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Resumo

A aprendizaxe automatica & a area da intelixencia adlifecda ciencia da computacion que
estuda algoritmos que aprenden a partir de datos, fan pi&aice producen comportamentos
baseados en exemplos. Esta tesis desenvolve novos métdpsendizaxe automatica basea-
dos en teoria da informacion (TI) e exformation theoretic learningITL): (1) En primeiro
lugar, utilizase Tl para seleccion de caracteristicespecificamente, se desenvolven dous
novos algoritmos. O primeiro ten en conta o coste (companadi econdmico, etc.) de cada
caracteristica —ademais da relevancia—. O segundo fadasmncepto densemblemoi
com(n en escenarios de clasificacioén, pero moi pouco egdona literatura de seleccion de
caracteristicas. (2) En segundo lugar, se poden empregaetos de Tl e ITL como unha
funcion de erro alternativa, o cal permite a exploraciduitch campo da literatura non moi
estudado: a aproximacion de modelado local. Especificeandesenvolvese un novo algo-
ritmo para clasificacion. Este algoritmo esta baseadmmbmacion de redes de neuronas por
medio de modelado local e técnicas baseadas en ITL.






Resumen

El aprendizaje automatico es el area de la inteligentifical y la ciencia de la computacion
que estudia los algoritmos que aprenden a partir de datakizane predicciones y producen
comportamientos basados en ejemplos. Esta tesis desammi/os métodos de aprendizaje
automatico basados en teoria de la informacion (TI) irmation theoretic learningI TL):

(1) En primer lugar, se utiliza Tl para seleccion de caréstieas. Especificamente, se desa-
rrollan dos nuevos algoritmos. El primero tiene en cuentaste (computacional, econémico,
etc.) de cada caracteristica —ademas de la relevancidseglndo hace uso del concepto de
ensemblemuy comin en escenarios de clasificacion, pero muy pquordo en la literatura
de seleccion de caracteristicas. (2) En segundo luggnueden emplear conceptos de Tl e
ITL como una funcion de error alternativa, lo cual perméteekploracion de otro campo de la
literatura no muy estudiado: la aproximacion de modeladall Especificamente, se desarrolla
un nuevo algoritmo para clasificacion. Este algoritma éstSado en la combinacion de redes
de neuronas por medio de modelado local y técnicas basadak.e
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Abstract

Machine learning is the area of artificial intelligence awthputer science that studies algo-
rithms that can learn from data, make predictions, and m®diehaviors based on examples.
This thesis develops new methods of machine learning baséufarmation theory (IT) and
information theoretic learning (ITL): (1) On the one handl,i$ used for feature selection.
Specifically, two new algorithms are developed. The firsttakes into account the cost (com-
putational, economic, etc.) of each feature —besides lé¢wance—. The second one makes
use of the concept of ensemble, quite common for classificatenarios, but very little ex-
plored in the literature of feature selection. (2) On theeothand, IT and ITL concepts can
be employed as an alternative error function, thus allowliregexploration of another not very
well studied field in the literature: the local modeling apgoech. Specifically, a new algorithm
for classification is developed. This algorithm is basedhendombination of neural networks
by means of local modeling and techniques based on ITL.
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CHAPTER ].

Introduction

Machine learning is the area of artificial intelligence awdhputer science that studies algo-
rithms that can learn from data, make predictions, and dpviethaviors based on examples.
The main types of problems machine learning can solve arg [B) classification, where
the algorithm must assign unseen inputs to a series of sta@®eregression, where the focus
is predicting a continuous output; (c) clustering, whenguils must be labeled into unknown
groups, unlike classification; (d) density estimation, velthe goal is finding the distribution
of a set of inputs; and (e) dimensionality reduction, wheguts are simplified by mapping
them to lower dimensional spaces. These tasks can also dsifield, according to the nature
of available learning data, in (a) supervised learning,r@leset of known patterns are used for
training; (b) unsupervised learning, where the objectiveoiunravel the underlying similari-
ties between data; and (c) reinforcement learning, wherenkironment provides information
about the goodness of the learning.

Supervised classification, the problem in which this thissiscused, is an area of artificial
intelligence concerned with the classification of obséovet The objective is to classify data
based on a priori knowledge. This knowledge is utilized srrepredictive models from a data
set of examples in order to classify unseen instances. fB@dlyi supervised classification
assumes previous knowledge of the class —the value to beted- of the instances of the
data set. One important aspect of supervised classificattbe evaluation of the algorithms by
means of an evaluation function. It usually quantifies theegalization ability of the classifier.
One of the most important evaluation functions is the clasdion error, which provides the
probability of misclassifying an instance. In real worldplems, the true classification error
is unknown, and so is its underlying probability distrilauti Therefore, it must be estimated
from data. In particular, he mean squared error (MSE) is thasure that is typically utilized
for evaluating the estimations made by the algorithms. TISENt the second-order moment
of the error, and therefore, it incorporates both the vagaand the bias of the estimator. How-
ever, the use of evaluation functions based on second-oroerents suffers from the limitation
of the inherent Gaussian hypothesis. In this dissertatiog,impediment is avoided by using
a computationally-efficient model, based on informatibeetretic descriptors of entropy, di-
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Chapter 1. Introduction

vergence and mutual information, combined with non-patdmBDF estimators. This brings
robustness and generality to the evaluation function. uosgel is called Information Theo-
retic Learning (ITL) [115]. As entropy is defined as the umaiety of a random variable, it is
natural to use it as a tool for applications where the datinemmplete or noisy.

A key aspect for a correct model construction is data pregmsing, which aim is to pre-
pare the data properly to serve as input for learning algmsgt Learning algorithms usually
suffer from overfitting (loss of generality) and efficiencyoplems. Dimensionality reduction
techniques are a family of data preprocessing methodsahaie applied to reduce the dimen-
sionality of data and improve the performance of learnirggpalthms. There are two types of
dimensionality reduction techniques: feature extractiod feature selection [158].

Feature extraction techniques take the set of featureseabrilyinal learning data set and
build derived features, with the aim of improving the suhsad learning process. In this way,
the generated set of features is usually more compact antd@sdiscriminating power. It is
widely used in applications such as image analysis, sigoabssing, and information retrieval.
As there is a loss of interpretability (because of the dédweof features), it is more interesting
for applications where model accuracy is more importam thadel understandability.

On the other hand, feature selection removes irrelevantesuhdant features, which in-
creases the predictive accuracy of the model learned, iregitlce cost of data, improving
learning efficiency by reducing storage requirements amdpcational costs, reducing the
complexity and improving the understanding of the resgltimodel. It is widely used in data
mining applications, such as text mining, genetics angyand sensor data processing. Un-
alike feature extraction, feature selection maintainstiiginal features. Therefore, it is useful
for applications where the interpretability of the modehigportant, such as in knowledge ex-
traction. There exists a large amount of feature selectigorithms, some of which are based
on information theoretic (IT) principles.

The use of IT and ITL in this thesis is twofold:

e On the one hand, IT is used for the feature selection stepcif@jadly, two new algo-
rithms are developed. The first one takes into account thd@mmputational, economic,
etc.) of each feature —besides its relevance—. This faot®itant due to the possibil-
ity of obtaining similar or better performances while reishgcthe associated cost. The
second algorithm makes use of the concept of ensemble,apritenon for classification
scenarios, but very little explored in the literature oftéea selection. In this case, the

2



1.1 Objectives

aim is obtaining more stable results than using a singleifeatelection method and also
improving the computational efficiency of the training pess by means of distributed
computing.

e On the other hand, IT and ITL concepts can be employed as ematiive error func-
tion, thus allowing the exploration of another not very vatlldied field in the literature:
the local modeling approach. Specifically, a new algorittumdassification is devel-
oped. This algorithm is based on the combination of neuralorks by means of local
modeling and techniques based on ITL.

1.1 Objectives

In this doctoral thesis, the learning algorithms used arthefsupervised type. In this con-
text, selecting an appropriate cost function is a nondtigroblem, where the conflict between
parametric and non-parametric modeling appears. TheclsEan squared error (MSE) cap-
tures all the information of the probability density furmeti(PDF) of the error under normality
hypothesis. It provides analytical solutions for linealdaboptimization, providing with opti-
mality and ease of implementation.

However, MSE is often utilized in situations where the dféesss are non-linear and the
errors are not normally distributed. With this end, the exation of several possibilities based
in the scope of information theory and statistics is posankining non-parametric estimators
of PDF with descriptors of information theory’s entropy amdtual information, the goal of
moving away from the traditional approach of using secortitiomoments of error is achieved.
In this manner, the limitations of the MSE's inherent norityadre avoided. Those estimators
provide with robust and general cost functions which impréive performance in realistic
scenarios. The challenge, therefore, consists on denatingtthat these new learning models
can improve the results obtained by current systems ininart@umstances or scenarios.

The thesis is divided in three main parts. The objectiveg&mh of the parts are described
as follows:

1. Cost-based feature selection.

e Solve problems where not only it is interesting to minimize tlassification error,
but also to reduce costs that may be associated to inputésatu

3



Chapter 1. Introduction

e Obtain a trade-off between a feature selection metric apdctst associated to
the features, in order to select relevant features with adssociated cost, while
keeping the classification accuracy.

2. Ensemble learning for feature selection.

e Combine ordered rankings of features which are obtainad frase selectors.

e Achieve an improvement in the overall computational pen@ance of the feature
selection process, while maintaining the classificatiorueacy.

¢ Release the user from the task of deciding which featuret@emethod is the
most appropriate, while maintaining the classificationuaacy.

3. Local classification based on ITL.

e Build complex classification models for two-class and nelds problems. Those
models are composed of several simpler neural network sadels

e Achieve an improvement of classification performance ohpezblems.

The rest of this dissertation is organized as follows. Géaptintroduces the domain and
precedents of this research. Chapter 3 describes a nevbasst feature selection method.
Chapter 4 introduces a new ensemble method for featuretiselebased in ranking learning.
Chapter 5 presents a new classification method based on mfigireation of neural networks
by means of Information Theoretic Learning tools. Finallhiapter 6 summarizes the obtained
contributions and conclusions and the produced publicatio



CHAPTER 2

Machine Learning Methods Based on Information

Theory

This chapter presents the basis of this thesis. It commemities. description of the most basic
foundations, which are Information Theory (IT) —Sectiod-2: and Information Theoretic
Learning (ITL) —Section 2.2—, and follows with a descriptiof some relevant developments
of these two areas on machine learning, specifically in featelection and classification —
Section 2.3—.

2.1 Information Theory

Information theory (IT) is an area of computer science ardtgtal engineering that deals
with quantification of information. It was formulated by Qtie E. Shannon in 1948 [129].
Initially, the objectives of this theory were to represdransmit and store data compactly and
reliably. Since then, applications have been found in diileéds like neurobiology [122], nat-
ural language processing, statistical inference, and madbarning, the latter being the field
of interest for this doctoral thesis. The connection betwiedormation theory and machine
learning comes from the fact that representing data in a ectjashion requires assigning
short words to highly usual bit strings, and longer wordsessllikely bit strings. Moreover,
transmitting information over noisy channels requires adgmodel for the messages. Ulti-
mately, a model to predict which data are likely and whichwarkkely is needed, which is a
central issue in machine learning.

Next, a series of central concepts of IT —which are used iralfperithms proposed in this
dissertation— are defined.

Entropy An important measure of information is entropy, which is élrerage number of bits
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Chapter 2. Machine Learning Methods Based on Informaticeoii

needed to store or communicate one symbol in a message. Tlopyenf a random
variableX with distribution p, denoted byH (X) or H(p) is a measure of its uncertainty.
For a discrete variable witk possible values, it is defined by:

H(X)=-7% p(X=Kk)log, p(X =K) (2.1)

log, is used when using binary digits. An important property dfr@py is that it is
maximum when all the messages are equiprobagtl¥:= k) = 1/K andH (X) = log, K

Kullback-Leibler divergence Another important measure of information theory is the Kaitlk-
Leibler divergence (KL divergence) [81], information gaim relative entropy. It is used
to measure the dissimilitude between two probability dhations. It is defined by:

L(pla) = Z pxlog 2" (22)
This can be rewritten as:

L(plla) = Z pclog p — Z pklogak = —H(p) +H(p.0) (2.3)

whereH (p,q) is called the cross entropy:
K
H(p,a) =— > pclogak (2.4)
K=1

Cross entropy The cross entropy is the average number of bits needed ttifidan event
drawn from an underlying set of events with "true” distrilout p, when using model
g. Moreover, the entropy (p) is the expected number of bits if the true model is used.
So, as displayed in (2.3), the KL divergence is the diffeeehetween these two. Al-
ternatively, the KL divergence is the average number oftamdil bits needed, due to
using distributionq instead of the true distributiop. This interpretation denotes that
KL(pl|a) = 0 andKL(p||q) =0if q=p.

Mutual information In order to define mutual information, which is the next qitsiraf in-
formation to be described, let us consider two random disorariables X andY. In
order to know how much information can be obtained from onthefvariables by ob-
serving the other, it can be determined how similar the jdistribution p(X,Y) is to
the factored distributiorp(X)p(Y). This is called the mutual information (MI) and is
defined as follows:

106GY) =KL (V) [PV =3 3 pleylog B0 (25)
X Y



2.2 Information Theoretic Learning

wherel (X;Y) > 0 andl(X;Y) =0 if p(X,Y) = p(X)p(Y), that is, the Ml is O if the
variables are independent.

A basic property of the Ml is:
[OX;Y) =H(X)=H(X|Y) =H(Y) =H(Y|X) (2.6)
whereH (Y|X) is the conditional entropy, defined as:

H(Y|X) = Z p(X)H(Y|X =X). (2.7)

Therefore, the MI between X and Y can be interpreted as thectish in uncertainty
about X after observing Y (the opposite is true by symmetry).

2.2 Information Theoretic Learning

How to best extract the information contained in data is aroom problem nowadays. We
are surrounded by huge amounts of data, which hide the irfiitomneeded to answer a myr-
iad of questions that the data processing professionals. hélie use of computers and the
World Wide Web has increased dramatically the accessikilitd the amount of data gener-
ated. Information Theoretic Learning (ITL) [115] is a frawark that utilizes the information
theory descriptors of entropy and divergence as non-pdranuest functions for the design
of adaptive systems in unsupervised or supervised tramingels. Data modeling is a process
to extract information from data. A model of the data sumeesithe process of its genera-
tion and allows a better design of subsequent data procesgstems. Probabilistic reasoning
plays a central role in data modeling. Probability theors iespected framework to work with
uncertain or noisy data. Discovering the structure of thta,dand finding dependencies in the
data are two sides of the same coin.

When the data sample contains all the information in thestrithution, directly using the
probability density function (PDF) of the data is a powetfol. When this is not the case, a
possibility is to construct scalar descriptors of the PDd#,thnder certain assumptions, briefly
characterize the data structure. This approach is illiestrby statistical moments, which are
the most commonly used descriptors of the PDF. There exisgistent non-parametric esti-
mators for the moments. In particular, if the Gaussian apsiomis held, the mean and the
variance completely describe the PDF.

There are differences between the application of entrogptomunication systems and to
machine learning. First, machine learning systems hanaleomly discrete-valued data, but

7



Chapter 2. Machine Learning Methods Based on Informaticeoii

may also face continuous processes. Second, machinenigaigorithms require smooth cost
functions, in order to apply local search algorithms. Thindd last, the PDFs of modern appli-
cations usually have long tails and real problems usuale maany outliers. This makes the
Gaussian assumption a poor descriptor in most situatiomstefore, the information theoretic
descriptors must be estimated with continuous and diffezlele non-parametric estimators.
The non-parametric kernel density estimators by Parze@][det these requirements, be-
sides connecting IT with kernel methods. Next, the kermalelnl learning theory is introduced
with the definition of Reproducing Kernel Hilbert Spaces.

2.2.1 Reproducing Kernel Hilbert Spaces

A Hilbert space is a generalization of a Euclidean space yofiaite or infinite number of
dimensions. It is an abstract linear vector space that hasttacture of an inner product,
and it is normed and complete. A Reproducing Kernel Hilb@ac® (RKHS) [7] is a Hilbert
space associated with a kernel that reproduces every dmnictithe space. The application
of RKHS in signal processing was proposed by Parzen [105].déleloped an analysis of
random Gaussian processes. They are approached by geometinods when studied in terms
of their second-order moments (covariance kernel). Patearonstrated that the RKHS offers
an elegant general framework for minimum variance unbigstishation. The problems are
solved algebraically in the RKHS associated with the cavaré functions, with the geometric
advantages of its inner product.

LetHg be a Hilbert space of real-valued functions defined on & setuipped with an inner
product< .,. > and a real-valued bivariate functi¢f(x,y) on E x E. The functionK(x,y) is
said to be non-negative definite if for any finite point et x,,...,X,} C E and for any not all
zero corresponding real numb€rg;, az,...,an} CR,

n n

i;glaiajK(m,xj) >0 (2.8)

Kernel density estimation is central in ITL. There is a laogerlap between the mathemat-
ical conditions required for a kernel for density estimatand positive definite functions. In
fact, any non-negative definite bivariate functi€fx,y) is a reproducing kernel, as proved by
the theorem of Moore-Aronszajn [7]. Kernel-based learralyprithms use the following idea
[127]:

b E— Hk
(2.9
X — ®(X)
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2.2 Information Theoretic Learning

Via the non-linear mapping (2.9), the ddta, X, ..., %} C E are mapped into a potentially
much higher dimensional feature spadgewith a linear structure. A given learning problem
in E is solved inHy instead, by working with{®(x;),...,®(x,)} C H. BecauseH is high
dimensional, a linear learning algorithm can solve arkilfranon-linear problems in the input
space (ifH is rich enough to represent the mapping). The inner produntdlation implicitly
executes the linear algorithm in the kernel feature spabédewthe data and the operations are
all done in the input space. The Mercer theorem [94] guaesritee existence of the non-linear
mapping®. This property of the kernels is called the "kernel trick’h&kernel trick can be
used to develop non-linear generalizations of any algworithat can be expressed in terms of
inner products. A kernel that satisfies the Mercer theorekmésvn as a Mercer kernel. The
most widely used Mercer kernel is the Gaussian function.

2.2.2 RKHSandITL

From a practical perspective, one must estimate entropy ftata. In this subsection, the
interest lies in computationally simple, non-parametstineators that are continuous and dif-
ferentiable. Alfred Renyi [121] derived a set of estimatimrsipply entropy and divergence as
cost functions in learning. They are described next.

There are many factors that affect the determination of tienum in the process of learn-
ing: gradient noise, learning rates, misadjustment, etee fias and variance of the entropy
estimator are not as critical as in other fields. In consecgienhat matters the most in learning
is to develop cost functions that can be derived directlynfoata without further assumptions,
and they must capture as much structure as possible of the PDF

Renyi information measure of ordaror Renyia entropy has the following expression:

Ha(P) = 1= log (z pk> 210

with a # 1 anda > 0. It is called entropy because Renyi showed that it is a gdimation of
Shannon'’s theory, as it is shown next.

Probability mass functions (PMF) can be visualized geacadly as points in a vector
space called the simplex. The simpléy consists of all possible probability distributions for
an N-dimensional random variable.

AN:{p:(pl,...,pN)TeRN,piZO,Zpizl,Vi} (2.11)
|
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Chapter 2. Machine Learning Methods Based on Informaticeoii

Any point in the simplex is a different PMF and has a differdistance to the origin. Let
us define the PMI&-norm as

N
1PO9la = i’/kzlpﬁ = VVa(X) (2.12)

whereVy (X) = 3y pf = E [pf ] is called thex information potential IPq), and can be inter-
preted as ther power of the PMFa-norm.

In order to see the relation of Renyi entropy on (2.10) witd 22, the former can be rewrit-
ten as:

(2.13)

The argument of the log can be denoted asahiaformation potentiaV, (X) and allows
rewriting (2.13) as:

Ha(X) = 5109 Ve (X)) = —log ( *3/Va (X)) (2.14)

1-a

Therefore, Renytr entropy takes ther — 1 root of V,(x) and rescales it by the negative
of the logarithm. In the simplexg specifies the norm to measure the distance(aj to the
origin. The free parameter changes the importance of small values versus large vaiuag i
set. There are three special cases of interest. VWherD, Hg is the logarithm of the number
of non-zero components of the distribution, and it is knowrHartley entropy.H, can be
thought of as lig .. Hy and is called the Chebyshev entropy. The most interestiegiap
case is obtained for lign,1 Hg, which is Shannon entropy, which means that Shannon entropy
is the limiting case of the 1-norm of the PM¥Xx).

Moreover, it can be generalized that, when> 1, Renyi entropyH, are monotonic de-
creasing functions ofP,. Therefore, entropy maximization is equivalent to IP miiziation
and viceversa. Whea < 1, Renyi entropyH, are monotonic increasing functions Iéf;. In
this case, entropy maximization is equivalent to IP maxation, and viceversa.

Renyi Quadratic Entropi, is of particular interest, as it is a monotonic decreasimg{fu
tion of thea = 2 information potentiaV, of the PMFp(x). Hz implicitly uses a Euclidean
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2.3 Applications in Machine Learning

distance from the poinp(x) in the simplex to the origin of the space.

0~ oo 3 @15

As H; is a lower bound of Shannon entropy, it may be more efficiesmt tBhannon entropy
for entropy maximization.

As stated, ITL needs to estimate entropy and divergence amgparametric way. As these
descriptors are based on the PDF, kernel density estimaiigyrbe a useful technique. Most of
the kernels used in density estimation are non-negativaribie functions and, therefore, they
define a RKHS. Let us define the continuous cross entropy leetiveo PDF9(X) andq(x) as

H(p.a) =~ [ (¥ loga(xdx— ~Eyflogq(x)] (2.16)

which, as explained in Sect. 2.1, measures the average mwhbits needed to encode data
coming from a source with density, while using modet] to encode data. For Renyi entropy,
the equivalent quadratic cross entropy is defined as

Ha(p.a) = ~log | p()a(x)dx = ~logEla(x) 2.17)

The argument of the logarithm, called the cross informagiotential (CIP), is a positive
definite function, so it defines a RKHS that provides a fumalcanalysis view of the infor-
mation theoretic descriptors of entropy and divergencehibthesis, the CIP is utilized as the
basis for similarity in the supervised classification metpecoposed in Chapter 5.

The Renyi'sa-divergence is an extension to the KL divergence (2.2) adefimed as:

00 a-1
Da(flg) = ai_llog/w F(x) (%) dx (2.18)

2.3 Applications in Machine Learning

The concepts of IT and ITL can be applied to machine learnimgparticular to two core

areas such as feature selection and classification, whadammain topics of this dissertation.
Feature selection (FS) is the process of detecting relégahtres and discarding irrelevant and
redundant ones. Its goal is obtaining a subset of featusgsd#scribes the problem properly
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Chapter 2. Machine Learning Methods Based on Informaticeoii

and causes a minimum degradation or even an improvementforpance in the learning
algorithms [58]. Classification is another of the classitivittes in machine learning, along
with regression, clustering and density estimation. Iténgaal is assighing observations to a
set of categories or classes [97].

2.3.1 Feature Selection

From a functional point of view, FS methods can work in twdaiént ways [156]. Some
methods assign weights to each feature, in such a way thatrttee corresponding to their
theoretical relevance is preserved. Methods that follagvdpproach are known as continuous,
individual evaluation or ranking methods. The second sehethods are known as binary or
subset evaluation methods. First, they produce candiéatere subsets using search strate-
gies. Then, the subsets are assessed by an evaluatiorofundtich determines the final se-
lected subset of features. Moreover, methods can be uni bivariate, depending on whether
they consider each feature independently of the rest or not.

From a structural point of view, FS methods can be classifidtiree major groups [58].
Filter methods perform the feature selection step as pregssing, before the learning step.
The filter is independent of the learning algorithm and eeti@ underlying attributes of data.
Wrapper methods use the learning algorithm as a subroutieasuring the usefulness of the
features with the prediction performance of the learnirgpdalhm over a validation set. In
embedded methods, the FS process is specifically built irgartachine learning method, in
such a way that the search is guided by the learning process it

Each of these approaches has its advantages and disasgsnTdge main factors are the
speed of computation and the probability of overfittingtdfd are faster than embedded meth-
ods, and the latter are faster than wrappers. Regardindjttagr wrappers are more likely to
overfit than embedded methods, which are more likely to avbeh filter methods. In general,
filters are relatively inexpensive in terms of computaticféiciency.

Filter methods are defined by a criterid{36]. This criterion measures how relevant a
feature or feature subset is. A measure of correlation iwiee feature and the class label
can be a good criterion. There are several types of crithrithis thesis, those based on IT are
considered. For a class labé&lthe mutual information score for a featutgis:

Ivi (%) =1(XY) (2.19)
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In order to use this criterion, a filter must rank the featunesrder of theirJy, and select
the topK features. An important limitation is that this approachuasss that each feature is
independent of all other features. In general, a set of featshould not only be individually
relevant, but also should not be redundant with respectdo ether [25]. A possible improve-
ment is the Mutual Information Feature Selection (MIFS)erion [10], which introduces a
penalty to correlations between features:

J|v|||:s(xk) = (Xk;Y) — B Z I (Xk;Xj) (2.20)
Xj €S/ %
whereS is the candidate set of features. Another criterion is thetJdutual Information
(IMI), which focuses on the complementary information aitéees [95] [152]:

Iami (%) = ) TXX}5Y) (2.21)

j€S

This is the mutual information between a joint random vdeatX; and the class label.
The idea is to include features that complement with exisfeatures from the subs&of
selected features.

There exist more criteria like, for instance: Koller-Salhanetric (KS) [79], Informative
Fragments (IF) [139], Fast Correlation Based Filter (FCRIP6], Conditional Mutual Info
Maximization (CMIM) [46], Minimum Redundancy (MINRED) [36Interaction Gain Fea-
ture Selection (IGFS) [38], Conditional MIFS (CMIFS), andnivRedundancy Max-Relevance
(mRMR) [107]. However, only the relevance and redundandbefeatures regarding the out-
put is taken into account. But there is another importaneetsfhat is forbidden in these
approaches: the (economical, computational...) costaififes. This means that there may
exist certain subsets of features that, having the samenilasirelevance regarding the output,
one of them might allow for computational/economical sgginOne of the contributions of
this thesis is the extension of one of the most used algosithmkRMR, in order to consider this
factor. This contribution is described in Chapter 3.

2.3.2 Classification

Supervised classification in highly non-linear and multitaloproblems has been a challenge
for machine learning algorithms through the years. Sey@mlious researchers [75] have an-
alyzed the difficulties found when facing these kind of pesb$ by both classical statistical
classifiers (such as Fisher Linear Discriminant [44] andsasations) and machine learning
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methods (such as artificial neural networks [16] and decisiees like ID3 [117] or C4.5
[118]). Over the last years, more sophisticated models bamee out. These models try to
mitigate the weaknesses of classical algorithms in ordeeiog able to deal with more com-
plex classification problems. One of the latest and more-kalvn approaches are Support
Vector Machines (SVM) [30]. These models convert a comptaxlinear non-separable prob-
lem into a linear problem, by means of a transformation tagadti dimensional space.

Most classifiers are global methods. global methodattempts to solve a problem by
means of adjusting a single model for the whole feature spidogvever, there exists another
approach to the classification problem, twmbination of classifierB83]. This is a relatively
recent technique that can be considered a meta-algoriththreisense that it combines a set
of component classifiers in order to obtain a more precisestaisle model. The two most
important strategies to combine classifiers are fusion atetgon. Onfusion of classifiers
each of the classifiers has knowledge of the totality of tiauie space. On the other hand, on
selection of classifiersach classifier knows only a part of the feature space.

The methods based duasion of classifiersre also known asnsemble method$he most
popular strategies a@oosting BaggingandStacking

e Boostingis based on the question enunciated by Kearns [73]: "cana setak learners
create a single strong learner?” They consist of trainingrsé weak classifiers itera-
tively and adding them to a final strong classifier. After a kdearner is added, data are
weighted: misclassified samples gain weight and correddlgsified ones lose weight.
In this manner, newly added weak learners focus more onqarslyi misclassified sam-
ples. Algorithms of this family are, e.g., AdaBoost [49] atglvariants AdaBoost.M1
and M2 [48], and AdaBoostR [101].

e Bagging[24] randomly generates several data sets from the originalwith replace-
ment. The models are trained and combined using voting.

e Stacking[148] utilizes an extra classifier that learns to combinedtiputs of the base
classifiers in order to generate a common final output.

The methods based @election of classifierare also known akcal methods The idea of
using different classifiers for different inputs was suggdsy Dasarathy, B.V. and Sheela,
B.V.[31], who combined a linear classifier an&t-&learest NeighborRastrigin [119], in 1981,
already proposed a methodology for selection of classiffeasis virtually similar to the one
used these days. The philosophy of local methods consistplitting up the feature space
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in several subspaces and adjusting a model for each of thbspaces. Each subproblem is
supposed to be simpler than the original model and may bedalith simpler classification
models, i.e., linear ones. In this manner, large and compiellems, like the ones dealt with
in this chapter, are more approachable. Therefore, a ¢atidsion of the original problem
is very important for the correct operation of the systeme Tost straightforward way of
splitting up the data is a division in regular regions, whiglposible, but it may happen that
some of them contain few or no data at all. In order to ensiatttte regions always contain
some patterns, it is usual to employ a clustering algorithisptit up the data [82, 91].

On unsupervised learning, there exist two schools of thbugh

e Methods that build generative models to describe the obdattata.

— Methods that adjust the parameters in order to optimizeikkéHood of data with
constraints on model architecture, i.e., Bayesian Inferdviodels [43], and Maxi-
mum Likelihood Competitive Learning [120].

— Methods that require some form of regularization to seleptaper model, i.e.,
Minimum Description Length [123], Bayesian Informationit€rion [14], and Akai-
ke Information Criterion [2].

e Methods that use self-organization principles. In thisrapph, minimization of entropy
leads to a featureless solution given by the collapse ohalsamples to a single point
in space. The idea is to construct energy functions that awertivo competing aspects
—information preservation and redundancy reduction—. sTuhool of thought has
the advantage of not imposing statistical models on dasteda allowing samples the
freedom to interact with one another, which in the end resvédad hidden structure of
data through self-organization.

The latter approach was used in [125, 116] to develop a sifn@eework for unsupervised
learning based on Information Theory, the Principle of Raté Information (PRI).

2.3.2.1 Principle of Relevant Information

The classical unsupervised learning algorithms are swistito the following optimization

problem:
L[p(x%0)] = min(H (X) +A Dk (X[[Xo)) (2.22)
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wherex, € X, is the original data sets € X is the compressed version of the original data
(the clusters)A is a parameter of variatiot (X) is the entropy between the original and the
compressed data, alk, (X||X,) is the Kullback-Leibler divergence.

The formulation of the Principle of Relevant InformationRIp addresses the entropy of
a single data set. The solution is specified as an optimizater the compressed data given
the original data. The PRI generalizes the classical dlyns (clustering, principal curves,
vector quantization), as each of them is represented byeaaetift value ofA. This generalizing
principle for unsupervised learning is formulated in tewhéformation-theoretic quantities.

The family of datax obtained by means of (2.22) is controlled by the variatigzabhmeter
A. This parameter controls the level of distortion in compegksdata. The estimators of ITL
from Sect. 2.2 can be used in this formulation to derive dtlyars to obtain the different
solutions. Rewriting (2.22) with Renyi’s formulation ofteopy:

LIP(x]%0)] = min(Ha (X) +ADa (X|[Xo)) (2.23)

where Renyi’'s entropyH, and Renyi's divergenc®, are respectively defined in (2.10) and
(2.18). Cauchy-Schwarz divergence is defined as:

Des(f,g) = log / £ (x)2dx-+ log / g(x)2dx— 2log / F(x)g(x)dx (2.24)
Cauchy-Schwarz divergence can be rewritten in terms of Remyadratic entropy as

Des(X,Y) = —2log / £ (x)g(x)dx-+ log / (x)2dx-+ log / g(x)2dx
= 2H,(X;Y) — Ha(X) — Ha(Y)

(2.25)

Continuing with the formulation of the PRI, redundancy Ww#l measured by Renyi’s quadratic
entropyH»(x) and divergence will be measured by the Cauchy-SchwarzgéineeDcs(X, Xo):

3(X) = min(Hz(X) +2 Des(X, Xo))

= min[(1— A)Ha(X) +2A Deer (X, Xo) — AH2(%)]

(2.26)

whereDcs(X, Xo) = 2Dcer (X, Xo) — H2(X) —H2(Xo), Dcer = —logV (X, X,) is the logarithm
of the cross-information potential (CIP) aidis the variational parameted.is the cost func-
tion, with X as its argument. Thereford,H>(X,), the last term in (2.26), is constant with
respect toX and can be removed from the optimization problem:

3(X) = min[(1—A)Ha (X) — 2 logV (X, Xo)] (2.27)
Hereafter, all these quantities can be estimated direicity samples.
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CHAPTER 3

A New Method for Cost Feature Selection Based

on Information Theory

The proliferation of high-dimensional data has become radtie the last few years. Data sets
with dimensionality over the tens of thousands are conlstappearing in applications such as
medical image, text retrieval or genetic data. In fact, wriaf the dimensionality of the data
sets posted in the UCI Machine Learning Repository [8] inl&st decades, one can observe
that in the 1980s, the maximum dimensionality of data is atol00 features; increasing to
more than 1500 features in the 1990s; and finally, in the 2000gther increases to about 3
million features [158].

The high dimension of data has an important impact in legralgorithms, since their per-
formance is degraded when a number of irrelevant and redurfielatures are present. In fact,
this phenomenon is known as the curse of dimensionality, [6®¢ause unnecessary features
increase the size of the search space and make generalipatie difficult. For overcoming
this obstacle, researchers usually employ dimensionaditiyction techniques. In this man-
ner, the set of features required for describing the prolideraduced, most of the times along
with an improvement in the performance of the models. Featalection is arguably the most
utilized dimension reduction technique. It consists okdehg the relevant features and dis-
carding the irrelevant ones. Its goal is to obtain a substgaifires that describes properly the
given problem with a minimum degradation in performance,[88th the implicit benefits of
improving data and model understanding and the reductidinéeimeed for data storage. With
this technique, the original features are maintained,raonto what usually happens in other
techniques such as feature extraction, where the genedatadset is represented by a newly
generated set of features, different than the original.

There are some situations where a user is not only intereéstethximizing the merit
of a subset of features, but also in reducing costs that magsbeciated to features. For
example, for medical diagnosis, symptoms observed witméhked eye are costless, but each
diagnostic value extracted by a clinical test is associatighl its own cost and risk. In other
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fields, such as image analysis, the computational expenteatfres refers to the time and
space complexities of the feature acquisition process [#Ris is a critical issue, specifically

in real-time applications, where the computational timguieed to deal with one or another
feature is crucial, and also in the medical domain, wherRiihjportant to save economic costs
and to also improve the comfort of a patient by preventingyrisr unpleasant clinical tests

(variables that can be also treated as costs).

Feature selection methods, filters in particular, are ipdiaked in measures of relevance
and redundance of features. There exists a large varietyetifods that explore several mea-
sures. However, the existence of a feature selection metiaidtakes cost into account is
unbeknownst to the author.

Among all the feature selection methods, Minimal Redungdutaximal Relevance (MRMR)
is one of the most relevant. mMRMR is a ranked filter based amnmdition theory. In this chap-
ter, the metric function of this algorithm is modified in orde having into account the cost
associated to the input features. The goal is to obtain a-#detween a filter metric and the
cost associated to the selected features, in order to selecant features with a low associated
cost while keeping the accuracy. The contents of this chéyatee been published in [17].

The remainder of this chapter is organized as follows: 8ec3.1 summarizes previous
research on the subject. Section 3.2 describes the propostiad in detail. Sections 3.3 and
3.4 describe the experimental study performed and therwutaiesults, respectively. Finally,
Section 3.5 sums up the contents of the chapter.

3.1 Background

Feature selection has been an active and effective toohrenous fields such as DNA microar-
ray analysis [20, 34], intrusion detection [19, 99], metiiagnosis [3] or text categorization
[47]. New feature selection methods are constantly appgatiowever, the great majority
of them only focuses on removing irrelevant and redundaatiufes but not on the costs for
obtaining the input features.

The cost associated to a feature can be related to diffeoeaepts. For example, in med-
ical diagnosis, a pattern consists of observable symptesoch(as age, sex, etc.) along with
the results of some diagnostic tests. Contrary to obsexvajahptoms, which have no cost,
diagnostic tests have associated economical costs arsd sk the other hand, cost can also
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be related to computational issues. In the medical imageld,fextracting a feature from a
medical image can have a high computational cost.

As one may notice, features with an associated cost can be founany real-life applica-
tions. However, this has not been the focus of much attefdtiomachine learning researchers.
As mentioned above, the purpose of this research is to batgrto the problem of cost-based
feature selection, trying to balance the correlation offdaures with the class and their cost.
There have been similar attempts to balance the contributfcdifferent terms in other ar-
eas. For instance, in classification, Friedman et al. [S€luofed a regularization term to the
traditional Linear Discriminant Analysis (LDA). The lefide term of their cost function eval-
uates the error and the right side term would be the regaléwiz one, which is weighted with
A. This provides a framework in which, according to thevalue, different regularized solu-
tions can be obtained. Related to feature extraction, iB][&5criterion is proposed to select
kernel parameters based on maximizing between-clasgsogtand minimizing within-class
scattering. Applied to face recognition, Wright et al. [14®8oposed a general classification
framework to study feature extraction and robustness ttusion via obtaining a sparse rep-
resentation. Instead of measuring the correlation betweeature and the class, this method
evaluates the representation error.

However, the objective of this chapter is completely défer as it is to provide a frame-
work for feature selection where features with an inherest could be dealt with. Despite the
previous attempts in classification and feature extractimthe best knowledge of the author,
there are only a few attempts to deal with this issue in feagetection. In the early 90s, Fed-
dema et al. [42] were developing methodologies for the aatanselection of image features
to be used by a robot. For this selection process, they emglayweighted criterion that took
into account the computational expense of features, e titne and space complexities of the
feature extraction process. Several years later, Yang §t%8] proposed a genetic algorithm
to perform feature subset selection where the fithess famctdbmbined two criteria: the ac-
curacy of the classification function realized by the nenedivork and the cost of performing
the classification (defined by the cost of measuring the vaflzeparticular feature needed for
classification, the risk involved, etc.). A similar apprbagas presented in [66], where a ge-
netic algorithm is used for feature selection and pararaetptimization for a support vector
machine. In this case, classification accuracy, the numiselected features and the feature
cost were the three criteria used to design the fitness fimcéinother proposal can be found
in [131] by presenting a hybrid method for feature subsetcigln based on ant colony opti-
mization and artificial neural networks. The heuristic tha&bles ants to select features is the
inverse of the cost parameter.
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The methods found in the literature that deal with cost daset to the features, which
were described above, have the disadvantage of being catigmatlly expensive by having
interaction with a classifier, which prevents their use igéadatabases, a trending topic in
the past few years [70]. However, the idea proposed in thigmpe applied together with
the filter model, which is known to have a low computationadtand be independent of any
classifier. By being fast and with a good generalizationitgpifilters using this cost-based
feature selection framework will be suitable for applioatito databases with a great number
of input features like, e.g., microarray DNA data sets.

In light of the above, the novelty of this approach lies intttiee research in cost-based
selection is extremely scarce in the literature. As a maitdact, no cost methods can be
found in the most popular machine learning and data miniotgtd-or instance, in Weka [60]
we can only find some methods that address the problem of segtiated to the instances
(not to the features), and they were incorporated in thestatdease. RapidMiner [96] does
in fact include some methods that take cost into accounttHayt are quite simple. One of
them selects the attributes that have a cost value whictfisata given condition and another
one just selects thieattributes with the lower cost. Therefore, the cost-basetufe selection
method proposed in this chapter intends to cover this nigess

3.2 Description of the method

MRMR (Minimal Redundancy Maximal Relevance) [107] is ondhef most employed mul-
tivariate ranker filters, due to obtaining good results ivesal fields [100, 26, 71, 140]. The
evaluation function combines two constraints (as the naiieeomethod indicates), maximal
relevance and minimal redundancy. The former is denotetidietterD, it corresponds with

the mean value of all mutual information values between déaaturex; and class, and has

the following expression:

D(Sc) = % ZSI (%i;¢) (3.1)
X €

whereSis a set of features andx;; c) is the mutual information between the featurand the
classc. The expression df(x;y) is:

. pP(X,y)
I(x,y)_//p(x,y) Iogmdxdy (3.2
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The constraint of minimal redundancy is denoted®wand has the following expression:

Z |(Xi,Xj) (3.3)

The evaluation function to be maximized combines the twestamts (3.1) and (3.3). It
is called Minimal Redundancy Maximal Relevance (MRMR):

®(D,R) = é S 1(x;0) Y 104,%) =D(S¢)~R(S) (3.4)

192
X €S |S X, Xj €S

In practice, this is an incremental search method that tsglen each iteration, the feature
that maximizes the evaluation function. Suppose we alrbaseS,, 1, the feature set witm
- 1 features, thert" selected feature will optimize the following condition:

xjeT?s);,l [I (xj;¢) — ﬁ_me 1I(xj;xi)] (3.5)

The modification of mMRMR which is proposed in this chaptersisis of adding a term to
the condition to be maximized so as to take into account teeafdhe feature to be selected:

oo K' (5:0) = nﬁ B w)) —ch] (3.6)
whereC; is the cost of the featurg andA is a parameter introduced to weight the influence
of the cost in the evaluation functioa. is a positive real number. X is 0, the cost is ignored
and the method works as the regular mRMRA lis between 0 and 1, the influence of the cost
is smaller than the one from the other termAlfs 1, both terms have the same influence and,
finally, if A is greater than 1, the influence of the cost is greater thamtluence of the other
term.

3.2.1 Generalization

Ultimately, the general idea consists on adding a term t@taduation function of the filter to
take into account the cost of the features. Since, to thekpestledge of the author, all filters
use an evaluation function, this evaluation function cdaddnodified to contemplate costs in
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the following manner. Lels be the merit of the set dffeaturesS, that is, the value originally
returned by the function.

Ms=EF(S) (3.7)

whereEF is the evaluation function. L&ls be the average cost &f

k )
Co= Z.:T& (3.8)

whereC; is the cost of feature The evaluation function can be modified to become:
MCs= Ms— ACs (3.9)

whereA is a parameter introduced in order to weight the influencbe®tbst in the evaluation.

Notice that when a ranker method that selects features oadimte, such as mRMR, is
used, the cardinality dbis 1 andCgsin (3.8) results in the cost of that single feature.

3.3 Experimental study

The experiment is performed over three blocks of data setsd€1.1). The data sets in the first
and second blocks are available at the UCI Machine LearnigpBitory [8]. The data sets
in the third block are DNA microarray data sets and are abkilat the web site of the Broad
Institute [68]. The main feature of the first block of datassistthat they have intrinsic cost
associated to the input features. For the second and tluctt$l as these data sets do not have
intrinsic cost associated, random cost for their inputLfezt has been generated. This decision
has been taken because no data sets with cost, other thasuthenes of the first block, exist
publicly available, to the best knowledge of the author. éawrh feature, the cost was generated
as a random number between 0 and 1. As an example, on Tabte8&&sts for each feature
of Yeast data set are displayed.

Overall, the chosen classification data sets are very hlggtaemus. They present a vari-
able number of classes, ranging from two to twenty six. Thalmer of samples and features
range from single digits to the tens of thousands. Noticedh&a sets in the first and second
blocks have a larger number of samples than features, vdaitatsets in the third block have a
much larger number of features than samples, which poseschailenge for feature selection
researchers. This variety of data sets allows for a bettdenstanding of the behavior of the
proposed method.
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3.3 Experimental study

Data set No. features No. samples No. classes
Hepatitis 19 155 2
Liver 6 345 2
Pima 8 768

Thyroid 20 3772 3
Letter 16 20000 26
Magic04 10 19020 2
Optdigits 64 5620 10
Pendigits 16 7494 10
Sat 36 4435 6
Segmentation 19 2310 7
Waveform 21 5000 3
Yeast 8 1033 10
Brain 12625 21 2
CNS 7129 60 2
Colon 2000 62 2
DLBCL 4026 47 2
Leukemia 7129 72 2

Table 3.1: Description of the data sets

Feature Cost

0 N o 0ok WN P

0.5093
0.1090
0.5890
0.2183
0.8112
0.6391
0.2741
0.1762

Table 3.2: Random costs of the features of Yeast data set
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Chapter 3. A New Method for Cost Feature Selection Based famriration Theory

The experiment consists of performing feature selectiath @iost mMRMR over the data
sets. The goal of the experiment is to study the behavioreftathod under the influence of
the A parameter. The performance is evaluated in terms of botkothEcost of the selected
features and the classification error committed by a SVMsdias trained only with the se-
lected features (estimated with a 10-fold cross-validgtidt is expected that, the larger the
the lower the cost and the higher the error, because inageasiives more weight to cost at
the expense of correlation between features. Moreoveruakal-Wallis statistical test and a
multiple comparison test (based on Tukey's honestly sicgnifi difference criterion [136]) [65]
have been run on the obtained results. The results of treedasthelp the user to choose the
value of thed parameter. As mMRMR is a ranker, it does not return a subselefted features.
It returns all the features sorted by the evaluation fumcfar each feature. In consequence,
a threshold must be chosen in order to train the SVM classifieis threshold is obtained by
executing a subset feature selection method —CFS [61] ticpkar— over the data sets. The
number of features CFS selects for each data set is utilzedlareshold for nRMR.

3.4 Experimental results

Figures 3.1, 3.3 and 3.4 show the cost and error for sevelimsafA. The solid line with 'x’
represents the error (referenced on the left Y axis) and @isbat! line with '0’ represents the
cost (referenced on the right Y axis). Notice that wiesa: 0 the cost has no influence on the
behavior of the method and it behaves as if it were the nobyvewsion.

Figure 3.1 plots the classification error/cost of the found#ts with cost associated found
at the UCl repository (see Table 3.1). The behavior expestesh applying cost feature selec-
tion is that the higher tha, the lower the cost and the higher the error. The resultsradata
for the first block of data sets, in fact, show that cost valebaves as expected (although the
magnitude of the cost does not change too much because tiassets have few features and
the set of selected ones is often very similar). The errondver, remains constant in most
of the cases. This may happen because these data sets arsigute and the same set of
features is often chosen. The Kruskal-Wallis statistieat tun on the results displays that the
errors are not significantly different, except for Pima dagt This fact can be caused because
this data set has very few expensive features (which ara aefieociated with a higher predic-
tive power), as can be seen on Table 3.3. Therefore, remdivérg has a greater effect on the
classification accuracy.

Fig. 3.2 displays the results of the Kruskal-Wallis statattest for Pima data set. The
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3.4 Experimental results
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Figure 3.1: Error / cost plots of first block of data sets fostdeature selection mMRMR

Feature Cost

0.0100
0.7574
0.0100
0.0100
0.9900
0.0100
0.0100
0.0100

o ~NOoO 0ok WN P

Table 3.3: Costs of the features of Pima data set (normalé&dl
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Kruskal-Wallis ANOVA Table

Source SS df MS Chi-sq Prob>Chi-sq
Columns 10.500,0 6 1.750,00 25,91 2,00E-04

Error 17.467,5 63 277,26

Total 27.967,5 69

(@) ANOVA Table (Cost mMRMR).

L L
-10 0 10 20 30 40 50 60
Mean Ranks

(b) Graph of multiple comparison (Cost mMRMR).

Figure 3.2: Kruskal-Wallis statistical test results of Ridata set

entries in the ANOVA (ANalysis Of VAriance) Table (Fig. 38 are the usual sums of squares
(SS), degrees of freedom (df), mean square estimator (Mgkquiare statistic (Chi-sq) and
the p-value that determines the significance of the chi-squatistt (Prob>Chi-sq).

As can be seen, the-value is 2x 10~* for Cost mMRMR, as displayed in Fig. 3.2(a). This
indicates that there exist values significantly differdvart others. In Fig. 3.2(b), it is shown
which groups of errors are significantly different, infortioa that can be helpful for the user
to decide which value ok utilize. When using Cost mMRMR, a reduction in cost can not be
achieved without worsening the error measure. For Cost mRMfenA is O (and hence, the
cost is not taken into account), the second feature is seleathich has a high cost (see Table
3.3). However, when the method is forced to decrease the(bpdhcreasing the value of
A), this feature is not selected anymore and prevents theifidago obtain a high prediction
accuracy.

The error/cost graphs of the second block of data sets gotagéd in Fig. 3.3. It can be
seen how cost decreases, according to expected, and hdvargdo first block, error usually
raises whem increases. In the cases when error raises (see Fig. 3.8(a@xdmple), there
exist significant error changes (p-values are close to zénejefore the user has to make a
choice to find an appropriate trade-off between cost and.erro
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Figure 3.3: Error / cost plots of second block of data setsdst feature selection with mMRMR
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3.4 Experimental results

Kruskal-Wallis ANOVA Table

Source SS df MS Chi-sq Prob>Chi-sq
Columns 1.809,8 6 301,63 6,83 0,3371
Error 16.481,3 63 261,61
Total 18.291,0 69

(@) ANOVA Table.

lick on the group you want to test

20 25 30 35 40 45 50 55 60
Mean Ranks

(b) Graph of multiple comparison.

Figure 3.5: Kruskal-Wallis error statistical test of DLB@hata set with Cost mMRMR

Finally, Fig. 3.4 presents the results for the third blocklafa sets, corresponding with the
well-known DNA microarray domain, with much more featurbart samples. As expected,
cost decreases asincreases, and since these data sets have larger numbeubitributes
than the ones in previous blocks, cost experiments largaahility (see, for instance, Figs.
3.4(d), 3.4(e)). For instance, for the DLBCL data set, it barthose = 10, as the errors are
not significantly different (see Fig. 3.5) and the costfos 10 is significantly lower than the
one for the four firs (0, 0.5, 0.75 and 1).

Notwithstanding, the behavior of the error, in some cagabcantrary to expected, remains
almost constant (see, for instance, Fig. 3.4(b)). The readty the error is not raising can be
two-fold:

e Onthe one hand, it is necessary to remind that in this relsehecproposed method is a
filter feature selection method. This approach has the hesfdfieing fast and compu-
tationally inexpensive. This characteristic of filters @ause that the selected features,
according to particular criteria, would not be the moreahl@ for a given classifier to
obtain the highest accuracy. Therefore, forcing a filterelee features according to
another criterion rather than correlation (or the one useaeéch particular filter) may
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Chapter 3. A New Method for Cost Feature Selection Based famriration Theory

Kruskal-Wallis ANOVA Table

Source SS df MS Chi-sq Prob>Chi-sq
Columns  28.000,0 6 4.666,67 67,61 1,27E-12

Error 577,5 63 9,17

Total 28.577,5 69

(@) ANOVA Table.

L L L L L L L L
-10 0 10 20 30 40 50 60 70 80
Mean Ranks

(b) Graph of multiple comparison.

Figure 3.6: Kruskal-Wallis cost statistical test of DLBChtd set with Cost mMRMR

cause the selection of features to be more suitable for n@mg classification error.
For example, in [21, 78], a synthetic data set called Monk&&t with. Among others,
this data set contains three relevant features. Howevere sbassifiers obtain a better
classification accuracy when filters only had selected tievamt features than when
selecting the three relevant ones. This fact demonstraétshte behavior of some filters
is somewhat unpredictable and not always the one expected.

e On the other hand, it has to be noted that DNA microarray dettare a difficult chal-
lenge for feature selection methods, due to the enormousmrobfeatures they present.
In fact, the filters evaluated in this research are usuatyimsg a maximum of 2% of
features. Therefore, irregular results are expected with sin important reduction in
number of features.

3.5 Summary

In this chapter, a new cost-based feature selection meshmposed. The objective is solving
problems where not only it is interesting to minimize thessification error, but also reducing
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3.5 Summary

costs that may be associated to input features. The appooadists of adding a new term to
the evaluation function of MRMR so that it is possible to reatrade-off between the error and
the cost associated to the selected features. A new pamamedtedA, is introduced in order
to adjust the influence of the cost into the evaluation fumctallowing the user fine control of
the process according to his needs.

In order to test the adequacy of the proposed idea, experatiam is performed over a
broad suite of different data sets. Results after perfognelassification with a SVM display
that the approach is sound and allows the user to reduce #hevidhout compromising the
classification error significantly, which can be very usefufields such as medical diagnosis
or real-time applications.
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CHAPTER 4 -

A New Ensemble Approach for Feature Selection

Based on Ranking Learning

In the previous chapter, the problem of the absence of cistiarin filter FS methods was
confronted. In this one, two problems are addressed: (IDdheexistence of a “best” method,
which causes that the user has to search and choose a spethiimohfior each specific prob-
lems; (2) the heterogeneity of data sets, which makes itdiffto obtain good results with one
single method.

In the past, machine learning methods used to employ a dewmylieing model. However, it
has been observed that the technique of using multiple gifedimodels for solving the same
problem, known as ensemble learning, is effective [83, 84]e idea builds on the assump-
tion that combining the output of multiple experts is bettean the output of a single expert.
Typically, ensemble learning has been applied to classifita However, ensemble learning
can also be thought as a means of improving other machingtgeadisciplines such as feature
selection.

In this chapter, the feature rankings obtained by each meailige ensemble are combined
prior to the classification stage, by using ranking functearning [54], a technique that allows
to learn the ranking of features from the individual ranisipgovided by the components of the
ensemble. The use of an ensemble instead of a single methackEimdiversity. The objective is
to reduce the variance associated to using regular featleetion methods, since the proposed
ensemble takes advantage of the strengths of the singlet@sleind overcomes their weak
points. Two approaches are presented, depending on hovisdiitdributed and the variety of
feature selectors to be used. Experimental validation @intlethodology on a range of UCI
data sets [9] shows the adequacy of the proposed ensemdnasy the way to their application
to other real-world data sets, and releasing the user frerdehision of which feature selection
algorithm is the most appropriate for a given problem.

33
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Besides, machine learning methods have come to be a ngciessihany companies, in
order to obtain useful information and knowledge from theareasingly massive databases.
Real life data sets come in diverse flavors and sizes, andegondture imposes several sub-
stantial restrictions for both learning models and feasalection algorithms [137]. Data sets
may be very large in samples and number of features and,taie, might be problems with
redundant, noisy, multivariate and non-linear scenafldsis, most methods alone are not ca-
pable of confronting these problems, and something like tibst feature selection method”
simply does not exist, making it difficult for users to selene method over another. In order
to make a correct choice, a user not only needs to know theidomedl and the characteristics
of each data set, but is also expected to understand tetlieizils of available algorithms
[90]. As experts of this type are not universally availaltmre user-friendly methods are nec-
essary. In this sense, a possible way to confront this &tué to use an ensemble of feature
selection algorithms, which is the idea proposed in thigptdra Using an ensemble avoids the
need to choose a specific method for solving a problem. Spaityfi methods that follow the
ranking approach are used, i.e., they return an orderednguok all the features. Notice that
methods that return a ranking of features are less compnglly expensive than those which
return a subset of selected features, and this is of vitabitapce when the current tendency is
toward Big Data problems. Then, the outputs of all the coneptsof the ensemble have to be
combined in order to produce a common final output. The engeprbposed in this chapter
combines these rankings using Ranking SVM [72], which is #d&sed method for learning
of ranking functions.

In the case of ensemble feature selection, each individuraponent is known as a base
selector. If the base selectors are all of the same kind ibenable is known as homogeneous.
Otherwise, it is known as heterogeneous. There are sevayal w which an ensemble can be
formed. In this chapter, two of them are explored: (a) N s&as using a variety of different
feature selection algorithms, all using the same trainiata &nd (b) N selections using the
same feature selection algorithm, using different trajrdata. Feature selection can also take
advantage of data distribution. Most feature selectionhods do not scale well when the
number of features grows. Processing multiple subsetsucaritly means that the training
of feature selection methods is faster. This advantagehigwad with option (b). Part of the
contents of this chapter have been published in [128].

The remainder of this chapter is organized as follows: 8ecfi.l summarizes previous
research on the subject. Section 4.2 introduces the prdpasgemble and its algorithm, as
well as the individual ranker methods and the Ranking SVMhwo@tused to join the indi-
vidual rankers. Next, Section 4.3 describes the data dstsexperimental design, and the
experimental results. Finally, in Section 4.4, the corgeitthe chapter are summarized.
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4.1 Background

4.1 Background

Feature selection has been applied in many machine leaanidglata mining problems. The
aim of feature selection is to select a subset of featuresnti@imizes the prediction error
obtained by a given classifier. Previous works, as thoseepted by Guyon and Elisseeff
[57] or Hall and Holmes [62] collect different approachesdifor feature selection, including
feature construction, feature ranking, multivariate deatselection, efficient search methods
and feature validity assessment methods.

Along the last few years, it has been observed that, by usidgambining different learn-
ing models on the same problem, better results could bermatail his combination of machine
learning methods for solving problems is calltsemble learningMoreover, combining clas-
sifiers appears as a natural step forward when a critical nfdgsowledge of single classifier
models has been accumulated, and have been rapidly growihgrgoying a lot of attention
from pattern recognition and machine learning commun[B8&$.

As mentioned before, ensemble learning has been typicafiiieal to classification, where
the most popular methods abagging[24] and boosting[126]. Bagging creates an ensem-
ble by training individual classifiers on bootstrap sampuethe training set. Each bootstrap
sample is generated by randomly selecting, with replaceménstances from the training set
wheren is the size of the training set. As a result of the samplindpwéplacement procedure,
each classifier is trained on the average of 63.2% of theitiginstances. The prediction of
each classifier is combined using simple voting. On the dtlaed, in the boosting approach
the sampling is proportional to an instance’s weight. Baggind boosting are two of the most
well-known ensemble learning methods due to their thezakperformance guarantees and
strong experimental results. Although these models arenttst used to improve the classifi-
cation results, new ensemble learning techniques on tharéesubspace have been proposed.
The Random Subspadé4] method is a simple random selection of feature subsetsetl
from the theory of stochastic discrimination. Optiz [104sdribes an ensemble feature se-
lection technique for neural networks call&enetic Ensemble Feature SelectioAnother
ensemble method for decision trees is calkdchastic Attribute Selection Committ¢£59],
while Multiple Feature Subsefd 2] is a combining algorithm for nearest neighbor classsfie
Finally, for steganalysis of digital media, an ensemblelagsifiers implemented as random
forests [77] has been proposed, since this ensemble idyicestied for this kind of problems.

In recent works it is proposed to improve the robustness eftufe selection algorithm
by using multiple feature selection evaluation criteriav&al studies have been performed in
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this general area, in order to achieve better classificagmuracy. One of these studies [135]
has been conducted on 21 UCI data sets [9], comparing fiveuremasf diversity with regard
to their possible use in ensemble feature selection. Thdystonsiders four search strategies
for ensemble feature selection together with the simplelaansubspacing: genetic search,
hill-climbing, and ensemble forward and backward seqaérmsglection. Based on the idea
of multiple feature selection evaluation criteria, mangembles of feature selection methods
have appeared. Multicriterion Fusion-based Recursive Feature Elimimati{151] (MCF-
RFE) algorithm is developed with the goal of improving both thassification performance
and the stability of the feature selection results. A featanking scheme foMulti-layer
Perceptron[145] MLP ensembles is proposed, along with a stopping criterioncoapen the
out-ofbootstrap (OOBEstimate. Experimental results on benchmark data denatedtine
versatility of the MLP base classifier in removing irrelevéeatures.

Finally, there are some other works in which all the feat@wedion methods of the final
ensemble are ranker methods. Diversity can be achievedibyg uarious rankers, combined
afterwards to yield more stable and robust results. Thresnoonly used filter-based feature
ranking techniques for text classification problems weeglusy Olsson and Oard [103], where
the combining methods employed are lowest, highest andigeaank.

Wang et al. perform a few outstanding papers in this area&jdgirm two interesting studies.
The first one examines the ensembles of six commonly usedbidieed rankers [141] and the
second one studies seventeen different ensembles ofdeanking techniques [142], with six
commonly-used rankers, the signal-to-noise filter team{§2N)[150], and eleven threshold-
based rankers. In their second paper, the ensembles aresedhpf different numbers of
rankers, ranging from two to eighteen single feature seleanethods. Also, other studies
collect different methods to combine the single generase#tings, with the aim of obtaining
a final ensemble. This combination of single rankings cofrera simple —as mean, median,
minimal, etc.— to more complex methods —\&gighted mean aggregati¢h] (WMA), Com-
plete linear aggregatiofil] (CLA)andRobust ensemble feature selectjt8] Rob-EFS—.

4.2 Proposed method

The method proposed in this chapter is an ensemble of fest¢leetion methods that obtain a
ranking of the features (individual evaluation methodd)e Dutputs of the components of the
ensemble have to be combined in order to produce a commorofitialt. This is performed
using Ranking SVM [72], which is a SVM-based method of leagndf ranking functions.
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4.2 Proposed method

The problem of ranking is formalized as follows: for a qugrsind a data collectio® =
{ds,...,dn}, the system should return a rankirigthat orders the data iD according to their
relevance to the query. An optimal orderingcan not be achieved. Instead, an operational
function f is evaluated by how closely its ordering approximates the optimum. If a datum
d; is ranked higher thad; for an ordering, i.e. d; <, dj, then(d;,d;) € r, otherwise(d;,d;) ¢
r. The similarity between the ranking g and the target ranking* is measured by using
Kendall's T [74]. For two finite strict orderings, C D x D andrp, € D x D, Kendall's 7 is
defined based on the numbRof concordant pairs and the numb@rof discordant pairs. A
paird; # d; is concordant if both, andry, agree in how they ordef andd;. Itis discordant if
they disagree. Therefore,can be defined as:

T(fa,o) = 5" = 1— o (4.1)

wheremis the cardinality oD, and (’;) is the sum oP andQ for strict orderings.

The algorithm selects a ranking functidrthat maximizes:

n

ro(f) = = 5 Tt 1) (4.2)

n.&

The functionf must maximize (4.2) and must generalize well beyond thaitrgidata. Con-
sider the class of linear ranking functions (4.3), wheris a weight vector that is adjusted by
learning, andpb(q,d) is a mapping onto features that describes the match betwespqand
datumd.

(di,dj) € fw(q) <= w®d(q,di) > wd(q,dj) (4.3)

The task of the learner is to minimize the number of discardanking pairs. For the class
of linear ranking functions (4.3), this is equivalent to fimgl the weight vectow so that the
maximum number of the following inequalities (4.4) is sfiid.

V(di,dj) € rj :de(ql,di) > W(D(ql,dj)
(4.4)
V(di,dj) €ry :wd(an, di) > wd(, d;)

Unfortunately, this problem is known to be NP-hard, howetés possible to approximate
the solution by introducing non-negative slack varialfigs and minimizing the upper bound
Y &i.jk- Therefore, the above problem is optimized, obtaining ther@ximation shown in
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(4.5).
o 1
minimize: V(w, &)= EW'WJrCiZkELLk
T
subject to:
V(di,dj) €ri: wd(gr,di) >wd(gr,dj)+1-&ja (4.5)

V(di,dj) € I’; : W(D(qn,di) > W(D(qn,dj) +1— Ei,j,n

Vivijvk: Ei,j,k >0
C is a parameter that controls the trade-off between the maige and the training error. By
rearranging the constraints in (4.5) as

W(P(gk, di) — P(0k,dj)) > 1—& jk (4.6)

it becomes equivalent to that of SVM classification on pasendifference vector®(gy,d;) —
®(qk,d;). For each query-model pair, features are calculated toune#ise similarity between
them. The ranking order of the model objects is also knownusTlthe input to the SVM
learning algorithm, to learn the optimal ranking functiane the training data presented above.
Given a new guery, the model objects can be sorted based on their value of

rsv(g,di) = wd(q,d) = g a (g, d ) P(q,d;). (4.7)

)

Theay, can be derived from the values of the dual variables at theisaol

There are several ways to design an ensemble [23]. In théssthtevo of them are used:

1. N models generated using the same method, all with differaiming data (See Fig.
4.1). An important problem of ensemble methods is the coatjmut time they take in
comparison to individual methods. One way to deal with thisoi distribute the data
set in order to parallelize the task of training. Therefdhis variation of the method
consists in distributing the training data among a numb@odes. The training samples
are randomly distributed in disjoint sets without replaeai The same method is then
executed on each of the nodes and the ranking obtained eaftearcombined using the
Ranking SVM union method.

2. N models generated using different methods, all with the siaiieing data (See Fig.
4.2). The second variation of the method trains severadmdifft methods over the same
training data. The output obtained from the methods is tlkemained using the Ranking
SVM union method.

38



4.2 Proposed method

Training
Data

-]

= &8

Node 1

] Training
Data 1

Node 2

Node N

Ranking

of
features
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Among the broad suite of feature selection methods availabihe literature, three filters
and two embedded methods were chosen as candidate conmgpohte ensemble:

e Information Gain[117] (filter): this is one of the most common univariate noetk of
evaluation based on IT. It evaluates the features accotditigeir information gain, only
taking into account one feature at each time. The measuieedtito rank variables is
the entropy. If the observed values of a variablm the training data set are partitioned
according to the values of a second featdreand the entropy of with respect to the
partitions induced b¥ is less than the entropy &f prior to partitioning, then there is a
relationship between featur¥sandX. Then, the entropy of after observing is:

H(Y[X) = p(x) Y p(yx)logz(p(ylx)) (4.8)

wherep(y|x) is the conditional probability of givenx. Given the entropy as a criterion
of “impurity” in a training setS, a measure reflecting additional information abgut
provided byX can be defined. This measure represents the amount by whiemttopy
of Y decreases. Itis known as IG and it is an indicator of the dégacy betweeX and
Y:

IG =H(Y) —H(Y[X) =H(X)—H(X]Y) (4.9)

IG is a symmetrical measure. The method provides an ordédsification of all the
features, and then a threshold is required to select acemanber of them according to
the order obtained. A weakness of the IG criterion is that liased in favor of features
with more values even when they are not more informative.

o ReliefF[80] (filter): this method is an extension of the original Rélalgorithm [76]
that can handle multiclass problems. It is more robust apalda of dealing with in-
complete and noisy data. As the original Relief, ReliefFkgdrsy randomly selecting an
instanceR, from the data and then locating thanearest neighbors from the same class
(named “nearest hits’tl;) and thek nearest neighbors from each of the other different
classes (named “nearest missédj(C)). It updates the quality estimatio[A] for all
attributesA depending on their values f&;, hits H; and misse$/;(C). If the instances
R andHj; have different values for the attribufe then this attribute separates instances
of the same class, which is not desirable, and thus the guedtimationW[A] has to
be decreased. On the other hand, if instariReand M; have different values for the
attribute A for a class then the attribut® separates two instances with different class
values, which is desirable, and therefore the quality egtonW/|A| is increased. Since
ReliefF considers multiclass problems, the contributiballbthe hits and all the misses
is averaged. Besides, the contribution for each class afikses is weighted with the
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4.3 Experimental study

prior probability of that clas®(C) (estimated from the training set). The whole process
is repeatedn times wheramis a user-defined parameter.

This method may be applied in all situations, has low biagugtes interaction among
features and may capture local dependencies which othéodgetay miss.

e MRMR[107] (filter): Minimum Redundancy Maximum Relevance useguml informa-
tion to select the features that have the highest relevaiibeive class and are minimally
redundant between them. As stated before, it constitute®btine most used multivari-
ate filter methods based on IT. A most thorough descriptioth®imethod can be seen
in Sect. 3.2.

e SVM-RFH59] (embedded): Recursive Feature Elimination for Supyector Machines
(SVM-RFE) performs feature selection by iteratively tiama SVM classifier with the
current set of features. It removes the least importantifeass indicated by the weights
in the SVM solution.

e FS-P[93] (embedded): Feature Selection - Perceptron (FS-iRsteaPerceptron in a su-
pervised manner and uses its interconnection weights tothenfeatures. A Perceptron
is a simple type of linear feed-forward artificial neuralwetk.

This set of ranker methods was selected because (i) theyasesilon different metrics
so they ensure diversity in the final ensemble; and (i) threyvadely used by researchers in
feature selection.

4.3 Experimental study

The performance of the proposed ensemble is tested over éilkmown data sets, which are
listed in Table 4.1. The number of samples ranges from 14&¥ %67 and the number of
features oscillates from 8 to 617. These data sets conforintaresting suite to check the
adequacy of the ensemble.

The experimental study is split in two parts, according tcheaf the designs proposed in
Sect. 4.2 (see Figs. 4.1 and 4.2).
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Data set Samples Features Classes
Connect4 67,557 42 3
Madelon 2,400 500 2
Spambase 4,601 57 2

Yeast 1,484 8 10

Isolet 7,797 617 26

* All data sets can be downloaded at [8]
Table 4.1: Data sets employed in the experimental study

4.3.1 Experimental study for the distributed approach

The experiment performed consists of a comparison betweense of single feature selection
methods and the use of an ensemble over a 10-fold crossti@tidén the case of the ensem-
ble, the training samples are randomly split in four packaaed the feature selection method
execution is parallelized. The pseudo-code of this apprecaa be seen in Algorithm 1.

Algorithm 1 Pseudo-code of the proposed method
Inputs: number of nodel, threshold of the number of features to be seledted

Output: classification predictioB.

1. Split training data betweeN training nodes. The training samples are randomly dis-
tributed in disjoint sets without replacement.

2. For eac from 1 toN, obtain rankingA, in noden.

3. Combine ranking#y,, n = 1..N with Ranking SVM, obtainingA.
4. SelecfT first attributes fromA, obtainingA;.

5. Build a SVM classifier with the selectég attributes.

6. Obtain predictiorP.

The results of the experiment (both average training tinteauerage test error) are dis-
played in Tables 4.2, 4.3, 4.4, and 4.5. Test error is medsusig a Support Vector Machine
(SVM) classifier, with a RBF kernel, gammadQ, and C 1. The first table (Table 4.2) displays
the average training times in seconds for the five featuec8eh methods in the five data sets.
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4.3 Experimental study

It can be seen how the distributed strategy improves theitigitimes considerably. The next

three tables (Tables 4.3, 4.4, and 4.5) display the aveesgjeitrors. Remember that the feature
selection methods used in this chapter are rankers, iey.,dh not select a subset of features:
they sort all the features. Therefore, it is necessary tabéish a threshold in order to obtain a
practical subset of features. Three thresholds are wdiliz6%, 25%, and 50%, and test errors
corresponding with each of them are shown respectivelyamibntioned three tables.

Data set IG ReliefF mRMR SVM-RFE FS-P
Connecta Single 005+0.01 3757+386 138+0.07 69162+90.16 1360+2.43
Ens. 002+0.01 048+0.03 023+0.01 7.01+0.66 084+0.17
Madelon Single 002+0.01 069+0.04 51090+2537 174428+21817 491+0.18
Ens. 010+£0.25 012+0.23 21835+3.91 651+1351 054+0.04
Spambase Single 002+0.02 020+0.04 1354+3.89 012+0.06 073+0.12
P Ens. 001+£0.01 001+0.00 867+2.58 001+0.01 006+0.06
Yeast Single 001+0.01 002+0.01 001+0.01 005+0.03 030+0.09
Ens. 001+0.01 001+0.01 001+0.00 003+0.03 003+0.02
Isolet Single 018+0.01 835+044 5964+0.38 266218+24978  17935+16.19
Ens. 006+0.01 020+0.01 2549+0.14 3782+9.57 1863+0.35

Table 4.2: Average training times in seconds. Single me{®udgle) and ensemble (Ens.)
strategies

Data set IG ReliefF mRMR SVM-RFE FS-P
Connecta Single 3076+0.54 3070+£050 3229+0.49 3392+0.59 3418+0.60
Ens. 3076+0.37 3009+0.53 3308+0.54 3393+068 3416+0.52
Madelon Single 3362+350 3317+3.13 4642+346 3171+256 3396+2.94
Ens. 34424+3.93 3413+336 5346+271 3492+337 3429+3.48
Spambase Single 1339+124 2008+3.14 2278+224 1250+141 1217+152
P Ens. 13284+1.76 1697+3.07 2276+389 1178+1.77 1223+1.93
Yeast Single  5513+4.99 5513+499 5513+4.99 5431+6.50 5466+4.33
Ens. 6030+6.05 5492+4.72 5492+4.72 5081+4.92 5431+4.87
Isolet Single  4862+230 5838+223 4715+171 5158+3.33 6495+4.53

Ens. 4904+2.03 5752+1.36 4996+1.38 6577+232 7266+2.73

Table 4.3: 10% threshold: average estimated percentagertess. Single method (Single)
and ensemble (Ens.) strategies

It can be seen how the errors remain stable after the distibprocess. The reduction in
time is especially important for multivariate filters, whiare the ones that usually provide the
best results, e.g. MRMR.

Table 4.6 shows the variations in training time and errowken the single method and the
ensemble approach for the 50% threshold data. It can be s@ethk average training time is

43



Chapter 4. A New Ensemble Approach for Feature Selectioedan Ranking Learning

Data set IG ReliefF MRMR SVM-RFE FS-P
Connecta Single  2634+0.53 25554046 3205+0.47 3279+132 3400+0.64
Ens. 2646+0.47 25624054 3196+055 3318+£1.03 34174047
Madelon Single  3608+2.37 3558+2.74 4983+3.11 3112+289 3308+1.76
Ens. 3904+7.81 3858+835 5208+4.50 3792+820 3717+8.75
Spambase Single  1767+190 1934+3.69 1565+195 1804+399 1445+5.53
P Ens. 1828+1.61 1663+205 17104+1.29 13114507 1128+4.16
Yeast Single 5317+6.89 5317+6.89 5317+6.89 5356+6.45 5303+4.51
Ens. 59974+3.89 5391+291 53914291 5142+457 52974296
Isolet Single 4368+1.94 5408+364 4672+271 4220+1.77 6145+ 4.34

Ens. 4288+1.67 57.73+2.07 4910+234 5951+420 7380+4.95

Table 4.4: 25% threshold: average estimated percentagertess. Single method (Single)
and ensemble (Ens.) strategies

Data set IG ReliefF MRMR SVM-RFE FS-P
Connectd Single  2482+0.50 2351+050 3094+0.55 3196+206 3261+1.13
Ens. 2474+0.60 23324052 2952+1.04 3137+1.84 3409+0.67
Madelon Single  3900+2.78 3821+244 3917+284 3271+294 3492+273
Ens. 3792+2.94 3846+4.33 3958+3.80 3892+262 3808+3.14
Spambase Single  1695+1.28 1617+1.15 1317+143 1811+166 1606+4.18
P Ens. 1693+1.67 17784185 1463+1.63 1793+176 17844192
Veast Single  5405+4.31 5405+4.31 5405+4.31 5257+6.65 5480+5.87
Ens. 5444730 5310+6.26 53104+6.26 5142+499 5283+6.10
Isolet Single 3798+2.36 5033+345 4675+3.36 37.70+3.12 4839+4.95

Ens. 3854+251 4807+4.25 43451+3.06 4798+4.87 6444+9.74

Table 4.5: 50% threshold: average estimated percentagertess. Single method (Single)
and ensemble (Ens.) strategies
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4.3 Experimental study

Data set IG ReliefF mRMR SVM-RFE FS-P
me -60% -99% -83% -99% -94%

Connect4

Error 0% -1% -5% -2% 4%

Time 80% -83% -57% -99% -89%
Madelon

Error -3% 1% 1% 16% 8%

Time -50% -95% -36% -92% -92%
Spambase

Error 0% 9% 10% -1% 10%

Time 0% -50% 0% -40% -90%
Yeast

Error 9% -2% -2% -2% -4%
Isolet Time -67% -98% -57% -99% -90%
sole

Error 1% -2% -7% 21% 25%

* Negative percentages are favorable to the ensemble.

Table 4.6: Variation in training time and error between Erngethod and ensemble strategies
(50% threshold)

greatly improved in most of the cases, while the error iselexcept in some cases where the
ensemble performs worse, and others where the ensemblslalgty improves the results of
the single method.

4.3.2 Experimental study for the pure ensemble approach

For this part of the study, the same set of ranker methodsidedabove —Information Gain,
MRMR, ReliefF, SVM-RFE, and FS-P— is utilizeR.rankings are generated using the afore-
mentioned feature selection methods, all of them with tiheesiaining data. The pseudo-code
of this approach can be seen in Algorithm 2.

TheA, outputs obtained from the different methods are combinadyube Ranking SVM
union method to obtain a single ranking list. Since the iiilial methods used for feature
selection are rankers, it is necessary to establish a wice3hin order to obtain a practical
subset of features. After obtaining this practical subddeaturesA;, a SVM is used for
checking the adequacy of the proposed ensemble in termssdifitation error. The SVM
utilizes a RBF kernel, with gamma(l, and C 1.

The performance of the proposed ensemble method is testedhav/five well-known data
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Algorithm 2 Pseudo-code of the proposed method
Inputs: number of ranker method® threshold of the number of features to be seleded

training set.
Output: classification predictioB.

1. For eachr from 1 toR, obtain rankingA, using method.

2. Combine rankingdy, r = 1..Rwith Ranking SVM, abtainingA.
3. SelectT first attributes fromA, obtainingA;.

4. Build a SVM classifier with the selectey attributes.

5. Obtain predictiorP.

sets listed in Table 4.1. The experiment performed corsiste comparison between the use
of different feature selection methods individually and tise of an ensemble. Remember that
all the feature selection methods used in this chapter akers, i.e. they do not select a subset
of features, but they sort all the features. Therefore itisassary to establish a threshold in
order to obtain a practical subset of features. In this stidysame thresholds are used —10%,
25% and 50%—. Moreover, the ensemble is composed by six &tho

A Support Vector Machine (SVM) is chosen for checking theca@ey of the proposed
ensemble in terms of classification error. A 10-fold crod&ledion is performed for estimating
the error.

The next three tables (Tables 4.7, 4.8 and 4.9) display temge test errors. Having ten
different errors as a result of the 10-fold cross validatmiruskal-Wallis test was applied to
check if there were significant differences for a level oh#figancea = 0.05 [65]. Then, a
multiple comparison test (based on Tukey’s honestly sicanifi difference criterion [136]) is
applied and those algorithms whose error average testsesel not significantly worse than
the best are labeled with a cross.

The experimental results demonstrate the adequacy of tpoged ensemble, since they
match or improve upon the results achieved by the featuertieh methods alone. It can
be seen that, as the threshold is increased, the resultnexbtare not as positive. Despite
this, the proposed ensemble obtains favorable resultsundat of five data sets when the
threshold is fixed to 25 % (indicated in Table 4.8). Finally)em the threshold is increased to
50 % (Table 4.9), only two out of five data sets have resultsiguificantly different from the

46



4.3 Experimental study

Ranker method Yeast Spambase Madelon Connect4 Isolet
Ensemble 5247 +462 1139T+234 35467T+4.05 3114T+051 50137 +2.03
InfoGain 55137 +£4.99 1339T+124 3362T+£350 30767+£054 48627+2.30
mRMR 55137 +£4.99  2278+224 = 4642+3.46 32294049 47157 +1.71
ReliefF 55137 +4.99  2008+3.14 33177+313 3070t+050 5838+2.23
SVM-RFE 54317 +650 12507 +1.41 31717+256 3392+059 51587 +3.33
FS-P 54661 +4.33 1217t +152 33967+294  3418+0.60 6495+ 4.53

* The cross shows results that are not significantly diffetean the best.

Table 4.7: 10% threshold: average estimated percentapertess

Ranker method Yeast Spambase Madelon Connect4 Isolet
Ensemble 5247 +462 1919T+£200 36217+442 26967+067 4877+£211
InfoGain 53171 +6.89 1767T+1.90 36087T+237 2634T+053 43687 +1.94
mRMR 53177 +6.89 1565T+195  4983+3.11 3205+047 46727 +271
ReliefF 53177 +£6.89 1934T+369 3558T+274 255571046  5408+3.64
SVM-RFE 53567 +£6.45 18047T+399 3112T+289 3279+1.32 42207 +1.77
FS-P 53037 +451 14457 +553 3308T+176  3400+0.64 6145+4.34

* The cross shows results that are not significantly diffetean the best.

Table 4.8: 25% threshold: average estimated percentapertess

Ranker method Yeast Spambase Madelon Connect4 Isolet
Ensemble 5247+462 1693+£1.91  3929+2.65 25274059 43217 +3.01
InfoGain 54057 +4.31  1695+1.28 39004278 24827 +050 3798t +236
mRMR 54057 +4.31 13177+143 3917+284 3094+ 0.55 4675+3.36
ReliefF 54057 +4.31 1617T+1.15 3821T+244 23511+050 5033+3.45
SVM-RFE 52571 +6.65 1811+1.66  3271T+294  3196+206 3770T+3.12
FS-P 54801 £5.87 16061 £4.18 3492T+273  3261+1.13 4839+ 4.95

* The cross shows results that are not significantly diffetean the best.

Table 4.9: 50% threshold: average estimated percentapertess
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Threshold Yeast Spambase Madelon Connect4 Isolet
10 % 53241 +4.62 11397 +234 35461+405 3114+051  5013+2.03
25% 53241 +4.62 1919+2.00 3621t +442 26967 +0.67 4877+211
50 % 53241 +4.62 1693+1.91 3929+ 2.65 25271 +059 43217 +301

* The cross shows results that are not significantly diffetean the best.

Table 4.10: Ensemble methods: average estimated peregetstgerrors

lowest average error. Even so, in the three data sets in wigdificative differences between
the ensemble method and the best single method, it can bdteddhe estimated percentage
error of the ensemble is lower than the one presented byadesiegle rankers.

However, if focusing on the behavior of the feature selectenkers individually (six last
rows of each table), none of the six methods tested was aldgndicantly outperform the
results obtained by the ensemble for all combinations. fusproves that, although in some
specific cases there is a single method that performs batarthe ensemble, there is not a
better feature selection ranker in general, and the enseseleims to be the most reliable alter-
native when a feature selection process has to be carrietloneover, notice the adequacy of
using Ranking SVM as a method to combine different rankings.

A last experiment is performed, consisting of the analy§ihe behavior of the ensemble
with the different thresholds, with independence of theialdteature selection methods. Table
4.10 displays the average test errors obtained with therdiit thresholds. A Kruskal-Wallis
test plus Tukey’s multiple comparison procedure was algtiegh and those algorithms whose
error average test results are not significantly worse thatést are labeled with a cross.

This analysis demonstrates that an optimal threshold \@bes not exist such that its re-
sults stand out over the others. The three thresholds athlgzhis research show very similar
results, since each one of the thresholds was significaetigibthan the others in three out
of five data sets. Thus, it can be concluded that the most ppate threshold depends on
the nature of the data sets and their features. In this retferdisers cannot be released from
this decision, and must select an appropriate thresholordiog to the particularities of each
specific data set.
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4.4 Summary

4.4 Summary

In the last few years, ensemble learning has been the foausicifi attention mainly in classi-
fication tasks, based on the assumption that combining tipibaf multiple experts is better
than the output of any single expert. This idea of ensemlalmieg can be adapted for fea-
ture selection, in which different feature selection aldons act as different experts. In this
chapter, two ways of building ensembles are explored: (agldktions using the same feature
selection algorithm, using different training data andNgelections using a variety of differ-
ent feature selection algorithms, all using the same tigidata. Feature selection can also
take advantage of data distribution. Most feature selectiethods do not scale well when the
number of features grows. Processing multiple subsetsucmmtly means that the training of
feature selection methods is faster. This advantage isemthiwith option (a). In both options,
the results of the individual rankings are combined with SRisihk, and the adequacy of the
ensemble is subsequently tested using SVM as classifieultRebtained in an experimental
study performed over five UCI data sets show that both optézasable to obtain good re-
sults. Option (a) improves training times over the indidtfeature selection methods, while
maintaining errors. Option (b) obtains the best averagelteesegardless of the data set and
thresholds chosen. Notice the implications of this resitice it can release the user from the
task of deciding which feature selection method is more @myaite for a given problem.
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CHAPTER 5

A New Local Method for Classification Based on

Information Theoretic Learning

The two previous chapters focused in new proposals forfeatlection methods. This chapter
is dedicated to the development of a new local classificatiethod. The general aim, however,
is the same: trying to confront diversity in data sets thtotkge application of new ideas based
on IT. The proposed algorithm performs classification basedhe combination of neural
networks by means of local modeling and techniques base@lofiL6] (See Sect. 2.2). First,
a modified ITL clustering algorithm is applied in order tomtiéy the local models. Second,
since the problem is simplified by splitting it into smallar{s, a simple but effective model,
the one-layer neural network, is applied. This approacleleted to the one followed in the
previous chapter, which dealt with ensemble learning app feature selection.

VQIT (Vector Quantization using Information Theoretic cepts) [86] is an information
theoretic clustering algorithm that is able to distributeed of nodes in such a way that the
mutual information between the nodes and the data set issmiwed. The result of this self-
organizing task can be subsequently used for clusteringamttgation purposes. In this chap-
ter, VQIT is modified in order to perform classification taskkhis new algorithm is called
FVQIT (Frontier Vector Quantization based on Informatidne®retic concepts). It builds lo-
cal models in a similar fashion to VQIT and then classifieagisine-layer neural networks on
each local model. In the first part of the chapter, the modeifo-class (binary) classification
is described. Later on, the concept utilized in the stageadlimodel building is expanded in
order to being able to deal with muticlass problems. Theamstof this chapter have been
published in [92, 110, 111, 112, 113, 114].

The remainder of this chapter is organized as follows: 8ech.1 describes the VQIT
method. Section 5.2 contains the binary version of FVQIEsifecation method. This version
has been applied to several high dimensional problems, inoshmples and features, such
as intrusion detection and microarray gene expressiontioBes.3 contains the extension of
FVQIT for multiclass problems, which has been studied oegegl microarray gene expres-
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sion problems. Finally, Section 5.4 sums up the contentseo€hapter.

5.1 Background: VQIT Clustering Algorithm

The VQIT (Vector Quantization Using Information Theorylustering algorithm [86] is de-
signed to take the statistical distribution of data intocartt. The objective is to place a series
of nodes in the input space in such a way that the distribuifdhe nodes matches the distribu-
tion of the data. The algorithm considers that both datatp@ind nodes are particles that have
an information potential field associated. The informatiatential field created by a particle
can be described by a kernel of the foktt). The information potential field of data and nodes
is of different sign, respectively. Placing a kernel on epatticle (data point), the information
potential energy at a poimtin space is:

1 N
p(x) = N;K(X_Xi) (5.1)

whereN is the number of particles of a particular sign. If the kerdetays with distance
(K(x) O (Xflm) the potential is equivalent to physical potentials likevifetion and electric
ones.

As there are two different types of particles (data and npdbe energy of the system is
defined by three terms:

1. Interactions between the data points: since the datdspaie fixed, these interactions
have no influence over the energy.

2. Interactions between the data and the nodes: due to thsibpgigns of the information
potentials, these particles attract each other and magithiz correlation between the
distribution of data and the distribution of nodes.

3. Interactions between nodes: the nodes’ informationntiais are of the same sign,
which causes the nodes to repel each other. This helps tibdtst the nodes across
the input space, avoiding unnecessary concentrations eosaime region of the input
space.

Eg. (5.1) is Parzen density estimator [106]. In order to malhe nodes with the data, (5.1)
is used to estimate their PDF and then the divergence betthesam is minimized. Using
Gaussian kernels, the distribution of the data poirisig
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5.2 Learning Model for Binary Classification Problems

f() = ¥ G(x—x,07) (5.2)

The distribution of nodesxf) is

g(x) = Z G(x—w;, ag) (5.3)

VQIT algorithm uses the Kullback-Leibler divergence, defirin (2.2). This divergence
can be linearly approximated by the Cauchy-Schwarz inégu&-S):

)90 < [[F )] ]9 (5.4)

Therefore, maximizin TR 90T 1S equivalent to minimizing the divergence betwelg)
andg(x). Using logarithms in order to remove the division, the egpien to minimize the
divergence between the distributioh&x) andg(x) is the following:

(ff( )9(x)dx )2

Iog/f2 X)dx — 2Iog/ dx+|og/g

V = [ g?(x)dxis the information potential of the nodeés= [ f(x)g(x)dxis the cross infor-
mation potential between the distributions of the data aedibdes, andl = —log [ g?(x) =
—logV is the Renyi quadratic entropy of the nodes. In consequanaggmizing the diver-
gence betweefi andg is equivalent to maximizing the sum of the entropy of the oaied the
cross information potential between the densities of ttrdea@nd the data.

The algorithm uses the gradient descent method to miningiZg.( This clustering algo-
rithm is the basis for the classification algorithm propomette following section.

5.2 Learning Model for Binary Classification Problems

Using the ideas of VQIT, a supervised local classificatiagodathm for binary data sets is
developed [92]. The method is composed of two stages. Firset of nodes, which are
points placed in the same space as data, are moved fromritigil iandom positions to the
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frontier between classes. This part of the algorithm is aifiwadion of VQIT algorithm [86].
Second, a set of local models, associated to the nodes, basatk-layer neural networks are
trained using the efficient algorithm described in [27],licls a way that a piecewise borderline
between the classes is built. Therefore, the final systersistsrof a set of local experts, each
of which will be trained to solve a subproblem of the origindh this manner, the method
benefits from a finer adaptation to the characteristics ofrdiring set. This architecture can
be seen on Fig. 5.1. The following subsections describe $iaties in detail.

n-dimensional input space Output

{Class c,c=1..K}
x
1-layer NN Y,
s e @)
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t 4
+ 4
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[ )
class 1 e o class 3

x %
x

i

Selection of Local Models: Adjustment of Local Models:
FvQIT One-Layer Neural Networks

Figure 5.1: Architecture of the proposed learning model.

5.2.1 Creation of Local Models

The VQIT algorithm, which FVQIT is based on, was developedviector quantization, that

is, for representing a large data set with a smaller numbeectors in an appropriate way
[86]. However, in our approach, the original algorithm hasi modified in order to be able to
build a piecewise representation of the borderline betvatgsses in a classification problem.
Therefore, the objective is placing a set of nodes on thei@iobetween the two classes, in
such a way that each node will represent a local model.

The algorithm minimizes the energy function that calcddtee divergence between the
Parzen estimator of the distribution of data points and #tenator of the distribution of the
nodes. Under this premise, a physical interpretation camdmde. Both data points and nodes
are considered two kinds of particles with a potential fieddaziated. These fields induce
repulsive and attractive interactions between partidepending on its sign. In the original
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VQIT algorithm, data and nodes had different signs. In FVQlata particles belonging to
different classes have different signs. In this manner,res®f forces converge upon each
node. Training patterns of a class exert an attractive forca node and training patterns of
the other class induce a repulsive force on it. Which clasaas and which class repels is
decided using the Euclidean distance and k-NN (k-Nearefgthler) [28] as a rule of thumb.
The closest class to the node (called 'own class’) repeldtthe furthest one attracts it. These
roles alternate during the iterations as nodes move. An pbkaof the movement of a node
until it reaches its stability point can be seen in Fig. 5.2r&bver, there exists a third force of
repulsion between the nodes, which favors a better disimibpuavoiding the accumulation of
several nodes on a point.

0B

04r

02r

o2tk

a4k

04

Figure 5.2: Evolution of a node from a random position to atfmson the frontier between
classes

In this context, the Parzen density estimators of the Oigion of data points (x) and
nodesg(x) are:

f(x)= %iK (x —xi, 0F)

= (5.6)
g(x) = %;K (x—wi, 07)

whereN is the number of data point is any kernel functionaf2 and ag are the variances

of the kernel functionsg € (" are data points, and; € (1" are the weights associated to the
nodes.
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The function of energy(w) that calculates the divergence between the estimators is:

J(w)= log [ 2 (x)dx+ 2log /[ f+(x)g(x)dx

(5.7)
—2log[ f~ (x)g(x)dx+log [ g? (x) dx

wheref* (x) and f ~ (x) are the estimators of the distributions of data for each@ftthsses.

The first term of (5.7) is the information potential amongadaSince data are stationary
during the learning process, this term will not be considdrem now on. The second and
third terms are the crossed correlations between thehlitiths of data and nodes. The fourth
term is the information potential of the nodes. Note tH#x) = —log [ g?(x)dx is the Renyi
quadratic entropy of the nodes. Consequently, minimizingdivergence betweef(x) and
g(x) is equivalent to maximizing the sum of the entropy of the rsoaled the cross-information
potentials between the distribution of data and nodes.

Assuming this formulation, when the nodes are placed on timnmam of the energy
functionJ (w), they are situated on a frontier area. Therefore, we utilizegradient descent
method to obtain the minimum of the function and, in consegagto move the nodes toward
such situation. To develop this, the derivative of (5.7)dkalated. For simplicity, the deriva-
tion of J(w) is divided in three parts: (a) calculation of the contribatiof the data from the
own class (the closest one), (b) calculation of the contidbuof the data from the other class
(the furthest one) and (c) calculation of the contributiéthe interactions between nodes.

Developing the last three terms in (5.7):

e Data from the own class:
_ / £ (x)g(x)dx
1 .+ + +2 i 2 d
= MN+/ G(x—X; ,af)ZG(x—wj,ag) X

1 A
Z/Gx X", 0F)G(x — wj, a§)dx

MN+

(5.8)

a3)

whereM is the number of noded\, is the number of objects from the class of the node,
x;" are the data from the own clasg; are the weights of the nodes and the covariance
of the Gaussian after integrationd§ = o7 + o;.
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e Data from the other class:

1 /N _ 2 2
=—— G(x—x;,07) Y G(x—wj,oy)dx
MNf Z | f 2 J g
_ 153 /G(x X, 02)G(x —wj,g2)dx 59
MNf Izz i »Yf 1"~
1 M N_

whereN_ is the number of objects from the class of the nodeare the data from the
other classw; are the weights of the nodes and the covariance of the Gauaker
integration isof = 07 + og.

e Interactions between nodes (entropy):

:/g x)%dx

5.10
Jz%%G —Wj,V20) 19

wherew; andw; are the weights of the nodes.

The contributions to the gradient update for each of theipvsvterms in an iteration are:

e Data from the own class: 5 .
— 2logC, = —2—=* 5.11
aWk g + — C+ ( )

where the ternilC, denotes the derivative @f, with respect tow.

Ny
0C, = ~WN IZG(wk—xi*,aa)aa‘l(wk—xi’“) (5.12)
e Data from the other class: 5 .
—2logC_ = —2—— 5.13
E g c (5.13)

where the terntlC_ denotes the derivative @ with respect tawy.
Z G(Wk— X, 0a) 05 *(Wk — X ) (5.14)
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e Interactions between nodes (entropy):

7} ov
0—wk2|OgV =V (5.15)

where the ternilV denotes the derivative & with respect towy.

1 M
OV = —75 Y GWj — Wi v20y) 0y H(wic—w)) (5.16)
]

Therefore, using equations (5.11), (5.13) and (5.15), hrmugh gradient descent, the weight
update rule for the nodey becomes:

w43 =wir) - (- )

vt T (5.17)

wheren is the iteration and is the step size.

As with self-organizing maps, a good starting point is to ag® high-variance kernels
and a largen parameter such that all particles interact with one anothis allows a fast
distribution of nodes along the feature space. Graduallyrier to obtain stability and a
smooth convergence, the variances of the kernels and tampgem are decreased or annealed
at each step.

Once FVQIT is trained, the nodes, ideally, will find themsslwell distributed on the fron-
tiers between classes. Each node defines a region, a local mdkle feature space which isin
charge of classifying the data inside. Those models areateby proximity: the local model
associated to each node is composed of the nearest poiotsdeng to Euclidean distance) in
the feature space, independently of their class. Thereflate from both classes could coexist
in the same local model. Algorithm 3 summarizes the pseutlood the training process of
FVQIT.

58



5.2 Learning Model for Binary Classification Problems

Algorithm 3 Training algorithm for the binary version of FVQIT

Inputs: Training set, number of nodes M, learning rgtecovariance matrices; and oy,
annealing rateggec and dge, maximum number of iterationg, number of neighbork.

1

2.

10.

. Initialize the weights of the M nodes randomly in the datiage.

Calculate which class repels the node and which clasecttit by calculating the Eu-
clidean distances from each node to every data point and) tsa k-NN (k-Nearest
Neighbor) rule.

Evaluate the cross information potential between each node and the data from the
repelling class, as in (5.8).

Calculate the cross information potential between each node and the data from the
attracting class, using (5.9).

Evaluate the entropy between nodes as described in (5.10).

Calculate the derivativesC,, OC_ y [0V, utilizing (5.12), (5.14) and (5.16), respec-
tively.

. Evaluate the weight update for each node using (5.17).

Reduce learning ratg in the proportion shown bygec
Reduces; andag in the proportion shown bggec

Repeat from 2 until the predefined maximum number oftitara p is reached.

The method employs several input parameters. Some of thetmecassigned to a standard
value or do not significantly affect the final performanceha method. The covariance matri-
cesor andgy are assigned to the covariance matrices of the patterng itvdming set. This
assignment is derived from the work in [86] and has obtaireatigesults in the experiments
in [92]. The parametek of the k-NN (k-Nearest Neighbor) rule does not present atgngzact
on performance as its effect when the nodes are near thécirdmttween classes is compen-
sated due to the subsequent moves of the nodes. It may takgpacsl value between 1 and
10. The parameten controls the magnitude of node movements in each learnap $with

high
and

values, a significant oscillation of the nodes in the fearning steps will be observed
it will take longer to converge to a stable situation ia fitontier. This parameter usually

takes values in the intervdange(X) /2, ranggX)] beingranggX) = abgmax(X) —min(X))
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and beingX the training set.ngec and agec control the smoothness of the convergence to the
frontier. They may take a value in the intery@l 1), although they typically take values close
to 1 to ensure a smooth evolution. The maximum number otiterap is a stopping condition
added to the method. If a poor performance is observed, ibedncreased to let the method
converge to the frontier. The number of nodiéss usually selected using cross validation.

5.2.2 Adjustment of Local Models

In the first stage a set of local models was constructed by mgavie nodes to their optimal
position. Since each local model covers the closest pairttest position of its associated node,
the input space is completely filled, as input data are alveaggned to a local model. In this
second stage, the goal is to construct a classifier for eaehheodel. This classifier will be in
charge of classifying points in the region assigned to itallanodel and will be trained only
with the points of the training set in this region.

As local modeling algorithms may suffer from temporal effitiy problems, caused by the
process of training several local classifiers, we have @edd use a lightweight classifier. We
have chosen one-layer neural networks, trained with theiefti algorithm presented in [27].
This algorithm allows rapid supervised training for ongelafeed-forward neural networks.
The key idea is to measure the error prior to the nonlinedvadiin functions. In this manner,
it is proven in [27] that the minimization based on the MSE btanrewritten in equivalent
fashion in terms of the error committed prior to the applaabf the activation function, which
produces a system of equations with1 equations and unknowns. This kind of systems can be
solved computationally with a complexity @(M?), whereM = | + 1 is the number of weights
of the network. Thus, it requires much less computatiorsbueces than classic methods.

5.2.3 Operation of the Model

After the training process, when a new pattern arrives tolégsified, the method first calcu-
lates the closest node to a new patterx,, using the Euclidean distance and then classifies it
using the neural network associated to the local magel

In Fig. 5.3, a simple two-class bi-dimensional example splliyed. Data from one class
is displayed with 'x’-mark and data from the other class vditttles. FVQIT nodes are repre-
sented with squares. The division in local models is shovth dotted lines and the solid lines
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depict the decision regions defined by each neural network.

Figure 5.3: Example of operation of FVQIT. Local models armhfier between classes

5.2.4 Applications of the Binary Version

The binary version of FVQIT has been studied over severablpras. First, an illustrative
example over a two-dimensional problem; second, the study several data sets from the
UCI Machine Learning Repository [8]; third, the study on aywarge real problem, intrusion
detection, particularly the KDD Cup 99 data set, which hagry large amount of data; and
last, the method is applied on a high dimensional real proplmicroarray gene expression
data sets, which have a very large amount of features (inrtter of the thousands) and very
few samples (in the order of the tens).

5.2.4.1 An lllustrative Example: 2D Spiral Classification Roblem

To illustrate the power of the method in a visually percdptiiroblem, results for the classical
2D Spiral Classification problem are presented. This prohbke highly non linear. It was
reported in previous papers that, though being appareimigls, classical pattern recognition
methods as multilayer perceptrons have problems whemdeaith it [11, 45, 40].

The generated data set has 1200 two-dimensional pattethsavBi0% for each class. A
5-fold cross validation is run to measure the accuracy ofroathod compared to a SVM
with RBF kernel [30] and a Multilayer Perceptron (MLP) trachwith the Scaled Conjugate
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Gradient method [98]. To generate the data set, the coderiszbin the broadly known SVM
Spider Toolbox 1.71 was taken [144]. It was added to the idalksvo spiral problem an
uniform distributed random noise perturbation in the ivaf0, 0.35].

Figure 5.4 shows the final distribution of FVQIT nodes. It tennoted that the nodes are
finally distributed along the border line between the twessts. The results obtained were
satisfactory for both SVM and the proposed architecturehBoeethods obtained an accuracy
of 99.50% in test. In terms of efficiency, in this case, FVQIT solted problem in 11.34 sec.
while SVM solved the problem in 14.19 sec.

However, MLP was tested with a hidden layer from 5 up to 25 éddeurons and in no
case was capable of solving the problem. It obtained an acgwf 50%, the same as random
assignation of a class label in this case. Our results foktibie are similar to those obtained in
[11, 45, 40]. In these papers, it was stated that MLPs wereaymble of solving this problem.
The only way is to use a number of neurons in the hidden layeostl equal to the number of
patterns to classify, highly increasing the complexityh® system.

Finally, the noise energy was increased to the intej@dl.0] and our method and SVM
were tested again with a 5-fold cross validation. As expkdige accuracy of both methods
decreased, but while our method obtained an accuracy 8894 in 1018 sec. the SVM
obtained 88B3% in 22.55 sec.
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Figure 5.4: Final distribution of nodes for the 2D Spiral Blem
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5.2.4.2 Real Data Sets from the UCI Repository

In this section, we discuss some experiments that dememsha performance of our method
in databases. We coded the algorithm in Ma&ahnd ran these experiments on a 2.13 GHz
Intel Pentium having 2GB of memory.

We tested our algorithms on three real life data sets avai@io UCI repository [8] and on
the Wisconsin Data Mining Institute [146]. Their sizes ananers of attributes and classes
are detailed in Table 5.1. For the mushroom data set we ugetlathsformation reported in
[146], and for the adult data set the patterns with unknowerewleleted. Data sets including
only pure categorical, and only pure numerical attributesenised, so as to test their influence
in the results obtained. The proposed method was compatkdheiavailable results obtained
by other methods, both regarding performance and traimimgst Accuracy is obtained using
five 5-fold cross validation to evaluate the real error.

Data Set # of # of numerical # of categorical  # of
instances attributes attributes classes
Galaxy Dim 4192 14 0 2
Spambase 4601 57 0 2
Mushroom 8134 0 22 2

Table 5.1: Data sets used in the experiments

The SpamBase data set contains only numerical attributdst & a classification problem
that aims at detecting whether a mail is spam or not. The @dfaas a reported a misclassifi-
cation error of approximately 7%, which is in fact the erraterobtained by the other methods
that are shown in Table 5.2, and that can be found in [33]. Ththads tested are: FVQIT,
AdaBoost + MLP, RL-Mix + MLP, Mixture of Experts + MLP, and ML&one. As it can be
seen, our method is the one that obtains the best performmasaks (less than 5% error). As
training time was not available for the other methods, thresalts are not displayed in the
table. For the case of the proposed method we employed aagevéme of 63 s.

The Mushroom data set contains only categorical attribwted it is a binary classifica-
tion problem. The data set includes descriptions of hygmtdlesamples corresponding to 23
species of gilled mushrooms in the Agaricus and Lepiota Faniiach species is identified
as definitely edible, definitely poisonous, or of unknowrbéily and not recommended. This
latter class was combined with the poisonous one. The sesattresponding to the RSVM
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Method % accuracy

FVQIT 95.58%
AdaBoost + MLP 93.52%
RL-Mix. + MLP 92.59%

Mix of Exp. + MLP 92.35%
MLP 91.67%

Table 5.2: Results for SpamBase data set

(Reduced Support Vector Machines) are reported in [85])endli the others were obtained
implementing the methods in MatLab. The methods tested :wWev@®IT, Reduced Support
Vector Machines (RSVM) [85], Scaled Conjugate Gradient@${©8] , Least-Squares Sup-
port Vector Machines (LS-SVM) [133], Proximal Support M@cMachines (PSVM) [53], one-
layer neural networks [27], and Linear Discriminant Ang&yd.DA) [44]. As can be seen in

table 5.3, the proposed method is again the one that obtarsest performance results, while
maintaining the efficiency.

Method % accuracy Training Time (sec.)
FVQIT 89.24% 13.68
RSVM 89.04% 466.20
SCG 81.63% 15.25
LS-SVM 80.90% 263.61
PSVM 80.79% 0.20
One-layer NN 80.77% 0.03
LDA 62.02% 0.08

Table 5.3: Results for Mushroom data set

The Galaxy Dimension Data set contains only numericalbattgis. The aim for this data
set is to classify stellar and non-stellar objects based4omhge parameters computed for
each object detected by the University of Minnesota Autechdtlate Scanner (APS) operat-
ing in a threshold densitometry mode. The proposed methadds compared with several
other methods, of which one-layer NN, PSVM, LDA, LS-SVM an@& were implemented
in Matlab, while the results of Minimal Support Vector Macti(MSVM), 1-Norm SVM and
1-Norm Support Vector Machine with Feature Selection (F@&¢je extracted from [52]. Al-
though the best training times are those of LDA, PSVM and tielayer neural network, these
are linear methods which accuracy is significantly worse tha one of the proposed method.
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Compared to the remaining non linear approaches, our médtibd most efficient.

As can be seen on table 5.4, the proposed method obtains,nomee the best results
regarding performance/efficiency.

Method % accuracy Training Time (sec.)
FVQIT 94.9%% 6.63
SCG 94.82% 16.77
MSVM 94.70% 193.0
FSV 94.70% 541.0
1-Norm SVM 94.40% 774.0
One-layer NN 93.38% 0.02
LDA 93.37% 0.02
LS-SVM 92.21% 28.63
PSVM 92.53% 0.18

Table 5.4: Results for Galaxy Dimension data set

5.2.4.3 Experimental Study over Intrusion Detection

The KDD Cup 99 data set is a processed version of the DARPA 1988 set, which was
constructed from a simulation performed by the Defense Aded Research Projects Agency
(DARPA) through the Intrusion Detection Evaluation PragrdDEP) in 1998. The KDD Cup
99 data set was released for a classifier learning conteathwask was to distinguish between
legitimate and illegitimate connections in a computer rekn[39], at the KDD (Knowledge
Discovery and Data Mining) Conference in 1999. The trairdiagp set consists of about five
million connection records (although a reduced trainingdat containing around five hundred
thousand records exists) [87]. Each record contains valifesty one variables which describe
different aspects of the connection, and the value of thesdibel (either normal, either the
specific attack type). The test data set comprises threerédinidousand records and its data
are not from the same probability distribution as trainiaged

Following the KDD Cup contest, the data set has been extgsised as a benchmark
for developing machine learning algorithms for intrusicetettion systems. The data set is
very demanding not only because of its size but also due tgriet inner variability among
features. For those reasons, the KDD Cup 99 data set is &obiiy classification problem.
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Despite that KDD Cup 99 is a multiclass data set, it can beddeas a binary data set, simply
by considering attack or no attack, instead of the differattick types. This approach is
interesting in the sense that, most of the time, it is enowgtidtinguish between normal
connections and attacks. This transformation has beeledaut by other authors [6, 51], and
there exist several results in the literature which ardézeti as part of the comparative study.

The experimental study performed involves applying theppsed FVQIT algorithm to the
binary version of the KDD Cup 99 data set [113]. As a prelimjnstage, discretization and
feature selection were both performed on the data set. Thigation for using discretization
is that some features of the KDD Cup 99 data set present highlamce and variability. This
situation may cause a malfunction in most feature selectiethods and classifiers. The prob-
lem is softened up by using discretization methods. In sulost, the process of discretization
involves putting continuous values into groups, by meana ntimber of discrete intervals.
Two discretization methods will be employed in this studyKIP (Proportional k-Interval
Discretization) [154] and EMD (Entropy Minimization Distization) [41].

In order to reduce input dimensionality and improve the cotational efficiency of the
classifier, feature selection was performed. Filter methwdre chosen because they are com-
putationally cheaper than wrapper methods, and compuotdtédficiency is a desirable feature
given the large size of the data set [22]. The filters that bdllused in this study are IN-
TERACT [157] and Consistency based Filter [32]. These fillare widely used, with good
results.

The discretization methods (PKID and EMD) are considereg¢dmbination with the
above-named filters (INTERACT and Consistency-based). s,;Tfaur combinations of dis-
cretizator plus filter are analyzed in order to check whichsst of features works best with
FVQIT method.

The model is trained with the KDD Cup 99 reduced training dsga—494,021 sam-
ples— and is tested using the standard KDD Cup 99 test dat# 84t1,029 samples. Three
performance measures are employed:

e Test Error (TE): indicates the overall percentage erra fait both classes (Normal and
Attack).

e True Positive Rate (TP): shows the overall percentage efctled attacks.
o False Positive Rate (FP): indicates the percentage of ngattarns classified as attacks.
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The results of the proposed method are compared with thaséned by other authors
[6, 22, 39, 51], as can be seen in Table 5.5. Specifically, Hssification methods to be com-
pared are decision trees (C4.5), functional networks (EMpport Vector Machines (SVM),
ANalysis Of VAriance (ANOVA) (ANOVA ens.) and linear percepns (LP). Font in boldface
indicates best results considering all three measuregetlter. Table columns show the test
error (TE), the true positive rate (TP), the false positiger(FP) and the number of features
employed (NF). Both error and rates are shown in percentge These measures (TE, TP
and FP) are typical in the field of intrusion detection.

As can be seen in Table 5.5, the combination PKID+Cons +F\@pitains the best result
as it improves the performance obtained by the KDD Cup Wimmaitl three measures used,
using a considerably reduced number of features (six idsithe forty one original features).

In addition, this combination outperforms all other resutcluded in this study. Despite
the fact that individual values of error and TP for the comabtion EMD+Cons +FVQIT are
better than those for the above mentioned combination —4er8us 5.95 and 94.50 ver-
sus 92.73—, it must be noted that the variations in percenktegween these quantities are
quite small —20% and 2% respectively— in contrast to theatamn between the values of
FP —1.54 versus 0.48 (300%)—. On the other hand, error ancbEMD+ INT+FVQIT,
EMD+Cons+FVQIT, and PKID+INT+FVQIT are good, but unforaiely at the expense of
FP, which happens to be high for all of them.

5.2.4.4 Experimental Study over Microarray Gene Expressio

In this experimental study, FVQIT classifier is employed lassify twelve DNA gene-expres-
sion microarray data sets of different kinds of cancer. €rdsta sets present features of the
order of thousands and very few samples (tens or hundredspn#parative study with other
well-known classifiers is carried out [111, 112]. The numbigieatures and samples for each
data set are shown in Table 5.6.

Since the number of input features of these kind of data sdtsige, as can be seen on
Table 5.6, feature selection is applied again, as in theiguevproblem [124]. Two different
kinds of filter methods are employed: subset filters and mranl&ubset filters provide a subset
of selected features, while rankers make use of a scoringfifumin order to build a feature
ranking, where all features of the data set are sorted iredsirg relevance order. In the first
experiment (subset filters), the performance of the methadsted. The aim of the second
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Method TE(%) TP(%) FP(%) NF

PKID+Cons+FVQIT  5.95 92.73 0.48 6
EMD+INT+FVQIT 5.40 93.50 0.85 7
EMD+Cons+FVQIT 4.73 94.50 1.54 7
PKID+INT+FVQIT 5.68 93.61 2.75 7

KDD Winner 6.70 9180 055 41
PKID+Cons+C4.5 514 94.08 1.92 6
EMD+INT+C4.5 6.69 91.81 0.49 7
FNs_ poly 6.48 9245 0.86 41
FNs fourier 6.69 92.72 0.75 41
FNs exp 6.70 9275 0.75 41
SVM Linear 6.89 91.83 1.62 41
SVM RBF 6.86 91.83 143 41
ANOVA ens. 6.88 91.67 090 41
LP 2cl. 6.90 9180 152 41

Table 5.5: KDD Cup data set: results obtained by the fouriemssof the proposed method
and by other authors

experiment (ranker methods), is to check the stability efgierformance reached by FVQIT,
independently of the number of features selected.

Experiment 1: Study of Performance Using Subset Filters In the first experimental set-
ting, FVQIT method is compared with other classifiers with tijective of finding out which
classifier obtains the best performance. Thus, five wellkknmachine learning classifiers —
naive Bayes (NB), k-Nearest Neighbor (k-NN), C4.5, Suppadtor Machines (SVM), and
Multi-Layer Perceptron (MLP)— are also applied over theefifid data sets. The implementa-
tion of these methods can be found in [88], except for MLP,nelilee Matlab Neural Networks
Toolbox was used. Three filters have been chosen in ordernsidar different behaviors.
In previous works, values obtained by filters were shown tenflaenced by discretization
[18], thus in consequence we are using two discretizers +epytMinimization Discretiza-
tion (EMD) [41] and Proportional k-Interval Discretizatiq PKID) [154]— in combination
with the subset filters CFS (Correlation-based FeaturecBehg [61], Consistency-based Fil-
ter [32] and INTERACT [157], which can be found in the Wekaltdat7].
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Data set No. features Total samples
Brain [102] 12,625 21
Breast [138] 24,481 97
CNS [109] 7,129 60
Colon [5] 2,000 62
DLBCL [4] 4,026 47
GLI[63] 22,283 85
Leukemia [55] 7,129 72
Lung [56] 12,533 181
Myeloma [134] 12,625 173
Ovarian [108] 15,154 253
Prostate [130] 12,600 136
SMK [132] 19,993 187

Table 5.6: Description of the binary microarray data sets

The data sets have been divided usin@ 2or training and 13 for test. A 10-fold cross-
validation has been performed on the training sets, in daestimate the validation error to
choose a good configuration of parameters. The results oflF1&@ve been compared with
those obtained by other classifiers. Table 5.7 shows thea&tstil test errors (TE in the table)
as well as the sensitivity (Se) and specificity (Sp) rates percentage— and the number of
features (NF) selected by each method tested. Moreoveratiiéng is displayed between
parentheses. The ranking assigns a position between 1 andagh method in each data set,
taking into account the ties among them. Also, the best @btained for each data set is
emphasized in bold font. Despite having executed all sixlinations of discretizer + filter,
only the best result for each classifier in each data set isrsho

As can be seen in Table 5.7, FVQIT obtains good performancallatata sets, with an
adequate number of selected features. Specially remarleabl the results obtained on the
data sets DLBCL and Leukemia, where FVQIT classifier is thy arethod able to achieve
0% of test error. The result obtained on the Prostate datis sd¢fo important. Its test set is
unbalanced (26% of one class and 74% of the other). C4.% Baiyes and k-NN are assigning
all the samples to the majority class and SVM is assigninthalsamples to the minority class,
whereas FVQIT is able to do something different and betthickvresults in a lower test error.

In Table 5.8 the average rankings (obtained from the ramskdigplayed in Table 5.7 be-
tween parentheses) are shown. In average, the proposeddmigttiearly preferable above the
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Data set FVQIT SVM NB MLP k-NN cas
TE 0.00(1) 14.29 (4) 14.29 (4) 2857 (6) 0.00(1) 0.00(1)
Brain Se 100.00 (1) 100.00 (1) 100.00 (1) 0.00 (6) 100.00 (1) 100LpO
Sp 100.00 (1) 83.33 (4) 83.33 (4) 71.43 (6) 100.00 (1) 100190 (
NF 1 45 45 1 1 45
TE 21.05(1) 21.05(1) 26.32 (5) 21.05(1) 26.32 (5) 21.05(1)
Breast Se 75.00 (5) 83.33 (1) 83.33 (1) 83.33 (1) 83.33 (1) 66.70 (6)
Sp 85.71 (2) 71.43 (3) 57.10 (5) 71.43 (3) 57.10 (5) 100 (1)
NF 17 119 5 17 5 3
TE 25.00(1) 35.00 (3) 25.00(1) 35.00 (3) 35.00 (3) 35.00(3)
A Se 69.20 (3) 71.43 (2) 69.20 (3) 68.75 (6) 69.20 (3) 76.90 (1)
Sp 85.70 (1) 50.00 (4) 85.70 (1) 50.00 (4) 57.10 (3) 42.90 (6)
NF 4 60 4 60 4 47
TE 10.00(1) 10.00(1) 15.00 (3) 40.00 (6) 15.00 (3) 15.00 (3)
Colon Se 80.00 (4) 80.00 (4) 87.50 (1) 50.00 (6) 87.50 (1) 87.50 (1)
Sp 100.00 (1) 100.00 (1) 83.30 (3) 61.11 (6) 83.30 (3) 83.30 (3
NF 12 12 3 12 3 3
TE 0.00(1) 6.67 (2) 6.67 (2) 6.67 (2) 6.67 (2) 13.33 (6)
DLBCL Se 100.00 (1) 100.00 (1) 85.70 (4) 100.00 (1) 85.70 (4) 85470 (
Sp 100.00 (1) 88.89 (4) 100.00 (1) 88.89 (4) 100.00 (1) 87650 (
NF 36 36 36 47 36 2
TE 10.71(1) 14.29 (3) 10.71(1) 17.86 (5) 14.29 (3) 21.43 (6)
ou Se 85.71 (1) 85.00 (3) 85.71 (1) 78.26 (5) 81.82 (4) 75.00 (6)
Sp 100.00 (1) 87.50 (6) 100.00 (1) 100.00 (1) 100.00 (1) wap
NF 113 23 23 23 122 3
TE 0.00(1) 2,94 (2) 5.88 (3) 5.88 (3) 8.82 (6) 5.88 (3)
Leukemia Se 100.00 (1) 100.00 (1) 100.00 (1) 92.86 (5) 100.00 (1) oEB6
Sp 100.00 (1) 95.24 (2) 90.00 (5) 95.00 (3) 90.00 (5) 95.00 (3)
NF 2 18 18 2 1 2
TE 0.67 (2) 1.34 (4) 470 (5) 0.67 (2) 0.00(1) 18.12 (6)
Lun Se 100.00 (1) 99.26 (3) 94.80 (5) 99.26 (3) 100.00 (1) 82.80 (6
9 Sp 93.75 (4) 93.33 (5) 100.00 (1) 100.00 (1) 100.00 (1) 73630 (
NF 40 40 1 40 40 1
TE 21.05 (2) 21.05 (2) 21.05 (2) 21.05 (2) 29.82 (6) 19.30(1)
Wveloma Se 84.00 (1) 81.48 (3) 81.48 (3) 80.36 (6) 82.20 (2) 80.70 (5)
4 Sp 42.86 (1) 33.33 (2) 33.33(2) 0.00 (5) 25.00 (4) 0.00 (5)
NF 2 40 2 2 2 2
TE 0.00(1) 0.00(1) 0.00(1) 0.00(1) 0.00(1) 1.19 (6)
Ovarian Se 100.00 (1) 100.00 (1) 100.00 (1) 100.00 (1) 100.00 (1) O]
Sp 100.00 (1) 100.00 (1) 100.00 (1) 100.00 (1) 100.00 (1) am(L)
NF 3 3 3 17 3
TE 20.59(1) 73.53 (6) 26.47 (3) 2353 (2) 26.47 (3) 26.47 (3)
Prostate Se 56.25 (2) 26.47 (3) 0.00 (4) 100.00 (1) 0.00 (4) 0.00 (4)
Sp 100.00 (1) 0.00 (6) 100.00 (1) 75.76 (5) 100.00 (1) 100190 (
NF 64 3 2 3 2 2
TE 25.81(1) 33.87 (3) 40.32 (6) 32.26 (2) 33.87 (3) 33.87 (3)
SMK Se 78.79 (2) 71.88 (4) 67.85 (6) 89.47 (1) 75.00 (3) 68.42 (5)
Sp 68.97 (1) 60.00 (3) 52.94 (6) 58.14 (5) 58.82 (4) 62.50 (2)
NF 21 3 3 21 21 3

Table 5.7: Best estimated test errors (TE), sensitivity),(Specificity (Sp) and number of
features selected (NF). The rankings are displayed betpaemtheses
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other methods studied. It is shown that the proposed methtiteimost specific (it correctly
identifies most of the negatives) and the most sensitive(iectly identifies most of the pos-
itives). Therefore, in light of the above, we can concludat fRVQIT classifier is suitable to
be combined with discretizers and filters to deal with protdevith a much higher number of
features than instances, such as DNA microarray gene-ssipreproblems.

Measure FVQIT SVM NB MLP k-NN C4.5

TE 117 267 3.00 292 3.08 3.50
Sensitivity 1.92 225 258 350 217 4.17
Specificity 1.33 342 258 3.67 292 3.00

Table 5.8: Average rankings of error, sensitivity and sipety for all data sets

Experiment 2: Study of Performance Stability Using Rankers When using feature selec-
tion, sometimes it is difficult to compare performance betwelassifiers because there are
two variables involved: test error and number of featurdéscsed. Depending on the applica-
tion, sometimes it may be desirable to choose the minimubetes regardless the number of
features, but sometimes a somewhat larger error may betadcigpthe interest of a smaller
number of features. In this context, the aim of the secon@®@xnt is to check the stability
of the performance reached by FVQIT classification methoépendently of the number of
features selected. Therefore, in this case, it is advisabidilize rankers, so as to compare
the performance of the classifiers in a wide range of seldeggdres. Four rankers have been
chosen in order to consider different behaviors. The rankethods we have chosen are the
following, the implementation of which can be found in [8&jisher Score [37], Chi-square
[89], Information Gain [29], and MRMR (Minimal Redundancyakmal Relevance) [35].

Since ranker methods provide a sorted list of features dowpto a score, there is a deci-
sion to make regarding the number of features to be sele&tedf this, in this experiment we
are going to test the classifiers with different numbers afufees. Thus, we are going to select
the first 1, 3, 5, 10, 15, 20, 30, 40, 50 and 100 features fronsahted list of features that the
rankers provide.

First, the overall results of the comparative study for edata set are presented and then
we focus on the overall results for each feature number. Asittmber of experimental results
is very large (all the combinations of four rankers, sevesgifiers and ten different feature
numbers over twelve data sets account for 3360 experimesaisle summary of results needs
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to be used. In a similar way as in the first part of the expertalesection, the methods are
sorted in a table using a ranking in which ties have been takerconsideration. The average
rankings of test error, sensitivity and specificity for albive data sets are represented on Table
5.9. As can be seen, FVQIT method is the classifier that abtham best average performance
for all data sets, as well as the best sensitivity and spigifldowever, FVQIT does not obtain
the best performance in every data set. Since these datarsesshard challenge, obtaining
the best result in average is an important achievement f@IfF\Vespecially when comparing

it with popular and well-tested methods such as the onesareghlin this work.

Data set FVQIT SVM NB MLP k-NN C4.5
TE Se Sp|TE Se Sp|TE Se Sp|TE Se Sp|TE Se Sp|TE Se Sp
Brain 21 14 26|23 24 25/29 33 25/37 34 32|39 46 39/13 35 10
Breast | 23 2.6 24|24 26 2833 37 37,40 44 39|35 38 36/29 28 29
CNS 16 22 3029 54 1046 38 49|33 35 3924 28 35/23 26 35
Colon |20 33 21/60 10 6.0/ 14 26 1420 30 2335 44 36/20 31 20
DLBCL |14 10 1921 11 23|17 17 17|14 17 1427 20 33|36 42 36
GLlI 11 14 2260 6.0 10/15 18 29|22 27 2520 24 28|45 45 59
Leukemial 1.3 23 13|60 1.0 6018 33 1433 25 3812 21 16(42 56 39
Lung 19 23 26|45 60 10/20 12 29/24 21 31|23 18 32|52 50 59
Myeloma| 3.9 25 34|15 33 21{53 55 5316 35 26|45 31 4325 26 25
Ovarian | 22 13 21|11 12 1.0[38 20 36|15 15 12(47 23 47|22 20 15
Prostate| 1.6 2.5 19|31 13 39/ 49 48 3419 35 24|18 35 26|40 49 29
SMK 37 38 39|17 27 2125 30 3040 24 43|34 41 3839 48 37
Average | 2.09 2.22 2.453.30 2.83 2.642.98 3.06 3.062.61 2.85 2.8§2.99 3.07 3.413.22 3.80 3.28

Table 5.9: Average ranking of test error (TE), sensitiviBe) and specificity (Sp) for all data
sets

In a second step, the results in function of the number otifeatare analyzed. Again, the
same processing is made, in such a way that the average gaofkiast error, sensitivity and
specificity for all features are represented in Table 5.10.

On Table 5.10 can be seen how FVQIT classifier outperformsttier methods for all fea-
ture numbers except for 100 features, where it obtains ttanskbest result, behind of MLP. In
light of the above it can be concluded that FVQIT is the maatlst classifier because it obtains
good results both with few and many features, in contrasgt wfiher classifiers. For instance,
k-NN performs correctly between 15 and 50 features but isdus obtain good results with
smaller numbers (less than 15) and higher ones (100). Orthiee lnand, C4.5 performs ade-
quately with few features but its performance decreases wienumber of features increases.
Last, MLP shows stable behavior for all the feature numbathqugh it is better for few fea-
tures), but, in average, FVQIT performs better. BesidesQHVmethod is the most sensitive
and specific in average. For further details, please ref@rid).
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No. features FVQIT SVM NB MLP k-NN C4.5
TE Se Sp|TE Se Sp|TE Se Sp|TE Se Sp|TE Se Sp|TE Se Sp
1 17 20 18|29 27 2424 21 26|19 27 2736 40 37/23 34 21
3 20 31 25029 29 22/28 28 2823 27 24|36 29 33|26 36 29
5 23 19 26|33 33 31/27 33 28|24 34 24|36 38 3824 33 28
10 23 21 27/33 30 24/30 29 33/28 31 3332 34 39|32 33 34
15 23 28 25/33 29 2532 33 34/28 27 32|31 27 3834 32 36
20 22 22 26/38 28 3230 33 28/30 32 3228 28 3331 38 31
30 18 18 2233 26 2733 38 35/ 32 24 3326 30 3237 40 37
40 22 24 23|34 28 2829 28 30|27 27 32|23 27 28|35 42 33
50 18 14 26|32 27 25/32 31 32,28 33 32{21 28 26/42 50 41
100 23 25 28|35 28 28/33 34 34/21 25 22|31 28 36|38 43 39
Average |2.09 2.22 2.4%3.30 2.83 2.642.98 3.06 3.062.61 2.85 2.842.99 3.08 3.413.22 3.80 3.28

Table 5.10: Average ranking of test error (TE), sensiti{iBe) and specificity (Sp) for all
features

5.3 Extension for the Multiclass Problem

In this section, the previous binary FVQIT algorithm is exted to deal with multiclass sce-
narios. The training process of multiclass FVQIT is veryignmto the binary one. In the first
stage of the training process of the binary version, thessloslass to each node in each itera-
tion repelled the node and the other class attracted it.dmrthlticlass version, for each node,
the two nearest classes are chosen using the same k-NN (ksti&&eighbor) rule of thumb.
From among them, the closest one repels the node; the selomedicone attracts it (Alg. 4);
the other classes have no effect. The rest of the trainingefitst stage is the same as in
binary FVQIT, employing the two closest classes in orderdoeggate the crossed information
potentials (see Sect. 5.2).

Algorithm 4 Mechanism of selection of the classes that attract and repel
Inputs: Training set, number of classes, distance from aade to each data point, number of

neighbors.

1. For each nodwey;,

(a) Sort the data points by increasing Euclidean distantieetoode.

(b) Take the classes of theclosest points and calculate its mode. The mode will be
the repelling class for that node.

(c) Take the classes of tHeclosest points to each node that do not belong to the
repelling class and calculate its mode. The mode will be thhading class for that
node.
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In the second stage of the training of binary FVQIT, a onetayeural network was trained
in each local model. In the multiclass version, instead sif ine neural network, we will have
several one-layer neural networks in each local model, eAthem associated with one of
the classes of the problem. In each local model there cahaxariable number of one-layer
neural networks according to the number of classes of the idathat model. Por instance,
if a local model contains one hundred data which belong to &asses, it will have four
associated networks. If another model has two hundred dagaified in five classes, it will
have five networks. Thereafter, the training is performdidfiong a one-versus-rest strategy,
that is to say, each neural network is trained to recogniee#tterns of “its” class against the
points of the rest of classes.

Once the model is trained, when a new pattern needs to béfigldss binary FVQIT the
pattern was assigned to the nearest local model (usingdeaclidistance) and the associated
network classified it into one of the two classes. In mulsl&VQIT, the pattern is assigned
to a local model in the same manner. However, after that, tityputs of the one-layer neural
networks associated to this local model are evaluated.

The pattern is classified in the class associated to the nettiat produces the highest
output € = arg maxnet;).
i

5.3.1 Results of the Multiclass Version

The multiclass version of FVQIT has been applied over séver world data sets. In the

following sections, two experimental studies are desdrildéirst, the study over several data
sets from the UCI Machine Learning Repository [8]. Secomd|, analogously to the previous
binary version, the study over several microarray geneesgion data sets.

5.3.1.1 Real Multiclass Data Sets from the UCI Repository

In this subsection, a comparative study in terms of the test between the proposed classifier
and other representative techniques of the field is perfdrnighese techniques are: k-NN,
Naive Bayes, C4.5, MLP, SVM and Bagging C4.5. The study useeral benchmark data
sets, obtained from the UCI Machine Learning RepositoryJ8lich are shown, along with a
brief description of their main characteristics, on TablELS These data sets have been selected
with the aim of achieving variety of the number of sampleatdees and classes.
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Number Number Number

Data set

of samples of features of classes
Iris 150 4 3
Wine 178 13 3
Glass Identification 214 9 6
Vowel Recognition 990 10 11
Image Segmentation 2310 18 7
Landstat Satellite 6435 36 6
Letter Recognition 20000 16 26

Table 5.11: Data sets employed in the first experiment of thikictass version

The methodology utilized for the comparative study is kHeld cross-validation. In this
work, k=10 is taken, as recommended by [143]. However, some of treiaesdts are already
split up in training and test set. In these cases (Vowel Ratiog and Landstat Satellite data
sets) this approach is respected anckifi@ld cross-validation technigue is not used so as to be
able to compare our results with those of other authors. Bhnanpeters for SVM and FVQIT
have been tuned up.

Table 5.12 shows the errors committed, in percentage, Hy eathod on each data set.
Best results are enhanced in bold font. The last column skiwevaverage error committed by
each method in the experimental study. In Table 5.13, it @aalserved the ranking for each
method on each comparative of the data sets. The last col@ithe table shows the average
position of each method in the ranking. In these tables caseba how FVQIT achieves the
best test error in average and obtains the best averagegaskiwell.

Classifier Iris  Wine Glass Vowel Image Landstat Letter Agera

FVQIT 1.33 055 26.65 46.10 4.07 11.45 10.16 14.33
Bagging 4.67 3.33 28.82 46.54 2.38 12.90 5.85 14.93
SVM 267 056 28.40 43.94 3.25 8.55 17.68 15.01
k-NN 401 3.33 3223 4935 3.38 11.50 3.90 15.39
MLP 333 225 30.84 5108 394 12.90 17.41  17.39
C4.5 533 8.99 3459 5476 2.94 15.30 1194 19.12
Naive Bayes 5.33 2.81 50.04 48.27 19.70 2050 3591 26.08

Table 5.12: Error committed (%) by each method on each beadhdata set
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Classifier Iris  Wine Glass Vowel Image Landstat Letter Agera
FVQIT Ist  1st 1st  2nd 6th 2nd 3rd 2.29
SVM 2nd  2nd 2nd  1st 3rd 1st 6th 2.43
Bagging 5th  6th 3rd 3rd  1st 4th 2nd 3.43
k-nn 4th  5th 5th 5th 4th 3rd 1st 3.86
MLP 3rd  3rd 4th 6th 5th 4th 5th 4.29
C4.5 6th  7th 6th 7th 2nd 6th 4th 5.43
Naive Bayes 6th  4th 7th 4th 7th 7th 7th 6.00

Table 5.13: Ranking for each method on the comparative stidgnchmark data sets

5.3.1.2 Experimental Study over Multiclass Microarray Gere Expression

In this study, five multiclass DNA microarray data sets haserbchosen. The main character-
istics of these data sets are shown on Table 5.14. Three of (B&L-SUB, GLA-BRA and
TOX) have been obtained from the web site of feature selecidhe Arizona State University
[88]. The remaining data sets (GCM and Lymphoma) are aJailatthe Broad Institute Can-
cer Program Data Sets Repository [67]. The methods compated\VQIT are the following:
MLP, SVM —note that a one-versus-all strategy is used—, k-NBR, and C4.5.

Number  Number Number
Data set
of samples of features of classes

CLL-SUB 74 11,340 3
GCM 144 16,063 14
GLA-BRA 120 49,151 4
Lymphoma 64 4,026 9

TOX 114 5,748 4

Table 5.14: Multiclass DNA microarray data sets employeth@mexperiment

As can be seen, the multiclass DNA microarray data sets a¢és@ept many more features
than instances. Therefore, again, feature selection migtae utilized. For this experiment,
the INTERACT filter [157] is applied to those data sets as aqeessing step in order to make
them manageable. This filter has been previously used wittess on binary microarray data
sets [111]. The number of features selected for each datasdte seen on Table 5.15.

76



5.4 Summary

Data set No. features
CLL-SUB 61

GCM 78
GLA-BRA 150
Lymphoma 160
TOX 80

Table 5.15: Number of features selected by the INTERACTrfilte

The data sets have been divided usin@ 2or training and 13 for testing. Table 5.16
shows the estimated test errors (in percentage) for eashifoda and data set.

Classifier CLL-SUB GCM GLA-BRA Lymphoma TOX Average

FVQIT 21.62 45.65 33.33 12.50 12.28 26.41
K-NN 29.73 54.35 41.67 15.63 22.81 32.84
Naive Bayes 27.03 50.00 36.67 40.63 26.32 36.13
SVM 37.84 73.91 48.33 25.00 15.79  40.17
MLP 45.95 39.13 35.00 43.75 38.60 40.49
C4.5 43.24 63.04 55.00 46.88 52.63 52.16

Table 5.16: Error committed (%) by each method on each nlagicDNA microarray data set

A 10-fold cross-validation is performed upon the trainiragssin order to choose a good
configuration of parameters. The kin the k-NN method ranges fl to 5. The SVM utilizes a
Radial Basis Function kernel and its parame@endy range from 1 to 1000 and QL to 40,
respectively. The MLP (Multi-Layer Perceptron) has onealeia layer which contains between
3 and 50 neurons. FVQIT utilizes between 10 and 40 nodes,téfdtions, initialn between
1 and 5 and) decrement between®and 099.

On Table 5.16 can be seen that FVQIT obtains the best tesséméour out of five data
sets. On table 5.17 a ranking of the performance resultdlfdveacompared methods is shown.
The ranking assigns a position between 1 and 6 to each matheddh data set. The proposed
method is clearly preferable, as it obtains an average mgnidi 1.2 opposed to the ranking of
3.2 of the second classified.
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Classifier ~ CLL-SUB GCM GLA-BRA Lymphoma TOX Average

FVQIT 1st 2nd 1st 1st 1st 1.2
Naive Bayes 2nd 3rd 3rd 4th 4th 3.2
k-NN 3rd 4th 4th 2nd 3rd 3.2
MLP 6th 1st 2nd 5th 5th 3.8
SVM 4th 6th 5th 3rd 2nd 4
C4.5 5th 5th 6th 6th 6th 5.6

Table 5.17: Ranking for each method on the comparative stfidyulticlass DNA microarray
data sets

5.4 Summary

In this chapter a local classifier based on ITL is presentede dlassifier is able to obtain
complex classification models via a two-step process thstd@fines local models by means of
a modified clustering algorithm and, subsequently, sewaradlayer neural networks, assigned
to the local models, construct a piecewise borderline betvedasses.

Two versions of the method are detailed: binary (two-clasblpms) and multiclass. Using
the divide-and-conquer approach, it has been shown thatrdpmsed method is able to suc-
cessfully classify complex and unbalanced data sets, higbrasional in data samples and/or
features, achieving good average results. Several expetinhave been performed over the
complex domains of intrusion detection and microarray gpeession.

The intrusion detection data set employed is KDD Cup 99. \tei/ large (five million
samples), highly unbalanced and has forty one features.mids important contribution of
the method is the considerable reduction in the number g fabsitives (an important measure
in this field of application), with a drastic reduction in thember of features used (6 vs 41) in
comparison with the KDD Winner and the results obtained Igoauthors.

On the other hand, microarray data sets have a large amotedtafes (thousands or tens
of thousands) but very few samples (tens or hundreds), whialdifficult challenge for most
machine learning methods. In this case, the method has lwepated with several state-
of-the-art classifiers, achieving the best average valfied the performance measurements
used, exhibiting an important difference with the seconst beethod, both in the binary and
the multiclass experiments. Furthermore, as differentufeaselection methods can select
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different features, the stability of the proposed methaldiao been tested for different ranges
of features, again showing the best behavior compared hétlother classifiers.
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CHAPTER 6

Conclusions

In this chapter, on Sect. 6.1, the general conclusions sflissertation are presented. On Sect.
6.2, the publications in conferences and journals are ptede

6.1 Contributions

This dissertation discusses the application of infornmati@ory (IT) and information theoretic
learning (ITL) to classification and feature selection. Tikes algorithms proposed are centered
in two aspects of machine learning: feature selection amsbiflcation, with the common aim
of confronting the diversity and heterogeneity of data.s&th that goal in mind, diversity
in the cost of the features and heterogeneity in the sampdetsemted by the feature selection
methods proposed. Specifically, two new algorithms fordesatelection are developed. The
first one takes into account the cost of each feature —begisleslevance—. The second
algorithm makes use of the concept of ensemble, quite conforatiassification scenarios,
but very little explored in the literature of feature seieat On the other hand, IT and ITL
concepts can be employed as an alternative error functims, allowing the exploration of
another not very well studied field in the literature: thedlomodeling approach. Specifically,
a new algorithm for classification is developed. This algponi is based on the combination
of neural networks by means of local modeling and technidpasgd on ITL, allowing for the
treatment of complex and diverse data sets.

In light of the above, the conclusions obtained are the ahg:

e Not only features have different relevance/redundanch etiters and the output class,
but they may also have a different importance regardingn@aical, risk, computa-
tional, etc) cost. This last fact has not been explored irsthientific literature. In this
thesis, a new cost-based feature selection method is prdpdse objective is solving
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feature selection problems where reducing costs is impbrihe approach consists of
adding a new term to the evaluation function of MRMR —an imfation theory based

feature selection method— so that it is possible to reacldetoff between the filter

metric and the cost associated to the selected featureslt®Rkésplay that the approach
is sound and allows the user to reduce the cost without camipitag the classification

error significantly, which can be useful in fields such as mediiagnosis or real-time

applications.

e Diversity and heterogeneity in data sets prevents the udeFS of having a “best”
method, and thus it can be hard to cope with all available ¢melect the most ad-
equate for each scenario. Trying to solve this problem, ig tthesis an ensemble for
feature selection is designed. Two ways of building ensemhble explored: (a) N se-
lections using the same feature selection algorithm, udiffigrent training data and (b)
N selections using a variety of different feature selectitgorithms, all using the same
training data. The particularity of the proposed ensembliat it works with ordered
rankings of features, which is a natural approach for feasetection methods. The indi-
vidual rankings obtained for each of the packages were ammhising ranking function
learning, Ranking SVM in particular. Option (a) improveaiting times over the indi-
vidual feature selection methods, while maintaining exrdption (b) obtains the best
average results regardless of the data set and threshalglerch

¢ Finally, the complexity and heterogeneity of data sets makdifficult for a global ma-

chine learning approach to work properly. In this thesisew tocal classifier based on
ITL is presented. The classifier is able to obtain complessifecation models via a
two-step process. This process first defines local modelsdanmof a modified clus-
tering algorithm and, second, trains several one-layeraheetworks, assigned to the
local models, in order to construct a piecewise borderligsvben classes. It has been
shown that the proposed method is able to successfullyifsl@ssnplex and unbalanced
data sets, high dimensional in data samples and/or featrhi®gving good average re-
sults. Several experiments have been performed over thplerrdomains of intrusion
detection and microarray gene expression.

The following lines of research are proposed as future work:

e Extend the feature selection cost framework developed RMR to other feature se-
lection methods.

e Experiment with other methods of ranking function learnfog ensembles of feature
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selection, in such a way that the ensemble gets more diyersit is able to handle better
different types of data sets.

e Automatic estimation of parameters for FVQIT.

e Employ other algorithms than the one-layer neural netwarktfie local models of
FVQIT.
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APPENDIX I -

Summary in English

Machine learning is the area of artificial intelligence awdhputer science that studies algo-
rithms that can learn from data, make predictions, and dpve¢éhaviors based on examples.
The types of problems machine learning can solve are [15]cléssification, where the al-
gorithm must assign unseen inputs to a series of classesedtdssion, where the focus is
predicting a continuous output; (c) clustering, where tspuust be classified into unknown
groups, unlike classification; (d) density estimation, vehlhe goal is finding the distribution
of a set of inputs; and (e) dimensionality reduction, wheguts are simplified by mapping
them to lower dimensional spaces. These tasks can also dsifield, according to the nature
of available learning data, in (a) supervised learning,relaeset of known patterns are used for
training; (b) unsupervised learning, where the objectiveiunravel the underlying similari-
ties between data; and (c) reinforcement learning, wherekironment provides information
about the goodness of the learning.

In supervised classification, the problem in which this ihesfocused, the mean squared
error (MSE) is the measure that is typically utilized for lexaing the estimations made by the
algorithms. However, the use of cost functions based omskeocder moments (MSE) suffers
from the limitation of the inherent Gaussian hypothesighis dissertation, this impediment is
avoided by using a computationally-efficient model, basethformation-theoretic descriptors
of entropy, divergence and mutual information, combinetthwon-parametric PDF estimators.
This brings robustness and generality to the cost functiims model is called Information
Theoretic Learning (ITL) [116, 115]. As entropy is definedths uncertainty of a random
variable, it is natural to use it as a tool for applicationseventhe data are incomplete or noisy.

The use of information theory (IT) and ITL in this thesis iofald: (1) On the one hand, IT
is used for the preprocessing step of a data mining pipetpecifically, two new algorithms
for feature selection are developed. The first one takesaotount the cost (computational,
economic, etc.) of each feature —besides its relevance—is fabt is important due to the
possibility of obtaining similar or better performancesii@heducing the associated cost. The
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second algorithm makes use of the concept of ensemble, auritenon for classification sce-
narios, but very little explored in the literature of featwselection. In this case, the aim is
obtaining more stable results than using a single featleetsen method and also improving
the computational efficiency of the training process by mseaindistributed computing. (2)
On the other hand, IT and ITL concepts can be employed asemaiive error function, thus
allowing the exploration of another not very well studieddim the literature: the local mod-
eling approach. Specifically, a new algorithm for classiftrais developed. This algorithm is
based on the combination of neural networks by means of foodkling and techniques based
onITL.

I.1 Cost Feature Selection Based on Information Theory

The first part of this dissertation presents a new methoddst-lbased feature selection. Over
the last few years, the dimensionality of data sets involnedhta mining applications has in-
creased dramatically. In this situation, feature seledtiecomes indispensable as it allows for
dimensionality reduction and relevance detection. Théhoteproposed in this part broadens
the scope of feature selection by taking into considerationonly the relevance of the fea-
tures but also their associated costs. Despite the prewitemmpts in classification and feature
extraction, to the best knowledge of the author, there aeafew attempts to deal with this
issue in feature selection. A new framework is proposedciwhbnsists of adding a new term
to the evaluation function of a filter method called MinimadRindancy Maximal Relevance
(mRMR), so that cost is taken into account. MRMR is one of testremployed multivariate
ranker filters, due to obtaining good results in several siel@the evaluation function com-
bines two constraints (as the name of the method indicate}imal relevance and minimal
redundancy.

In light of the above, the novelty of this approach lies intttiee research in cost-based
selection is extremely scarce in the literature. As a maitdact, no cost methods can be
found in the most popular machine learning and data miniotstd=or instance, in Weka we
can only find some methods that address the problem of castiatd to the instances (not to
the features), and they were incorporated in the lateshseleRapidMiner does in fact include
some methods that take cost into account, but they are doifes One of them selects the
attributes that have a cost value which satisfies a givenitonénd another one just selects the
k attributes with the lower cost. Therefore, the cost-basedlufe selection method proposed
in this thesis intends to cover this necessity. The behafithe proposed method is tested
on 17 heterogeneous classification data sets, employing@o8Wector Machine (SVM) as
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Learning

a classifier. The results of the experimental study showttteaapproach is sound and that it
allows the user to reduce the cost without compromising kssdication error.

.2 Ensemble Method for Feature Selection Based on Ranking
Learning

The second part introduces a new ensemble for feature iseletrt the last few years, ensem-
ble learning has been the focus of much attention mainlyassification tasks, based on the
assumption that combining the output of multiple expertseiger than the output of any single
expert. This idea of ensemble learning can be adapted faréeaelection, in which different
feature selection algorithms act as different expertshin part, two problems are addressed:
(1) the non-existence of a “best” method, which causes Heatiser has to search and choose
a specific method for each problem; (2) the heterogeneityata gets, which makes it difficult
to obtain good results with one single method.

Machine learning methods have come to be a necessity for m@mpanies, in order to
obtain useful information and knowledge from their inciegly massive databases. Besides,
real life data sets come in diverse flavors and sizes, andesorthture imposes several sub-
stantial restrictions for both learning models and feaseiection algorithms. Data sets may
be very large in samples and number of features and, alge, thight be problems with redun-
dant, noisy, multivariate and non-linear scenarios. Thusst methods alone are not capable
of confronting these problems, and something like “the bBestiure selection method” simply
does not exist, making it difficult for users to select onehndtover another. In order to make
a correct choice, a user not only needs to know the domainamdlthe characteristics of each
data set, but also is expected to understand technicalgddefaavailable algorithms. As ex-
perts of this type are not universally available, more dgendly methods are necessary. In
this sense, a possible way to confront this situation is arsensemble of feature selection
algorithms, which is the idea proposed in this chapter. @palty, methods that follow the
ranking approach are used, i.e., they return an orderednguok all the features. Notice that
methods that return a ranking of features are less computly expensive than those which
return a subset of selected features, and this is of vitabitapce when the current tendency is
toward Big Data problems. Then, the outputs of all the coreptsof the ensemble have to be
combined in order to produce a common final output. The enkeprbposed in this chapter
combines these rankings using Ranking SVM, which is a SVEktanethod for learning of
ranking functions.
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Two ways of building ensembles are explored: (a) N selestiagsing the same feature
selection algorithm, using different training data and\{t®elections using a variety of different
feature selection algorithms, all using the same trainiag.dThe adequacy of the ensemble
is tested using SVM as a classifier. Both options are able taimigood results. Option (a)
improves training times over the individual feature setacmethods, while maintaining errors.
Option (b) obtains the best average results regardles® afdta set and thresholds chosen.

.3 Local Method for Classification Based on Information Theo-
retic Learning

The third part is dedicated to the development of a new loleasdication method, named
Frontier Vector Quantization based on KFVQIT). The general aim, however, is the same:
trying to confront diversity in data sets through the agdlimn of new ideas based on IT. The
proposed algorithm performs classification based on thebgmtion of neural networks by
means of local modeling and techniques based on ITL. Finstodified ITL clustering algo-
rithm is applied in order to identify the local models. Sedosince the problem is simplified
by splitting it into smaller parts, a simple but effective de the one-layer neural network, is
applied. This approach is related to the one followed in tie®ipus chapter, which dealt with
ensemble learning applied to feature selection.

More specifically, the training algorithm for the model wsibn two stages:

1. A set of nodes are placed on the frontiers between classeg a modified clustering
algorithm based on ITL. Each of these nodes defines a loca¢éimdte algorithm min-
imizes the energy function that calculates the divergemtesden the Parzen estimator
of the distribution of data points and the estimator of thariiution of the nodes. Un-
der this premise, a physical interpretation can be madeh Bata points and nodes
are considered two kinds of particles with a potential fieddagiated. These fields in-
duce repulsive and attractive interactions between pestidepending on its sign. In the
original VQIT algorithm, data and nodes had different sighsFVQIT, data particles
belonging to different classes have different signs. Ia thanner, a series of forces con-
verge upon each node. Training patterns of a class exertrantate force on a node and
training patterns of the other class induce a repulsivesfortit. Which class attracts and
which class repels is decided using the Euclidean distanddc-aNN (k-Nearest Neigh-
bor) [28] as a rule of thumb. The closest class to the nodéett&dwn class’) repels it
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and the furthest one attracts it. These roles alternategitine iterations as nodes move.
Moreover, there exists a third force of repulsion betweemibdes, which favors a better
distribution, avoiding the accumulation of several nodgba same region.

2. Several one-layer neural networks, associated witletloesl models, are trained to lo-
cally classify the points in its proximity. Since each looadel covers the closest points
to the position of its associated node, the input space iptely filled, as input data
are always assigned to a local model. In this second staggoth is to construct a clas-
sifier for each local model. This classifier will be in chardeclkassifying points in the
region assigned to its local model and will be trained onlthwie points of the training
set in this region. As local modeling algorithms may suffemi temporal efficiency
problems, caused by the process of training several loaasifiers, we have decided to
use a lightweight classifier, the one-layer neural netwdtktiraining algorithm allows
rapid supervised training. The key idea is to measure tloe prior to the nonlinear acti-
vation functions. In this manner, the minimization basedrenMSE can be rewritten in
equivalent fashion in terms of the error committed priortte application of the activa-
tion function, which produces a system of equations Wwithl equations and unknowns,
beingl the dimension of the input. This kind of systems can be sobwedputationally
with a complexity ofO(M?), whereM = | + 1 is the number of weights of the network.
Thus, it requires much less computational resources ttzesicl methods.

The FVQIT method is successfully applied to problems witlrgé amount of instances
and high dimension like intrusion detection and microamgaye expression. The intrusion
detection data set employed is KDD Cup 99. It is very larges(fivillion samples), highly
unbalanced and has forty one features. The most importattilmation of the method is the
considerable reduction in the number of false positivesirfgrortant measure in this field of
application), with a drastic reduction in the number of teas used (6 vs 41), in comparison
with results obtained by other authors.

Microarray gene expression is a technology that allows Kanénation of tens of thou-
sands of genes at a time. For this reason, manual obserigtiohfeasible and machine learn-
ing methods are suitable to face these types of data. Spdlgifisince the number of genes
is very high, feature selection methods have proven vadutbldeal with these unbalanced
—-high dimensionality and low cardinality— data sets. ph&posed classifier is employed to
classify twelve DNA gene expression microarray data sethffefrent kinds of cancer. A com-
parative study with other well-known classifiers is perfedn The proposed approach shows
competitive results outperforming all other classifiers.
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.4 Structure

This thesis consists of the following chapters:

1. Chapter 1 presents the introduction, objectives, andtstre of the thesis.

2. Chapter 2 introduces the domain of the research: inféomaleory, information theo-
retic learning, and its applications in feature selectiod elassification.

3. Chapter 3 describes a new cost-based feature selectibiodne

4. Chapter 4 introduces a new ensemble method for featueet®el, based in ranking
learning.

5. Chapter 5 presents a new classification method based @onhgnation of neural net-
works by means of Information Theoretic Learning tools.

6. Chapter 6 summarizes the obtained contributions andusions and the produced pub-
lications.

1.5 Objectives

The objectives for each of the three main parts of this thergighe following:

1. Cost-based feature selection.
e Solve problems where not only it is interesting to minimize tlassification error,
but also to reduce costs that may be associated to inputésatu

e Obtain a trade-off between a feature selection metric anrdctst associated to
the features, in order to select relevant features with adssociated cost, while
keeping the classification accuracy.

2. Ensemble learning for feature selection.

e Combine ordered rankings of features which are obtainad frase selectors.

e Achieve an improvement in the overall computational perfance of the feature
selection process, while maintaining the classificaticcugacy.
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¢ Release the user from the task of deciding which featuret@emethod is the
most appropriate, while maintaining the classificatioruaacy.

3. Local classification based on information theoreticraar.

e Build complex classification models for two-class and nalds problems. Those
models are composed of several simpler neural network sadels.

e Achieve an improvement of classification performance ohpezblems.

.6 Conclusions

The conclusions obtained are the following:

e Not only features have different relevance/redundanch eitters and the output class,
but they may also have a different importance regardingn@uical, risk, computa-
tional, etc) cost. This last fact has not been explored irsthientific literature. In this
thesis, a new cost-based feature selection method is @dpd$e objective is solving
feature selection problems where reducing costs is impbrihe approach consists of
adding a new term to the evaluation function of mMRMR —an imfation theory based
feature selection method— so that it is possible to reacldetoff between the filter
metric and the cost associated to the selected featureslt®Réisplay that the approach
is sound and allows the user to reduce the cost without camipitag the classification
error significantly, which can be useful in fields such as madiliagnosis or real-time
applications.

¢ Diversity and heterogeneity in data sets prevents the wfeFES of having a “best”
method, and thus it can be hard to cope with all available ¢me®lect the most ad-
equate for each scenario. Trying to solve this problem, is tiiesis an ensemble for
feature selection is designed. Two ways of building ensemhble explored: (a) N se-
lections using the same feature selection algorithm, udiffigrent training data and (b)
N selections using a variety of different feature selectitorithms, all using the same
training data. The particularity of the proposed ensemblinat it works with ordered
rankings of features, which is a natural approach for feasetection methods. The indi-
vidual rankings obtained for each of the packages were aoedhising ranking function
learning, Ranking SVM in particular. Option (a) improveaiting times over the indi-
vidual feature selection methods, while maintaining exrddption (b) obtains the best
average results regardless of the data set and threshalgerch
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¢ Finally, the complexity and heterogeneity of data sets méldifficult for a global clas-

sification approach to work properly. In this thesis, a negalalassifier based on ITL
is presented. The classifier is able to obtain complex ¢lesson models via a two-step
process. This process first defines local models by means ofidied clustering algo-
rithm and, second, trains several one-layer neural nesyadsigned to the local models,
in order to construct a piecewise borderline between ctadsbas been shown that the
proposed method is able to successfully classify complexatbalanced data sets, high
dimensional in data samples and/or features, achieving gwerage results. Several
experiments have been performed over the complex domaiingéragion detection and
microarray gene expression.

.7 Future work

The following lines of research are proposed as future work:
e Extend the feature selection cost framework developed RMR to other feature se-
lection methods.

e Experiment with other methods of ranking function learnfog ensembles of feature
selection, in such a way that the ensemble gets more diyenrsit is able to handle better
different types of data sets.

e Automatic estimation of parameters for FVQIT.

e Employ other algorithms than the one-layer neural netwarkthfie local models of
FVQIT.

.8 Publications

As a consequence of the research performed in this thesifgltbwing publications have been
produced.
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Resumen en castellano

El aprendizaje automatico es el area de la inteligentifical y de la computacion que estudia
algoritmos que pueden aprender a partir de datos, hacacgimues y desarrollar comporta-
mientos basados en ejemplos. Los tipos de problemas queegldigaje automatico puede
resolver son [15]: (a) clasificacion, donde el algoritmbelasignar nuevas entradas a una serie
de clases; (b) regresion, donde el objetivo es predecirsalida continua; (c) agrupamiento
(clustering, donde las entradas deben ser clasificadas en grupos destas; al contrario
gue clasificacion; (d) estimacion de densidad, donde jetieb es encontrar la distribucion
de un conjunto de entradas y (e) reduccion de la dimendimge las entradas se simplifican
mediante el mapeo a espacios de menor dimension. Estas faweden también ser clasifi-
cadas, de acuerdo a la naturaleza de los datos de aprertlgagaibles, en (a) aprendizaje
supervisado, donde un conjunto de patrones conocidos I ytara el entrenamiento; (b)
aprendizaje no supervisado, donde el objetivo es desantlas similitudes subyacentes entre
datos y (c) aprendizaje por refuerzo, donde es el entorngegpopporciona informacion sobre
la efectividad del aprendizaje.

En la clasificacion supervisada, el problema en el que sescesta tesis, el error cuadratico
medio (ECM) es la medida que se utiliza tipicamente parawrios estimadores construidos
por los algoritmos. Sin embargo, el uso de funciones de tastedas en momentos de segundo
orden (ECM) sufre de la limitacion de la hipbtesis gaussiaherente. En este trabajo, este
impedimento se evita usando un modelo computacionalméntente, basado en descriptores
de la entropia, divergencia e informacion mutua de &edei la informacion, combinados con
estimadores no paramétricos de la funcion de densidadothalplidad. Esto aporta robustez
y generalidad a la funcibn de coste. Este modelo se dendmfimanation Theoretic Learning
(ITL) [116, 115]. Como la entropia se define como la incentidbre de una variable aleatoria,
es natural utilizarla como una herramienta para aplicesialonde los datos son incompletos
0 presentan ruido.

El uso de teoria de la informacion (IT) e ITL en esta tesislessglosa en dos partes: (1)
en primer lugar, IT se utiliza para la fase de preprocesadpedificamente, se desarrollan
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dos nuevos algoritmos para seleccibn de caracteristtdg®imero tiene en cuenta el coste
(computacional, econdmico, etc.) de cada caractaxifidemas de su relevancia). Este detalle
es importante debido a la posibilidad de obtener rendimgesimilares o mejores mientras se
reduce el coste asociado. El segundo algoritmo hace usmdetpto deensemblgbastante
com(n en escenarios de clasificacion, pero muy poco equoen la literatura de seleccion
de caracteristicas. En este caso, el objetivo es obtegeltagos mas estables que los que
se obtienen utilizando un método Unico de seleccion dactaxisticas y también mejorar la
eficiencia computacional del proceso de entrenamiento pdiovle computacion distribuida.
(2) Por otra parte, los conceptos de IT e ITL se pueden utiisao una funcion de error
alternativa, permitiendo la exploracion de otro campo ngy restudiado en la literatura: la
aproximaciébn basada en modelos locales. Especificajmsmtdesarrolla un nuevo algoritmo
para clasificacion, el cual esta basado en la combinaigoredes de neuronas por medio de
modelado local y técnicas basadas en ITL.

1.1 Seleccbn de caracteiisticas con coste basada en telar de la
informacion

La primera parte de esta tesis presenta un nuevo métodseglaczion de caracteristicas con
coste. A lo largo de los Gltimos afios, la dimension de tmguntos de datos que se utilizan en
mineria de datos ha aumentado dramaticamente. En estaisit, la seleccion de caracteristi-
cas se convierte en indispensable, ya que permite redutimiension detectando relevancia.
El método propuesto en esta parte amplia el ambito dddacien de caracteristicas teniendo
en consideracion no solo la relevancia de las caradta$stsino también sus costes asociados.
A pesar de que existen intentos previos en clasificaciontna@ion de caracteristicas, exis-
ten pocos intentos para tratar con este problema en sambedeiCaracteristicas. Se propone un
nuevoframework que consiste en afiadir un nuevo término a la funcion deiagion de un
método filtro de seleccion de caracteristicas llamddomal Redundancy Maximal Relevance
(mRMR), de tal manera que el coste se tenga en cuenta. mRMi ekeUos filtros multivaria-
dos mas utilizados, debido a la obtencion de buenos aelaslten varios campos. La funcion de
evaluacibn combina dos restricciones (como el propio nmerdel método indica), relevancia
maxima y minima redundancia.

A la luz de lo anterior, la novedad de esta aproximacionceadn que la investigacion en
seleccion de caracteristicas con coste es extremadamscdasa en la literatura. De hecho, las
herramientas de aprendizaje automatico y mineria des daés habituales no incluyen ningn

96



1.2 Meétodoensemblgara seleccion de caracteristicas basado en aprendezeg@kings

método para tratar con coste. Por ejemploWwakasolo se pueden encontrar algunos métodos
que abordan el problema del coste asociado a las muestrasdda@aracteristicas), y fueron
afadidos en la Gltima versibRapidMinerde hecho incluye algunos métodos que tienen el
coste en cuenta, pero son bastante simples. Uno de ellosltesesecciona ok atributos con

el coste mas bajo. Por lo tanto, el método de seleccibmdeieristicas con coste propuesto en
esta tesis pretende cubrir esta necesidad. EI comportemdehmétodo propuesto se prueba
en 17 conjuntos heterogéneos de clasificacibn, empleandanaquina de vectores soporte
(SVM) como clasificador. Los resultados del estudio expenital realizado muestran que la
aproximacion es solida y que permite al usuario reducaoste sin comprometer el error de
clasificacion.

1.2 M étodo ensemble para seleccbn de caracteisticas basado en
aprendizaje de rankings

La segunda parte presenta un nuemsemblgara seleccion de caracteristicas. En los Gltimos
afos, el aprendizaje basadoasrsembleha sido el foco de mucha atencion, principalmente en
tareas de clasificacion, centrandose en el supuesto dmqi@nar la salida de varios expertos
es mejor que la salida de un Gnico experto. Esta idea datdigegeensemblee puede adaptar
para seleccion de caracteristicas, en la que diferefgesitenos de seleccion actan como
diferentes expertos. En esta parte, se abordan dos prablé€héa no existencia de un método
“mejor”, lo que provoca que el usuario tenga que buscar yirelagmétodo especifico para
cada problema; (2) la heterogeneidad de los conjuntos de,dpte hace que sea dificil obtener
buenos resultados con un Gnico método.

Los métodos de aprendizaje automatico se han convemidma necesidad para muchas
empresas para obtener informacion y conocimiento Utdréinde sus masivas bases de datos.
Ademas, los conjuntos de datos de la vida real se presentaruehas formas y tamafos, por
lo que su naturaleza impone varias restricciones subateadianto para modelos de aprendi-
zaje como para algoritmos de seleccion de caractesstics conjuntos de datos pueden ser
muy grandes y de alta dimension y también puede habergmmalsl con escenarios redundan-
tes, ruidosos, multivariados y no lineales. Asi, la mayaié los métodos por si solos no son
capaces de enfrentarse a estos problemas, y algo como el‘imejodo de seleccion de carac-
teristicas” simplemente no existe, haciendo dificilgplaxs usuarios la eleccion de un método
sobre otros. Con idea de hacer una eleccion correcta, @mosw solo necesita conocer bien
el dominio y caracteristicas de cada conjunto de datos,gsie también debe entender detalles
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técnicos de los algoritmos disponibles. Ya que los expeaftoeste tipo no estan universalmente
disponibles, son necesarios mas métodos amigables emuatio. En este sentido, un posi-
ble modo de enfrentarse a esta situacion es utilizansemblele algoritmos de seleccion de
caracteristicas, y esa es la idea propuesta en esteloagispecificamente, se utilizan méto-
dos que siguen la aproximacion ranking, es decir, que dexu@ina lista ordenada de todas
las caracteristicas. Notese que los métodos que se camp® esta manera son mas baratos
computacionalmente que aquellos que devuelven un substorge caracteristicas selecciona-
das, y esto es de vital importancia cuando la tendenciala@uzacia grandes conjuntos de
Big Data Entonces, las salidas de todos los componentesndeimbldienen que combinarse
para producir una salida final com(n. éfisemblgoropuesto en esta parte de la tesis combina
estos rankings utilizand@anking SVMque es un método basado en SVM para el aprendizaje
de funciones ranking.

Se exploran dos formas de constreirsembles(a) N selecciones utilizando el mismo al-
goritmo de seleccion de caracteristicas, con diferegaéss y (b)N selecciones utilizando una
variedad de métodos de seleccion de caracteristicadpsanismos datos de entrenamiento.
La idoneidad de esta aproximacion se prueba utilizandoSy#d como clasificador. Ambas
opciones obtienen buenos resultados. La opcion (a) mietempos de entrenamiento sobre
los obtenidos por los métodos de seleccion individuahesjteniendo los errores. La opcion (b)
obtiene los mejores resultados medios independientendehteonjunto de datos y umbrales
elegidos.

1.3 M étodo local de clasifica@n basado en ITL

La tercera parte se dedica al desarrollo de un nuevo mémdlasificacion local, denominado
Frontier Vector Quantization based on I[FVQIT). El objetivo general, sin embargo, es el
mismo: intentar enfrentarse a la diversidad en los confudeodatos a través de la aplicacion
de nuevas ideas basadas en TI. El algoritmo propuesto lleshatareas de clasificaciobn me-
diante de la combinacion de redes de neuronas utilizaratodas de modelado local y basadas
en ITL. En primer lugar, se aplica un algoritmo de agrupatoiéciustering modificado para
identificar los modelos locales. En segundo lugar, dado bpsblema se simplifica al divi-
dirlo en partes mas pequefias, se aplica un modelo simpleefextivo, la red de neuronas de
una sola capa. Esta aproximacion se relaciona con la seguith parte anterior, que trataba
con aprendizajensemble@plicado a seleccion de caracteristicas.
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1.3 Método local de clasificacion basado en ITL

Mas en detalle, el algoritmo de entrenamiento para el noddabaja en dos fases:

1. Se sita un conjunto de nodos en las fronteras entrescldagigando un algoritmo de
agrupamiento basado en ITL modificado. Cada uno de estos rmfime un modelo
local. El algoritmo minimiza la funcién de energia queccéd la divergencia entre el
estimador de Parzen de la distribucion de los datos y ehadtir de la distribucion de
los nodos. Bajo esta premisa, se puede hacer una inteiprefasica. Tanto los datos
como los nodos se consideran dos tipos de particulas coampacpotencial asociado.
Estos campos inducen interacciones repulsivas y atractite particulas, en funcion
de su signo. En FVQIT, los datos que pertenecen a distiraasxtienen diferente signo.
De este modo, una serie de fuerzas convergen sobre cadd_ogdeatrones de entrena-
miento de una clase ejercen una fuerza atractiva sobre un mightras que los patrones
de entrenamiento de la otra clase inducen una fuerza repuaigbre él. Qué clase atrae
y qué clase repele se decide utilizando la distancia deely el algoritmak-Nearest
Neighbor(k-NN) [28]. La clase mas cercana al nodo (llamada la “clas@ia”) lo repe-
le y la clase mas lejana lo atrae. Estos roles se alternami@ulas iteraciones, mientras
los nodos se mueven. Ademas, existe una tercera fuerzausiém entre los nodos, la
cual favorece una mejor distribucion, evitando la acucitade varios nodos en una
misma region.

2. Se entrenan varias redes de neuronas de una sola capagdas@on estos modelos lo-
cales, para clasificar localmente los datos en su proximi@ado que cada modelo local
cubre los puntos mas cercanos a la posicion de su nodaeésgel espacio de entrada
esta completamente cubierto, ya que los datos de entiemd@rs se asignan a un mode-
lo local. En esta segunda fase, el objetivo es construir agifidador para cada modelo
local. Este clasificador se encarga de clasificar datos ergiarr asignada a su mode-
lo local y se entrena con solo los datos del conjunto de esrimgmto en esta region.
Como los algoritmos de modelado local pueden tener proldataa&ficiencia temporal,
causados por el proceso de entrenar varios clasificadarale$p se ha decidido utilizar
un clasificador ligero, las redes de una sola capa. Su atywiie entrenamiento per-
mite un rapido entrenamiento supervisado. La idea clavaexdir el error a priori de
las funciones de activacion no lineales. De esta manerajriamizacion basada en el
ECM puede ser reescrita de forma equivalente en términosriae cometido a priori,
lo que produce un sistema de ecuacioneslcei ecuaciones e incognitas, siendia
dimension de la entrada. Este tipo de sistemas se puedsneresomputacionalmente
con una complejidad d®(M?), dondeM = | + 1 es el numero de pesos de la red. Asi, se
requieren muchos menos recursos computacionales quedasquieren otros métodos
clasicos.

99



Capitulo Il. Resumen en castellano

El método FVQIT se aplica con éxito a problemas con una geatidad de muestras y
alta dimension como deteccion de intrusos y expresidrcgénicroarray (microarray gene
expressioh El conjunto de datos de deteccion de intrusos es el KDD®ujes muy grande
(cinco millones de muestras), muy desbalanceado y tienertteristicas. La contribucion
mas importante del método propuesto es la reduccionidenable del nimero de falsos po-
sitivos (una medida importante en este campo de aplicgaon una reduccion drastica del
namero de caracteristicas utilizadas (seis contra #ldpmparacion con resultados obtenidos
por otros autores.

La expresion génicanicroarray (microarray gene expressipes una tecnologia que permi-
te examinar decenas de miles de genes al mismo tiempo. Boaeéh, la observacion manual
no es factible y los métodos de aprendizaje automaticacadenuados para enfrentarse a este
tipo de datos. Especificamente, ya que el nUmero de gemasyealto, los métodos de selec-
cion de caracteristicas han demostrado ser valiosogdrnasaia con estos conjuntos de datos tan
desbalanceados (alta dimension y poca cardinalidad)a&ificador propuesto se utiliza para
clasificar doce conjuntos de datoscroarray de diferentes tipos de cancer. Se lleva a cabo
un estudio comparativo con otros clasificadores comuneaptaimacion propuesta muestra
resultados competitivos, consiguiendo mejores resutgde todos los demas clasificadores.

[1.4 Estructura

Esta tesis consta de los siguientes capitulos:

=

. El capitulo 1 presenta la introduccion, objetivos ywegtura de la tesis.

N

. El capitulo 2 presenta el dominio de la investigaci@oria de la informaciérinforma-
tion theoretic learningy sus aplicaciones en seleccion de caracteristicas ijficiason.

3. El capitulo 3 describe un nuevo método de seleccibradecteristicas con coste.

4. El capitulo 4 presenta un nuevo métaisembleoara seleccion de caracteristicas, ba-
sado en aprendizajanking

5. El capitulo 5 presenta un nuevo método de clasificab@sado en la combinacion de
redes de neuronas por medio de herramientasfdemation theoretic learning

6. El capitulo 6 resume las contribuciones y conclusiorgeridas y las publicaciones
producidas.
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I1.6 Conclusiones

1.5 Objetivos

Los objetivos para cada una de las tres partes principalestdeesis son los siguientes:

1. Seleccion de caracteristicas basada en coste.

e Resolver problemas donde no solo es interesante minimizarae de clasifica-
cion, sino también reducir costes que pueden estar aEscelas caracteristicas
de entrada.

e Obtener una compensacion entre una métrica de seledei@aracteristicas y el
coste asociado a las caracteristicas, para selecciomatardsticas relevantes con
un coste bajo asociado, mientras se mantiene la precisitadasificacion.

2. Aprendizajeensemblepara seleccion de caracteristicas.

e Combinar rankings ordenados de caracteristicas que mmebta partir de selec-
tores base.

e Obtener una mejora en el rendimiento computacional delggmde seleccion de
caracteristicas, manteniendo la precision en la clasifin.

e Liberar al usuario de la tarea de decidir qué método decéle de caracteristicas
es el mas apropiado, mientras se mantiene la precisitm @adificacion.

3. Clasificacion local basada eformation theoretic learning

e Construir modelos de clasificacion complejos para probfede dos clases y mul-
ticlase. Estos modelos se componen de varios submodeleseemeuronales mas
simples.

e Lograr una mejora en el rendimiento en clasificacion enlproas reales.

1.6 Conclusiones
Las conclusiones obtenidas son las siguientes:
e No solo las caracteristicas tienen diferente relevamdahdancia con otras y con la

clase de salida, sino también pueden tener una diferemertiamcia en funcién de su
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coste (econbmico, computacional, riesgo, etc.). Estm@lhecho no ha sido explora-
do en la literatura cientifica. En esta tesis, se proponauaaanmétodo de seleccion de
caracteristicas basado en coste. El objetivo es resoteblgmas de seleccion de ca-
racteristicas donde reducir costes es importante. Laimpacion consiste en afiadir un
nuevo término a la funcion de evaluacion de mRMR (un mhéte seleccion de carac-
teristicas basado en teoria de la informacion), de talavue es posible alcanzar una
compensacion entre la métrica del método y el coste adoaon las caracteristicas se-
leccionadas. Los resultados obtenidos muestran que laiaq@cion es sblida y permite
al usuario reducir el coste sin comprometer significativeamel error de clasificacion, lo
cual puede ser til en campos como el diagnostico médiase aplicaciones en tiempo
real.

e La diversidad y la heterogeneidad de los conjuntos datogangue los usuarios de
seleccion de caracteristicas dispongan de un “mejotbdté En consecuencia, puede
ser dificil enfrentarse con todos los disponibles paracegbnar el mas adecuado para
cada escenario. Con la intencion de resolver este problemasta tesis se disefia un
ensemblgara seleccion de caracteristicas. Se exploran dos asderconstruiensem-
bles (a) N selecciones utilizando el mismo algoritmo de selecciooattacteristicas con
diferentes datos de entrenamiento yNbgelecciones utilizando una variedad de algorit-
mos de seleccion de caracteristicas, todos ellos conikaes datos de entrenamiento.
La particularidad deénsemblgropuesto es que trabaja con rankings ordenados de ca-
racteristicas, lo cual es una aproximacion natural pasariétodos de seleccién. Los
rankings individuales obtenidos para cada uno de los pagjsetcombinaron utilizando
aprendizaje de funciones ranking, en particitanking SVMLa opcion (a) mejora los
tiempos de entrenamiento sobre los métodos de selecuniduales, manteniendo los
errores. La opcion (b) obtiene los mejores resultadospeadientemente del conjunto
de datos y los umbrales elegidos.

e Finalmente, la complejidad y heterogeneidad de los coogudé datos dificulta que un
clasificador automatico global funcione correctamentee$ia tesis se presenta un nue-
vo clasificador local basado émformation theoretic learningEl clasificador es capaz
de obtener modelos de clasificacion complejos medianteagepo de dos etapas. Este
proceso define, en primer lugar, modelos locales por mediandaigoritmo de agru-
pamiento modificado y, en segundo lugar, entrena varias @el@euronas de una sola
capa, asignadas a los modelos locales, para construir amara a trozos entre clases.
Se ha demostrado que el método propuesto es capaz de afasificéxito conjuntos de
datos complejos y desbalanceados, con alta dimensiomycgrdinalidad, obteniendo
buenos resultados medios. Se han llevado a cabo variosregpéos sobre los comple-
jos dominios de deteccion de intrusos y expresion géamiceoarray.
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I11.8 Publicaciones

[I.7 Trabajo futuro

Se proponen las siguientes lineas de investigacion cabajo futuro:

e Extender eframeworkde seleccion de caracteristicas con coste desarrolidoRMR
a otros métodos de seleccion de caracteristicas.

e Experimentar con otros métodos de aprendizaje de fureiranking paraensemblege
seleccion de caracteristicas, de tal modo quenebmblebtenga mas diversidad y sea
capaz de manejar mejor diferentes tipos de conjuntos de.dato

e Estimacion automatica de parametros para el FVQIT.

e Emplear otros algoritmos distintos de la red de neuronasdesala capa para los mo-
delos locales del FVQIT.

[1.8 Publicaciones

Como consecuencia de la investigacion llevada a cabo antesss, se han producido las si-
guientes publicaciones.

11.8.1 Revistas

e Porto-Diaz, lago and Bolon-Canedo, Veronica and AleBstanzos, Amparo and Fon-
tenla-Romero, Oscaf Study of Performance on Microarray Data Sets for a Clagsifie
Based on Information Theoretic Learnindeural Networks (vol. 24, pp. 888—896, 2011)

e Porto-Diaz, lago and Martinez-Rego, David and AlonstaBeos, Amparo and Fontenla-
Romero, Oscarinformation Theoretic Learning and Local Modeling for Bigaand
Multiclass ClassificationProgress in Artificial Intelligence (vol. 1, no. 4, pp. 38238,
2012)

e Bolon-Canedo, Verbnica and Porto-Diaz, lago and Séndharofio, Noelia and Alonso-
Betanzos, AmpardA Framework for Cost-Based Feature SelectiBattern Recognition
(vol. 47, no. 7, pp. 2481-2489, 2014)
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[1.8.2 Congresos

e Martinez-Rego, David and Fontenla-Romero, Oscar andsdldBetanzos, Amparo and
Porto-Diaz, lagoA New Supervised Local Modelling Classifier Based on Inféiona
Theory Proceedings of International Joint Conference on Neuetivdrks (IJCNN)
2009 (pp. 2014-2020, 2009)

e Porto-Diaz, lago and Martinez-Rego, David and AlonstaBeos, Amparo and Fontenla-
Romero, OscalCombining Feature Selection and Local Modelling in the KDOp®9
Data set Proceedings of the International Conference on ArtifibNalural Networks
(ICANN) 2009 (pp. 824-833, 2009)

e Porto-Diaz, lago and Bolon-Canedo, Vertnica and FdatBromero, Oscar and Alonso-
Betanzos, AmparoLocal Modeling Classifier for Microarray Gene-ExpressiomtR
Proceedings of the International Conference on ArtificiauMil Networks (ICANN)
2010 (pp. 11-20, 2010)

e Porto-Diaz, lago and Alonso-Betanzos, Amparo and FoatBamero, Osca@ Mul-
ticlass Classifier Based on Local Modeling and Informatidredretic Learning Pro-
ceedings of the Conferencia de la Asociacion Espafiola lsatnteligencia Atrtificial
(CAEPIA) 2011.

e Seijo-Pardo, Borja and Bolon-Canedo, Verbnica and Pbiaz, lago and Alonso-Be-
tanzos, AmparoEnsemble Feature Selection for Rankings of Featufes/ances in
Computational Intelligence. Lecture Notes in Computee8cé Vol. 9095. Proceedings
of the 14th International Work Conference on Artificial NelKetworks (IWANN) (pp.
29-42, 2015)
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