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Abstract

We develop an a posteriori error analysis of residual type of a stabilized mixed finite element
method for Darcy flow. The stabilized formulation is obtained by adding to the standard dual-
mixed approach suitable residual type terms arising from Darcy’s law and the mass conservation
equation. We derive sufficient conditions on the stabilization parameters that guarantee that
the augmented variational formulation and the corresponding Galerkin scheme are well-posed.
Then, we obtain a simple a posteriori error estimator and prove that it is reliable and locally
efficient. Finally, we provide several numerical experiments that illustrate the theoretical results
and support the use of the corresponding adaptive algorithm in practice.
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1 Introduction

The problem of Darcy flow is of great importance in civil, geotechnical and petroleum engineering. It
describes the flow of a fluid through a porous medium. The natural unknowns are the fluid pressure
and the fluid velocity, being the latter the unknown of primary interest in many applications. The
problem can be reduced to an elliptic equation for the pressure with a Neumann boundary condition.
Although this reduced problem can be solved with appropriate accuracy by a classical Galerkin
finite element method, typically there is a loss of accuracy in the approximation of the velocity
through the pressure gradients. Moreover, with this reduced formulation, local mass conservation is
not guaranteed. For this reason, the primal formulation for the pressure is not considered adequate
for practical engineering applications.
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The most popular approach in applications is based on the mixed formulation, with pressure
and velocity as unknowns. It is well-known that the Galerkin scheme associated to this formulation
is not always well-posed and stability is ensured only for certain combinations of finite element
subspaces. In this framework, several stabilization methods have been proposed in the literature.
We consider a stabilized mixed finite element method introduced by Masud and Hughes in [15] for
isotropic porous media. This method is based on the addition of suitable residual type terms to the
standard dual-mixed approach. The resulting scheme is stable for any combination of continuous
velocity and pressure interpolations, and has the singularity that the stabilization parameters can
be chosen independently of the mesh size. This property was already present in the modified mixed
formulation introduced in [3] for second order elliptic problems. The stabilization introduced in
[15] was also applied in [4] to analyze a mixed discontinuous Galerkin method for Darcy flow. A
similar idea is used in [7] to derive several unconditionally stable mixed finite element methods for
Darcy flow. Finally, concerning the a posteriori error analysis of the method proposed in [15], a
residual based a posteriori error estimate of the velocity in L2-norm was derived in [13].

In this paper we consider a generalization of the method proposed in [15] to heterogeneous,
possibly anisotropic, porous media flow. We obtained sufficient conditions on the two stabilization
parameters such that the augmented dual-mixed variational formulation and the corresponding
augmented scheme are well-posed and a Céa-type estimate holds. We remark that these conditions
on the stabilization parameters do not depend on the mesh nor on the type of elements employed to
solve the discrete problem. Indeed, the choice of the parameter related with the residual in Darcy’s
law depends on the constitutive coefficients of the equation and the parameter related to the mass
conservation residual is a universal constant, that may be selected once and for all.

Our aim is to develop an a posteriori error analysis of this method. Our analysis is based on
the stability of the augmented variational formulation and allows us to derive a simple a posteriori
error estimator for the total error. We prove that the new a posteriori error estimator is reliable
and locally efficient. We emphasize that these properties hold for any conforming finite element
approximation of the continuous problem. Numerical experiments illustrate the confiability and
efficiency of the a posteriori error estimator, and support the use of the corresponding adaptive
refinement algorithm in practice.

The outline of the paper is as follows. In Section 2 we first describe the problem of Darcy’s flow
and recall its classical dual-mixed variational formulation. Then, we introduce a slight generaliza-
tion of the second method analyzed in [15] and provide sufficient conditions on the stabilization
parameters that allow to guarantee that the augmented variational formulation is well-posed. In
Section 3 we describe the augmented discrete scheme and analyze its stability and convergence
properties. We also provide the corresponding rate of convergence for some specific finite element
subspaces. The new a posteriori error estimator is derived in Section 4, where we also prove that
it is reliable and locally efficient. Finally, some numerical experiments are reported in Section 5.
Conclusions are drawn in Section 6.

Throughout this paper we will use the standard notations for Sobolev spaces and norms (see,
for instance, [1]). Let Ω ⊂ Rd (d = 2, 3) be a bounded connected open domain with a Lipschitz-
continuous boundary Γ, and let n be the unit outward normal vector to Γ. We define H(div,Ω) :=
{v ∈ [L2(Ω)]d : div(v) ∈ L2(Ω) }, L2

0(Ω) := {q ∈ L2(Ω) :
∫

Ω q = 0}, and denote by H−1/2(Γ) the
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dual space of the trace space, H1/2(Γ), with pivot space L2(Γ). Given ζ ∈ H−1/2(Γ), we denote
by Hζ := {w ∈ H(div,Ω) : w · n = ζ on Γ} (see [10]). Finally, we use C or c, with or without
subscripts, to denote generic constants, independent of the discretization parameter, that may take
different values at different occurrences.

2 The augmented variational formulation

We assume that the porous medium Ω is a bounded connected open domain of Rd (d = 2, 3) with
a Lipschitz-continuous boundary Γ, and we let n be the unit outward normal vector to Γ. We
denote by K ∈ [L∞(Ω)]d×d the hydraulic conductivity tensor and assume that it is symmetric and
uniformly positive definite, that is, K satisfies(

K(x) y
)
· y ≥ α ||y||2 , a.e. x ∈ Ω , ∀y ∈ Rd , (1)

for some α > 0. Then, we also have that K−1 ∈ [L∞(Ω)]d×d and(
K−1(x) y

)
· y ≥ α

‖K‖2∞,Ω
||y||2 , a.e. x ∈ Ω , ∀y ∈ Rd , (2)

where we denote by ‖·‖∞,Ω the usual norm in [L∞(Ω)]d×d. We recall that in isotropic porous media,
the hydraulic conductivity tensor is a diagonal tensor with diagonal entries equal to the ratio of
the permeability, κ > 0, to the viscosity of the fluid, µ > 0, that is, K = κ

µ I, where I ∈ Rd×d is the
identity matrix.

In what follows, we denote by f := − ρ
gc

g, where ρ > 0 is the fluid density, g is the gravity
acceleration vector and gc is a conversion constant. We let ϕ be the volumetric flow rate source
or sink and ψ be the normal component of the velocity field on the boundary. We assume that
f ∈ [L2(Ω)]d, ϕ ∈ L2(Ω) and ψ ∈ H−1/2(Γ), and that ϕ and ψ satisfy the compatibility condition∫

Ω ϕ =
∫

Γ ψ. Then, the Darcy problem reads: find the fluid velocity v : Ω→ Rd and the pressure
p : Ω→ R such that 

K−1v + ∇p = f in Ω ,
div(v) = ϕ in Ω,

v · n = ψ on Γ .
(3)

The first equation in (3) is known as Darcy’s law and was formulated by H. Darcy in 1856 [8];
the second equation in (3) is the mass conservation equation. We remark that this model also
appears in other contexts. For instance, it is involved in the projection-diffusion algorithm for
solving the time-dependent Stokes and Navier-Stokes equations, as suggested by A.J. Chorin [6]
and R. Temam [18].

The classical dual-mixed variational formulation of problem (3) reads: find (v, p) ∈ (wψ+H0)×
L2

0(Ω) such that 
∫

Ω
K−1v ·w −

∫
Ω
pdiv(w) =

∫
Ω

f ·w , ∀w ∈ H0 ,∫
Ω

div(v) q =

∫
Ω
ϕ q , ∀ q ∈ L2

0(Ω) ,
(4)
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where wψ ∈ H(div,Ω) is such that wψ · n = ψ in H−1/2(Γ) (see Corollary 2.8 in [10]). It is
well known (see [16]) that the weak formulation (4) has a unique solution (v, p) in Hψ ×M , with
M := H1(Ω) ∩ L2

0(Ω). In what follows we assume that ψ = 0.
The dual-mixed variational formulation (4) is the basis of the Galerkin mixed finite element

method, for which it is known that only certain combinations of velocity and pressure interpolations
are stable. In order to allow a greater set of stable interpolations, we follow [15] and add to the
usual dual-mixed variational formulation (4) the following residual type terms, that arise from
Darcy’s law (3)1 and from the mass conservation equation (3)2:

κ1

∫
Ω

(∇p+K−1v) · (∇q −K−1w) = κ1

∫
Ω

f · (∇q −K−1w) , ∀ (w, q) ∈ H0 ×M , (5)

and

κ2

∫
Ω

div(v) div(w) = κ2

∫
Ω
ϕdiv(w) , ∀w ∈ H0 , (6)

where the stabilization parameters κ1 and κ2 are positive constants.
Let H := H(div,Ω) ×M and let us denote by ‖ · ‖H the corresponding product norm. By

adding equations (4)-(6), we obtain the following stabilized weak variational formulation: find
(v, p) ∈ H0 ×M such that

As((v, p), (w, q)) = Fs(w, q) , ∀ (w, q) ∈ H0 ×M, (7)

where the bilinear form As : H×H→ R and the linear functional Fs : H→ R are defined by

As((v, p), (w, q)) :=

∫
Ω
K−1v ·w −

∫
Ω
p div(w) +

∫
Ω
q div(v)

+κ1

∫
Ω

(∇p+K−1v) · (∇q −K−1w) + κ2

∫
Ω

div(v) div(w) ,

and

Fs(w, q) :=

∫
Ω

f ·w +

∫
Ω
ϕ q + κ1

∫
Ω

f · (∇q −K−1w) + κ2

∫
Ω
ϕdiv(w) ,

for all (v, p), (w, q) ∈ H. At this point, we remark that the stabilization methods analyzed in [15]
for isotropic porous media correspond to the choices κ1 = κ

2µ , κ2 = 0 and κ1 = κ
2µ , κ2 = c

2
µ
κh

2,
where c = O(1) and h is the mesh size, assuming that the permeability κ and the viscosity µ are
constant.

Lemma 2.1 Assume that κ1 ∈
(
0, α
‖K‖2∞,Ω‖K−1‖2∞,Ω

)
and κ2 > 0. Then, the bilinear form As(·, ·) is

elliptic in H, that is, there exists Cell > 0 such that

As((w, q), (w, q)) ≥ Cell ‖(w, q)‖2H , ∀ (w, q) ∈ H .
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Proof. Let (w, q) ∈ H . Then, using the definition of As(·, ·), (2) and that K−1 ∈ [L∞(Ω)]d×d, we
obtain

As((w, q), (w, q)) =

∫
Ω
K−1w ·w + κ1

∫
Ω
|∇q|2 − κ1

∫
Ω
|K−1w|2 + κ2

∫
Ω
|div(w)|2

≥

(
α

‖K‖2∞,Ω
− κ1‖K−1‖2∞,Ω

)
‖w‖2[L2(Ω)]d + κ1‖∇q‖2[L2(Ω)]d + κ2‖div(w)‖2L2(Ω)

The proof follows by applying the Poincaré inequality in L2
0(Ω). �

Theorem 2.1 Under the hypotheses of Lemma 2.1, problem (7) has a unique solution (v, p) ∈
H0 ×M .

Proof. The result follows from the previous Lemma and the Lax-Milgram Lemma. �
We remark that, under the assumptions of Lemma 2.1, the ellipticity constant Cell can be

chosen as
Cell := min(

α

‖K‖2∞,Ω
− κ1‖K−1‖2∞,Ω ,

κ1

2
min(1, C2

Ω) , κ2) , (8)

where CΩ is the Poincaré constant. We also observe that for the case considered in [15] (K = κ
µ I,

with κ and µ positive constants), it suffices to take κ1 ∈ (0, κµ) and κ2 > 0. This explains the good
behavior of the second method introduced in [15], but not that of the first one. With the previous
analysis, we cannot ensure the well-posedness of the augmented variational formulation (7) when
κ2 = 0.

3 The augmented mixed finite element method

In what follows, we assume that the stabilization parameters κ1 and κ2 satisfy the hypothesis of
Lemma 2.1 and Theorem 2.1. We also assume that Ω is a polygonal or polyhedral domain.

Let Hh and Mh be any finite dimensional subspaces of H(div,Ω) and M , respectively. We
denote by H0,h := H0 ∩Hh (see [16]). Then, the Galerkin scheme associated to problem (7) reads:
find (vh, ph) ∈ H0,h ×Mh such that

As((vh, ph), (wh, qh)) = Fs(wh, qh) , ∀ (wh, qh) ∈ H0,h ×Mh . (9)

Thanks to the ellipticity of the bilinear form As(·, ·) in H, problem (9) has a unique solution
(vh, ph) ∈ H0,h ×Mh. Moreover, there exists a constant C > 0, independent of h, such that

||(v − vh, p− ph)||H ≤ C inf
(wh,qh)∈H0,h×Mh

||(v −wh, p− qh)||H . (10)

In order to establish a rate of convergence result, we consider specific finite element subspaces
Hh and Mh. Let {Th}h>0 be a family of shape-regular meshes of Ω̄ made up of triangles in 2D or
tetrahedra in 3D. We denote by hT the diameter of an element T ∈ Th and define h := maxT∈ThhT .
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Hereafter, given T ∈ Th and an integer l ≥ 0, we denote by Pl(T ) the space of polynomials of total
degree at most l on T . Now, let Hh ⊂ H(div; Ω) be either the Raviart-Thomas space of order r ≥ 0
(cf. [16]), i.e.

Hh = RT r(Th) :=
{

wh ∈ H(div; Ω) : wh|T ∈
(

[Pr(T )]d + x Pr(T )
)
, ∀T ∈ Th

}
where x ∈ Rd is a generic vector, or the Brezzi-Douglas-Marini space of order r+ 1, r ≥ 0 (cf. [2]),
i.e.

Hh = BDMr+1(Th) :=
{

wh ∈ H(div; Ω) : wh|T ∈ [Pr+1(T )]d , ∀T ∈ Th
}
.

In Figure 1 we show the degrees of freedom for the Raviart-Thomas elements of order 0 and 1, and
for the Brezzi-Douglas-Marini element of order 1.

Figure 1: Degrees of freedom for RT 0 (left), BDM1 (center) and RT 1 (right) on a triangle T .

We also introduce the standard Lagrange space of order m ≥ 1:

Mh := Lm(Th) =
{
qh ∈ C(Ω) ∩ L2

0(Ω) : qh
∣∣
T
∈ Pm(T ), ∀T ∈ Th

}
.

The corresponding a priori error bound is given in the next theorem.

Theorem 3.1 Assume 0 < κ1 <
α

‖K‖2∞,Ω‖K−1‖2∞,Ω
and κ2 > 0. Then, if v ∈ [Ht(Ω)]d, div(v) ∈

Ht(Ω) and p ∈ Ht+1(Ω), there exists C > 0, independent of h, such that

||(v − vh, p− ph)||H ≤ C hmin{t,m,r+1}
(
||v||[Ht(Ω)]d + ||div(v)||Ht(Ω) + ||p||Ht+1(Ω)

)
.

Proof. It follows straightforwardly from the Céa estimate (10) and the approximation properties
of the corresponding finite element subspaces (cf. [16, 2]). �

4 A posteriori error analysis

In this section, we develop a residual-based a posteriori error analysis of the augmented discrete
scheme (9). We derive a simple a posteriori error estimator that requires the computation of two
residuals per element and we show that it is reliable and locally efficient.
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Let Hh ×Mh be any finite element subspace of H(div,Ω) ×M . Throughout this section, we
assume that 0 < κ1 <

α
‖K‖2∞,Ω ‖K−1‖2∞,Ω

, κ2 > 0 and we let (v, p) ∈ H0 ×M and (vh, ph) ∈ H0×Mh

be the unique solutions to problems (7) and (9), respectively. Then, we consider the residual

Rh(w, q) := Fs(w, q)−As((vh, ph), (w, q)) , ∀ (w, q) ∈ H0 ×M. (11)

Using the ellipticity of the bilinear form As(·, ·) and the definition of the residual (11), we have

‖(v − vh, p− ph)‖H ≤ C−1
ell

As((v − vh, p− ph), (v − vh, p− ph))

‖(v − vh, p− ph)‖H

≤ C−1
ell sup

(w,q)∈H0×M

(w,q)6=(0,0)

As((v − vh, p− ph), (w, q))

‖(w, q)‖H

= C−1
ell sup

(w,q)∈H0×M

(w,q) 6=(0,0)

Rh(w, q)

‖(w, q)‖H
.

(12)

In the next Lemma, we obtain an upper bound for the residual.

Lemma 4.1 There exists a positive constant C, independent of h, such that

sup
(w,q)∈H0×M

(w,q)6=(0,0)

Rh(w, q)

‖(w, q)‖H
≤ C

(
||f −∇ph −K−1vh||[L2(Ω)]d + ||ϕ− div(vh)||L2(Ω)

)
.

Proof. Let (w, q) ∈ H0 ×M . Using the definitions of the linear functional Fs and the bilinear
form As(·, ·), we can write

Rh(w, q) = R1(w) +R2(q) , ∀w ∈ H0 , ∀ q ∈M , (13)

where

R1(w) :=

∫
Ω

f ·w +

∫
Ω
ph div(w) −

∫
Ω
K−1vh ·w − κ1

∫
Ω

(f −∇ph −K−1vh) · K−1w

+κ2

∫
Ω

(ϕ− div(vh)) div(w)

(14)

and

R2(q) :=

∫
Ω

(ϕ− div(vh)) q + κ1

∫
Ω

(f −∇ph −K−1vh) · ∇q .

Then, integrating by parts the second term on the right hand side of (14), using that w · n = 0 on
Γ and applying the Cauchy-Schwarz inequality and the continuity of K−1, we have

|R1(w)| ≤
(

(1+κ1‖K−1‖) ‖f −∇ph−K−1vh‖[L2(Ω)]d + κ2 ‖ϕ−div(vh)‖L2(Ω)

)
‖w‖H(div,Ω). (15)
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On the other hand, the Cauchy-Schwarz inequality also implies that

|R2(q)| ≤
(
κ1‖f −∇ph −K−1vh‖[L2(Ω)]d + ‖ϕ− div(vh)‖L2(Ω)

)
‖q‖H1(Ω) . (16)

Then, the proof follows by applying the triangle inequality in (13) and using (15) and (16). We
remark that C can be chosen as

C := max(1 + κ1(1 + ‖K−1‖), 1 + κ2) . (17)

�
Motivated by inequality (12) and the previous result, we define the a posteriori error estimator

ηh as follows:

η2
h :=

∑
T∈Th

η2
h(T ) , with η2

h(T ) := ‖f −∇ph −K−1vh‖2[L2(T )]d + ‖ϕ− div(vh)‖2L2(T ) .

We remark that the local error indicator ηh(T ) consists of two residual terms, namely, the local
residual in Darcy’s law and the local residual in the mass conservation equation. We also notice
that the global a posteriori error estimator ηh does not involve the computation of any jump across
the elements of the mesh. This fact, besides the good properties of the estimator stated in the next
Theorem, make ηh well-suited for numerical computations.

Theorem 4.1 There exists a positive constant Crel, independent of h, such that

‖(v − vh, p− ph)‖H ≤ Crel ηh, (18)

and there exists a positive constant Ceff, independent of h and T , such that

Ceff ηh(T ) ≤ ‖(v − vh, p− ph)‖H(div,T )×H1(T ) , ∀T ∈ Th . (19)

Proof. The first inequality is a consequence of (12), Lemma 4.1 and the definition of ηh. In
fact, we can take Crel :=

√
2C/Cell, where Cell and C are the constants defined in (8) and (17),

respectively. On the other hand, we recall that div(v) = ϕ and f = ∇p + K−1v in Ω. Then, we
have that

||ϕ− div(vh)||L2(T ) = ||div(v − vh)||L2(T )

and, using the triangle inequality and the continuity of K−1,

||f −∇ph −K−1vh||[L2(T )]d ≤ max{||K−1||, 1}
(
||v − vh||[L2(T )]d + ||∇(p− ph)||[L2(T )]d

)
.

Then, (19) follows with C−1
eff :=

√
3 max(1, ‖K−1‖). �

Theorem 4.1 establishes the equivalence between the total error and the estimator ηh. Inequality
(18) means that the a posteriori error estimator ηh is reliable, whereas inequality (19) means that
ηh is locally efficient. We remark that the efficiency constant Ceff can be chosen independently of
the stabilization parameters.
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5 Numerical results

In this section we present some numerical experiments that illustrate the confiability and efficiency
of the a posteriori error estimator ηh. For implementation purposes, instead of imposing the
null media condition required to the elements of Mh, we fix the value of the pressure on a point
of the numerical domain. The non-homogeneous Neumann boundary condition is imposed by
interpolation. The experiments have been performed with the finite element toolbox ALBERTA (cf.
[17]) using refinement by recursive bisection [12]. The solution of the corresponding linear systems
has been computed using the SuperLU library [9]. We present numerical experiments for the finite
element pairs (Hh,Mh) given by (RT 0,L1), (RT 1,L2) and (BDM1,L1) in the two-dimensional
case and (RT 0,L1) in three dimensions.

We use the standard adaptive finite element method (AFEM) based on the loop:

SOLVE→ ESTIMATE→ MARK→ REFINE.

Hereafter, we replace the subscript h by k, where k is the counter of the adaptive loop. Then, given
a mesh Tk, the procedure SOLVE is an efficient direct solver for computing the discrete solution
(vk, pk), ESTIMATE calculates the error indicators ηk(T ), for all T ∈ Tk, using the computed
solution and the data. Based on the values of {ηk(T )}T∈Tk , the procedure MARK generates a set
of marked elements subject to refinement. For the elements selection, we rely on the maximum
strategy: given a threshold σ ∈ (0, 1], elements T ′ ∈ Tk such that

ηk(T
′) > σ max

T∈Tk
ηk(T ), (20)

are marked for refinement. In our experiments, we fix σ = 0.6. Finally, the procedure REFINE
creates a conforming refinement Tk+1 of Tk, bisecting d times all marked elements (where d = 2, 3
is the space dimension).

In what follows, we present three numerical experiments. The first one is devoted to study the
robustness of the method with respect to the stabilization parameters, κ1 and κ2, and the rate of
convergence when the solution is smooth. In the two subsequent examples, we compare the perfor-
mance of a finite element method based on uniform refinement (FEM) with the adaptive algorithm
described above (AFEM). In Section 5.2, we study the performance of the AFEM algorithm when
there are abrupt changes in the hydraulic conductivity tensor and the solution is not smooth. In
Section 5.3 we consider an example in three dimensions. In all the examples, gravity effects are
neglected, as it is often done in applications.

5.1 Example 1: Robustness and convergence rates

In order to study the robustness of the augmented scheme (9) with respect to the stabilization
parameters and the sensitivity of the stabilized formulation to the ratio of the permeability to the
viscosity, we consider an example with a smooth solution. We let Ω = (0, 1)2 be the unit square,
K = κ

µ I, p(x, y) = sin(2πx) sin(2πy), f = 0, v = −K∇p, ϕ = div(v) and ψ = v · n.
We first consider K = I and investigate the effect of the stabilization parameters κ1 and κ2

on the augmented scheme (9) when the finite element pair (RT 0,L1) is used. Figure 2 shows the
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Figure 2: Example 1. Decay of total error for κ/µ = 1 and several values of κ1 and κ2.

decay of the total error versus the degrees of freedom (DOFs) for several values of κ1 and κ2, all
of them satisfying the hypotheses of Lemma 2.1. Optimal rates are attained in all cases, showing
the robustness of the method with respect to the stabilization parameters.

According to these results, in what follows, we choose κ1 = κ
2µ and κ2 = 1.0. We remark that

these values of the stabilization parameters are consistent with the theory and ensure that the
bilinear form As(·, ·) is elliptic in the whole space. Then, we solve problem (9) using the finite
element pairs (RT 0,L1), (RT 1,L2) and (BDM1,L1) on a sequence of uniform meshes (i.e., in
each step all elements of the actual mesh are bisected twice). Figures 3, 4, 5 and 6 show the decay
of the total error and the a posteriori error estimator versus the number of DOFs for κ

µ = 10−i,
i = 0, . . . , 3, respectively. We observe that the theoretical convergence rates predicted by the theory
are achieved in all cases (we recall that h ∼ DOFs−1/d on uniform meshes). Moreover, the estimator
shows the same decay as the error.

Finally, Figure 7 shows the efficiency indices (defined as the ratio of the estimated error to
the total error) for the three finite element pairs considered here. As predicted by the theory, the
efficiency index is bounded from below and above by positive constants, independently of the mesh
size. In particular, when κ = µ, they approach one for the three discretization methods. We also
remark that the efficiency indices obtained with the BDM1-discretization approach one in all cases.
This can be explained by the fact that the decay for the L2-norm of the velocity with the BDM1

method (h2 ∼ DOFs−2/d) is higher than for the H(div)-norm of the velocity (h1 ∼ DOFs−1/d).
Since the contribution of the L2-norm of the error in the velocity in the total error is negligible for
small h in BDM1, the estimator seems to be asymptotically exact in this case.

5.2 Example 2: A checkerboard configuration

We use this example, taken from [5], to simulate the situation in which there are abrupt changes in
the permeability. Let Ω = (−1, 1)2 and let K = Kγ be piecewise constant in sectors with a vertex
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Figure 3: Example 1. Decays of total error (left) and estimator (right) vs. DOFs for κ/µ = 1.
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Figure 4: Example 1. Decays of total error (left) and estimator (right) vs. DOFs for κ/µ = 0.1.

at the origin. More precisely, we let Kγ = a1(γ)I in the first and third quadrants, and Kγ = a2(γ)I
in the second and fourth quadrants. We consider Kellogg’s exact solution to the elliptic equation
(cf. [11])

−div (Kγ ∇p) = 0 in Ω, (21)

with appropriate Dirichlet boundary conditions for two different values of γ, namely, γ = 0. 50 and
γ = 0. 25. For these values of the parameter γ, we have that

a1(0. 50) = a1(0. 25) = 1, a2(γ) ∼=
{

0. 171572875253810, if γ = 0. 50,
0. 039566129896580, if γ = 0. 25.

Kellogg showed that an exact solution of (21) is given in polar coordinates by p(r, θ) = rγm(θ),
where m is a smooth function that depends on θ (cf. [11]). We recall that p has the regularity
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Figure 5: Example 1. Decays of total error (left) and estimator (right) vs. DOFs for κ/µ = 0.01.
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Figure 6: Example 1. Decays of total error (left) and estimator (right) vs. DOFs for κ/µ = 0.001.

H1+γ−ε. Then, (vγ , pγ), with vγ = −Kγ ∇pγ , is the exact solution of problem (3) when K = Kγ ,
f = 0, ϕ = 0 and ψ = vγ · n.

We remark that the checkerboard pattern is the most demanding configuration in terms of
regularity. We solve both problems with the finite element pair (RT 0,L1) using uniform refinement
(FEM algorithm) and the adaptive refinement algorithm (AFEM) described at the beginning of

this section. We choose κ1(γ) = a2(γ)3

2 and κ2 = 1.0, and fix to zero the value of the pressure in a
corner of the domain.

Figure 8 shows the decay of the total error and the a posteriori error estimator for the uniform
(FEM) and adaptive (AFEM) refinements and the two values of γ. We remark that the usual FEM
algorithm is suboptimal in this case due to the poor regularity of the solution. In turn, the AFEM
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Figure 7: Example 1. Efficiency indices for (RT 0,L1) (left), (BDM1,L1) (center) and (RT 1,L2)
(right).

appears to be quasi-optimal. Efficiency indices are reported in Figure 9. There, we observe that
they are bounded from above and below, which confirms that error and estimator are equivalent.

The adapted meshes obtained with this algorithm are highly graded at the origin, as can be
observed in Figures 10 and 11 for γ = 0.50, and specially in Figures 12 and 13 for γ = 0.25.

Finally, in Figure 14 we present the pressure obtained after 20 AFEM iterations for γ = 0.5
(24128 triangles) and γ = 0.25 (1744 triangles). In Figure 15 we show the velocity fields obtained
after 16 AFEM-iterations for γ = 0.50 (6228 triangles) and for γ = 0.25 (968 triangles). We observe
that there are no oscillation in the pressure for the two values of γ considered here, which confirms
the stability of the method. We can also observe that the velocity is higher in the regions with
greater values of the permeability.

5.3 Example 3: A three-dimensional simulation

This last example illustrates the performance of our algorithm on a five-spot type problem with a
smooth solution. Let Ω = (0, 1)3 be the unit cube. Motivated by Example 5.1 in [14], we choose
the data of problem (3) so that the exact solution is (v, p), with

p(x, y, z) = log(tan2(Lεrε(x, y, z))) ,

where ε is a positive number, rε(x, y, z) =
√

(x+ ε)2 + (y + ε)2 + (z + ε)2, Lε = π
2
√

3(1+2ε)
, and

v = −∇p (that is, K = I). We remark that there is a point sink at x = y = z = −ε and a
point source at x = y = z = 1 + ε. However, since ε > 0, the singularities are located outside the
computational domain.

We recall that the five-spot problem can be modeled using a Dirac delta (as in [15]); however,
we are interested in comparing the exact error with the a posteriori error estimator ηk. In order
to simulate the situation where source and sink are close to the boundary, we choose ε = 10−2.
The stabilization parameters are fixed to κ1 = 1

2 and κ2 = 1.0. We solve the problem for the
finite element pair (RT 0,L1) using the uniform refinement (FEM) and the adaptive refinement
(AFEM) algorithms. Although the solution (v, p) is smooth in Ω, the uniform refinement procedure
presents a long plate in the pre-asymptotic regime (see Figure 16). On the other hand, the adaptive
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Figure 8: Example 2. Decays of total error and estimator vs. DOFs for (RT 0,L1) with FEM and
AFEM, for γ = 0. 50 (left) and γ = 0. 25 (right).

refinement algorithm is able to attain linear convergence, revealing itself as a very competitive
algorithm. In this case (Figure 16, right), the estimator seems to be asymptotically exact.

In Figure 17 we show some meshes generated by AFEM. We can see there that the meshes
are highly refined near the singularity points, (−ε,−ε,−ε) and (1 + ε, 1 + ε, 1 + ε). Finally, in
Figure 18 we show the pressure and the velocity fields obtained after 14 AFEM iterations (127578
tetrahedra).

6 Conclusions

We considered a slight generalization of the method introduced by Masud and Hughes in [15] to
the Darcy problem of anisotropic porous media flow. The augmented variational formulation is
obtained by adding to the classical dual-mixed variational formulation two weighted residual type
terms, that are related with Darcy’s law and the mass conservation equation. We provided sufficient
conditions on the stabilization parameters that ensure that the augmented weak formulation is
well-posed. Under these same hypotheses, we also proved that the corresponding Galerkin scheme
is well-posed and a Céa-type estimate holds whatever finite-dimensional subspaces are used. In
particular, we provide a priori error bounds when the fluid velocity is approximated by Raviart-
Thomas or Brezzi-Douglas-Marini elements, and the pressure is approximated using continuous
piecewise polynomials. We remark that in this case local mass conservation is not guaranteed.
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Figure 9: Example 2. Efficiency indices for (RT 0,L1) with FEM and AFEM, for γ = 0. 50 (left)
and γ = 0. 25 (right).

Figure 10: Example 2, γ = 0. 50. Adapted meshes obtained after 0, 10 and 20 AFEM iterations,
composed of 16, 880 and 24128 triangles, respectively.

Our main contribution is the derivation of a two-term a posteriori error estimator of residual
type for the total error in this discrete scheme. The two residual terms account for the error in
Darcy’s law and in the mass conservation equation. We remark that, besides the fact that it can
be used with any finite element subspaces in Rd (d = 2, 3), this a posteriori error estimator is very
easy to implement. Moreover, we proved that it is reliable and locally efficient. We remark that
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Figure 11: Example 2, γ = 0. 50. Adapted mesh obtained after 20 AFEM iterations (24128 trian-
gles). From left to right: full mesh and zooms to [−10−2, 10−2]2, [−10−4, 10−4]2 and [−10−6, 10−6]2.

Figure 12: Example 2, γ = 0. 25. Adapted meshes obtained after 0, 10 and 20 AFEM iterations,
composed of 16, 480 and 1744 triangles, respectively.

Figure 13: Example 2, γ = 0. 25. Adapted mesh obtained after 20 AFEM iterations (1744 triangles).
From left to right: full mesh and zooms to [−10−2, 10−2]2, [−10−4, 10−4]2 and [−10−6, 10−6]2.

these theoretical results apply also to anisotropic porous media.
Finally, we implemented the method using the finite element toolbox ALBERTA. We showed

16



Figure 14: Example 2. Pressure obtained after 20 AFEM iterations for γ = 0.50 (left) and γ = 0.25
(right).

that the method is robust with respect to the stabilization parameters. Numerical experiments
also illustrate the good performance of the adaptive algorithm based on the new a posteriori
error estimator. Indeed, efficiency indices are close to one and the AFEM is able to localize the
singularities and high-variation regions of the exact solution.

In the numerical analysis, we assumed that the Neumann boundary condition fits exactly. The
effect of the approximation of the boundary datum will be analyzed in a forthcoming work. This
approximation doesn’t seem to have an effect in the numerical experiments, at least for sufficiently
regular boundary data (ψ ∈ L2(Γ)).
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