/d_e)^2]^2} \left(\frac{\rho_s d^2}{m}\right) \left(\frac{2\nu}{\pi f_n d^2}\right)^{0.5} + \left(\frac{N-1}{N}\right) \left(\frac{22}{f_n}\right) \left(\frac{\rho_s d^2}{m}\right) \left(\frac{t_b}{L_i}\right)^{0.6}$$
(159)

 t_b es el espesor del bafle.

Si el valor de δ_t calculado es menor de 0,0377 se asume que δ_t = 0,0377.

Una vez obtenida la velocidad crítica se compara con la de referencia. Si la velocidad crítica está por encima de la velocidad de referencia, el diseño será válido y no se producirán vibraciones excesivas en los tubos.

6.2. Desprendimiento de vórtices

El desprendimiento de vórtices puede causar turbulencias y vibraciones en los tubos.

Las normas TEMA establecen que el desprendimiento de vórtices puede ser un problema cuando la frecuencia natural de los tubos es menor que el doble de la frecuencia de desprendimiento de vórtice.

La frecuencia de desprendimiento de vórtice viene dada por:

$$f_{VS} = \frac{Su_s}{d} \tag{160}$$

Donde *S* es el número de Strouhal, que puede ser obtenido de las Figuras 27 y 28 en función del arreglo de tubos.

STROUHAL NUMBER FOR 90° TUBE PATTERNS

STROUHAL NUMBER FOR 30°, 45°, AND 60° TUBE PATTERNS

7. DISEÑO MECÁNICO

Para el diseño de las diversas partes que forman parte del evaporador se han tenido en cuenta las normas y recomendaciones presentes en el código ASME [12][13] (American Society of Mechanical Engineers) y en las normas TEMA [3] (Tubular Exchanger Manufacturers Association).

7.1. El código ASME

El código ASME cuenta con varias secciones, tratando la mayoría de las mismas sobre el diseño, construcción y operación de recipientes sometidos a presión.

Las secciones utilizadas para la realización de este trabajo han sido la sección VIII División 1 y la sección II parte D.

La sección VIII División 1 trata los siguientes apartados referentes a recipientes sometidos a presión: materiales, diseño, aberturas y refuerzos, superficies reforzadas y apoyadas, ligamentos, fabricación, inspección y test, marcas y reportes y dispositivos de alivio de presión.

La sección II parte D contiene todo lo referido a los distintos materiales empleados en la construcción de recipientes sometidos a presión.

7.2. Las normas TEMA

Las recomendaciones de diseño presentes en las normas TEMA son aplicables a intercambiadores de calor de carcasa y tubos que cumplan las siguientes condiciones:

- Diámetro interno de la carcasa menor a igual a 100 pulgadas (2540 mm).

- El valor del producto de diámetro nominal de la carcasa en pulgadas (milímetros) y presión de diseño en psi (kPa) no puede superar 100000 ($17,5\cdot10^6$).

- Presión de diseño menor o igual a 3000 psi (20684 kPa).

Las normas TEMA se dividen en los siguientes apartados:

Parte N: Nomenclatura.

Parte F: Tolerancias de fabricación.

Parte G: Fabricación general e información de funcionamiento.

Parte E: Instalación, operación y mantenimiento.

Parte: RCB: Normas mecánicas del TEMA para Intercambiadores de calor RCB.

Parte V: Vibración inducida por flujo.

Parte T: Relaciones térmicas.

Parte P: Propiedades físicas de fluidos.

Parte D: Información general.

Parte RGP: Buenas prácticas recomendadas.

Las normas TEMA dividen los intercambiadores de calor de carcasa y tubo no sometidos a fuego en 3 clases:

- Clase R: para operaciones petroleras y otros procesos relacionados.
- Clase C: para procesos comerciales con requerimientos moderados.
- Clase B: para procesos químicos.

7.3. Carcasa

7.3.1. Espesor por presión interna

El espesor de la carcasa se determina utilizando las expresiones para recipientes cilíndricos sometidos a presión interna. La carcasa estará sometida a un esfuerzo longitudinal y a otro circunferencial.

La expresión para determinar el espesor de un recipiente cilíndrico sometido a presión interna debido al esfuerzo longitudinal es la siguiente [13]:

$$t = \frac{PR}{2SE + 0.4P} \tag{161}$$

Donde t es el espesor, P es la presión de diseño, R es el radio interno, S el máximo esfuerzo del material permitido y E la efectividad de la junta soldada (Tabla 27).

Esta expresión puede aplicarse cuando $P \le 1,25SE$ y el espesor de la pared no exceda la mitad del radio interno.

El espesor debido al esfuerzo circunferencial es el siguiente:

$$t = \frac{PR}{SE - 0.6P} \tag{162}$$

Esta expresión se aplica cuando $P \le 0.385SE$ y el espesor de la pared no exceda la mitad del radio interno.

Las normas TEMA establecen unos espesores mínimos para las carcasas, en función del tipo de intercambiador, su diámetro interno, si está fabricada a partir de tubo o de chapa y si son de acero al carbono o de otra aleación.

Tabla 26: Espesor mínimo de carcasa [3]

TABLE R MINIMUM SHELL THICKNESS Dimensions in Inches (mm)

		Minimum Thickness					
Nominal S	hell Diameter	Carbo	Carbon Steel				
		Pipe	Plate				
6	(152)	SCH. 40		1/8	(3.2)		
8-12	(203-305)	SCH. 30	-	1/8	(3.2)		
13-29	(330-737)	SCH. STD	3/8 (9	.5) 3/10	6 (4.8)		
30-39	(762-991)	-	7/16 (1	1.1) 1/4	(6.4)		
40-60	(1016-1524)	-	1/2 (1	2.7) 5/10	6 (7.9)		
61-80	(1549-2032)	<u>_</u>	1/2 (1	2.7) 5/10	6 (7.9)		
81-100	(2057-2540)	-	1/2 (1	2.7) . 3/8	(9.5)		

TABLE CB MINIMUM SHELL THICKNESS Dimensions in Inches (mm)

Nominal Shell Diameter		Carb	Alloy *			
		Pipe	Plate			
6	(152)	SCH. 40	-		1/8	(3.2)
8-12	(203-205)	SCH. 30	- 1		1/8	(3.2)
13-23	(330-584)	SCH. 20	5/16	(7.9)	1/8	(3.2)
24-29	(610-737)	-	5/16	(7.9)	3/16	(4.8)
30-39	(762-991)	-	3/8	(9.5)	1/4	(6.4)
40-60	(1016-1524)		7/16	(11.1)	1/4	(6.4)
61-80	(1549-2032)	-	1/2	(12.7)	5/16	(7.9)
81-100	(2057-2540)	-	1/2	(12.7)	3/8	(9.5)
	(. ,		

*Schedule 5S is permissible for 6 inch (152 mm) and 8 inch (203 mm) shell diameters.

Tabla 27: Tipos de juntas soldadas [14]

TIPOS DE JUNTAS SOLDADAS					
NOF	TIPOS NORMA UW-12			JUNTA, E a es: c.	
		fiada total- mente	Examinada por zonas	No Examinada	
	Juntas a tope hechas por doble cordón de soldadura o por otro medio con el que se obtenga la mis- ma calidad de metal de soldadura depositada sobre las superficies in- terior y exterior de la pieza. Si se emplea placa de respaldo, debe quitarse ésta después de terminar la soldadura.	1.00	0.85	0.70	
2 En juntas circunferen- ciales únicamente	Junta a tope de un solo cordón con tira de respaldo que queda en su lugar después de soldar	0.90	0.80	0.65	
	Junta a tope de un solo cordón sin tira de respaldo	-	-	0.60	
4	Junta a traslape de doble filete completo	_	-	0.55	
5	Junta a traslape de un solo filete completo con soldaduras de tapón	-	-	0.50	
	Junta a traslape de un solo filete completo sin soldaduras de tapón	_	_	0.45	

7.3.2. Carga por viento

La presión externa a la que estará sometido el evaporador será la presión atmosférica. Sin embargo, como el evaporador será vertical y tendrá varios metros de altura, será necesario comprobar que el espesor es suficiente para soportar las cargas por viento.

La expresión para calcular el espesor debido a las cargas por viento es la siguiente [14]:

$$t = \frac{12M_T}{R^2 \pi SE} \tag{163}$$

Donde *R* es el radio medio de la carcasa, *E* es la efectividad de la junta soldada, *S* el máximo esfuerzo del material permitido y M_T es el momento en la costura inferior, a la altura h_T (Figura 29).

$$M_T = M - h_T (V - 0.5P_w Dh_T)$$
(164)

Donde *M* y *V* son el momento máximo en la base y la fuerza cortante total.

$$M = P_w DHh \tag{165}$$

$$V = P_w DH \tag{166}$$

Donde *D* es el diámetro total de la carcasa (incluyendo aislamiento), *H* la altura total, *h* el brazo de palanca (H/2) y P_w la presión del viento.

Figura 29: Dimensiones del vaporizador [14]

La presión del viento es calculada por la siguiente expresión:

$$P_w = q_s C_e C_q \tag{167}$$

 q_s y C_e se obtienen de las Tablas 28 y 29 y el valor del coeficiente C_q para torres cilíndricas es de 0,9.

Tabla 28 [,] Presión de estancamiento del viento a la altura estándar de 30	nies	[14]
	pics	(± ·)

Velocidad básica del viento, mph	70	80	90	100	110	120	130
Presión q_s , lb/pie ²	13	17	21	26	31	37	44

Tabla 29: Coeficiente C_e [14]

Altura sobre	Coeficiente C_e			
el piso, pies	Exposición C	Exposición B		
0-20	1.2	0.7		
20- 40	1.3	0.8		
40- 60	1.5	1.0		
60-100	1.6	1.1		
100-150	1.8	1.3		
150-200	1.9	1.4		
200-300	2.1	1.6		
300-400	2.2	1.8		

La exposición C representa la más severa, en terreno plano y generalmente abierto. La exposición B es para un terreno en el cual hay construcciones, bosques o irregularidades en el suelo.

7.3.3. Carga combinada de la presión interna y el viento

La presión interna y la presión del viento actuarán a la vez, por lo que habrá que tener en cuenta la combinación de ambos esfuerzos.

El momento inducido por la presión del viento será un esfuerzo longitudinal, es decir, actuará sobre la costura circunferencial.

El espesor de la carcasa será el mayor de los dos siguientes:

El espesor debido al esfuerzo circunferencial provocado por la presión interna (ec. 161)

La suma del espesor debido al esfuerzo longitudinal provocado por la presión interna (ec. 161) y el espesor debido a la carga por viento (ec. 163).

7.3.4. Margen por corrosión

Las normas TEMA recomiendan añadir un margen por corrosión a todas las partes sometidas a presión fabricadas en acero al carbono o hierro fundido. Las partes fabricadas en aleación y las no sometidas a presión, así como los tubos y la tornillería, no necesitan este margen.

Para intercambiadores de tipo R se añadirá al espesor calculado un margen por corrosión de 3,2 mm (1/8 pulgadas) y para los de tipo C y B este margen será de la mitad, 1,6 mm (1/16 pulgadas).

7.4. Tubos

En la Tabla 7 se muestran los diámetros y espesores estándar de tubos para intercambiadores de calor.

Los diámetros y espesores de tubo más usados, según el material con el que están fabricados, son los siguientes:

TABLE NCB								
	BARE TUBE DIAMETERS AND GAGES							
O.D. In. (mm)	Copper and Copper Alloys	Carbon Steel, Aluminum and Aluminum Alloys	Other Alloys					
	B.W.G.	B.W.G.	B.W.G.					
1/4	27	-	27					
(6.4)	24	-	24					
	22	-	22					
3/8	22		22					
(9.5)	20	· · ·	20					
	18	-	18					
1/2	20	- · · · ·	20					
(12.7)	18	-	18					
5/8	20	18	20					
(15.9)	18	16	18					
	16	14	16					
3/4	20	16	18					
(19.1)	18	14	16					
	16	12	14					
7/8	18	. 14	16					
(22.2)	16	12	14					
	14	10	12					
	12							
1	18	14	16					
(25.4)	16	12	14					
	14	-	12					
1-1/4	16	14	14					
(31.8)	14	12	12					
1-1/2	16	14	14					
(38.1)	14	12	12					
2	14	14	14					
(50.8)	12	12	12					

Tabla 30: Diámetros y espesores de tubo más habituales [3]

TADI E DOD

Mediante la ecuación (161) se obtiene el espesor mínimo requerido para soportar la presión interna. Para tubos sin costura el valor de *E* será igual a 1.

Una vez obtenido un espesor se comprueba que éste soportará la presión externa. Para ello acudimos a la norma para cilindros con relación entre el diámetro externo y el espesor menor de 10.

La presión externa máxima de diseño será la menor de las dos siguientes [13]:

$$P_1 = \frac{2S}{D_e/t} \left[1 - \frac{1}{D_e/t} \right]$$
(168)

$$P_2 = \left[\frac{2,167}{D_e/t} - 0,0833\right]B\tag{169}$$

Donde S es 0,9 veces el límite elástico del material empleado en los tubos.

El factor *B* se obtiene de unas curvas en función del material y de otro factor denominado A presentes en la Sección II Parte D del código ASME.

El factor A será, para relaciones entre el diámetro externo y el espesor menores de 4, se obtiene de la siguiente expresión:

$$A = \frac{1,1}{(D_e/t)^2}$$
(170)

Para valores de *A* mayores de 0,1 se usan valores de *B* de 0,1.

7.5. Bafles

Los bafles cumplen dos funciones: servir de soporte estructural de los tubos previniendo el pandeo y las vibraciones y guiar el flujo del fluido de la carcasa para que sea lo más perpendicular posible a los tubos, incrementando así la transferencia de calor.

7.5.1. Tipos de bafles

Los bafles se clasifican fundamentalmente en dos tipos: transversales y longitudinales.

Los bafles longitudinales dividen la carcasa en una o más secciones y se usan en carcasas de flujo partido o de varios pasos.

Los bafles transversales son los más utilizados y estos a su vez se clasifican en bafles de platos y de varilla.

Dentro de los bafles de platos, los más habituales son los segmentados.

Los bafles segmentados consisten en una placa circular con un segmento eliminado para permitir el paso del fluido. A este segmento se le denomina corte del bafle y su tamaño se

expresa en función del diámetro de la carcasa. Lo cortes más habituales son de entre 20% y 35% y el corte máximo se limita aproximadamente a 45%.

La orientación del corte puede ser horizontal, vertical o rotada (Figura 30).

BAFFLE CUTS FOR SEGMENTAL BAFFLES

Figura 30: Corte de los bafles [3]

Los bafles pueden tener más de un corte, siendo habitual los bafles de doble o triple segmentado.

BAFFLE CUTS FOR MULTI-SEGMENTAL BAFFLES

Figura 31: Cortes de bafles de doble y triple segmento [3]

Figura 32: Flujo a través de bafles segmentados [7]

Los tubos que atraviesan la ventana del bafle se saltarán un bafle y tendrán una distancia sin soporte de dos bafles. Cuando la vibración es un parámetro importante, puede optarse por eliminar los bafles de la ventana, haciendo que todos los tubos atraviesen todos los bafles. Placas soporte adicionales pueden ser colocadas entre bafles para mejorar la sujeción de los tubos. Los bafles usados tendrán un corte de entre un 15% y un 25%. Este tipo de montaje reduce la trasferencia de calor.

Figura 33: Intercambiador sin tubos en la ventana [7]

Otro tipo de bafles de platos consisten en colocar alternativamente coronas y discos, como se muestra en la siguiente figura.

Figura 34: Bafles disco y doughnut [7]

Los bafles de varilla consisten en un conjunto de varillas dispuestas en forma de rejilla.

Como ya se ha comentado anteriormente, los bafles segmentados son los más habituales y, además, son los que empleará el evaporador diseñado, por lo que en los siguientes apartados solo se hará referencia a estos.

7.5.2. Espacio entre bafles

El espaciado más habitual de los bafles es entre 0,4 y 0,6 veces el diámetro interno de la carcasa.

Las normas TEMA limitan el espaciado mínimo a 1/5 del diámetro de la carcasa o a 2 pulgadas, el que sea mayor.

En la Tabla 31 se muestra la máxima longitud de tubo sin soportar en función del diámetro externo de los tubos y del material del que están hechos.

		MAXIMUM UNSU Din	PPORTED STRAIGH	IT TUBE SPANS m)	
		Tube Materials and	l'emperature Limits ° I	F (°C)	
Tube	e OD	Carbon Steel & High	Alloy Steel, 750	Aluminum & Aluminu	m Alloys, Copper &
		(399)		Copper Alloys, Titani	ium Alloys At Code
		Low Alloy Steel, 850	(454)	Maximum Allowable	Temperature
		Nickel-Copper, 600 (316)			
		Nickel, 850 (454)			
		Nickel-Chromium-Iro	n, 1000 (538)		
1/4	(6.4)	26	(660)	22	(559)
3/8	(9.5)	35	(889)	30	(762)
1/2	(12.7)	44	(1118)	38	(965)
5/8	(15.9)	52	(1321)	45	(1143)
3/4	(19.1)	60	(1524)	52	(1321)
7/8	(22.2)	69	(1753)	60	(1524)
1	(25.4)	74	(1880)	64	(1626)
1-1/4	(31.8)	88	(2235)	76	(1930)
1-1/2	(38.1)	100	(2540)	87	(2210)
2	(50.8)	125	(3175)	110	(2794)
2-1/2	(63.5)	125	(3175)	110	(2794)
3	(76.2)	125	(3175)	110	(2794)

Tabla 31: Máxima longitud de tubo sin soporte [3]

7.5.3. Espesor

En las normas TEMA aparecen tabulados distintos espesores de bafles en función del diámetro externo de la carcasa y del espaciado entre bafles.

Tahla	32 · F	snesor	de	hafles	nara	intercam	hiadores	tino	R [3]
rubiu	JZ. L	.spcsor	uc	bujics	puru	mucrum	biuuoics	upo	n [J]

TABLE R									
BAFFLE OR SUPPORT PLATE THICKNESS									
		Dimensions in	n Inches (mm)						
	Plate Thickness								
Nominal Shell ID	Nominal Shell ID Unsupported tube length between central baffles. End spaces between tubesheets and baffles are not a consideration.								
	24 (610) and Over 24 (610) Under to 36 (914) Inclusive		Over 36 (914) to 48 (1219) inclusive	Over 48 (1219) to 60 (1524) Inclusive	Over 60 (1524)				
6-14 (152-356) 15-28 (381-711) 29-38 (737-965) 39-60 (991-1524) 61-100 (1549-2540)	1/8 (3.2) 3/16 (4.8) 1/4 (6.4) 1/4 (6.4) 3/8 (9.5)	3/16 (4.8) 1/4 (6.4) 5/16 (7.5) 3/8 (9.5) 1/2 (12.7)	1/4 (6.4) 3/8 (9.5) 3/8 (9.5) 1/2 (12.7) 5/8 (15.9)	3/8 (9.5) 3/8 (9.5) 1/2 (12.7) 5/8 (15.9) 3/4 (19.1)	3/8 (9.5) 1/2 (12.7) 5/8 (15.9) 5/8 (15.9) 3/4 (19.1)				

Tabla 33: Espesor de bafles para intercambiadores tipo C y B [3]

TABLE CB BAFFLE OR SUPPORT PLATE THICKNESS Dimensions in Inches (mm) Plate Thickness Unsupported tube length between central baffles. End spaces tubesheets and baffles are not a consideration.

		1	Plate Inickness										
Nominal Shell ID			Unsupported tube length between central baffles. End spaces between tubesheets and baffles are not a consideration.										
		12 (305) and Under		Over 12 (305) to 24 (610) Inclusive		Over 24 (610) to 36 (914) Inclusive		Over 36 (914) to 48 (1219) Inclusive		Over 48 (1219) to 60 (1524) Inclusive		Over 60 (1524)	
6-14 15-28	(152-356) (381-711)	1/16 1/8	(1.6) (3.2)	1/8 3/16	(3.2) (4.8)	3/16 1/4	(4.8) (6.4)	1/4 3/8	(6.4) (9.5)	3/8 3/8	(9.5) (9.5)	3/8 1/2	(9.5) (12.7)
29-38 39-60	(737-965) (991-1524) (1540-2540)	3/16 1/4	(4.8) (6.4)	1/4	(6.4) (6.4) (9.5)	5/16 3/8	(7.5) (9.5) (12.7)	3/8 1/2	(9.5) (12.7) (12.7)	1/2 5/8	(12.7) (15.9) (19.1)	5/8 5/8 3/4	(15.9) (15.9) (19.1)
61-100	(1549-2540)	1/4	(0.4)	3/8	(9.5)	1/2	(12.7)	5/6	(12.7)	3/4	(19.1)	3/4	(19.1)

7.5.4. Holgura entre bafle y carcasa

La holgura entre el bafle y la carcasa debería ser tal que la diferencia entre el diámetro interno de ésta y el diámetro externo del bafle no supere los valores de la Tabla 34.

Tabla 34: Holgura de bafles y placas soporte [3]

TABLE RCB-4.3

Standard Cross Baffle and Support Plate Clearances Dimensions In Inches (mm)

Nominal	Shell ID	Design ID of She	Minus Baffle OD
6-17	(152-432)	1/8	(3.2)
18-39	(457-991)	3/16	(4.8)
40-54	(1016-1372)	1/4	(6.4)
55-69	(1397-1753)	5/16	(7.9)
70-84	(1778-2134)	3/8	(9.5)
85-100	(2159-2540)	7/16	(11.1)

7.5.5. Agujeros para los tubos

Cuando la máxima longitud de tubo sin soporte es de 914 mm (36 in) o inferior, o para tubos de diámetro exterior superior a 31,8 mm (1 ¼ in); los agujeros para los tubos deben ser 0,8 mm (1/32 in) más grandes que el diámetro exterior de los tubos.

Cuando la máxima longitud de tubo sin soporte supere los 914 mm, y el diámetro externo de los tubos sea menor o igual a 31,8 mm; los agujeros para los tubos serán 0,4 mm mayores que el diámetro externo de los tubos.

Para condiciones en las que haya mucha vibración, las dimensiones de los agujeros pueden ser menores.

7.5.6. Tirantes

Para mantener los bafles y las placas que soportan los tubos en posición, es necesaria la colocación de tirantes, cuyo número y diámetro dependen del diámetro de la carcasa.

Tabla 35: Número y diámetro de los tirantes para intercambiadores tipo R [3]

TABLE R

TIE ROD STANDARDS

	Dimensions	s ar mones (min)	
N	ominal Diameter	Tie Rod Diameter	Minimum Number of Tie
	Diameter	Diamotor	Rods
6 - 15	(152-381)	3/8 (9.5)	4
16 - 27	(406-686)	3/8 (9.5)	6
28 - 33	(711-838)	1/2 (12.7)	6
34 48	(864-1219)	1/2 (12.7)	8
49 - 60	(1245-1524)	1/2 (12.7)	10
61 100	(1549-2540)	5/8 (15.9)	12

Tabla 36: Número y diámetro de los tirantes para intercambiadores tipo C y B [3]

TABLE CB

TIE ROD STANDARDS Dimensions in Inches (mm)

Nor Shell D	ninal iameter	Tie Dia	Rod meter	Minimum Number of Tie Rods
6 15	(152-381)	1/4	(6.4)	4
16-27	(406-686)	3/8	(9.5)	6
28 33	(711-838)	1/2	(12.7)	6
34 48	(864-1219)	1/2	(12.7)	8
49 60	(1245-1524)	1/2	(12.7)	10
61 - 100	(1549-2540)	5/8	(15.9)	12

7.6. Espejo o placa portatubos

El espejo es un componente importante del intercambiador de calor. Sirve como sujeción de los tubos y es la principal barrera entre el fluido que circula por la carcasa y el que lo hace por los tubos.

7.6.1. Tipos de uniones

El espejo puede ser conectado a la carcasa y al canal por soldadura (integral), mediante pernos (uniones embridadas) o por una combinación de estos, dando lugar a seis combinaciones distintas:

- 1) Espejo integral con carcasa y canal (Figura 36(a)).
- 2) Espejo integral con la carcasa y unión embridada con el canal, extendido como una brida (Figura 36(b)).
- 3) Espejo integral con la carcasa y unión embridada con el canal, no extendido como una brida (Figura 36(c)).
- 4) Construcción embridada tanto en lado de la carcasa y los tubos (figura 36(d)).
- 5) Espejo embridado con la carcasa e integral con el canal, extendido como una brida (Figura 36(e)).
- 6) Espejo embridado con la carcasa e integral con el canal, no extendido como una brida (Figura 36(f)).

7.6.2. Diseño

El diseño de los espejos se realizará mediante los estándares de las normas TEMA.

Las normas tema consideran siete posibles casos de carga:

- 1) La presión del lado de los tubos actuando sola, sin expansión térmica.
- 2) La presión del lado de la carcasa actuando sola, sin expansión térmica.
- 3) La presión del lado de los tubos y de la carcasa actuando simultáneamente, sin expansión térmica.
- 4) Solamente actuando la expansión térmica.
- 5) La presión del lado de los tubos actuando sola, con expansión térmica.
- 6) La presión del lado de la carcasa actuando sola, con expansión térmica.
- 7) La presión del lado de los tubos y de la carcasa actuando simultáneamente, con expansión térmica.

A continuación se desarrollan expresiones para calcular el espesor del espejo para distintos tipos de cargas.

Para obtener el espesor se tienen en cuenta el espesor necesario para soportar la flexión y el cortante.

La fórmula para calcular el mínimo espesor requerido para soportar la flexión es la siguiente:

$$T = \frac{FG}{3} \sqrt{\frac{P}{\eta S}}$$
(171)

Para el espesor debido al cortante:

$$T = \frac{0.31D_{ctl}}{1 - d/p'} \left(\frac{P}{S}\right)$$
(172)

Si $\left(\frac{P}{S}\right) < 1,6 \left(1 - \frac{D_e}{p'}\right)^2$ no se tiene en cuenta el esfuerzo cortante.

Donde:

T es el espesor efectivo del espejo.

S es el máximo esfuerzo a tensión permitido por el material.

d es el diámetro externo de un tubo.

*D*_{ctl} es el diámetro descrito por los centros de los tubos.

$$D_{ctl} = \frac{4A}{C} \tag{173}$$

P es la presión efectiva de diseño, que será tratada en profundidad más adelante.

Siendo *C* el perímetro (Figura 37) y *A* el área total contenida dentro del perímetro.

Figura 37: Perímetro C para arreglo triangular y cuadrado [3]

 D_{ctl} puede ser calculado como el diámetro externo del haz de tubos (D_{otl}) menos el diámetro externo de un tubo

$$D_{ctl} = D_{otl} - d \tag{174}$$

 η es un parámetro que depende del arreglo- de los tubos:

Para arreglos cuadrados:

$$\eta = 1 - \frac{0.785}{(p'/d)^2} \tag{175}$$

Para arreglos triangulares:

$$\eta = 1 - \frac{0.907}{(p'/d)^2} \tag{176}$$

G es el diámetro sobre el cual la presión está actuando y en el caso de intercambiadores con placas de tubos fijas será igual al diámetro interno de la carcasa.

F es un parámetro que depende del tipo de espejo.

En espejos para tubos en U, F = 1,25 si ambas uniones están embridadas y si al menos una de las uniones es integral se obtendrá de la curva U de la Figura 38. Donde F aparece en función de la relación entre el espesor y el diámetro interno de la carcasa o canal.

En intercambiadores de espejo fijo o flotante, F = 1 si ambas uniones están embridadas y si al menos una de las uniones es integral se obtendrá de la curva H de la figura 38.

7.6.3. Cálculo de la presión efectiva

El cálculo de la presión efectiva a emplear en las ecuaciones (171) y (172) depende del tipo de cabezal y de espejo.

Para intercambiadores con cabezal flotante con empaque exterior (tipo P) la presión se define como:

Para flexión:

$$P = P_t + P_s \left[\frac{1,25(D^2 - D_{ctl}^2)(D - D_{ctl})}{DF^2 G^2} \right]$$
(177)

Para cortante:

$$P = P_t + P_s \left(\frac{D^2 - D_{ctl}^2}{D_{ctl}^2} \right)$$
(178)

Donde P_t y P_s son la presión de diseño del lado de los tubos y la carcasa respectivamente y D es el diámetro exterior del espejo flotante.

Para intercambiadores con cabezal flotante donde el espejo se extiende como una brida la presión será la mayor, en valor absoluto, de las siguientes:

$$P = P_t + P_{Bt} \tag{179}$$

$$P = P_s + P_{Bs} \tag{180}$$

$$P = P_t \tag{181}$$

$$P = P_s \tag{182}$$

Para otros tipos de intercambiadores con espejo flotante, *P* será la presión de diseño del lado de la carcasa o los tubos. En el caso de intercambiadores con espejo flotante tipo W, la presión será la de diseño en los tubos, no se permite usar la presión en el lado de la carcasa.

Para intercambiadores con espejos fijos la presión efectiva del lado de la carcasa será la mayor, en valor absoluto, de las siguientes:

$$P = \frac{P'_s - P_d}{2} \tag{183}$$

$$P = P'_{s} \tag{184}$$

$$P = P_{Bs} \tag{185}$$

$$P = \frac{P'_{s} - P_{d} - P_{Bs}}{2}$$
(186)

$$P = \frac{P_{BS} + P_d}{2} \tag{187}$$

$$P = P'_{s} - P_{Bs} \tag{188}$$

Donde

$$P'_{s} = P_{s} \frac{0.4J[1.5 + K(1.5 + f_{s})] - \left[\left(\frac{1-J}{2}\right)\left(\frac{D_{j}^{2}}{G^{2}} - 1\right)\right]}{1 + JKF_{q}}$$
(189)

$$f_s = 1 - N \left(\frac{d}{G}\right)^2 \tag{190}$$

Siendo N el número de tubos, d el diámetro externo de los tubos, G el diámetro interno de la carcasa y D_j es el diámetro interno de la junta de expansión y será igual a G cuando no haya junta de expansión.

*P*_d es la presión debida a la expansión térmica, calculada como:

$$P_d = \frac{4JE_s t_s \left(\frac{\Delta L}{L_t}\right)}{(D_e - 3t_s)(1 + JKF_q)} \tag{191}$$

*D*_e es este caso el diámetro externo de la carcasa.

J es 1 para carcasas sin juntas de expansión. En el caso de existir juntas de expansión:

$$J = \frac{S_j L}{S_j L + \pi (D_e - t_s) t_s E_s}$$
(192)

J puede ser asumida como 0 para juntas donde $S_j < \frac{(D_e - t_s)t_s E_s}{10L}$

$$K = \frac{E_s t_s (D_e - t_s)}{E_t t_t N (d - t_t)}$$
(193)

$$F_q = 0.25 + (F - 0.6) \left[\frac{300t_s E_s}{KLE} \left(\frac{G}{T} \right)^3 \right]^{1/4}$$
(194)

Se usa el valor calculado de F_q o 1, el que sea mayor.

$$\Delta L = L_t [\alpha_s (T_m - 70) - \alpha_t (t_m - 70)]$$
(195)

Donde D_e es el diámetro externo de la carcasa, S_j la constante de la junta de expansión, E_s módulo elástico del material de la carcasa a la temperatura media, E_t el módulo elástico del material de los tubos a la temperatura media, E el módulo elástico del material del espejo, t_s y t_t el espesor de la carcasa y los tubos, L la longitud de tubo entre caras interiores de espejos, L_t longitud de tubo entre caras exteriores de espejos, α_s y α_t los coeficientes de expansión térmica de la carcasa y los tubos y T_m y t_m las temperaturas medias referidas respectivamente a la carcasa y a los tubos.

T el espesor del espejo que no debe ser menor al 98,5% del obtenido anteriormente.

*P*_{Bt} y *P*_{Bs} son las presiones de los pernos en el lado de la carcasa y los tubos, obtenidas por:

$$P_{Bt} = \frac{6.2M_1}{F^2 G^3} \tag{196}$$

$$P_{Bs} = \frac{6.2M_2}{F^2 G^3} \tag{197}$$

Donde M_1 y M_2 son el momento total actuante sobre la extensión bajo las condiciones del apernado, definido por el código ASME como M_0 .

A continuación se muestran las expresiones para obtener la presión efectiva del lado de los tubos:

Si P's es positiva, la presión será la de mayor valor absoluto de las dos siguientes:

$$P = \frac{P'_t + P_{Bt} + P_d}{2}$$
(198)

$$P = P'_t + P_{Bt} \tag{199}$$

Cuando P's es negativa:

$$P = \frac{P'_t - P'_s + P_{Bt} + P_d}{2}$$
(200)

$$P = P'_{t} - P'_{s} + P_{Bt}$$
(201)

Con

$$P'_{t} = P_{t} \frac{1 + 0.4JK(1.5 + f_{t})}{1 + JKF_{q}}$$
(202)

$$f_t = 1 - N \left(\frac{d - 2t_t}{G}\right)^2 \tag{203}$$

Siendo G, de nuevo, el diámetro interno de la carcasa.

Cuando J = 0:

No se aplican las fórmulas que contiene P_{d.}

Si tanto P_s como P_t son positivas, puede aplicarse la siguiente expresión:

Cuando se use la expresión anterior en la ecuación del cortante (172) se eliminará el término P_{Bt.}

$$P = P_t + \frac{P_s}{2} \left[\left(\frac{D_j}{G} \right)^2 - 1 \right] + P_{Bt}$$
(204)

En determinadas circunstancias, se permite el diseño en base a la acción conjunta de las presiones de la carcasa y los tubos. La presión efectiva diferencial de diseño para espejos fijos será la mayor en valor absoluto de las siguientes:

$$P = P'_{t} - P'_{s} + P_{Bt}$$
(205)

$$P = \frac{P'_t - P'_s + P_{Bt} + P_d}{2}$$
(206)

$$P = P_{Bs} \tag{207}$$

$$P = \frac{P_{BS} + P_d}{2} \tag{208}$$

$$P = P'_t - P'_s \tag{209}$$

$$P = \frac{P'_t - P'_s + P_d}{2}$$
(210)

$$P = P_{Bt} \tag{211}$$

Cuando J = 0 no se aplican las fórmulas que contiene $P_{d.}$

Se eliminarán los términos *P*_{Bt}.y *P*_{Bs} cuando se usen las fórmulas anteriores en la ecuación (172).

7.6.4. Agujeros en el espejo

En la siguiente tabla se muestran los diámetros y tolerancias de los agujeros para los tubos en el espejo.

Tahla 27: Diámptroc	v toloranciac	do loc	aquipros nara	loc tuboc po	ol ocnoin	121
rubiu 57. Diumetros	y torer unclus	ue 103	ugujeros puru	103 LUDUS EII	EI ESPEJU	131

(All Dimensions in mm)							
	Nomina	I Tube Hole Dian	Tolerance	-			
	Standard Fit (a)		Special (Close Fit b)	Over Tolerance; 96% of tube holes must meet value in column (c). Remainder may not exceed value in column (d)		
Nominal Tube OD	Nominal Diameter	Under Tolerance	Nominal Diameter	Under Tolerance	(c)	(d)	
6.4	6.58	0.10	6.53	0.05	0.05	0.18	
9.5	9.75	0.10	9.70	0.05	0.05	0.18	
12.7	12.95	0.10	12.90	0.05	0.05	0.20	
15.9	16.13	0.10	16.08	0.05	0.05	0.25	
19.1	19.30	0.10	19.25	0.05	0.05	0.25	
22.2	22.48	0.10	22.43	0.05	0.05	0.25	
25.4	25.70	0.10	25.65	0.05	0.05	0.25	
31.8	32.11	0.15	32.03	0.08	0.08	0.25	
38.1	38.56	0.18	38.46	0.08	0.08	0.25	
50.8	51.36	0.18	51.26	0.08	0.08	0.25	
63.5	64.20	0.25	64.07	0.10	0.10	0.25	
76.2	77.04	0.30	76.89	0.11	0.10	0.25	

TUBE HOLE DIAMETERS AND TOLERANCES

7.7. Cubiertas del intercambiador

Existen distintos tipos de cubiertas para recipientes sometidos a presión, que son: cubierta plana, semiesférica, elipsoidal, toriesférica, cónica y toricónica.

Estos tipos pueden verse en la Tabla 38.

Tabla 38: Tipos de cubiertas para recipientes sometidos a presión: (a) plana, (b) elipsoidal, (c) toriesfésica, (d) semiesférica, (e) toricónica, (f) cónica [7]

7.7.1. Cubierta plana

Las cubiertas planas son fáciles de fabricar en cualquier espesor y son ampliamente utilizadas para bajas y altas presiones. Como este tipo de cubiertas resisten la carga solamente por flexión, su espesor es mayor que el de las cubiertas cilíndricas.

Para cubiertas planas soldables el espesor se calcula con la siguiente expresión [7]:

$$t = d \sqrt{\frac{CP}{SE}}$$
(212)

Donde *C* es un factor que depende del tipo de fijación de la cubierta (Figura 39) y *d* es el diámetro de la cubierta.

Figura 39: Tipo de uniones de cubierta plana [13]

Para cubiertas unidas mediante pernos la fórmula a aplicar es la siguiente [7]:

$$t = d \left(\frac{CP}{SE} + \frac{1.9Wh_G}{SEd^3}\right)^{0.5}$$
(213)

Donde h_g es el brazo del momento de la junta, como se muestra en la imagen inferior.

W es la carga total en los pernos que en condiciones de operación se calcula por:

$$W = 0.785d^2P + 2b\pi dmP$$
(214)

Donde b es el ancho de la superficie de contacto de la junta y m es un factor que depende del tipo de junta. Ambos valores pueden obtenerse de las tablas que aparecen a continuación.

Tabla 39: Brazo del momento de la junta [13]:

Tabla 40: Factor m según el material de la junta [13]

Gasket Factors <i>m</i> for Operating Conditions and Minimum Design Seating Stress y							
Gasket Material	Gasket Factor	Min. Design Seating Stress y, psi (MPa)	Sketches				
Self-energizing types (o rings, metallic, elastomer, other gasket types considered as self-sealing)	0	o (o)					
Elastomers without fabric or high percent of mineral fiber: Below 75A Shore Durometer 75A or higher Shore Durometer	0.50 1.00	0 (0) 200 (1.4)					
Mineral fiber with suitable binder for operating conditions: $\frac{1}{2}_{16}$ in. (3.2 mm) thick $\frac{1}{2}_{16}$ in. (3.6 mm) thick $\frac{1}{2}_{52}$ in. (0.8 mm) thick	2.00 2.75 3.50	1,600 (11) 3,700 (26) 6,500 (45)					
Elastomers with cotton fabric insertion	1.25	400 (2.8)					
Elastomers with mineral fiber fabric insertion (with or without wire reinforcement):							
з-ріу	2.25	2,200 (15)					
2-ply	2.50	2,900 (20)					
1-ply	2.75	3,700 (26)					
Vegetable fiber	1.75	1,100 (7.6)					
Spiral-wound metal, mineral fiber filled: Carbon Stainless, Monel, and nickel-base alloys	2.50 3.00	10,000 (69) 10,000 (69)					
Corrugated metal, mineral fiber inserted, or corrugated metal, jacketed mineral fiber filled: Soft aluminum Soft copper or brass Iron or soft steel Monel or 496–696 chrome Stainless steels and nickel-base alloys	2.50 2.75 3.00 3.25 3.50	2,900 (20) 3,700 (26) 4,500 (31) 5,500 (38) 6,500 (45)	66855) L.I.I.J.				

Tabla 41: Factor m según el material de la junta (continuación) [13]

Gasket Factors m for (Operating Conditio	ns and Minimum D	esign Seating Stress y
Gasket Material	Gasket Factor <i>m</i>	Min. Design Seating Stress y, psi (MPa)	Sketches
Corrugated metal:			
Soft aluminum	2.75	3,700 (26)	
Soft copper or brass	3.00	4,500 (31)	
Iron or soft steel	3.25	5,500 (38)	
Monel or 4%-6% chrome	3.50	6,500 (45)	
Stainless steels and nickel-base alloys	3.75	7,600 (52)	
Flat metal, jacketed mineral fiber filled:			
Soft aluminum	3.25	5,500 (38)	
Soft copper or brass	3.50	6,500 (45)	
Iron or soft steel	3.75	7,600 (52)	Ð
Monel	3.50	8,000 (55)	
4%-6% chrome	3.75	9,000 (62)	
Stainless steels and nickel-base alloys	3.75	9,000 (62)	
Grooved metal:			17mm
Soft aluminum	3.25	5,500 (38)	
Soft copper or brass	3.50	6,500 (45)	
Monel or ani cari chrome	3.75	7,600 (52)	
Stainless steels and nickel-base alloys	4.25	10,100 (70)	
Solid flat metal:			
Soft aluminum	4.00	8,800 (61)	\square
Soft copper or brass	4.75	13,000 (90)	
Iron or soft steel	5.50	18,000 (124)	
Monel or 4%-6% chrome	6.00	21,800 (150)	
Stainless steels and nickel-base alloys	6.50	26,000 (180)	
Ring joint:			00
Iron or soft steel	5.50	18,000 (124)	
Monet or 4%-6% chrome	6.00	21,800 (150)	
stainiess steels and nickel-base alloys	6.50	26,000 (180)	

Tabla 42: Ancho efectivo de la junta [13]

EFFECTIVE GASKET	WIDTH		
	Basic Gasket S	Seating Width b ₀	
Facing Sketch (Exaggerated)	Column I	Column II	
(1b)	<u>N</u> 2	<u>N</u> 2	
(1c)	$w + T_{c} (w + N_{max})$	$W + T$ $(W + N_{max})$	
(1d)	2 ' (4 max)	2 (4 max)	
(2) 1_{64} in. (0.4 mm) nubbin $\frac{1}{4}$	$\frac{W+N}{4}$	$\frac{W+3N}{8}$	
(3) $1/_{64}$ in. (0.4 mm) nubbin $1/_{64}$ in. (0.4 mm) nu	<u>N</u> 4	3 <u>//</u> 8	
(4)	<u>3//</u> 8	7 <u>//</u> 16	
(5)	<u>N</u> 4	<u>3//</u> 8	
(6)	<u>W</u> 8		

7.7.2. Cubierta semiesférica

Este tipo de cubiertas son utilizadas en aplicaciones de alta presión, ya que no necesitan un gran espesor.

La expresión para obtener el espesor es la siguiente [14]:

$$t = \frac{PL}{2SE - 0.2P} \tag{215}$$

7.7.3. Cubierta elipsoidal

Son muy usadas en aplicaciones de baja y media presión.

El espesor se calcula como [14]:

$$t = \frac{PD}{2SE - 0.2P} \tag{216}$$

7.7.4. Cubierta torisférica

La cubierta torisférica es la más usada en la industria, principalmente en bajas presiones.

La fórmula para obtener su espesor es la siguiente [14]:

$$t = \frac{0.885PL}{SE - 0.1P} \tag{217}$$

7.7.5. Cubierta cónica y toricónica

Son usadas para aplicaciones de baja y media presión, generalmente con un ángulo no mayor a 30°.

El espesor se obtiene de la siguiente expresión [14]:

$$t = \frac{PD}{2\cos\alpha \left(SE - 0.6P\right)} \tag{218}$$

7.8. Bridas

Existen múltiples tipos de brida, algunos de los cuales se muestran en la Figura 40.

Slip on boss flange

Figura 40: Tipos de brida [7]

7.8.1. Diseño de bridas

El diseño de las bridas es un proceso complejo que requiere de múltiples pasos.

Lo primero es seleccionar el material de las juntas que se van a utilizar y obtener los factores m e y (Tabla 41).

A continuación se determinan las dimensiones de la junta [7]. En la Figura 41 se muestran los distintos tipos de junta.

Para el diámetro interno de la junta (d_i y B en pulgadas):

$$di = B + 0.01 \tag{219}$$

Donde *B* es igual al diámetro interno de la carcasa en el caso de bridas con cuello y el diámetro externo de la carcasa en el caso de bridas anulares.

Para el diámetro externo de la junta:

$$\frac{d_o}{d_i} = \sqrt{\frac{y - Pm}{y - P(m+1)}}$$
(220)

Se calcula el ancho de la junta (N):

$$N = \frac{d_o - d_i}{2} \tag{221}$$

Se calcula el parámetro b_o (Tabla 40) y el ancho efectivo de la junta, b

Si
$$b_o \le 1/4" \to b = b_o$$
 (222)

Si
$$b_o > 1/4" \rightarrow b = C_b \sqrt{b_o}$$
 (223)

Donde C_b es un factor de conversión cuyo valor es de 2,5 para el SI y de 0,5 para el US.

Se obtiene el diámetro de la junta bajo carga, G:

Si
$$b_o \le 1/4" \to G = diámetro medio de la junta$$
 (224)

Si
$$b_o > 1/4" \rightarrow G = diámetro externo de la junta - 2b$$
 (225)

Figura 41: Tipos de juntas: (a) junta de cara plana, (b) de cara levantada, (c) de cara empotrada, (d) confinada, (e) junta tipo macho y hembra, (f) de anillo, (g) junta tórica [7]

Se calcula la carga en los pernos para las condiciones de asiento de la junta (condiciones existentes cuando se ensambla la unión, a presión y temperatura atmosféricas) W_{m2} y de operación W_{m1} [7]:

$$W_{m2} = \pi b G y \tag{226}$$

$$W_{m1} = H + H_p \tag{227}$$

$$H = \frac{\pi}{4}G^2P \tag{228}$$

$$H_p = 2\pi b G m P \tag{229}$$

H es la fuerza total hidrostática y H_p es la carga total de compresión en la superficie de contacto.

Se calcula el área de la raíz de los pernos requerida (A_m), que será la mayor de entre estos dos cocientes [7]:

$$\frac{W_{m1}}{S_b} \tag{230}$$

$$\frac{W_{m2}}{S_a} \tag{231}$$

Donde S_b y S_a son, respectivamente, el máximo esfuerzo permisible en los pernos a la temperatura de diseño y a la temperatura ambiente.

Teniendo en cuenta A_m , se obtiene el número de pernos necesarios (normalmente múltiplo de 4) teniendo en cuenta el tamaño mínimo recomendado en las normas TEMA.

Para intercambiadores de tipo R el tamaño mínimo de los pernos es de $\frac{3}{4}$ " (M20), en intercambiadores de tipo C es $\frac{1}{2}$ " (M12) y en los de tipo B 5/8" (M16).

Es recomendable que el espaciado máximo entre pernos no sea mayor que 3,5 veces su diámetro.

Tabla 43: Mínimos recomendados para pernos [3]

	Thr	eads	Nut Dim	ensions					
Bolt Size dB	Pitch	Root Area (mm²)	Across Flats	Across Corners	Bolt Spacing B	Radial Distance ^R h	Radial Distance R _r	Edge Distance E	Bolt Size dB
M12	1.75	72.398	21.00	24.25	31.75	20.64	15.88	15.88	M12
M16	2.00	138.324	27.00	31.18	44,45	28.58	20.64	20.64	M16
M20	2,50	217.051	34.00	39.26	52.39	31.75	23.81	23.81	M20
M22	2.50	272.419	36.00	41.57	53.98	33.34	25.40	25.40	M22
M24	3.00	312.748	41.00	47.34	58.74	36.51	28.58	28.58	M24
M27	3.00	413.852	46.00	53.12	63.50	38.10	29.00	29.00	M27
M30	3.50	502,965	50.00	57.74	73.03	46.04	33.34	33.34	M30
M36	4.00	738.015	60.00	69.28	84.14	53.97	39.69	39.69	M36
M42	4.50	1018.218	70.00	80.83	100.00	61.91		49.21	M42
M48	5.00	1342.959	80.00	92.38	112.71	68.26		55.56	M48
M56	5.50	1862.725	90.00	103.92	127.00	76.20		63.50	M56
M64	6.00	2467.150	100.00	115.47	139.70	84.14		66.68	M64
M72	6.00	3221.775	110.00	127.02	155,58	88.90		69.85	M72
M80	6.00	4076.831	120.00	138.56	166.69	93.66		74.61	M80
M90	6.00	5287.085	135.00	155.88	188.91	107.95		84.14	M90
M100	6.00	6651 528	150.00	173.21	207.96	119.06		93.66	M100

METRIC BOLTING DATA - RECOMMENDED MINIMUM (All Dimensions in Millimeters Unless Noted)

Se calculan distintas fuerzas en la brida y sus respectivos momentos [7]:

$$H_D = \frac{\pi B^2 P}{4} \tag{232}$$

$$H_T = H - H_D \tag{233}$$

En condiciones de operación:

$$H_G = W - H \tag{234}$$

En condiciones de asiento de la junta:

MEMORIA

$$H_G = W \tag{235}$$

Donde *B* es el diámetro interno de la brida, H_D la fuerza hidrostática en el área interna de la brida, H_G la carga en la junta y *W* la carga el mayor valor entre W_{m1} y W_{m2} .

Se calculan los momentos [7]:

$$M_D = H_D h_D \tag{236}$$

$$M_T = H_T h_t \tag{237}$$

$$M_G = H_G h_G \tag{238}$$

Los brazos de los momentos se obtienen de la siguiente tabla:

Tabla 44: Brazos de los momentos para bridas [7]

Moment Arms for Flange Loads under Operating Conditions

Type of Flange	h _D	hT	h _G
Integral flange	$R + 0.5g_1$	$0.5(R + g_1 + h_G)$	0.5(C - G)
Loose or ring flange	0.5(C - B)	$0.5(h_{\rm D} + h_{\rm G})$	0.5(C - G)
Lap flange	0.5(C-B)	0.5(C - G)	0.5(C-G)

Figura 42: Dimensiones y fuerzas de una brida con cuello [7]

Para las condiciones de operación, el momento total será la suma de los anteriores.

$$M_o = M_D + M_T + M_G \tag{239}$$

Para las condiciones de asiento de la junta el momento total será el siguiente:

$$M'_{o} = \frac{W(C-G)}{2}$$
(240)

Donde en este caso W es la carga en condiciones de asiento de la junta, calculada como [13]:

$$W = \frac{(A_m + A_b)S_a}{2} \tag{241}$$

El siguiente paso es calcular el factor de forma de la brida [7]:

$$K = \frac{A}{B}$$
(242)

Donde *A* es el diámetro externo de la brida y *B* el interno.

Con ese valor de K se entra en la Figura 43 y se obtienen los parámetros T, U, Y y Z.

Figura 43: Valores de T, U, Y y Z [13]

El parámetro geométrico E (Figura 42) se saca de la siguiente expresión:

$$E = 0,5(A - C)$$
 (243)

Se calcula el factor *h*_o:

$$h_o = \sqrt{Bg_o} \tag{244}$$

 g_o es el espesor en el extremo y g_1 el espesor en la parte posterior de la brida (Figura 44).

Se calculan los factores d_1 y e:

Para bridas de tipo suelto (sin unión directa entre la brida y la boquilla o carcasa):

$$d_1 = \frac{Uh_o g_o^2}{V_L} \tag{245}$$

$$e = \frac{F_L}{h_o} \tag{246}$$

Para bridas integrales:

$$d_1 = \frac{Uh_o g_o^2}{V} \tag{247}$$

$$e = \frac{F}{h_o} \tag{248}$$

Figura 44: Valores de F, bridas integrales [13]

Figura 46: Valores de F_L y V_L, bridas de tipo suelto [13]

Para bridas sin cuello el espesor será el mayor de los siguientes:

$$t = \sqrt{\frac{M_o Y}{S_f B}}$$
(249)

$$t = \sqrt{\frac{M'_o Y}{S_f B}}$$
(250)

Donde S_f es el máximo esfuerzo permitido para el material de la brida a la temperatura correspondiente.

Para bridas de tipo suelto e integrales con cuello es necesario calcular los siguientes parámetros:

$$\alpha = te + 1 \tag{251}$$

$$\beta = \frac{4}{3}te + 1 \tag{252}$$

$$\delta = \frac{t^3}{d_1} \tag{253}$$

$$\gamma = \frac{\alpha}{t} \tag{254}$$

$$\lambda = \gamma + \delta \tag{255}$$

$$m_o = \frac{M_o}{B} \tag{256}$$

$$m'_o = \frac{M'_o}{B} \tag{257}$$

Se calculan los esfuerzos longitudinal (S_H), radial (S_R) y tangencial (S_T) de la brida:

$$S_H = \frac{fm_o}{\lambda g_1^2} \tag{258}$$

$$S_R = \frac{(1,33te+1)m_o}{\lambda t^2}$$
(259)

$$S_T = \frac{Ym_o}{t^2} - ZS_R \tag{260}$$

f es un factor de corrección para bridas integrales.

Para condiciones de asiento de la junta, en las expresiones anteriores se reemplaza m_o por m'_o . Después se calculan los esfuerzos permitidos.

$$S_H = 1,5S_f \tag{261}$$

$$S_R = S_f \tag{262}$$

$$S_T = S_f \tag{263}$$

Si los esfuerzos obtenidos con las expresiones (261), (262) y (263) superan a los permitidos, será necesario modificar el espesor.

Figura 47: Valores de f [13]

7.9. Boquillas

Las boquillas se unen a la carcasa mediante soldadura y se dimensionan en función de la velocidad de fluido permitida. Su espesor se calcula usando las expresiones para recipientes cilíndricos.

Las aperturas existentes en los recipientes sometidos a presión cuentan con refuerzos están debidamente reforzadas. El código ASME en sus secciones que van desde la UG-37 a la UG-42 trata las normas a seguir para el diseño de estos refuerzos.

El requisito básico es que en torno a la abertura, el recipiente debe reforzarse con una cantidad de metal igual a la que se quitó para hacer la abertura. El refuerzo puede formar parte del recipiente y la boquilla de forma integral o puede ser un parche adicional.

No es necesario reponer la cantidad total de material que se eliminó, solo la cantidad necesaria para soportar la presión interna.

El Área total de la sección transversal requerida para el refuerzo (A) no debe ser menor que:

$$A = dt_r \tag{264}$$

Donde d es el diámetro interno de la apertura y t_r el espesor de la carcasa o la cabeza.

Figura 48: Área de refuerzo requerida [14]

7.10. Vibración

Los equipos con una altura considerable vibran por efecto del viento. El periodo de vibración debe limitarse, ya que pueden desembocar en una falla por fatiga.

El periodo de vibración se calcula como [14]:

$$T = 2,65 \ 10^{-5} \left(\frac{H}{D}\right)^2 \sqrt{\frac{wD}{t}}$$
(265)

Donde *w* es el peso del equipo por unidad de longitud.

El máximo periodo de vibración permitido será:

$$T = 0.8 \sqrt{\frac{WH}{Vg}}$$
(266)

Siendo *g* la aceleración de la gravedad y *V* el cortante, calculado con la expresión (161).

7.11. Soportes para intercambiadores verticales

Los soportes más habituales para soportes verticales son patas, ménsulas o soportes de tipo faldón cilíndrico o cónico.

7.11.1. Patas

Habitualmente el recipiente se apoya en 3 o 4 patas soldadas a la carcasa. Estas patas son perfiles en L-U-I soldados por encima de la línea de soldadura directamente a la carcasa o a una placa de refuerzo soldada sobre el recipiente. Cada pata está fijada al suelo por un perno de anclaje que resiste las cargas de tracción.

El soporte por medio de patas se utiliza en recipientes de altura no superior a 5 m y diámetros no superiores a 2,4 m. En caso de recipientes mayores se optará por el soporte de tipo faldón o ménsula.

Figura 49: Soporte tipo patas [http://aula.aguapedia.org/pluginfile.php/10870/mod_resource/content/1/Tema%203.Recipientes%20a%20presi% C3%B3n.pdf]

7.11.2. Ménsula

Este tipo de apoyo se utiliza en recipientes verticales que deben soportarse en estructuras portantes. El número de ménsulas debe suele ser de 2, 4, 8 y rara vez mayor. Al igual que las patas, pueden ser soldadas directamente a la cubierta o a una placa de refuerzo soldada al recipiente.

Figura 50: Soporte tipo ménsula [http://aula.aguapedia.org/pluginfile.php/10870/mod_resource/content/1/Tema%203.Recipientes%20a%20presi% C3%B3n.pdf]

7.11.3. Faldón

Consisten en un cilindro soldado al fondo del recipiente. En este tipo de apoyo, la carga se reparte uniformemente a lo largo del perímetro de la circunferencia de soldadura, evitando concentraciones de esfuerzos en la envolvente y disminuyendo la presión transmitida al suelo.

Los pernos de anclaje se sitúan a lo largo del perímetro de la circunferencia de apoyo y a una distancia entre 400 y 600 mm, según el tamaño y el número requerido (múltiplo de 4).

Si la presión transmitida sobre el suelo es muy grande o el número requerido de pernos no cabe en la circunferencia del faldón, se realiza un faldón cónico que aumenta el tamaño de ésta. El semiángulo del cono no debe ser mayor a 6°.

Debe incluirse un acceso al interior del faldón (dimensiones mínimas de 600 mm de diámetro) y unas ventilaciones para evitar la acumulación de gases en su parte interna.

7.11.3.1. Diseño

Espesor del faldón [14]

El espesor del faldón se obtiene de la siguiente expresión:

$$t = \frac{12M_T}{R^2 \pi SE} + \frac{W}{D \pi SE}$$
(267)

Siendo *D* y *R* el diámetro externo del faldón y su radio exterior, M_{τ} el momento en la junta del faldón al cabezal, *S* el esfuerzo del material del cabezal o el faldón (el que sea menor), *W* peso de la torre en operación arriba del faldón hasta la junta del cabezal y *E* la efectividad de la junta del faldón al cabezal. *E* será 0,6 para soldadura a tope (figura 52A) y 0,45 para soldadura a traslape (figura 52B).

Figura 52: Tipos de soldadura del faldón al cabezal [14]

Deflexión [14]

La deflexión de no debe superar las 6 pulgadas (152,4 mm) por cada 100 pies de altura (30,48 m). La deflexión debida a la carga por viento puede calcularse usando la fórmula para vigas en voladizo con carga uniformemente distribuida. La deflexión máxima será:

$$\Delta M = \frac{P_w D H (12H)^3}{8EI} \tag{268}$$

Donde *E* es el módulo de elasticidad e *I* es el momento de inercia.

Si *R* > 10t

$$I = R^3 \pi t \tag{269}$$

Siendo t el espesor del faldón.

Figura 53: Deflexión [14]

Pernos de anclaje [14]

El intercambiador debe anclarse a la cimentación de hormigón por medio de pernos de anclaje y el anillo base.

El número de pernos debe instalarse en múltiplos de 4 y para torres altas habrá un mínimo de 8. Se aconseja no situar los pernos a distancias menores de 18 pulgadas. Al calcular el diámetro de los pernos se aumenta un 1/8 de pulgada el diámetro calculado como margen por corrosión.

Para el diseño de los pernos se empleará un método aproximado, que es suficientemente bueno en la mayoría de los casos.

Se supone un anillo continuo de diámetro igual al del círculo de los pernos. El área requerida de los pernos se calcula para las condiciones de torre vacía.

El procedimiento es el siguiente:

Se calcula la tensión máxima.

$$T = \frac{12M}{A_B} - \frac{W}{C_B}$$
(270)

Donde *M* es el momento en la base debido al viento o a la fuerza sísmica, A_B y C_B son el área dentro del círculo de pernos y la circunferencia y *W* el peso del recipiente durante la instalación.

Se obtiene el área requerida de un perno (B_A) .

$$B_A = \frac{TC_B}{SN}$$
(271)

Siendo S el esfuerzo máximo permitido por el material de los pernos y N el número de estos.

Una vez decidido el tamaño y número de pernos, se comprueba que $S < S_{B.}$

$$S_B = \frac{TC_B}{B_A N} \tag{272}$$

Anillo de la base [14]

El procedimiento a seguir para determinar el ancho mínimo y el espesor es el siguiente:

Se calcula la compresión máxima.

$$P_c = \frac{12M}{A_s} + \frac{W}{C_s} \tag{273}$$

Donde A_s y C_s son el área comprendida dentro del faldón y la circunferencia externa de éste.

Se obtiene el ancho del anillo base:

$$l = \frac{P_c}{f_b} \tag{274}$$

Donde f_b es la carga de apoyo segura sobre el hormigón.

El valor de *l* se compara con los valores de mínimos l_2 y l_3 (tabla 43A).

Se obtiene el espesor del anillo base:

$$t_B = 0.32l_1$$
 (275)

 I_1 (figura 37) es la suma de I_2 y I_3 .

Finalmente, se comprueba que el esfuerzo máximo permisible por el material del anillo es superior a los siguientes:

Esfuerzo de apoyo:

$$S_1 = \frac{P_c C_s}{A_R} \tag{276}$$

Donde A_R es el área del anillo base.

Esfuerzo flexionante:

$$S_2 = \frac{3S_1 l_1^2}{t_B^2}$$
(277)

T	ABLA A		2
Tamaño del	Area en la	Dimensi	ón, pulg
perno	no, pulg ²	12	13
$ \frac{1}{2} \\ 5 \\ 8 \\ 3 \\ 4 \\ 7 \\ 8 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	0.126 0.202 0.302 0.419 0.551 0.693 0.890 1.054 1.294 1.515 1.744 2.049 2.300 3.020 3.715 4.618	7/8 1 1-1/8 1-1/4 1-3/8 1-1/2 1-3/4 1-7/8 2 2-1/8 2-1/4 2-3/8 2-1/2 2-3/4 3-1/16 3-3/8 2-5/8	5/8 3/4 13/16 15/16 1-1/16 1-1/8 1-1/4 1-3/8 1-1/2 1-5/8 1-3/4 1-7/8 2 2-1/4 2-3/8 2-5/8 2-5/8
,	5.021	5-570	2 1,0

Tabla 45: Tamaño, número y esfuerzo máximo de los pernos [14]

TABLA B NUMERO DE PERNOS DE ANCLAJE				
Diámetro del círculo base de pernos, pulg	Minimo	Máximo		
24 a 36 42 a 54 60 a 78 84 a 102 108 a 126 132 a 144	4 8 12 12 16 20	4 8 12 16 20 24		

TABLA C ESFUERZOS MAXIMOS PERMITIDOS PARA PERNOS USADOS COMO ANCLAS				
Número de especificación	Diametro, pulg	Máx. Esf. permitido, lb/pulg ²		
SA 325 SA 193 B 7 SA 193 B16 SA 193 B 7 SA 193 B16	Todos los diámetros 2½ y menores 2½ y menores Más de 2½ hasta 4 incl. Más de 2½ hasta 4 incl.	15,000 18,000 18,000 16,000 15,700		

* Para pernos con rosca estándar.

Figura 54: Parámetros geométricos del anillo base [14]

8. RESULTADOS DEL DISEÑO TÉRMICO

El objetivo del evaporador es transformar el GNL, que entra a una temperatura de -155°C, en gas natural gaseoso a 8°C. Para ello se utiliza agua de mar como fluido de intercambio. El agua de mar entrará a 20°C y saldrá a 10°C. Este descenso de la temperatura del agua de mar es superior al que permite la normativa, pero esta agua no será devuelta al mar en estas condiciones, sino que se utilizará en un proceso posterior en la planta, donde subirá su temperatura y alcanzará una temperatura adecuada para su devolución al mar.

El evaporador será vertical y debido al alto caudal de GNL que se necesita vaporizar, lo cual implica un gran caudal de agua, se ha decidido dividir el evaporador en seis evaporadores trabajando en paralelo. De esta forma se evita construir un intercambiador de una altura excesiva y además, en caso de mantenimiento en alguno de los evaporadores, el resto puede seguir funcionando y no se parará completamente la regasificación.

El evaporador será de un solo paso por tubos y un solo paso por carcasa. El GNL entrará por la parte inferior de los tubos y saldrá por la parte superior ya en estado gaseoso, mientras que el agua de mar circulará por la carcasa.

El material de los tubos será aluminio y se ha decidido usar un diámetro externo de tubo de 25,4 mm (1 pulgada), con un calibre BWG de 14, lo cual implica un diámetro interno de 21,18 mm (0,834 pulgadas). La distribución de los tubos será cuadrada, para facilitar la limpieza mecánica, con una distancia entre los centros de los tubos de 31,75 mm (1,25 pulgadas).

El diámetro interno de la carcasa será de 2286 mm (90 pulgadas) al que según la ecuación (40) le corresponde un número de tubos de 3785.

El caudal de GNL vaporizado en cada intercambiador es 25 kg/s y el caudal de agua necesario (ecuación 31) 710,857 kg/s.

Se ha añadido una resistencia de ensuciamiento interna (Tabla 20) de 2,64 10^{-4} m²K/W y otra externa (Tabla 21) de 8,80 10^{-5} m²K/W.

Para la realización de los cálculos, las propiedades de los fluidos se han calculado con el programa Engineering Equation Solver (EES). Las propiedades del agua de mar se han aproximado por las propiedades de una disolución del 3,5% en masa de cloruro de sodio (NaCl) en agua y las propiedades del gas natural por las de una mezcla 90% metano y 10% etano.

8.1. Decisión entre operación en contracorriente y en corriente directa

A priori, el evaporador en contracorriente es la mejor opción, ya que los intercambiadores operando en contracorriente necesitan una menor área de transferencia de calor que los intercambiadores operando en corriente directa. El problema que se puede presentar es que al poner en contacto el agua a su temperatura mínima, en este caso 10°C, con el GNL a -155°C podría darse el caso de que el agua llegase a congelarse en la pared del tubo.

Para comprobar si esto sucede se realiza el balance de calor de la ecuación (92) para el caso más desfavorable (agua a 10°C y GNL a -155°C).

Haciendo este balance se obtiene una temperatura de la pared del tubo en torno a los 6,6°C, que está lejos de la temperatura de fusión del agua de mar. Por lo tanto el diseño mecánico se realizará para el evaporador a contracorriente, ya que es más eficiente.

Esto implica que el agua entrará por la parte superior del intercambiador, mientras que el gas natural licuado entrará por la parte inferior. Se distinguen tres zonas en el intercambiador en función del estado del gas natural. Así, comenzando por la parte inferior del intercambiador, habrá una primera zona (que se denominará zona A) en la que el gas natural está en estado líquido. A continuación existe otra zona (zona B) en la que el gas sufre el cambio de estado y su temperatura se mantiene constante. Finalmente, en la parte superior del intercambiador se distingue una última zona en la que el gas natural en estado gaseoso se calienta hasta su temperatura de salida (zona C).

8.2. Resultados operando en contracorriente

Tabla 46: Resultados del diseño térmico en contracorriente

Temperatura de entrada del agua (°C)	20
Temperatura de salida del agua (°C)	10
Temperatura del agua a la salida de la zona C (°C)	17,76
Temperatura del agua a la salida de la zona B (°C)	12,69
Temperatura de entrada del gas natural (°C)	-155
Temperatura de salida del gas natural (°C)	8
Temperatura de cambio de fase del gas natural (°C)	-75
Presión de entrada del gas natural (bar)	53
Caudal de gas natural (kg/s)	25
Caudal de agua (kg/s)	710,857
Diámetro externo de los tubos (mm)	25,4
Calibre de los tubos	BWG 14
Diámetro interno de los tubos (mm)	21,18
Arreglo de los tubos	Cuadrado
Distancia entre los centros de los tubos (mm)	31,75
Número de tubos	3785
Número de bafles	11
Distancia entre bafles (mm)	710
Longitud de los tubos en la zona A (m)	1,510
Longitud de los tubos en la zona B (m)	2,287
Longitud de los tubos en la zona C (m)	4,726
Longitud total de los tubos (m)	8,523
Coeficiente de transferencia de calor interno en la zona A (W/m ² K)	179,57
Coeficiente de transferencia de calor interno en la zona B (W/m ² K)	320,87
Coeficiente de transferencia de calor interno en la zona C (W/m ² K)	149,32
Coeficiente de transferencia de calor externo en la zona A (W/m ² K)	5375,22
Coeficiente de transferencia de calor externo en la zona B (W/m ² K)	5802,38
Coeficiente de transferencia de calor externo en la zona C (W/m ² K)	6282,04
Coeficiente global de transferencia de calor en la zona A (W/m ² K)	149,81
Coeficiente global de transferencia de calor en la zona B (W/m ² K)	252,16

Coeficiente global de transferencia de calor en la zona C (W/m ² K)	126,73
Pérdida de carga en los tubos (Pa)	26,52
Pérdida de carga en la carcasa (kPa)	182,91

Figura 55: Gráfico de temperaturas del evaporador en contracorriente

8.3. Vibración de los tubos

La velocidad de referencia del agua en la carcasa, calculada con la ecuación (122), son 0,506 m/s, mientras que la velocidad crítica, ecuación (138) es de 1,057 m/s. Por lo tanto no existirán problemas de inestabilidad fluidoelástica, ya que la velocidad de referencia es muy inferior a la crítica.

La frecuencia natural del haz de tubos es 23,42 Hz por los 7,96 Hz de la frecuencia de desprendimiento de vórtices. Como la frecuencia natural del haz de tubos es mayor que el doble de la frecuencia de desprendimiento de vórtices este fenómeno no será un problema.

9. RESULTADOS DEL DISEÑO MECÁNICO

9.1. Tipo de intercambiador

Debido a la gran diferencia de temperaturas entre el agua que circula por la carcasa y el GNL que circula por los tubos, es necesario el uso de un intercambiador de espejo flotante que evite excesivas tensiones térmicas.

Se ha optado por un intercambiador de tipo AET (ver Figura 14).

La inclusión del cabezal flotante tipo T (cabezal flotante sin contrabrida) implica que se necesita una gran holgura entre la carcasa y el haz de tubos para dar cabida al cabezal y a la brida de unión entre el espejo y la cubierta. Si esta holgura es muy grande aumenta el efecto de las corrientes de bypass, lo cual disminuye el rendimiento térmico del evaporador.

Para impedir esto se ha optado por mantener una holgura menor de la necesaria y ensanchar la carcasa en la parte superior para dar cabida al cabezal flotante, como se muestra en la Figura 56.

Figura 56: Detalle de la carcasa y el cabezal flotante

9.2. Carcasa

Como ya se mencionó en el diseño térmico, el diámetro interno de la carcasa es de 2286 mm en la mayor parte del evaporador, pero en la parte superior se ensancha hasta los 2704 mm para dar cabida al cabezal flotante.

Debido a su tamaño, la carcasa se conformará a partir de chapa y el material escogido para su construcción es el acero SA-240 316. Contiene un 16% de cromo, 12% de níquel y 2% de molibdeno. Su máximo valor de esfuerzo permitido para temperaturas menores a 40°C son 138 MPa.

9.2.1. Espesor por presión interna

Para el cálculo del espesor por presión interna, la presión de diseño escogida es de 10 bar (1 MPa) y el tipo de junta será a tope por doble cordón de soldadura sin examinar (Tabla 27). Se realiza el cálculo para la zona superior de la carcasa, donde el diámetro es mayor.

En estas condiciones las ecuaciones (161) y (162) son aplicables.

Tabla 47: Espesor	por presiór	interna
-------------------	-------------	---------

Presión de diseño (MPa)	1
Radio interno de la carcasa (mm)	1352
Máximo esfuerzo del material (MPa)	138
Efectividad de la junta	0,70
Espesor debido al esfuerzo circunferencial (mm)	14,08
Espesor debido al esfuerzo longitudinal (mm)	6,98

9.2.2. Espesor debido a la presión del viento

Para calcular la presión del viento, se harán los cálculos para una presión básica del viento de 130 mph, lo que equivale a unos 209 km/h.

El cálculo de la ecuación (167) se ha realizado con un coeficiente de presión (C_q) de 0,9 y un coeficiente C_e de 1,3, obteniéndose una presión debida al viento de 51,48 lb/pie², lo que equivale a 2,46 kPa.

Se usa la ecuación (163), considerando que la altura desde el suelo hasta la unión de la cabeza inferior con la carcasa sea de 0,5 m y la altura total desde el suelo hasta el final de la carcasa sean 12 m. El diámetro exterior de la carcasa aún no se conoce, pero se tomará como valor para la realización de los cálculos un diámetro exterior de 2744 mm.

Presión del viento (kPa)	2,46
Radio interno de la carcasa (mm)	1352
Máximo esfuerzo del material (MPa)	138
Efectividad de la junta	0,7
Altura desde el suelo a la unión de la carcasa con la cabeza inferior (m)	0,5

Diámetro exterior de la carcasa supuesto (mm)	2744
Espesor requerido (mm)	9,66

9.2.3. Espesor debido a la combinación de cargas

El espesor en la costura circunferencial inferior será 16,64 mm (6,98 + 9,66). Este valor es mayor que los 14,08 mm debidos al esfuerzo sobre la costura longitudinal.

A este espesor de 16,64 mm es necesario añadirle 3,2 mm como margen por corrosión, por lo que el espesor mínimo será de 19,84 mm.

Teniendo en cuenta estos resultados, el espesor escogido serán 20 mm.

9.3. Tubos

El material más adecuado para la fabricación de los tubos para operar a las temperaturas criogénicas del GNL es el aluminio. En este caso se ha optado por el aluminio 5052-H32, cuya composición en porcentaje es 0,10 de cobre, 0,25 silicio, 0,10 manganeso, 2,5 magnesio, 0,10 zinc, 0,25 cromo y el resto aluminio. Su esfuerzo máximo a -155°C es 62 MPa.

Como ya se comentó en el diseño térmico, el diámetro exterior de los tubos es de 25,4 mm y el calibre BWG escogido es 14, que implica un espesor de 2,11 mm.

La presión interna de operación son 53 bar (5,3 MPa), pero para el cálculo del espesor se usará una presión de 63 bar (6,3 MPa). Como la presión interna que soportan los tubos va a ser muy superior a la presión externa, solo se realizará la comprobación del espesor por presión interna

Utilizando la ecuación (156) se comprueba que el espesor elegido es adecuado para soportar la presión interna.

El espesor mínimo obtenido son 1,15 mm, por lo tanto los 2,11 mm elegidos anteriormente son válidos.

La longitud total de los tubos será la obtenida en el diseño térmico más el espesor de los bafles y de los espejos (ya que esas zonas el agua no tiene contacto con la pared de los tubos).

Por lo tanto, la longitud de cada tubo será de 9,313 m.

9.4. Bafles

Se ha optado por la instalación de bafles transversales de un solo corte horizontal. El material elegido para su construcción es el mismo que el de la carcasa, el acero SA-240 316.

Sus características se muestran en la siguiente tabla:

Tabla 49: Características de los bafles

Número de bafles	11
Corte de los bafles	25%

Espacio entre centros de bafles y entre bafle y espejo (mm)	727,75
Máxima longitud de tubo sin soporte (mm)	1455,5
Espesor (mm)	19,1
Holgura entre diámetro interno de la carcasa y diámetro externo del bafle (mm)	11,1
Diámetro externo del bafle (mm)	2263.8
Diámetro de los agujeros para los tubos (mm)	25,8
Número de tirantes	12
Diámetro de los tirantes (mm)	15,9

9.5. Espejos

El material de los espejos será el mismo acero empleado para la carcasa y por tanto su esfuerzo máximo serán 138 MPa.

El espejo inferior estará fijado entre la carcasa y el canal inferior, como se muestra en la Figura 36 (d).

El espejo superior irá extendido como una brida y atornillado al cabezal flotante, como puede verse en la Figura 36 (e).

Las normas TEMA recomiendan que el espesor de ambos espejos sea el mismo.

Los resultados referentes al diseño de los espejos se muestran en la siguiente tabla:

Tabla 50: Características del espejo flotante

Diámetro externo del espejo inferior (mm)	2460
Diámetro externo del espejo superior (incluyendo la brida) (mm)	2684
Espesor (mm)	290
Presión de diseño en los tubos (MPa)	8,01
Presión de diseño en la carcasa (MPa)	1
Agujeros para los tubos (mm)	25,8
Tolerancia de los agujeros para los tubos (mm)	0,1

9.6. Canal inferior

El canal inferior será por donde el GNL y a través del espejo se distribuya por los tubos. Al igual que la carcasa, estará hecho de acero SA-240 316. Sus características se muestran en la tabla inferior:

Tabla 51: Características del canal inferior

Longitud (mm)	1200
Diámetro interno (mm)	2206
Diámetro externo (mm)	2326
Espesor (mm)	60

Presión de diseño (MPa)	6,3
Eficiencia de la junta	1

9.7. Cubiertas

9.7.1. Cubierta inferior

La cubierta inferior será plana e irá unida integralmente al canal inferior mediante soldadura y será del mismo material que éste. El tipo de unión entre la cubierta y el canal será la que se muestra en la Figura 39 (e). En la Tabla 52 pueden verse sus características.

Tabla 52: Características de la cubierta plana

Diámetro (mm)	2326
Espesor (mm)	290
Presión de diseño (MPa)	6,3
Eficiencia de la junta	1

9.7.2. Cubierta del cabezal flotante

La cubierta del cabezal flotante será de tipo elipsoidal 2:1, es decir, el radio mayor de la elipse es el doble que su radio menor (ver Figura 38 (b)). En este tipo de cubiertas la altura exterior será cuatro veces inferior al diámetro externo. El material elegido para la construcción de esta cubierta es el acero SA-240 316. Las características de esta cubierta son:

Diámetro interno (mm)	2171
Diámetro externo (mm)	2291
Espesor (mm)	60
Altura externa (mm)	572,75
Presión de diseño (MPa)	6,3
Eficiencia de la junta	1

9.7.3. Cubierta superior de la carcasa

La cubierta superior de la carcasa será, al igual que la anterior, de tipo elipsoidal 2:1. El material empleado será también el acero SA-240 316. Sus características son:

Diámetro interno (mm)	2704
Diámetro externo (mm)	2744
Espesor (mm)	20
Altura externa (mm)	686
Presión de diseño (MPa)	1
Eficiencia de la junta	0,7

Tabla 54: Características de la cubierta superior de la carcasa

9.8. Bridas

Debido a las dimensiones y a la presión que deben soportar, las bridas que unen las distintas partes del evaporador no pueden ser estándar y deben ser diseñadas. Todas las bridas diseñadas serán bridas sin cuello, con juntas planas y serán unidas a los distintos componentes mediante soldadura. Las bridas serán de cara levantada (Figura 40 (b)) y el material elegido para su construcción es el acero SA-182 F5a, cuyo esfuerzo máximo a temperaturas inferiores a 40°C son 259 MPa. Los pernos serán de acero de aleación SA-574 4140, con un valor de esfuerzo máximo a temperaturas menores a 40°C de 241 MPa.

9.8.1. Brida canal-carcasa

La junta utilizada en esta brida será una junta plana de metal sólido de cobre blando. Las características de la brida pueden verse en la Tabla 55 y la Figura 57.

Tabla 55: Características brida canal-carcasa

Diámetro interno (mm)	2326
Diámetro externo (mm)	2718
Espesor (mm)	290
Presión de diseño (MPa)	6,3
Métrica de los pernos	M80
Diámetro de agujero de perno (mm)	88
Número de pernos	40
Diámetro entre centros de pernos (mm)	2568
Diámetro interno de la junta (mm)	2326
Diámetro externo de la junta (mm)	2460
Factor de la junta <i>m</i>	4,75
Mínimo esfuerzo de asiento y (MPa)	90

Figura 57: Dimensiones brida canal-carcasa

9.8.2. Brida espejo-cabezal flotante

Al igual que en caso anterior, la junta utilizada será una junta plana de metal sólido de cobre blando. Las características de la brida pueden verse en la Tabla 56 y la Figura 58.

Tabla 56: Características brida espejo-cabezal flotante

Diámetro interno (mm)	2291
Diámetro externo (mm)	2684
Espesor (mm)	290
Presión de diseño (MPa)	6,3
Métrica de los pernos	M80
Diámetro de agujero de perno (mm)	88
Número de pernos	40
Diámetro entre centros de pernos (mm)	2534
Diámetro interno de la junta (mm)	2291
Diámetro externo de la junta (mm)	2422
Factor de la junta <i>m</i>	4,75
Mínimo esfuerzo de asiento y (MPa)	90

Figura 58: Dimensiones brida espejo-cabezal flotante

9.8.3. Brida carcasa-cubierta

En este caso la junta utilizada será de metal corrugado, concretamente de aluminio blando. Sus características se muestran en la Tabla 57 y la Figura 59.

Diámetro interno (mm)	2744
Diámetro externo (mm)	3040
Espesor (mm)	165
Presión de diseño (MPa)	1
Métrica de los pernos	M64
Diámetro de agujero de perno (mm)	70
Número de pernos	44

Diámetro entre centros de pernos (mm)	2900
Diámetro interno de la junta (mm)	2744
Diámetro externo de la junta (mm)	2805
Factor de la junta <i>m</i>	2,75
Mínimo esfuerzo de asiento y (MPa)	26

Figura 59: Dimensiones brida carcasa-cubierta

9.9. Boquillas

9.9.1. Boquillas para el agua de mar

Tanto la entrada como la salida de agua de mar se diseñarán para que la velocidad del agua no supere 1 m/s. Tanto los conductos de entrada y salida del agua como sus bridas se construirán de acero SA-240 316. Las características de los conductos se muestran en la siguiente tabla.

Tabla 58: Características	boquilla	agua d	le mar
---------------------------	----------	--------	--------

Longitud (mm)	470
Diámetro interno (mm)	990
Diámetro externo (mm)	1010
Espesor (mm)	10
Presión de diseño (MPa)	1
Área de refuerzo mínima (mm²)	19800
Caudal másico (kg/s)	710,857
Velocidad (m/s)	0,902

Como brida se elige una estándar según el estándar europeo EN 1092-1:2007 [15]. El equivalente EN del acero SA-240 316 es el EN 10028-7 cuyo número de material es 1.4401. El tipo de brida elegido es el 01 (Figura 60) y sus características se observan en la Tabla 59. El material de los tornillos será el acero SA-574 4140 empleado anteriormente.

Type 01 Figura 60: Brida tipo 01 [15]

Tabla 59: Características brida boquilla agua de mar

Diámetro nominal (mm)	1000
Diámetro interno (mm)	1010
Diámetro externo (mm)	1230
Espesor (mm)	70
Presión de diseño o nominal (bar)	10
Diámetro de la circunferencia de los tornillos (mm)	1160
Diámetro de agujero para los tornillos (mm)	36
Métrica de los tornillos (mm)	M33
Número de tornillos	28

9.9.2. Boquilla gas natural

Tanto los conductos de entrada y salida del gas natural como sus bridas se construirán de acero SA-240 316. Las características de los conductos se muestran en la siguiente tabla.

Tabla 60:	Características	boquilla	gas natural
			9

Longitud boquilla superior (mm)	467.1
Longitud boquilla inferior (mm)	629
Diámetro interno (mm)	325,5
Diámetro externo (mm)	359,5
Espesor (mm)	17
Presión de diseño (MPa)	6,3
Área de refuerzo mínima (mm²)	6510
Caudal másico (kg/s)	25
Velocidad (m/s)	0,804

Se escoge una brida según el estándar europeo EN 1092-1:2007. El tipo de brida elegido es el 01 (Figura 59) y su material es el mismo acero empleado para la brida de la boquilla de agua de mar. Sus características se observan en la Tabla 61. El material de los tornillos será el acero SA-574 4140 empleado anteriormente.

Diámetro nominal (mm)	350
Diámetro interno (mm)	359,5
Diámetro externo (mm)	600
Espesor (mm)	72
Presión de diseño o nominal (bar)	63
Diámetro de la circunferencia de los tornillos (mm)	525
Diámetro de agujero para los tornillos (mm)	39
Métrica de los tornillos (mm)	M36
Número de tornillos	16

El gas natural saldrá del evaporador a través de la cubierta del cabezal flotante. Como el cabezal debe poder desplazarse axialmente, es necesario que el conducto de salida del gas natural también pueda hacerlo. Para ello la solución propuesta es la introducción de una junta de expansión metálica en dicho conducto (Figura 61)

Figura 61: Junta de expansión metálica [https://www.bikarexpansionjoints.com/PDF/Fichas_juntas_metalicas.pdf]

9.10. Peso y altura un evaporador

La altura total de cada evaporador asciende a 12,066 m.

El peso total en operación del evaporador será la suma del peso de sus componentes y del fluido en su interior. El peso de cada componente y el total aproximado se muestra en la Tabla 62.

Tabla 62: Peso del evaporador

Carcasa con bridas (kg)	16260
Tubos (kg)	14552
Bafles (kg)	2567
Tirantes (kg)	177
Espejos (kg)	14897
Canal inferior con brida y cubierta plana (kg)	17474
Cubierta cabezal flotante con brida (kg)	6680
Cubierta superior con brida (kg)	3208
Agua (kg)	20480
Gas natural	1888
Peso total aproximado (kg)	98183

9.11. Soporte

Los intercambiadores serán soportados mediante los correspondientes dispositivos de apoyo a una estructura metálica. El cálculo y diseño de dicha estructura no es objeto del presente trabajo.

9.12. Aislante térmico

Debido a la baja temperatura a la que entra el GNL en el evaporador (-155°C), es inevitable que el agua presente en el aire ambiente se congele en las paredes del canal formando una capa de hielo. La formación de grandes cantidades de hielo en las paredes del canal no es deseable y para minimizar este problema es necesario poner un aislante que cubrirá el canal, el espejo inferior, las bridas de unión entre el canal y la carcasa, la cubierta exterior y la boquilla de entrada del GNL.

El aislante elegido es la fibra de vidrio, cuyo rango óptimo de temperaturas de trabajo va desde los -268°C a los 232°C.

Para calcular el espesor de aislante necesario se aplica el balance de calor de la Figura 62 a la pared del canal. La tasa de transferencia de calor que se transfiere por conducción desde el interior del canal hacia el aislante (q_1) es igual al que atraviesa la capa de aislante (q_2) y también es igual al que se transfiere al ambiente por convección (q_3).

	q1	Q2	q ₃	
-155	←Tmetal			8

Figura 62: Balance de calor para obtener espesor de aislante

Se necesita partir de unas condiciones ambientales y definir la temperatura que se quiere conseguir en la pared externa del canal una vez instalado el aislante. Se diseñará el aislante para que cuando la temperatura ambiente sea de 8°C y la velocidad del aire sea de 0,5 m/s, la temperatura en la pared externa del canal sea 2°C.

 q_1 , q_2 y q_3 se calculan como el gradiente de temperaturas entre la resistencia térmica:

$$q_1 = \frac{2\pi k_{metal}L}{\ln(D_e/D_i)} (T_{metal} - (-155))$$
(278)

$$q_{2} = \frac{2\pi k_{fv}L}{\ln\left(\frac{D_{e} + 2e}{D_{i}}\right)} (3 - T_{metal})$$
(279)

$$q_3 = \pi D_e Lh(8-3) \tag{280}$$

Donde:

 k_{metal} y k_{fv} son las conductividades térmicas del acero y de la fibra de vidrio cuyos valores son 16,3 W/(m²K) y 0,035 W/(m²K) respectivamente.

MEMORIA

 D_e , D_i y L son el diámetro externo, el diámetro interno y la longitud del canal.

e es el espesor de aislante necesario.

h es el coeficiente de convección externo, que se calcula usando la ecuación de Churchill:

$$\frac{hD_e}{k_{aire}} = 0.3 + \frac{0.62Re^{1/2}Pr^{1/3}}{[1 + (0.4/Pr^{2/3})]^{1/4}} \left[1 + \left(\frac{Re}{282000}\right)^{5/8}\right]^{4/5}$$
(281)

Siendo *Re* el número de Reynolds para flujo exterior a un cilindro y *Pr* el número de Prandlt.

En estas condiciones el espesor de aislante necesario son 566 mm. Esta capa de fibra de vidrio se recubrirá con una lámina de aluminio 5052-H32 de 3 mm de espesor.

9.13. Cubetos de retención

Los 6 evaporadores se construirán previsiblemente en línea soportados por su correspondiente estructura metálica y durante su funcionamiento contendrán unos 20 m³ de agua. Es recomendable disponer de unos muros de retención para que en caso de fugas de agua en alguno de los evaporadores el agua no afecte a otras partes de la planta. Para ello se recomienda encerrar los evaporadores en una superficie de 30x5m con un muro de 0,8 m de altura.

Figura 63: Ejemplo de vaporizadores verticales de gas natural de carcasa y tubos [http://www.chicagopowerandprocess.com/LNG-vaporizers-cpp.html]

9.14. Pintura

Cada evaporador se recubrirá con una capa de imprimación y una capa de pintura de poliuretano.

10. CONCLUSIONES

Este proyecto tenía como objetivo el diseño de un evaporador con una capacidad de vaporización de quinientas cuarenta toneladas por hora de gas natural licuado.

La solución adoptada han sido seis evaporadores verticales trabajando en paralelo. Los evaporadores son de un solo paso por carcasa y por tubo, operando en contracorriente. Debido a la baja temperatura de entrada del GNL, los tubos se diseñaron en aluminio, mientras que el resto de componentes se diseñaron en acero. El tipo de evaporador elegido ha sido de cabezal flotante, con cubiertas elipsoidales tanto para la carcasa como para el espejo flotante y cubierta plana en la parte inferior. Siguiendo la nomenclatura de las normas TEMA [3] los evaporadores diseñados son intercambiadores de calor de tipo AET.

Se han cumplido los objetivos del proyecto, desarrollando detalladamente la metodología utilizada tanto para el diseño térmico como mecánico del evaporador y elaborando un presupuesto y los planos necesarios.

Ferrol, Diciembre de 2015

Fdo:

Adrián Álvarez Riola

11. BIBLIOGRAFÍA

- [1] Ministerio de industria, energía y turismo. *La energía en España 2013*.
- [2] J. R. Backhurst, J. H. Harker. *Process Plant Design.* Ed. Heinemann educational books. 1979.
- [3] Tubular exchanger manufacturers association. *Standads of the Tubular exchanger manufacturers association. Ninth edition.* 2007.
- [4] Robert H. Perry, Don W. Green, James O. Maloney. *Perry Manual del ingeniero químico. Sexta edición. Tomo I.* Ed. Mc Graw Hill. 2001.
- [5] Frank P. Incropera David P. De Witt. *Fundamentos de transferencia de calor.* Ed. Prentice Hall. 1999.
- [6]Theodore L. Bergman, Adrienne S. Lavinn, Frank P. Incropera, David P. De Witt. *Fundamentals of heat and mass transfer. Seventh edition.* Ed. John Wiley & Sons. 2011.
- [7] Kuppan Thulukkanam. Heat Exchanger Design Handbook. Second edition. Ed. CRC Press. 2013
- [8] Sadik Kakaç, Hongtan Liu. *Heat Exchangers selection, rating and termal design. Second edition.* Ed. CRC Press. 2002.
- [9] Coulson & Richardson's. Chemical Engineering Design. Volume 6. Fouth Edition. Ed. Elsevier Butterworth-Heinemann. 2005.
- [10] José María Sáiz Jabardo, Alberto Arce Ceinos, Mª Isabel Lamas Galdo. Transferencia de calor. Ed. Universidade da Coruña Servizo de Publicacións. 2012.
- [11] Geoffrey F. Hewitt. *Heat Exchanger Design Handbook*. Imperial College of Science, Technology and Medicine, London, United Kingdom. 2002.
- [12] The American Society of Mechanical Engineers. 2007 ASME Boiler & Pressure vessel Code. Section II Part D. Properties (Customary) MATERIALS.
- [13] The American Society of Mechanical Engineers. 2010 ASME Boiler & Pressure vessel Code. Section VIII Division I. Rules for construction of pressure vessels.
- [14] Eugene F. Megyesy. Manual de recipientes a presión. Diseño y cálculo. Ed. Limusa. 1992.
- [15] British Standad. Flanges and their joints Circular flanges for pipes, valves, fittings and accessories, PN designated Part 1: Steel flanges. 2007.
- J.M. Smith, H. C. Van Ness, M. M. Abbott. *Introducción a la termodinámica en ingeniería química. Séptima edición*. Ed. Mc Graw Hill. 2007.
- Samuele Furfari. El Mundo y la Energía. Desafíos geopolíticos. 1. Las claves para comprender. Ed. Eixo Atlântico do Noroeste Peninsular. 2010.
- Manuel Lara Coira. Apuntes asignatura Ingeniería del Gas. Escola Politécnica Superior. Ferrol. 2014.
- https://es.wikipedia.org/wiki/Gas_natural
- http://www.gasnaturaldistribucion.com/
- http://www.eia.gov/beta/MER/?tbl=T01.03#/?f=A
- http://www.enagas.es/
- http://www.energiaysociedad.es/

- http://www.kobelco.co.jp/english/ktr/pdf/ktr_32/064-069.pdf
- <u>http://www.tecnicaindustrial.es/tifrontal/a-685-Vaporizadores-agua-mar-gas-natural-licuado.aspx</u>

DOCUMENTO 1: ANEXO DE CÁLCULOS

ÍNDICE

1. C	ÁLCULOS DISEÑO TÉRMICO1
1.1.	Datos de partida1
1.2.	Propiedades físicas, área de transferencia y longitud de tubo necesaria1
1.3.	Coeficiente de transferencia de calor por convección interno3
1.4.	Parámetros geométricos de la carcasa y del haz de tubos3
1.5.	Coeficiente de transferencia de calor por convección externo 4
2. C	AÍDA DE PRESIÓN6
2.1.	Caída de presión en la carcasa6
2.2.	Caída de presión en los tubos6
3. C	ÁLCULOS DISEÑO MECÁNICO7
3.1.	Carcasa7
3.2.	Canal7
3.3.	Cubierta plana inferior del canal7
3.4.	Cubierta elipsoidal del cabezal flotante7
3.5.	Cubierta elipsoidal de la carcasa8
3.6.	Boquilla gas natural
3.7.	Boquilla agua de mar8
3.8.	Brida canal-carcasa
3.9.	Brida cabezal flotante9
3.10	0. Brida cubierta superior-carcasa10
3.11	Espejo flotante
4. V	IBRACIÓN DEL HAZ DE TUBOS12
4.1.	Velocidad de referencia12
4.2.	Velocidad crítica
5. A	ISLANTE14

En el documento de la memoria se ha explicado detalladamente la metodología seguida para la obtención de los resultados necesarios del presente trabajo. En este anexo se muestran los resultados de todos los cálculos y parámetros necesarios para la obtención final de resultados.

1. CÁLCULOS DISEÑO TÉRMICO

1.1. Datos de partida

Temperatura de entrada GNL	-155°C
Temperatura de salida GNL	8°C
Temperatura de entrada agua de mar	20°C
Temperatura de salida agua de mar	10°C
Temperatura de agua de mar a la salida de la zona C	17,76°C
Temperatura de agua de mar a la salida de la zona B	12,69°C
Caudal de GNL	25 kg/s
Caudal de agua de mar	710,857 kg/s
Temperatura de vaporización del GNL	-75° C
Entalpía específica de vaporización del GNL	575 kJ/kg
Caudal de GNL	25 kg/s
Conductividad térmica del aluminio	209 W/(mK)
Diámetro externo de tubo	25,4 mm (1 in)
Diámetro interno de tubo	21,184 mm (0,834 in)
Diámetro interno de la carcasa	2286 mm (90 in)
Arreglo de tubos	Cuadrado
Número de tubos	3785
Distancia entre centros de tubos	31,75 mm (1,25 in)
Caudal de GNL por tubo	0,006605 kg/s
Resistencia de ensuciamiento interna	2,64 10 ⁻⁴ (m ² K/W)
Resistencia de ensuciamiento externa	8,80 10 ⁻⁵ (m ² K/W)
Presión de operación del agua	3 bar
Presión de operación del gas natural	53 bar

1.2. Propiedades físicas, área de transferencia y longitud de tubo necesaria

ZONA A	
Temperatura media del agua	11,35°C
Temperatura media del GNL	-115°C
Calor específico del agua	3995 J/(kgK)
Capacidad térmica del agua	2,841 10 ⁶ W/K
Densidad del agua	1025 kg/m ³
Conductividad térmica del agua	0,580 W/(mK)
Viscosidad dinámica del agua	0,001322 kg/(ms)
Calor específico del GNL	3822 J/(kgK)
Capacidad térmica del GNL	95550 W/K
Densidad del GNL	374,4 kg/m ³
Conductividad térmica del GNL	0,1334 W/(mK)
Viscosidad dinámica del GNL	0,00007121 kg/(ms)

C.	0 03364
C, Efectividad	0 / 77
	0,477
Coeficiente global de transferencia de calor referido al área media	$1/0.81 W/(m^{2}k)$
Área de transferencia media	149,01 W/(111 K)
	410,23 11
Longitud de tubos necesaria	1,510 m
Area de transferencia interna	380,37 m ²
Area de transferencia externa	456,08 m²
ZONA B	
Temperatura media del agua	15,23°C
Temperatura media del gas natural	-75°C
Calor específico del agua	3996 J/(kgK)
Densidad del agua	1024 kg/m ³
Conductividad térmica del agua	0,587 W/(mK)
Viscosidad dinámica del agua	0,001191 kg/(ms)
Densidad del gas natural líquido	229,70 kg/m ³
Densidad del gas natural gaseoso	116,50 kg/m ³
Calor específico del gas natural líquido	7695 J/(kgK)
Conductividad térmica del gas natural líquido	0,068 W/(mK)
Viscosidad dinámica del gas natural líquido	0,00003069 kg/(ms)
Viscosidad dinámica del gas natural gaseoso	0,00001214
Cr	0
Efectividad	0,055
NUT	0,056
Coeficiente global de transferencia de calor referido al área media	126,73 W/(m ² K)
Área de transferencia media	633,37 m ²
Longitud de tubos necesaria	2,287 m
Área de transferencia interna	576,04 m ²
Área de transferencia externa	690,70 m ²
ZONA C	•
Temperatura media del agua	18.88°C
Temperatura media del GNL	-33.50°C
Calor específico del agua	3998 I/(kgK)
Canacidad térmica del agua	2 842 10 ⁶ W/K
Densidad del agua	1023 kg/m^3
Conductividad térmica del agua	0 593 W//(mK)
	0.001085 kg/(ms)
Calor específico del GNI	20/2 1//kgk)
	76050 W/K
	70930 W/K
Conductividad térmica dol GNI	0 04200 Kg/III
	0,04200 VV (111K)
	0,00001920 Kg/(IIIS)
Cr Efectivide d	0,027
	0,874
	2,156
Coeficiente global de transferencia de calor referido al área media	126,/3 W/(m ² K)
Area de transferencia media	1308,96 m²

Longitud de tubos necesaria	4,726 m
Área de transferencia interna	1190,48 m ²
Área de transferencia externa	1427,43 m ²

1.3. Coeficiente de transferencia de calor por convección interno

ZONA A		
Reynolds	5574,98	
Prandlt	2,04	
Coeficiente de fricción	0,009337	
Nusselt	28,5149	
Coeficiente de transferencia de calor por convección interno	179,57 W/(m²K)	
ZONA B		
Número convectivo	0,712	
Flujo específico de calor	5,996 W/m ²	
Número de ebullición	5,565 10 ⁻⁷	
Número de Froude	0,03203	
Parámetro adimensional N	0,712	
Título de vapor	0,5	
Reynolds de la fase líquida	6467,82	
Prandlt de la fase líquida	3,473	
Fs	15,43	
Coeficiente de transferencia de calor de ebullición nucleada	320,87 W/(m ² K)	
Coeficiente de transferencia de calor de ebullición convectiva	26,62 W/(m²K)	
Coeficiente de transferencia de calor por convección interno	320,87 W/(m ² K)	
ZONA C		
Reynolds	20676,80	
Prandlt	1,363	
Nusselt	73,766	
Coeficiente de transferencia de calor por convección interno	149,32 W/(m ² K)	

1.4. Parámetros geométricos de la carcasa y del haz de tubos

Diámetro del haz de tubos	2151 mm
Número de bafles	11
Distancia entre bafles teórica (sin contar su espesor)	0,710 m
Corte del bafle	25%
Longitud del corte del bafle	565,95 mm
Holgura entre el bafle y la carcasa	11,1 mm
Holgura entre el haz de tubos y la carcasa	135 mm
Ángulo de corte del bafle	2,094 rad
Ángulo entre la intersección del corte del bafle y el diámetro del haz de tubos	2,006 rad
Holgura entre los agujeros del bafle y el tubo	0,4 mm
Área de flujo cruzado	0,3978 m ²
Área bruta en la ventana	0,8024 m ²
Fracción del número de tubos en la zona de la ventana	0,17497

Proyecto técnico de diseño de un evaporador de 540 ton/h de GNL

Fracción de tubos en flujo cruzado	0,65
Área ocupada por los tubos en la zona de la ventana	0,3356 m²
Número de tubos en la ventana	662,26
Área neta de flujo cruzado a través de la ventana	0,4668 m²
Número de filas de tubos en flujo cruzado	36
Número de filas de tubos en la ventana de un bafle	13
Área de bypass	0,09588 m ²
Relación entre el área de bypass y el área total en flujo cruzado	0,2410
Área de fugas entre la carcasa y el bafle	0,02657 m ²
Área de fugas entre los tubos y los agujeros para los tubos	0,05023 m ²

1.5. Coeficiente de transferencia de calor por convección externo

ZONA A		
Prandlt	9,106	
Factor de Colburn	0,006	
Temperatura de la pared de tubo	8,116°C	
Viscosidad dinámica del agua a la temperatura de la pared	0,001448	
n	0,14	
Gs	1786,85 kg/(m²s)	
Reynolds	34331,24	
Coeficiente de transferencia para un banco de tubos ideal	9697,80 W/(m²K)	
J _c	1,02	
r _s	0,3460	
rl _m	0,1931	
Número de pares de tiras de sellado	0	
r _{ss}	0	
J _I	0,7535	
J _b	0,7222	
Número total de filas de tubos cruzadas en el intercambiador	588,23	
Jr	1	
J _s	1	
Coeficiente de transferencia de calor por convección externo	5373,22 W/(m ² K)	
ZONA B		
Prandlt	8,109	
Factor de Colburn	0,006	
Temperatura de la pared de tubo	11,633°C	
Viscosidad dinámica del agua a la temperatura de la pared	0,001311	
n	0,14	
Gs	1786,85 kg/(m²s)	
Reynolds	38107,39	
Coeficiente de transferencia para un banco de tubos ideal	10472,38 W/(m²K)	
J _c	1,02	
r _s	0,3460	
rl _m	0,1931	
Número de pares de tiras de sellado	0	
ľ _{ss}	0	

J ₁	0,7535
J _b	0,7222
Número total de filas de tubos cruzadas en el intercambiador	588,23
J _r	1
J _s	1
Coeficiente de transferencia de calor por convección externo	5802,38 W/(m ² K)
ZONA C	
Prandlt	7,313
Factor de Colburn	0,006
Temperatura de la pared de tubo	17,913°C
Viscosidad dinámica del agua a la temperatura de la pared	0,001085
n	0,14
Gs	1786,85 kg/(m²s)
Reynolds	41830,33
Coeficiente de transferencia para un banco de tubos ideal	11338,07 W/(m ² K)
J _c	1,02
r _s	0,3460
rl _m	0,1931
Número de pares de tiras de sellado	0
r _{ss}	0
JI	0,7535
J _b	0,7222
Número total de filas de tubos cruzadas en el intercambiador	588,23
J _r	1
J _s	1
Coeficiente de transferencia de calor por convección externo	6282,04 W/(m ² K)

2. CAÍDA DE PRESIÓN

2.1. Caída de presión en la carcasa

El cálculo de la caída de presión en la carcasa se ha realizado utilizando las propiedades físicas de la zona A.

0,15
34,07 kPa
0,410
0,512
71,52 kPa
1
38,04 kPa
1649,51 kg/(m²s)
13,022 kPa
182,91 kPa

2.2. Caída de presión en los tubos

;	ZONA A
Número de pasos por los tubos	1
Coeficiente de fricción	0,00914
Sección de tubo por número de tubos	1,334 m ²
Velocidad media del fluido	0,0501 m/s
	ZONA B
Número de pasos por los tubos	1
Coeficiente de fricción	0,00881
Sección de tubo por número de tubos	1,334 m ²
Velocidad media del fluido	0,1083 m/s
	ZONA C
Número de pasos por los tubos	1
Coeficiente de fricción	0,00659
Sección de tubo por número de tubos	1,334 m ²
Velocidad media del fluido	0,1954 m/s

3. CÁLCULOS DISEÑO MECÁNICO

3.1. Carcasa

El cálculo de espesor de la carcasa se ha realizado para la zona del ensanchamiento, suponiendo una altura desde la costura superior al suelo de doce metros.

Presión de diseño	1 MPa
Radio interno	1,352 m
Eficiencia de la junta	0,7
Máximo esfuerzo del material	138 MPa
Espesor debido al esfuerzo circunferencial	14,08 mm
Espesor debido al esfuerzo longitudinal	6,98 mm
Presión del viento	2,46 kPa
qs	44 lb/ft ²
Ce	1,3
C_q	0,9
Diámetro externo	2,744 m
Altura desde el suelo a la costura inferior	0,5 m
Altura desde el suelo a la costura superior	12 m
Momento en la costura inferior	486,02 kNm
Momento en la base	446,36 kNm
Cortante en la base	81,00 kN
Espesor debido a la carga por viento	9,66 mm
3.2. Lanai	

Presión de diseño	6,3 MPa
Radio interno	1,103 m
Eficiencia de la junta	1
Máximo esfuerzo del material	138 MPa
Espesor debido al esfuerzo circunferencial	51,77 mm
Espesor debido al esfuerzo longitudinal	24,95 mm

3.3. Cubierta plana inferior del canal

Presión de diseño	6,3 MPa
Diámetro	2,171 m
Eficiencia de la junta	1
Máximo esfuerzo del material	138 MPa
C	0,33
Espesor mínimo	285,49 mm

3.4. Cubierta elipsoidal del cabezal flotante

Presión de diseño	6,3 MPa
Diámetro	2,326 m

Eficiencia de la junta	1
Máximo esfuerzo del material	138 MPa
Espesor mínimo	49,78 mm

3.5. Cubierta elipsoidal de la carcasa

Presión de diseño	1 MPa
Diámetro	2,704 m
Eficiencia de la junta	0,7
Máximo esfuerzo del material	138 MPa
Espesor mínimo	14,01 mm

3.6. Boquilla gas natural

Presión de diseño	6,3 MPa
Radio interno	0,163 m
Eficiencia de la junta	0,7
Máximo esfuerzo del material	138 MPa
Espesor debido al esfuerzo circunferencial	11,06 mm
Espesor debido al esfuerzo longitudinal	5,25 mm
Área de refuerzo	6510 mm ²

3.7. Boquilla agua de mar

Presión de diseño	1 MPa
Radio interno	0,495 m
Eficiencia de la junta	0,7
Máximo esfuerzo del material	138 MPa
Espesor debido al esfuerzo circunferencial	5,16 mm
Espesor debido al esfuerzo longitudinal	2,56 mm
Área de refuerzo	19800 mm²

3.8. Brida canal-carcasa

Presión de diseño	6,3 MPa
Mínimo esfuerzo de asiento de la junta	90 MPa
Factor de la junta	4,75
Diámetro interno de la junta	2326,25 mm
Diámetro externo de la junta	2458,70 mm
Ancho de la junta	66,25 mm
bo	33,12 mm
Ancho efectivo de la junta	14,39 mm
G	2430 mm
Н	29,22 MN
H _p	6,57 MN
Carga en los pernos en condiciones de asiento	9,89 MN

Proyecto técnico de diseño de un evaporador de

540 ton/h de GNL

Carga en los pernos en condiciones de operación	35,79 MN
Esfuerzo máximo del material de los pernos	241 MPa
Área de la raíz de los pernos requerida	148508,95 mm ²
Métrica de los pernos elegida	M80
Área de la raíz de un perno	4076,83 mm ²
Número de pernos	40
Diámetro entre centros de los pernos	2568 mm
Distancia entre el centro de un perno y el diámetro externo de la brida	75 mm
H _D	26,77 MN
H _T	2,45 MN
H _G	6,57 MN
h _D	0,121 m
h_T	0,095 m
h _G	0,069 m
M _D	3,240 MNm
M _T	0,233 MNm
M _G	0,454 MNm
Momento total en condiciones de operación	3,925 MNm
Carga en condiciones de asiento	37,546 MN
Momento total en condiciones de asiento	2,591 MNm
Κ	1,169
Y	12,539
Máximo esfuerzo del material de la brida	259 MPa
Espesor mínimo	285,84 mm

3.9. Brida cabezal flotante

Presión de diseño	6,3 MPa
Mínimo esfuerzo de asiento de la junta	90 MPa
Factor de la junta	4,75
Diámetro interno de la junta	2291,25 mm
Diámetro externo de la junta	2421,80 mm
Ancho de la junta	65,25 mm
bo	32,62 mm
Ancho efectivo de la junta	14,28 mm
G	2393 mm
Н	28,34 MN
H _p	6,43 MN
Carga en los pernos en condiciones de asiento	9,66 MN
Carga en los pernos en condiciones de operación	34,77 MN
Esfuerzo máximo del material de los pernos	241 MPa
Área de la raíz de los pernos requerida	144251,49 mm ²
Métrica de los pernos elegida	M80
Área de la raíz de un perno	4076,83 mm ²
Número de pernos	40
Diámetro entre centros de los pernos	2534 mm

Distancia entre el centro de un perno y el diámetro externo de la brida	75 mm
H _D	25,97 MN
H _T	2,37 MN
H _G	6,43 MN
h _D	0,122 m
hτ	0,096 m
h _G	0,070 m
M _D	3,155 MNm
Μτ	0,227 MNm
M _G	0,452 MNm
Momento total en condiciones de operación	3,835 MNm
Carga en condiciones de asiento	37,033 MN
Momento total en condiciones de asiento	2,607 MNm
Κ	1,172
Y	12,340
Máximo esfuerzo del material de la brida	259 MPa
Espesor mínimo	282,41 mm

3.10. Brida cubierta superior-carcasa

Presión de diseño	1 MPa
Mínimo esfuerzo de asiento de la junta	26 MPa
Factor de la junta	2,75
Diámetro interno de la junta	2744,25 mm
Diámetro externo de la junta	2805,20 mm
Ancho de la junta	30,50 mm
bo	15,25 mm
Ancho efectivo de la junta	9,76 mm
G	2786 mm
Н	6,10 MN
H _p	0,47 MN
Carga en los pernos en condiciones de asiento	2,22 MN
Carga en los pernos en condiciones de operación	6,57 MN
Esfuerzo máximo del material de los pernos	241 MPa
Área de la raíz de los pernos requerida	27239,69 mm ²
Métrica de los pernos elegida	M64
Área de la raíz de un perno	2467,15 mm ²
Número de pernos	44
Diámetro entre centros de los pernos	2900 mm
Distancia entre el centro de un perno y el diámetro externo de la	75 mm
brida	7511111
H _D	5,91 MN
H _T	0,181 MN
H _G	0,470 MN
h _D	0,078 m
$h_{ au}$	0,068 m

Proyecto técnico de diseño de un evaporador de 540 ton/h de GNL

h _G	0,057 m
M _D	0,461 MNm
Μτ	0,012 MNm
M _G	0,027 MNm
Momento total en condiciones de operación	0,500 MNm
Carga en condiciones de asiento	16,363 MN
Momento total en condiciones de asiento	0,935 MNm
Κ	1,108
Y	18,924
Máximo esfuerzo del material de la brida	259 MPa
Espesor mínimo	157,79 mm

3.11. Espejo flotante

El espejo flotante está sometido a mayores esfuerzos que el espejo inferior, por tanto se calcula el espesor del espejo flotante y se aplica el mismo espesor al inferior.

Presión de diseño en la carcasa	1 MPa
Presión de diseño en los tubos	6,3 MPa
F	1
G	2393 mm
D _{ctl}	2125,6 mm
η	0,4976
Presión de los pernos en el lado de los tubos	1,735 MPa
Presión de diseño del espejo	8,035 MPa
Máximo esfuerzo del material	138 MPa
Espesor debido a la flexión	272,87 mm
Espesor debido al cortante	191,82 mm

4. VIBRACIÓN DEL HAZ DE TUBOS

4.1. Velocidad de referencia

Distancia entre bafles (real)	0,728 m
Diámetro interno de la carcasa	2,286 m
Diámetro del bafle	2,2638 m
Diámetro externo del haz de tubos	2,151 m
Diámetro de los agujeros de los bafles	25,8 mm
<i>b</i> ₁ (ec. 136)	0,01525
<i>b</i> ₂ (ec. 136)	0,01437
<i>b</i> ₃ (ec. 136)	0,01001
<i>a</i> ₁ (ec. 130 y 131)	1,0628
<i>a</i> ₂ (ec. 131)	0,01575
<i>a</i> ₃ (ec. 132)	0,0097
<i>a</i> _x (ec. 123)	0,194
<i>a</i> ₅ (ec. 134)	0,660
<i>a</i> ₆ (ec. 135)	1,380
<i>a</i> ₇ (ec. 136)	14,087
<i>a</i> ⁸ (ec. 134)	0,8
A (ec. 136)	5,307
<i>E</i> (ec. 136)	16,308
<i>N_h</i> (ec. 124)	0,4544
<i>M</i> _w (ec. 125)	0,9587
<i>M</i> (ec. 122)	0,93
<i>F_h</i> (ec. 122)	0,2059
<i>A_x</i> (ec. 122)	0,3037 m ²
Velocidad de referencia	0,506 m/s

4.2. Velocidad crítica

D (ec. 138)	1,768
Coeficiente de masa hidrodinámico	1,43
Masa de tubo por unidad de longitud	0,8718 lb/ft
λ_n (ec. 139)	π
Momento de inercia de un tubo	0,02534 in ⁴
Módulo de elasticidad de los tubos	75,84 GPa (11000 ksi)
Máximo esfuerzo longitudinal en la periferia del haz de tubos	17,264 MPa
Espesor de un tubo	2,11 mm
<i>C</i> _t (ec. 146)	0,5
Módulo de elasticidad de la carcasa y el espejo	200 GPa
K (ec. 189, 191 y 202)	0,654
Longitud de tubo entre espejos (real)	8,733 m
<i>F</i> _q (ec. 189, 191 y 202)	2,38
<i>G</i> (ec. 194 y 196)	2286 mm
J (ec. 189, 191 y 202)	1
<i>f</i> _s (ec. 155)	0,5327

<i>f</i> _t (ec. 154)	0,6751
<i>P'</i> _t (ec. 154 y 155)	3,544 MPa
<i>P's</i> (ec. 155)	0,411 MPa
<i>P_d</i> (ec. 149, 151, 152 y 153)	0 MPa
<i>P</i> ₂ (ec. 147, 150, 151 y 153)	1,757 MPa
<i>P</i> ₃ (ec. 148, 150, 152 y 153)	0,206 MPa
<i>P*</i> _t (ec. 146)	1,757 MPa
<i>S</i> _t (ec. 145)	14,681 MPa
<i>F_a</i> (ec. 156)	2263,8 N
<i>F_{cr}</i> (ec. 156)	3726,6 N
<i>χ</i> ₆ (ec. 139)	1,268
Frecuencia natural del haz de tubos	23,42 Hz
δ_t (ec. 157)	0,1670
X	0,3276
Velocidad crítica	1,057 m/s

5. AISLANTE

Temperatura media del aire	8°C
Temperatura de la pared exterior (con aislante)	2°C
Temperatura de la pared interna del metal	-155°C
Diámetro externo	2326 mm
Diámetro interno	2206 mm
Velocidad del aire	0,5 m/s
Conductividad térmica del aire	0,02402 W/(mK)
Densidad del aire	1,252 kg/m ³
Calor específico del aire	1006 J/(kgK)
Viscosidad dinámica del aire	1,753 10 ⁻⁵ kg/(ms)
Prandlt del aire	0,7343
Nusselt	191
Coeficiente de convección externa del aire	2 W/(m ² K)
Conductividad térmica de la fibra de vidrio	0,035 W/(mK)
Conductividad térmica del acero	16,3 W/(mK)
Tasa de transferencia de calor por metro	87,08 W/m
Temperatura de la pared externa del metal	-154,95°C
Espesor de aislante	566 mm

DOCUMENTO 2: PLANOS

ÍNDICE

- PLANO 1: DIAGRAMA DE FLUJO
- PLANO 2: CORTE DE UN EVAPORADOR
- PLANO 3: BRIDA CANAL-CARCASA
- PLANO 4: BRIDA CABEZAL FLOTANTE
- PLANO 5: BRIDA CARCASA-CUBIERTA
- PLANO 6: BRIDA BOQUILLA AGUA DE MAR
- PLANO 7: BRIDA BOQUILLA GAS NATURAL

TODAS LAS DIMENSIONES EN mm

5		
	290 120 40 40 40 40 40 40 40 4	€29 ¢2326 ↓ 566 ↓ 290
	UNIVERSIDADE DA CORUÑA ESCOLA POLITÉCNICA SUPERIOR	
Título: Proyecto te un evapora	écnico de diseño de ador de 540 ton/h de GNL	Nº de plano: 2
Autor: Adrián Álva Escala: 1:40 Fecha: Diciembre 2015	arez Riola Plano: Corte de un evaporador	Firma:

DOCUMENTO 3: PRESUPUESTO

En este documento se realizará un presupuesto orientativo del coste de diseño y fabricación de los seis evaporadores.

N⁰	Concepto	Unidades	Precio unitario (€)	Importe (€)
1	Lámina acero SA-240 316 para la carcasa	10909,53 kg	4,81	52474,84
2	Tubos de aluminio 5052 H32	3785X9,313 m	19,21	677146,83
3	Lámina acero SA-240 316 para el canal	4079,95 kg	4,81	19624,56
4	Placas de acero SA-240 316 perforadas para los bafles	2567,47 kg	9,139	23464,11
5	Espejo inferior de acero SA- 240 316	1	39278,44	39278,44
6	Espejo superior de acero SA- 240 316	1	46757,25	46757,25
7	Tirantes de acero SA-240 316	12	52,70	632,40
8	Cubierta plana inferior de acero SA-240 316	1	35115,87	35115,87
9	Cubierta elipsoidal 2:1 de la carcasa de acero SA-182 F5a	1	5766,08	5766,08
10	Cubierta elipsoidal 2:1 del cabezal flotante de acero SA- 182 F5a	1	12542,76	12542,76
11	Brida carcasa-canal acero SA- 182 F5a	2	14339,12	28678,24
12	Brida cabezal flotante acero SA-182 F5a	1	14179,04	14179,04
13	Brida carcasa-cubierta superior acero SA-182 F5a	2	7064,28	14128,56
14	Pernos M80 acero SA-574 4140	80	639,36	51148,80
15	Tuerca hexagonal M80	80	53,9	4312,00
16	Pernos M64 acero SA-574 4140	44	345,46	15200,24
17	Tuerca hexagonal M64	44	40,27	1771,88
18	Lámina acero SA-240 316 para las boquillas de agua de mar	235,07 kg	4,81	1125,88
19	Lámina acero SA-240 316 para las boquillas de gas natural	161,93 kg	4,81	778,88
20	Brida acero zincado boquilla agua de mar	2	640,79	1281,58

CAPÍTULO 1. COSTE DE MATERIALES

21	Brida acero zincado boquilla gas natural	2	560,52	1121,04
22	Tornillo hexagonal con tuerca de acero zincado M33	56	4,78	267,68
23	Tornillo hexagonal con tuerca de acero zincado M36	32	6,22	199,04
24	Aislante de fibra de vidrio	76,25 m ²	5,58	425,48
25	Chapa de aluminio 5052 H32 3 mm de espesor	29,62 m²	85,87	2543,57
26	Pintura poliuretano	120,14 m ²	18,17	2182,94
TOTAL PARA UN EVAPORADOR			1.052.147,99€	
TOTAL PARA SEIS EVAPORADORES				6.312.887,94€

CAPÍTULO 2. INGENIERÍA

Número	Concepto	Unidades	Precio unitario (€)	Importe (€)
1	Diseño del evaporador	320 h	50,00	16000,00
TOTAL			16.000,00€	

CAPÍTULO 3. MANO DE OBRA

Número	Concepto	Unidades	Precio unitario (€)	Importe (€)
1	Mano de obra	75815 kg	0,8 €/kg	60652,00
TOTAL			60.652,00€	

RESUMEN POR CAPÍTULOS		
CAPÍTULO 1: COSTE DE MATERIALES	6.312.887,94 €	
CAPÍTULO 2: INGENIERÍA	16.000,00€	
CAPÍTULO 3: MANO DE OBRA	60.652,00€	
IMPORTE DE EJECUCIÓN MATERIAL	6.389.539,94 €	
13% de Gastos Generales	830.640,19 €	
6% de Beneficio Industrial	383.372,40 €	
IMPORTE DE EJECUCIÓN	7.603.552,53 €	
21% de IVA	1.596.746,03 €	
IMPORTE DE CONTRATA	9.200.298,56 €	

El importe de la contrata asciende a la cantidad de **nueve millones doscientos mil doscientos noventa y ocho con cincuenta y seis céntimos.**

Proyecto técnico de diseño de un evaporador de 540 ton/h de GNL

Ferrol, Diciembre de 2015

Fdo:

Adrián Álvarez Riola