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Abstract

We considered a nonlinear parabolic equation in a bounded domain of R2

coupled with the Laplace equation in the corresponding exterior region. This
kind of problems appears in the modelling of quasi-stationary electromagnetic
fields. We chose a regular artificial boundary containing the nonlinear region
in its interior. Then, we applied a symmetric FEM-BEM coupling procedure
including a parameterization of the artificial boundary. We used the backward
Euler method for the time discretization and an exact triangulation of the finite
element domain. Assuming that the nonlinear operator is strongly monotone
and Lipschitz-continuous, we proved convergence and obtained optimal error
estimates for the solution of the discrete problem. Finally, we proposed a fully
discrete scheme with quadrature formulas of low order and, under some additional
conditions on the nonlinearity, proved that the order of convergence remains
optimal.

Key words. boundary elements, finite elements, parabolic-elliptic problem

1 Introduction

In [16], R.C. MacCamy and M. Suri considered a linear parabolic-elliptic problem
consisting of the heat equation in a bounded region of the plane coupled with the
Laplace equation in the corresponding unbounded region. They used a finite element
discretization for the spatial part of the heat equation and a boundary element method
for the Laplace equation. They applied the standard method of C. Johnson and J.C.
Nédélec [12] of coupling finite elements (FEM) and boundary elements (BEM) and
proved, using a smooth coupling boundary, the convergence of their semidiscretized
Galerkin scheme which lead to a system of ordinary differential equations (ode’s) in
time. An analysis of a scheme taking into account the discretization in time is not
available and will be difficult since the stiffness matrix is neither symmetric nor positive
definite.
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Later, M. Costabel, V.J. Ervin and E.P. Stephan [5] used the symmetric coupling
method from M. Costabel [4] and H.D. Han [10] to solve the problem studied in [16].
They follow [16] in their convergence proof for the semidiscrete Galerkin scheme. After
discretization in space, they obtained a system of ode’s with a positive definite stiffness
matrix. They applied the Crank-Nicolson method for its solution and proved conver-
gence and theoretical error estimates for that fully discretized Galerkin scheme. More
recently, P. Mund and E.P. Stephan [19] used the discontinuous Galerkin method to
solve the system of ode’s from [5] and proposed an adaptive algorithm based on an a
posteriori error estimate that allows to choose the local mesh size h and the time step
independently.

In the symmetric method, most authors choose a polygonal curve as coupling
boundary. However, in this case, we do not know how to control the effect of the
use of quadratures on the convergence of the method. Moreover, the computation
of some coefficients of the system is not easy due to the singularities of the integral
operators. In [18], we presented a new version of the symmetric method based on a
parameterization of the artificial boundary, which is a smooth curve, and the use of
curved finite elements in the discretization. This procedure allows one to employ the
techniques from G.C. Hsiao, P. Kopp and W.L. Wendland [11] to approximate the
boundary terms by simple quadrature formulas and to study the effect of quadratures
on convergence. This modified version of the symmetric method has also been used to
solve the linear elasticity problem (cf.[17]).

In this work, we consider a model problem which consists of a nonlinear parabolic
equation of second order in a bounded region of R2 and the Laplace equation in the
corresponding exterior region; both equations are coupled by transmission conditions
on the interface. This kind of problems appears in the modelling of two–dimensional
nonlinear quasi-stationary electromagnetic fields (see [22] and the references therein).
We show that the modified symmetric method described in [18] can be successfully
applied to analyze this type of problems.

In Section 2 we describe the model problem and reduce it to a nonlinear parabolic-
elliptic problem in a bounded domain with nonlocal boundary conditions. In Section 3,
we discretize the problem using the backward Euler method for the discretization in
time and follow [18] for the discretization in space. We prove that, if the nonlinear
operator is hemicontinuous and strongly monotone, the discrete problem is well–posed.
In subsection 3.1 we prove that if the nonlinear operator is also bounded, then the
discrete solutions converge to the unique solution of the continuous problem. Assuming
that the nonlinear operator is also Lipschitz–continuous, we obtain in subsection 3.2
optimal error estimates. Finally, in Section 4 we propose a fully discrete scheme based
on simple quadrature formulas and prove that, under some additional conditions, the
order of convergence remains optimal.

Before describing the model problem, we introduce some notations that will be
used throughout this paper. Let X be a Banach space endowed with the norm ‖ · ‖
and let T > 0 be a real number. We denote by L2(0, T ;X) the set of all functions
u : (0, T ) → X such that

‖u‖2
L2(0,T ;X) :=

∫ T

0

‖u(t)‖2 dt <∞
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The space L2(0, T ;X) is a Banach space endowed with the norm ‖·‖L2(0,T ;X). Moreover,
if X is a Hilbert space with the inner product (·, ·), then L2(0, T ;X) is a Hilbert space
with the inner product

(u, v)L2(0,T ;X) :=

∫ T

0

(u(t), v(t)) dt

The set of all continuous functions u : [0, T ] → X is denoted C([0, T ];X) and is a
Banach space with the norm

‖u‖C([0,T ];X) := sup
t∈[0,T ]

‖u(t)‖

For a detailed study of these spaces, we refer the reader to A. Kufner et al. [14].
We also use periodic Sobolev spaces. Let C∞ denote the space of 1-periodic infinitely

many differentiable real valued functions of a single variable. Given g ∈ C∞, we define
its Fourier coefficients

ĝ(k) :=

∫ 1

0

g(s)e−2kπis ds

Then, for every p ∈ R, we define the periodic Sobolev space Hp as the completion of
the space C∞ with respect to the norm

‖g‖p :=
(∑

k∈Z

(1 + |k|2)p|ĝ(k)|2
)1/2

It is well known that Hp is a Hilbert space and that Hp ⊂ Hq if p > q, the inclusion
being dense and compact. Moreover, the H0-inner product

(λ, µ) :=

∫ 1

0

λ(s)µ(s) ds

can be extended to represent the duality of H−p and Hp, for all p ; we keep the same
notation for the duality bracket. For more details, we refer to R. Kress [13].

Finally, throughout this paper, C, with or without subscripts, denotes a generic
constant independent of the discretization parameters.

2 The model problem

Let Ω0 be a bounded domain of R2 with a Lipschitz boundary Γ0, and denote Ω′
0 =

R2 \Ω0. We consider a simple closed curve Γ1 containing the domain Ω0 in its interior.
We denote by ΩP the annular region bounded by the curves Γ0 and Γ1, and by ΩE the
complementary of Ω0 ∪ ΩP in R2.

Given f ∈ L2(0, T ;L2(ΩP )), u0 ∈ L2(ΩP ) and the continuous nonlinear function
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Figure 1: Domain of the model problem

b : ΩP ×R3 → R2, we look for a function u : (0, T )×Ω′
0 → R such that for all t ∈ (0, T ),

∂u

∂t
−∇ · b ( · , u(t),∇u(t)) = f(t) in ΩP

−∆u(t) = 0 in ΩE

u(t) = 0 on Γ0

uP (t) = uE(t) on Γ1

b (·, uP (t),∇uP (t)) · n1 =
∂uE

∂n1

(t) on Γ1

u(0) = u0 in ΩP

u(t) = O(1) as |x| → +∞

(1)

where n1 is the unit outward normal vector to Γ1, pointing from ΩP to ΩE, and
uM(t) : Γ1 → R denotes the limit of u(t) from ΩM (M = E, P). We remark that the
problem considered in [16] and [5] can be seen as a particular case of problem (1).

The basic idea of FEM-BEM methods is to introduce an artificial boundary dividing
the domain of the problem in two regions, one bounded and another one unbounded,
in such a way that the problem is linear and homogeneous with constant coefficients
in the last. We consider a simple closed curve Γ of class C∞ containing the domain
Ω0 ∪ ΩP in its interior. The curve Γ divides the domain ΩE in two regions: a bounded
one, which we denote Ω−, and an unbounded one, denoted Ω+. Then, problem (1)
is equivalent to a transmission problem consisting, for each t ∈ (0, T ), of a nonlinear
parabolic-elliptic problem posed in the bounded domain Ω := ΩP ∪ Γ1 ∪ Ω−:

∂u

∂t
−∇ · b ( · , u(t),∇u(t)) = f(t) in ΩP

−∆u(t) = 0 in Ω−

u(t) = 0 on Γ0

uP (t) = uE(t) on Γ1

b (·, uP (t),∇uP (t)) · n1 =
∂uE

∂n1

(t) on Γ1

u(0) = u0 in ΩP

(2)
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Figure 2: Domain of the transmission problem

and an elliptic problem, linear and homogeneous, posed in the unbounded region Ω+:

−∆u(t) = 0 in Ω+

u(t) = O(1) as |x| → +∞
(3)

Both problems are coupled by transmission conditions on Γ:

u−(t) = u+(t)
∂u

∂n

−
(t) =

∂u

∂n

+

(t) (4)

Here, n is the unit normal vector to Γ, pointing from Ω− to Ω+, and u±(t) is the limit
of u(t) on Γ from Ω±.

We remark that the boundary Γ1 could be chosen as the coupling boundary if it
is sufficiently smooth. However, this boundary is given by the problem and it is not
necessarily smooth. This is the reason why we introduce the artificial boundary Γ.

In what follows, we suppose that there exists a constant C > 0 such that

|b(x,α)| ≤ C(1 + |α|) ∀x ∈ ΩP ∀α ∈ R3 (5)

where | · | stands for the Euclidean norm. We consider the nonlinear form a : H1(Ω)×
H1(Ω) → R defined by

a(u, v) := aP (u, v) + aE(u, v) ∀u, v ∈ H1(Ω)

where

aP (u, v) :=

∫
ΩP

b(·, u,∇u) · ∇v and aE(u, v) :=

∫
Ω−
∇u · ∇v

Condition (5) ensures that a(·, ·) is well defined and bounded in H1(Ω) (cf. [22, 9]).
We see that the solution of problem (2) satisfies the following variational formula-

tion:∫
ΩP

∂u

∂t
(t)v+a(u(t), v)−

∫
Γ

∂u

∂n

−
(t) v− =

∫
ΩP

f(t)v ∀ v ∈ H1
Γ0

(Ω) a.e. t ∈ (0, T ) (6)
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where H1
Γ0

(Ω) := {v ∈ H1(Ω) ; v|Γ0 = 0}.
On the other hand, for every t ∈ (0, T ), the solution of problem (3) can be computed

in every point of Ω+ from the representation formula

u(t,x) = − 1

2π

∫
Γ

(
u(t,y)

∂

∂ny

log |x− y| − log |x− y| ∂
∂ny

u(t,y)
)
dσy + cu (7)

where cu is a constant depending on u.
The symmetric FEM-BEM method consists in coupling (6) with two integral iden-

tities on Γ deduced from (7) that relate the trace of u and its normal derivative ∂u
∂n

(cf. [4, 10]); the coupling is possible thanks to the transmission conditions (4). This
method, unlike the one of Johnson and Nédélec [12], allows to choose as artificial
boundary a polygonal curve. However, this choice entails some difficulties due to the
singularities of the boundary terms (cf. [4, 5, 9]).

Here, we follow [18] and assumed that the artificial boundary Γ is smooth. Then,
we consider a regular 1-periodic parameterization of Γ, x : R → R2. Then we write all
the integrals on the artificial boundary as integrals on [0, 1]. In this way, we deduce
the following variational formulation of problem (1): Find u ∈ L2(0, T ;H1

Γ0
(Ω)) ∩

C
(
[0, T ];L2(ΩP )

)
and ξ ∈ L2

(
0, T ;H

−1/2
0

)
such that u(0) = u0 in L2(ΩP ) and for all

v ∈ H1
Γ0

(Ω), η ∈ H−1/2
0 and a.e. t ∈ (0, T )

d

dt
(u(t), v)L2(ΩP )+a(u(t), v) + d(u(t), v)− c(v, ξ(t)) = (f(t), v)L2(ΩP )

c(u(t), η) + b(ξ(t), η) = 0
(8)

where ξ(t) := ∂u
∂n

(x(t))|x′(t)| is the scaled normal derivative and

H
−1/2
0 := {η ∈ H−1/2 ; (η, 1) = 0}

We recall that the zero-mean condition on ξ is a consequence of (7) and the asymptotic
behaviour of u at infinity. The bilinear forms b(·, ·), d(·, ·) and c(·, ·) are defined as
follows, for all ξ, η ∈ H−1/2 and u, v ∈ H1(Ω),

b(ξ, η) := (η,Vξ) d(u, v) := b(γ(u)′, γ(v)′) c(v, η) :=

(
η,

(
1

2
I − K

)
γ(v)

)
Here, γ : H1(Ω) → H1/2 is the parameterized trace, and V : H−1/2 → H1/2 and
K : H1/2 → H1/2 are parameterized versions of the simple and double layer operators,
respectively. Next we recall their properties, which are consequence of the properties
of the classical simple and double layer operators (cf. [13]).

Lemma 1. The linear operator V : H−1/2 → H1/2 is continuous. Moreover, there exists
a constant β > 0 such that

(η,Vη) ≥ β‖η‖2
−1/2 ∀ η ∈ H−1/2

0

The operator K : H1/2 → H1/2 is linear and compact.
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We recall that in the two boundary integral approach from Costabel [4] and Han [10],
the compactness of the double layer operator is no longer crucial as it is in the approach
of Johnson and Nédélec [12]. This fact justify the use of this method in elasticity (cf.
[6, 2, 17]), where the double layer operator is never compact, even if the boundary is
a smooth curve.

Now, we write the variational formulation (8) in an equivalent form, easier to ana-

lyze. For this purpose, we introduce the product space M := H1
Γ0

(Ω)×H
−1/2
0 and the

form A : M ×M → R given by

A(û, v̂) := a(u, v) +B(û, v̂) ∀ û := (u, ξ), v̂ := (v, η) ∈M

where B(·, ·) is the bilinear form defined by

B(û, v̂) := d(u, v)− c(v, ξ) + c(u, η) + b(ξ, η) ∀ û, v̂ ∈M

Then, problem (8) is equivalent to: Find û := (u, ξ) ∈ L2(0, T ;M), u ∈ C
(
[0, T ];L2(ΩP )

)
such that u(0) = u0 in L2(ΩP ) and a.e. t ∈ (0, T ) satisfies

d

dt
(u(t), v)L2(ΩP ) + A(û(t), v̂) = (f(t), v)L2(ΩP ) ∀ v̂ ∈M (9)

The analysis of problem (9) is based on the properties of the nonlinear function b. In the
rest of the paper, we assume that, besides (5), the derivatives ∂bi

∂αj
(i = 1, 2; j = 0, 1, 2)

are continuous in ΩP ×R3 and there exist constants δ > 0 and C > 0 such that for all
x ∈ ΩP and α ∈ R3,

2∑
i=1

2∑
j=0

∂bi
∂αj

(x,α)βiβj ≥ δ(β2
1 + β2

2) ∀β ∈ R3 (10)

and ∣∣∣∣ ∂bi∂αj

(x,α)

∣∣∣∣ ≤ C (11)

Lemma 2. Under the assumptions made on b, the form A(·, ·) is bounded, hemicon-
tinuous, strongly monotone and Lipschitz-continuous in M .

Proof. In Theorem 32.6 of [22] it is proved that if conditions (5), (10) and (11) hold,
then a(·, ·) is bounded and Lipschitz-continuous in H1(Ω) and strongly monotone in
H1

Γ0
(Ω). Moreover, because the theorem of continuous dependence of the integral

with respect to a parameter, a(·, ·) is also hemicontinuous (cf. Theorem 2.1.6 in [14]).
On the other hand, due to Lemma 1 and the continuity of γ : H1(Ω) → H1/2 and
d
ds

: H1/2 → H
−1/2
0 , the bilinear form B : M ×M → R is continuous in M . We also

have that
B(v̂, v̂) = b(γ(v)′, γ(v)′) + b(η, η) ≥ β‖η‖2

−1/2 ∀ v̂ ∈M

Therefore, A(·, ·) inherits the properties of a(·, ·).
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3 The discrete problem

In this section we propose and analyze a discrete scheme to solve problem (9). We
use the backward Euler method for the discretization in time and follow [18] for the
discretization in space. For simplicity, in what follows we suppose that the boundaries
Γ0 and Γ1 are polygonal curves. We also assume that f ∈ C

(
[0, T ];L2(ΩP )

)
.

Given two positive integer numbers, N0 and N1, we consider a uniform partition
of the interval [0, T ] of step ∆t := T/N0, tn := n∆t (n = 0, . . . , N0), and a uniform
partition of the real line of step h := 1/N1, zi := ih (i ∈ Z). Then, let (τh)h be a regular
family of exact triangulations of the domain Ω (cf. [22, 23, 24]). We suppose that τh
is compatible with the interface Γ1, and denote by τh,E and τh,P the triangulations of
Ω− and ΩP determined by τh, respectively. We denote by σh the set of vertices of the
triangulation τh and suppose that σh ∩ Γ = {x(zi)}N1

i=0.
To approximate the unknown u(t), we consider continuous piecewise affine functions

in Ω vanishing on Γ0, that is, we define the space

Vh := {vh ∈ C(Ω) ; vh|T ∈ P1(T ) ∀T ∈ τh and vh|Γ0 = 0}
To approximate the scaled normal derivative ξ, we define the space

Hh := {ηh ∈ H0 ; ηi := ηh|(zi−1,zi) ∈ R ∀ i ∈ Z and (ηh, 1) = 0}
Lastly, we define the product space Mh := Vh ×Hh.

We will assume that (u0,h)h is a sequence of continuous functions in ΩP such that
(u0,h)|T ∈ P1(T ) ∀T ∈ τh,P and that u0,h → u0 in L2(ΩP ). Then, we consider the
following discrete scheme: Find ûn

h := (un
h, ξ

n
h) ∈Mh (n = 1, . . . , N0) such that

(un
h − un−1

h , vh)L2(ΩP ) + ∆t A(ûn
h, v̂h) = ∆t (f(tn), vh)L2(ΩP ) ∀ v̂h ∈Mh (12)

where u0
h := u0,h. Here, ûn

h is expected to be an approximation of û(tn) and the
backward difference ∆t−1 (un

h − un−1
h )|ΩP

is an approximation of u′(tn)|ΩP
, for n =

1, . . . , N0.

Theorem 3. Assume that b satisfies (5) and (10). Then, problem (12) has a unique
solution for h sufficiently small.

Proof. Let {φi}d1
i=1 and {ψk}d2

k=1 be basis of Vh and Hh, respectively, and denote D :=

d1 + d2. We consider the product basis of Mh, {Ψ̂d}D
d=1, where for d = 1, . . . , D,

Ψ̂d :=

{
(φd, 0) if d ∈ {1, . . . , d1}
(0, ψd−d1) if d ∈ {d1 + 1, . . . , D}

Then, for n = 1, . . . , N0, û
n
h =

∑
D

d=1 u
n
dΨ̂d and problem (12) is equivalent to N0 systems

of nonlinear equations:
f(un) = gn (n = 1, . . . , N0) (13)

where

fi(u) :=



d1∑
j=1

uj (φj, φi)L2(ΩP ) + ∆t A

(
D∑

j=1

ujΨ̂j, Ψ̂i

)
if i ∈ {1, . . . , d1}

∆t A

(
D∑

j=1

ujΨ̂j, Ψ̂i

)
if i ∈ {d1 + 1, . . . , D}
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and gn
i := (un−1

h , φi)L2(ΩP ) +∆t(f(tn), φi)L2(ΩP ) if i ∈ {1, . . . , d1} and gn
i := 0 otherwise.

By virtue of Lemma 2, A(·, ·) is hemicontinuous and strongly monotone. Using
these properties, it is easy to prove that f is hemicontinuous, strongly monotone and
coercive. Then, applying Theorems 27.1 and 27.3 in J. Oden [20], we deduce that each
of the systems (13) has a unique solution.

We remark that Theorem 3 is also true under weaker conditions on the coefficients
of the nonlinear equation. In fact, (10) can be substituted by certain conditions so that
A(·, ·) is monotone and coercive in M . These properties are sufficient to deduce that
the function f in Theorem 3 is strongly monotone and coercive (cf. [20]).

3.1 Existence, uniqueness and convergence

In this subsection, we prove the existence and uniqueness of a solution to the continuous
problem (9), and a convergence result in L2(0, T ;M). For this purpose, we use the a
priori error estimate given in Lemma 4 below. In what follows, given any function
φ ∈ C([0, T ]), we denote by φe the piecewise constant function

φe(t) :=

{
φ(tn) if t ∈ (tn−1, tn] (n = 1, . . . , N0)

φ(t1) if t = 0

Lemma 4. If b satisfies (5) and (10), then, for ∆t sufficiently small, there exists a
constant C > 0, independent of ∆t and h, such that

‖uh,e(T )‖L2(ΩP ) + ‖ûh,e‖L2(0,T ;M) ≤ C

Proof. The proof of this result is standard. We take v̂h = ûn
h in equation (12), sum up

from n = 1 to n = N0 and remark that

N0∑
n=1

(un
h − un−1

h , un
h)L2(ΩP ) =

1

2

N0∑
n=1

‖un
h − un−1

h ‖2
L2(ΩP ) +

1

2
‖uN0

h ‖2
L2(ΩP ) −

1

2
‖u0,h‖2

L2(ΩP )

Then, using that the sequence (u0,h)h is bounded and the strong monotonicity of A(·, ·),
we have that

1

2
‖uN0

h ‖2
L2(ΩP ) + α̂

N0∑
n=1

‖ûn
h‖2

M ≤ C + ∆t

N0∑
n=1

‖f(tn)‖L2(ΩP )‖ûn
h‖M

where α̂ is the monotonicity constant of A(·, ·). The result follows applying the in-
equality ab ≤ a2

2ε
+ εb2

2
with a = ‖f(tn)‖L2(ΩP ), b = ‖ûn

h‖M and ε = α̂.

We will also use the following auxiliary result, which can be verified easily (cf.
Lemma 46.2 in [22]).

Lemma 5. Let φ ∈ C∞
(
[0, T ]

)
. Then there exist positive constants, C1 and C2, de-

pending on the function φ, such that

‖φe − φ‖L2(0,T ) ≤ C1∆t ‖φ̃e − φ′‖L2(0,T ) ≤ C2∆t
1/2
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where

φ̃e(t) :=


φ(tn+1)− φ(tn)

∆t
if t ∈ (tn−1, tn] (n = 1, . . . , N0)

φ(t2)− φ(t1)

∆t
if t = 0

with φ(tN0+1) := φ(T ).

The convergence of the approximate solutions to parabolic-elliptic problems ob-
tained by finite element discretizations was first studied by M. Zlámal [25] and later
by A. Žeńı̌sek [22]. The proof given here follows essentially that of [22], but presents
some simplifications because in [22], the author looks for an exact solution such that
its derivative in ΩP belongs to L2(0, T ;V ′

P ), where V ′
P is the dual space of VP = {v ∈

H1(ΩP ) : v|Γ0 = 0}.

Theorem 6. If b satisfies (5) and (10), then problem (9) has a unique solution û :=
(u, ξ) and the sequence (ûh,e)h converges to û in L2(0, T ;M) as h→ 0.

Proof. We give a sketch of the proof. Firstly, since L2(ΩP ) and L2(0, T ;M) are reflexive
spaces, Lemma 4 implies that there exist subsequences (uh′,e(T ))h′ from (uh,e(T ))h and
(ûh′,e)h′ from (ûh,e)h converging weakly in L2(ΩP ) and in L2(0, T ;M), respectively; that
is, there exist functions g ∈ L2(ΩP ) and û := (u, ξ) ∈ L2(0, T ;M) such that

(uh′,e(T ), v)L2(ΩP ) → (g, v)L2(ΩP ) ∀ v ∈ L2(ΩP ) (14)

(ûh′,e, v̂)L2(0,T ;M) → (û, v̂)L2(0,T ;M) ∀ v̂ ∈ L2(0, T ;M) (15)

Now, let ŵ := (w, ζ) ∈ M and φ ∈ C∞
(
[0, T ]

)
. We consider a sequence (ŵh)h,

ŵh ∈Mh, such that ŵh → ŵ in M . Taking v̂h = ŵhφ(tn) in (12) and summing by
parts, we deduce that∫ T

0

(fe(t), wh)φe(t) dt = (uh,e(T ), wh)φ(T )− (u0,h, wh)φ(∆t)

+

∫ T

0

A(ûh,e(t), ŵh)φe(t) dt−
∫ T

0

(uh,e(t), wh)φ̃e(t) dt

(16)

where, for brevity, we denoted (·, ·) the inner product of L2(ΩP ).
Since A(·, ·) is nonlinear, we cannot pass to the limit in (16) directly. Then, for

each h′ and each t ∈ [0, T ], we consider the functional χh′(t) ∈M ′ defined by

〈χh′(t), v̂〉 := A(ûh′,e(t), v̂) ∀ v̂ ∈M (17)

where 〈·, ·〉 denotes the duality pairing between M ′ and M . Using the properties of
A(·, ·), it is easy to prove that the sequence (χh′)h′ is bounded in L2(0, T ;M ′), which is a
reflexive space. Therefore, there exists an element χ ∈ L2(0, T ;M ′) and a subsequence
of (χh′)h′ , denoted the same, that converges weakly to χ in L2(0, T ;M ′).

Now, we can pass to the limit in (16) as h′ → 0. Using the Cauchy-Schwarz
inequality, Lemma 5, (14), (15) and the convergence of sequences (u0,h)h, (ŵh)h and

10



(χh′)h′ , we obtain:∫ T

0

(f(t), w)L2(ΩP )φ(t) dt = (g, w)L2(ΩP )φ(T )− (u0, w)L2(ΩP )φ(0)

+

∫ T

0

〈χ(t), ŵ〉φ(t) dt−
∫ T

0

(u(t), w)L2(ΩP )φ
′(t) dt

(18)

Taking φ ∈ C∞0 (0, T ) and integrating by parts, we deduce that

d

dt
(u(t), w)L2(ΩP ) = (f(t), w)L2(ΩP ) − 〈χ(t), ŵ〉 a.e. t ∈ (0, T ) ∀ ŵ ∈M (19)

Now, thanks to the regularity of u, f and χ, the mapping t 7→ (u(t), w)L2(ΩP ) be-
longs to H1(0, T ). Therefore, we can identify it with a function in C[0, T ], so u ∈
C
(
[0, T ];L2(ΩP )

)
. Then, from (19) we deduce that for every ŵ ∈ M and for every

t ∈ [0, T ],

(u(t), w)L2(ΩP ) = (u(0), w)L2(ΩP ) +

∫ t

0

{(f(s), w)L2(ΩP ) − 〈χ(s), ŵ〉} ds

If we consider again relation (18) with φ ∈ C∞
(
[0, T ]

)
such that φ(0) = 1 and φ(T ) = 0,

and integrate by parts, we obtain that u(0) = u0 in L2(ΩP ). Similarly, we deduce that
g = u(T ) in L2(ΩP ).

Next we prove that û satisfies equation (9) and that the subsequence (ûh′,e)h′ con-
verges to û in L2(0, T ;M). We recall that under assumptions (5) and (10), A(·, ·) is
strongly monotone in M . Thus, for all v̂ ∈M ,∫ T

0

(A(ûh′,e(t), ûh′,e(t)− v̂)− A(v̂, ûh′,e(t)− v̂)) dt ≥ α̂‖ûh′,e − v̂‖2
L2(0,T ;M) (20)

On the other hand, proceeding as in the proof of Lemma 4, we deduce that∫ T

0

A(ûh′,e(t), ûh′,e(t)) ≤
1

2
‖u0,h′‖2

L2(ΩP ) −
1

2
‖uh′,e(T )‖2

L2(ΩP ) +

∫ T

0

(fe(t), uh′,e(t))L2(ΩP )

Then, taking into account definition (17), the weak convergence of (χh′)h′ , (14) and
(15), we deduce from (20) that for all v̂ ∈M ,

α̂ lim sup
h′→0

‖ûh′,e − v̂‖2
L2(0,T ;M) ≤

∫ T

0

〈χ(t), û(t)− v̂〉 dt−
∫ T

0

A(v̂, û(t)− v̂) dt (21)

Now, given ŵ ∈ L2(0, T ;M) and θ ∈ (0, 1), we take v̂ = û(t) − θŵ(t) and pass to the
limit in (21) as θ → 0. Using that A(·, ·) is hemicontinuous and bounded, and applying
the theorem of dominated convergence, we deduce, by linearity, that∫ T

0

〈χ(t), ŵ(t)〉 dt =

∫ T

0

A(û(t), ŵ(t)) dt ∀ ŵ ∈ L2(0, T ;M) (22)

Then, taking v̂ = û in (21), we deduce that the subsequence (ûh′,e)h′ converges to û
in L2(0, T ;M). Moreover, taking ŵ(x, t) = v̂(x)φ(t) in (22), with φ ∈ C∞0 (0, T ) and
v̂ ∈M , we have

〈χ(t), v̂〉 = A(û(t), v̂) a.e. t ∈ (0, T ) ∀ v̂ ∈M

11



Therefore, û satisfies equation (9) (see (19)).
Finally, the uniqueness of the solution and the convergence of the whole sequence

(ûh,e)h to û in L2(0, T ;M) can be proved using standard arguments.

Lemma 4 can be proved under weaker conditions on the function b. In fact, it
suffices the monotonicity and coercivity of A(·, ·) (cf. [22]). Therefore, from the proof
of Theorem 6 it is clear that the existence and uniqueness of a solution to problem
(9) can also be obtained under these conditions. Assumption (10) is only necessary to
ensure the strong convergence of (ûh,e)h to û in L2(0, T ;M).

3.2 Error estimates

In this subsection, we suppose that the solution u of problem (9) has the regularity
L2(0, T ;H1+σ(Ω)), with σ ∈ [0, 1), and we obtain error estimates in terms of the dis-
cretization parameters using standard techniques (cf. V. Thomée [21]). Instead of using
the elliptic projection operator, that requires duality techniques, we use the interpola-
tion operator defined by C. Bernardi [1] which is based on a local L2-projection. This
operator is a generalization of the one introduced by Ph. Clément [3]. Then, given
u ∈ L1(Ω), Πhu denotes the interpolate of u in Vh as defined in [1].

Lemma 7. If w ∈ H1
Γ0

(Ω) ∩ H1+σ(Ω), with σ ∈ [0, 1), then there exists a constant
C > 0, independent of h, such that

‖w − Πhw‖k,Ω ≤ Ch1+σ−k‖w‖H1+σ(Ω) (k = 0, 1)

Proof. It is well known that (cf. [1]), if w ∈ H1
Γ0

(Ω) ∩ Hm(Ω) (m = 1, 2), then there
exists a constant C > 0, independent of h, such that

‖w − Πhw‖k,Ω ≤ C hm−k‖w‖m,Ω (k = 0, 1)

The result follows using the interpolation theory in Sobolev spaces (cf. [15]).

Theorem 8. Assume that u ∈ C
(
(0, T ];H1+σ(Ω)

)
, u′ ∈ L2

(
0, T ;H1(Ω)

)
, u′′ ∈ L2(0, T ;V ′

P ),
u0 ∈ H1(ΩP ) and that there exists a constant C, independent of h, such that

‖u0 − u0,h‖L2(ΩP ) ≤ C h ‖u0‖H1(ΩP ) (23)

Then, if b satisfies (5), (10) and (11), there exists a constant C > 0, independent of
h and ∆t, such that

‖ûe − ûh,e‖L2(0,T ;M) ≤ C
(
hσ + ∆t

)
Proof. Let πh : H0 → Hh be the orthogonal projection operator in H0 and consider
the operator Π̂hv̂ := (Πhv, πhη) ∀ v̂ := (v, η) ∈ L1(Ω) × H0. For n = 1, . . . , N0, we

denote by ên
h = (en

h, ε
n
h) := ûn

h − Π̂hû(tn), that is, en
h = un

h − ũn
h, with ũn

h := Πhu(tn),
and εnh = ξn

h − πhξ(tn). We choose ũ0
h := u0,h and put e0

h := 0. We recall that, in the

12



conditions of the theorem, û satisfies equation (9) for all t ∈ (0, T ]. Since (ûn
h)N0

n=1 is
the solution to problem (12), we deduce that

(en
h − en−1

h , vh)L2(ΩP ) + ∆t
(
A(ûn

h, v̂h)− A(Π̂hû(tn), v̂h)
)

=
(
∆t u′(tn)− (u(tn)− u(tn−1)), vh

)
L2(ΩP )

+ ∆t
(
A(û(tn), v̂h)− A(Π̂hû(tn), v̂h)

)
+

(
u(tn)− u(tn−1)− (ũn

h − ũn−1
h ), vh

)
L2(ΩP )

(24)

Next, we estimate the terms appearing in the right hand side of (24). A Taylor expan-
sion of first order in V ′

P gives that

(
∆t u′(tn)− (u(tn)− u(tn−1)), vh

)
L2(ΩP )

= 〈
∫ tn

tn−1

(tn−1 − t)u′′(t) dt, vh〉P

where 〈·, ·〉P denotes the duality pairing between V ′
P and VP . Then, using the Cauchy-

Schwarz inequality, we deduce that∣∣∣(∆t u′(tn)− (u(tn)− u(tn−1)), vh

)
L2(ΩP )

∣∣∣ ≤ ∆t3/2‖u′′‖L2(0,T ;V ′P )‖vh‖L2(ΩP )

On the other hand, if conditions (5) and (11) are satisfied, then A(·, ·) is Lipschitz–
continuous. Thus, applying Lemma 7 we obtain∣∣∣∆t(A(û(tn), v̂h)− A(Π̂hû(tn), v̂h)

)∣∣∣ ≤ C∆t hσ‖u(tn)‖H1+σ(Ω)‖v̂h‖M

Finally, using Lemma 7 for n = 2, . . . , N0, we deduce∣∣∣(u(tn)− u(tn−1)− (ũn
h − ũn−1

h ), vh

)
L2(ΩP )

∣∣∣ ≤ Ch‖u(tn)− u(tn−1)‖H1(Ω)‖vh‖L2(ΩP )

≤ C∆t1/2h‖u′‖L2(0,T ;H1(Ω))‖vh‖L2(ΩP )

If n = 1, we apply Lemma 7 and inequality (23) to obtain∣∣∣(u(t1)− u0 − (ũ1
h − ũ0

h), vh

)
L2(ΩP )

∣∣∣ ≤ Ch
(
‖u(t1)‖H1(Ω) + ‖u0‖H1(ΩP )

)
‖vh‖L2(ΩP )

The result follows taking v̂h = ên
h (n = 1, . . . , N0) in (24), using the strong mono-

tonicity of A(·, ·) and applying repeatedly inequality ab ≤ a2

2ε
+ εb2

2
.

4 The effect of quadratures on convergence

In practice, it is not possible to solve problem (12) directly since we cannot compute
exactly all the coefficients of the system. We have to use quadrature formulas to
approximate the integrals over the nonlinear region, the curved triangles and those
corresponding to boundary terms. In this section we propose and analyze a fully
discrete scheme that takes into account the use of quadrature formulas.

13



To approximate the coefficients in which appear integrals on Ω, we consider a
quadrature formula on a reference triangle:∫

T̂

φ̂(x̂) dx̂ ' Q̂(φ̂) :=
L∑

l=1

ω̂l φ̂(âl)

and suppose that it is exact for constant functions. Then, on every triangle T ∈ τh, we
obtain the corresponding quadrature formula QT through a change of variables.

We define the nonlinear form ah : Vh × Vh → R as

ah(uh, vh) := ah,P (uh, vh) + ah,E(uh, vh) ∀uh, vh ∈ Vh

where

ah,P (uh, vh) :=
∑

T∈τh,P

QT

(
b( · , uh,∇uh) · ∇vh

)
ah,E(uh, vh) :=

∑
T∈τh,E

QT

(
∇uh · ∇vh

)
We also consider a perturbation of (f(tn), vh)L2(ΩP ):

(f(tn), vh)h,P :=
∑

T∈τh,P

QT (f(tn)vh) ∀ vh ∈ Vh

For the approximation of the boundary terms, we follow [18]. We consider a quadra-
ture formula ˆ̀

2(·) on the unit square and assume that it is exact for polynomials of
degree less than or equal to one. Next we use this quadrature to define perturbations
bh(·, ·), dh(·, ·) and ch(·, ·) of the bilinear forms b(·, ·), d(·, ·) and c(·, ·), respectively.

For i = 1, ..., N1, we denote by µi the 1-periodic function given by

µi(s) :=

{
1 if s ∈ (zi−1, zi)

0 otherwise

The set {µi − µi+1}N1−1
i=1 is a basis of Hh. Therefore, to compute an approximation

bh(ξh, ηh) of b(ξh, ηh), for ξh, ηh ∈ Hh, it suffices to define a quadrature scheme to
approximate the coefficients

bi,j := b(µi, µj) = − 1

4π

∫ zi

zi−1

∫ zj

zj−1

log |x(s)− x(t)|2 ds dt

for i, j = 1, . . . , N1. Due to the periodicity of x, the coefficients bi,j can be defined for
any pair of integer numbers (i, j) modulo N1. We define a scheme to approximate the
coefficients corresponding to indices (i, j) in the set I := {(i, j) ∈ Z×Z; |i−j| ≤ N1/2}.
Then, for (i, j) ∈ I, we make the decomposition:

bi,j = − 1

4π

(∫ zi

zi−1

∫ zj

zj−1

F (s, t) ds dt+

∫ zi

zi−1

∫ zj

zj−1

log (s− t)2ds dt

)
where

F (s, t) :=

log
|x(s)− x(t)|2

(s− t)2
si s 6= t

log |x′(s)|2 si s = t

14



We remark that F is a function of class C∞ in the set {(s, t) ∈ R2; |s − t| < 1}.
Therefore, if (i, j) ∈ I, the first term of the decomposition can be approximated using
ˆ̀
2. On the other hand, elementary calculations give that∫ zi

zi−1

∫ zj

zj−1

log (s− t)2 ds dt = h2(log h2 +Bi−j)

where for every k ∈ Z, Bk :=
∫ 1

0

∫ 1

0
log (k + s− t)2 ds dt. The constants Bk are inde-

pendent of the curve Γ and can be calculated exactly. However, its exact evaluation is
unstable since in its expression appear differences of large quantities. They are usually
approximated as in [11]. We remark that Bk = B−k, for all k ∈ Z. Therefore, for
i, j = 1, . . . , N1, we calculate

b̃i,j := − 1

4π
h2
(

ˆ̀
2(F (zi−1 + h ·, zj−1 + h ·)) + log h2 +Bi−j

)
where

(i, j) :=


(i, j) si (i, j) ∈ I
(i, j +N1) si i− j > N1/2

(i, j −N1) si j − i > N1/2

Then, the approximate bilinear form bh : Hh ×Hh → R is given by

bh(ξh, ηh) :=

N1∑
i,j=1

ξiηj b̃i,j ∀ ξh, ηh ∈ Hh

We recall that for ηh ∈ Hh, ηi denotes the constant value of ηh on (zi−1, zi).
Now, to define an approximation of the bilinear form d(·, ·) in Vh × Vh, we remark

that if vh ∈ Vh, then γ(vh) ∈ Th, where

Th := {ηh ∈ C(R) ; ηh(s) = ηh(s+ 1) ∀ s ∈ R and ηh|(zi−1,zi) ∈ P1 ∀ i ∈ Z}

Let {`i}N1
i=1 be the nodal basis of Th. Then, it suffices to define a scheme to approximate

a a a a a a a�
�
�
�
�
�
�
�
�

C
C
C
C
C
C
C
C
C

`i

0 zi−1 zi zi+1 1

Figure 3: Functions `i

the coefficients di,j := b(`′i, `
′
j) = 1

h2

(
bi,j − bi,j+1 − bi+1,j + bi+1,j+1

)
, for i, j = 1, . . . , N1.

If we call

d̃i,j :=
1

h2

(
b̃i,j − b̃i,j+1 − b̃i+1,j + b̃i+1,j+1

)
i, j = 1, . . . , N1
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then the approximate bilinear form dh : Vh × Vh → R is given by

dh(uh, vh) :=

N1∑
i,j=1

γu(zi) γv(zj) d̃i,j ∀uh, vh ∈ Vh

Finally, we define an approximation of the bilinear form c(·, ·) in Vh × Hh. Let
vh ∈ Vh and ηh ∈ Hh. Then, we calculate (ηh, γ(vh)) exactly. So, we only have to
define a scheme to approximate the coefficients

ci,j :=

∫ zj

zj−1

(∫ zi+1

zi−1

K(s, t)li(t) dt

)
ds i, j = 1, . . . , N1

Since the kernel K(·, ·) of K is a function of class C∞, we use ˆ̀
2 to define the approxi-

mations

c̃i,j := h2 ˆ̀
2

(
K(zj−1 + h·, zi−1 + h·)li(zi−1 + h·) +K(zj−1 + h·, zi + h·)li(zi + h·)

)
Therefore, we define the bilinear form ch : Vh ×Hh → R by

ch(vh, ηh) :=
h

4

N1∑
j=1

ηj

(
γv(zj−1) + γv(zj)

)
−

N1∑
i,j=1

ηjγv(zi)c̃i,j

We approximate the form A(·, ·) by Ah : Mh ×Mh → R defined by

Ah(ûh, v̂h) := ah(uh, vh) +Bh(ûh, v̂h) ∀ ûh, v̂h ∈Mh

where
Bh(ûh, v̂h) := dh(uh, vh)− ch(vh, ξh) + ch(uh, ηh) + bh(ξh, ηh)

Then, we propose the following scheme to approximate the solution to problem (12):
Find ûn

h := (un
h, ξ

n
h) ∈Mh (n = 1, . . . , N0) such that

(un
h − un−1

h , vh)L2(ΩP ) + ∆t Ah(û
n
h, v̂h) = ∆t (f(tn), vh)h,P ∀ v̂h ∈Mh (25)

where u0
h := u0,h ∈ C(ΩP ) is such that (u0

h)|T ∈ P1(T ) ∀T ∈ τh,P and u0
h → u0 in L2(ΩP ).

Here, we suppose that the terms (uh, vh)L2(ΩP ), with uh, vh ∈ Vh, are computed exactly
since the triangulation τh,P only contains straight triangles. Nevertheless, in practice
it is usual to apply the lumped masses method (cf. V. Thomée [21] ).

Lemma 9. There exists a constant C > 0, independent of h, such that

|B(ûh, v̂h)−Bh(ûh, v̂h)| ≤ Ch‖ûh‖M‖v̂h‖M ∀ ûh, v̂h ∈Mh

Proof. In Lemma 11 of [7], it is proved that there exists a constant C > 0, independent
of h, such that

|b(ξh, ηh)− bh(ξh, ηh)| ≤ Ch‖ξh‖−1/2‖ηh‖−1/2 ∀ ξh, ηh ∈ Hh
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On the other hand, since operators d
ds

: H1/2 → H
−1/2
0 and γ : H1(Ω) → H1/2 are

continuous, we deduce that there exists a constant C > 0, independent of h, such that

|d(uh, vh)− dh(uh, vh)| ≤ Ch‖uh‖1,Ω−‖vh‖1,Ω− ∀uh, vh ∈ Vh

Lastly, in Lemma 5.2 of [18] it is proved that there exists a constant C > 0, independent
of h, such that

|c(vh, ηh)− ch(vh, ηh)| ≤ Ch3/2‖vh‖1,Ω−‖ηh‖−1/2 ∀ vh ∈ Vh ∀ ηh ∈ Hh

The result follows using the triangular inequality.

Theorem 10. Assume that b satisfies conditions (5) and (10). Then problem (25)
has a unique solution, for h sufficiently small.

Proof. In Theorem 35.2 of [22], it is proved that under conditions (5) and (10), the
forms ah(·, ·) are uniformly strongly monotone and uniformly bounded in Vh, for some
h ≤ h0. On the other hand, Lemma 9 implies that the bilinear forms Bh(·, ·) verify
these properties as well, if h is sufficiently small. Therefore, if b satisfies (5) and (10),
the forms Ah(·, ·) are uniformly strongly monotone and uniformly bounded in Mh, for
h ≤ h0. The rest of the proof is analogous to that of Theorem 3.

To study the effect of quadratures on convergence, we will use the following auxiliary
lemma, which is proved in [22, Lema 26.7].

Lemma 11. Let T ∈ τh and suppose that f ∈ W 1,∞(T ). Then there exists a constant
C > 0, independent of T and f , such that∣∣∣∣∫

T

fp dx−QT (fp)

∣∣∣∣ ≤ ChTmes(T )1/2‖f‖W 1,∞(T )‖p‖H1(T ) ∀ p ∈ P1(T )

where hT denotes the diameter of triangle T .

We also have to impose additional conditions on b. In the rest of the paper, we
suppose that, besides (5), (10) and (11), the derivatives ∂bi

∂xj
: ΩP ×R3 → R (i, j = 1, 2)

are continuous in ΩP × R3 and there exists a constant C > 0 such that∣∣∣∣ ∂bi∂xj

(x,α)

∣∣∣∣ ≤ C(1 + |α|) ∀ (x,α) ∈ ΩP × R3 (26)

Lemma 12. If conditions (5), (11) and (26) are satisfied, then there exists a constant
C > 0, independent of h, such that

|A(ûh, v̂h)− Ah(ûh, v̂h)| ≤ Ch (1 + ‖ûh‖M) ‖v̂h‖M ∀ ûh, v̂h ∈Mh

Proof. In these conditions, M. Feistauer [8] proved that there exists a constant C > 0,
independent of h, such that

|a(uh, vh)− ah(uh, vh)| ≤ Ch(1 + ‖uh‖H1(Ω))‖vh‖H1(Ω) ∀uh, vh ∈ Vh

The result follows combining this inequality with Lemma 9.
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Theorem 13. Under the assumptions of Theorem 6, if moreover b satisfies (26) and
f ∈ C

(
[0, T ];W 1,∞(ΩP )

)
, the sequence (ûh,e)h converges in L2(0, T ;M) to the solution

to problem (9).

Proof. Proceeding similarly to Lemma 4, we can prove a priori error estimates for the
solution to the fully discrete scheme (25). In effect, if conditions (5) and (10) are
satisfied and ∆t is sufficiently small, there exists a constant C > 0, independent of h
and ∆t, such that

‖uh,e(T )‖L2(ΩP ) + ‖ûh,e‖L2(0,T ;M) ≤ C

Therefore, it is possible to extract weakly convergent subsequences (uh′,e(T ))h′ ⇀ g∗ in
L2(ΩP ) and (ûh′,e)h′ ⇀ û∗ in L2(0, T ;M). Now, let φ ∈ C∞

(
[0, T ]

)
. Given ŵ ∈ M , we

consider a sequence (ŵh)h, ŵh ∈ Mh, converging to ŵ in M . Putting v̂h = ŵhφ(tn) in
equation (25) and summing by parts, we obtain that∫ T

0

(fe(t), wh)h,Pφe(t)dt = (uh,e(T ), wh)L2(ΩP )φ(T )− (u0,h, wh)L2(ΩP )φ(∆t)

+

∫ T

0

(uh,e(t), wh)L2(ΩP )φ̃e(t)dt−
∫ T

0

Ah(ûh,e(t), ŵh)φe(t) dt

(27)

For each h′ and every t ∈ [0, T ], we consider the functional χ∗h′(t) ∈M ′ defined by

〈χ∗h′(t), v̂〉 := A(ûh′,e(t), v̂) ∀ v̂ ∈M

As in the proof of Theorem 6, we can extract a subsequence of (χ∗h′)h′ (that we will
denote the same) converging weakly to an element χ∗ ∈ L2(0, T ;M ′).

Applying Lemma 12 and the Cauchy-Schwarz inequality, we deduce that∫ T

0

(
Ah′(ûh′,e(t), ŵh′)− A(ûh′,e(t), ŵh′)

)
φe(t) dt −→ 0 as h′ → 0

Similarly, by virtue of Lemma 11 we have that∫ T

0

(
(fe(t), wh′)h,P − (fe(t), wh′)L2(ΩP )

)
φe(t) dt −→ 0 as h′ → 0

Thus, passing to the limit as h′ → 0 in (27), we obtain

(g∗, w)L2(ΩP )φ(T )− (u0, w)L2(ΩP )φ(0) −
∫ T

0

(u∗(t), w)L2(ΩP )φ
′(t) dt

+

∫ T

0

〈χ∗(t), ŵ〉φ(t) dt =

∫ T

0

(f(t), w)L2(ΩP )φ(t) dt

Following the proof of Theorem 6, we deduce that û∗ = û is the solution to problem
(9) and that the sequence (ûh,e)h converges to û in L2(0, T ;M).

Finally, we prove that the order of convergence of the solutions to the fully discrete
scheme (25) remains optimal.
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Theorem 14. Under the hypothesis of Theorems 8 and 13, there exists a constant
C > 0, independent of h and ∆t, such that

‖ûe − ûh,e‖L2(0,T ;M) ≤ C
(
hσ + ∆t

)
Proof. For n = 1, . . . , N0, we denote by ên

h := ûn
h − Π̂hû(tn) and ũn

h := Πhu(tn). Let
e0

h := 0 and ũ0
h := u0,h. We recall that (ûn

h)N0
n=1 is the solution to scheme (25) and that

under the hypothesis of the theorem, û satisfies equation (9) for all t ∈ (0, T ]. Then,
we deduce that

(en
h − en−1

h , vh)L2(ΩP ) + ∆t
(
Ah(û

n
h, v̂h)− Ah(Π̂hû(tn), v̂h)

)
=
(
∆t u′(tn)− (u(tn)− u(tn−1)), vh

)
L2(ΩP )

+ ∆t
(
A(û(tn), v̂h)− A(Π̂hû(tn), v̂h)

)
+
(
u(tn)− u(tn−1)− (ũn

h − ũn−1
h ), vh

)
L2(ΩP )

+ ∆t
(
A(Π̂hû(tn), v̂h)− Ah(Π̂hû(tn), v̂h)

)
+∆t

(
(f(tn), vh)h,P − (f(tn), vh)L2(ΩP )

)
Using Lemma 12 and the continuity of Π̂h : M →Mh, we deduce that∣∣∣(A(Π̂hû(tn), v̂h)− Ah(Π̂hû(tn), v̂h)

)∣∣∣ ≤ C h‖û(tn)‖M‖v̂h‖M

On the other hand, applying Lemma 11, we have that∣∣(f(tn), vh)h,P − (f(tn), vh)L2(ΩP )

∣∣ ≤ C h ‖f‖
C
(
[0,T ];W 1,∞(ΩP )

)‖v̂h‖M

The rest of the proof is analogous to that of Theorem 8.
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[12] C. Johnson and J.C. Nédélec, On the coupling of boundary integral and finite
element methods, Math. Comp. 35 (1980) 1063-1079.

[13] R. Kress, Linear Integral Equations, Applied Mathematical Sciences 82, Springer-
Verlag (1999).
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[24] M. Zlámal, Curved elements in the finite element method II, SIAM J. Numer.
Anal. 11 (1974) 347-362.
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