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Abstract

In this paper we unify the derivation of finite element subspaces guaranteeing unique
solvability and stability of the Galerkin schemes for a new class of dual-mixed vari-
ational formulations. The approach, which has been applied to several linear and
nonlinear boundary value problems, is based on the introduction of additional un-
knowns given by the flux and the gradient of velocity, and by the stress and strain
tensors, for fluid mechanics and elasticity problems, respectively. In this way, the
procedure yields two-fold saddle point operator equations as the resulting weak
formulations (also named dual-dual ones), which are analyzed by means of a slight
generalization of the well known Babuska-Brezzi theory. Then, in order to introduce
well posed Galerkin schemes, we extend the corresponding proofs of the continu-
ous formulations to the discrete schemes, and show that some usual finite elements
need to be suitable enriched, depending on the nature of the problem. This leads
to piecewise constant functions, Raviart-Thomas of lowest order, PEERS elements,
and the deviators of them, as the appropriate subspaces.
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1 Introduction

In a series of recent papers we have analyzed a new class of dual-mixed variational
formulations for several boundary value problems arising in physics and engineer-
ing sciences (see [4], [16], [11], [12] and [6]). In particular, in [16] we consider the
nonlinear incompressible material from [7] and apply the mixed approach first em-
ployed in [13] and [4], to study the solvability and Galerkin approximations of the
associated variational formulation. Our approach there follows [4] and introduces
the strain tensor and the rotation as additional unknowns, which yields a two-fold
saddle point operator equation as the corresponding weak formulation. Hence, the
abstract theory developed in [9], which is a slight generalization of the well known
Babuska-Brezzi theory, is applied to prove that the continuous and discrete schemes
are well posed. In particular, it is shown that the unique solvability and stability
of the Galerkin scheme is guaranteed if the finite element subspaces are given by a
suitable enrichment of the well known PEERS elements (cf. [1]).

On the other hand, in [11] we introduce and analyze a dual-mixed formulation for
a class of quasi-Newtonian Stokes flows whose kinematic viscosities are nonlinear
monotone functions of the gradient of the velocity. The mixed finite element method
proposed there now relies on the introduction of the flux and the tensor gradient
of the velocity as auxiliary unknowns, which also yields a two-fold saddle point
operator equation as the resulting variational formulation. The rest of the analysis,
although similar, is simpler than the one developed in [16]. In this case we show
that, in order to guarantee that the Galerkin scheme is well posed, it suffices to use
Raviart-Thomas spaces of order zero to approximate the flux and piecewise constant
functions to approximate the other unknowns. Furthermore, since the monotonicity
includes the linear case, we also obtain as a by-product a new mixed finite element
method for the linear Stokes equation.

Next, in [6] we extend the analysis from [16] and [11] to the generalized Stokes
problem. This is a Stokes-like linear system with a dominating zeroth order term,
which plays a fundamental role in the numerical simulation of viscous incompressible
flows. The approach here, being mainly a natural extension of the procedure applied
in [11], introduces again the flux and the tensor gradient of the velocity as further
unknowns. In addition, the resulting variational formulation also shows a two-fold
saddle point structure, and hence the above mentioned generalized Babuska-Brezzi
theory is applied to prove that the continuous and Galerkin schemes are well posed.
In particular, the corresponding finite element subspaces coincide with those derived
in [11] except for the one approximating the gradient of the velocity, which needs
to be suitably enriched.

The purpose of the present paper is to provide a unified treatment for the deriva-
tion of the finite element subspaces yielding unique solvability and stability of the
Galerkin schemes studied in [16], [11] and [6]. More precisely, we show in each case



that these subspaces arise naturally from an inspection of the conditions required to
extend to the discrete schemes the proofs of the unique solvability and stability of
the continuous formulations. In the following three sections we provide the details
for the boundary value problems from [11], [6] and [16], respectively, which corres-
ponds to an increasing degree of enrichment of the resulting subspaces. Finally, in
Section 5 we summarize the main results of our analysis and provide some further
remarks.

In what follows, given any Hilbert space H, we denote by H? and H?*? the spaces
of vectors and tensors of order two, respectively, with entries in H, provided with
the product norms induced by the norm of H. In addition, for any 7 := (7;), ¢ :=
(Gj) € R*¥*?, we denote tr (7) := 71 + o2 and 7 : ¢ := z‘2,j:1 7:;Gij- The deviator of
tensor 7 is denoted by dev (7) := 7 — $tr (7)I, which satisfies tr (dev (7)) = 0. We
also use ! to denote the transpose of vectors and tensors.

2 A nonlinear Stokes problem

This section deals with the nonlinear boundary value problem studied in [11].
We first let Q be a bounded and simply connected domain in R? with Lipschitz-
continuous boundary I'. Thus, we are interested in determining the velocity u :=
(u1,uz)" and the pressure p of a nonlinear Stokes fluid occupying the region 2 under
the action of an external force. More precisely, given f € [L?(Q)]? and g € [HY/2(T")]?,
we look for (u,p) in appropriate spaces such that

—div (¢(|Vu|)Vu — pI) = f in Q, 0
diviu) =0 in ©Q, and u=g on I,

where div and div are the usual vector and scalar divergence operators, Vu is the
tensor gradient of u, |- | is the euclidean norm of R?, I is the identity matrix of
R2%2 and v : R — RT is the nonlinear kinematic viscosity function of the fluid. We
remark that g € [H'/2(T")]? must satisfy the compatibility condition [, g-nds = 0,
where n is the unit outward normal to T'.

The kind of nonlinear Stokes problem given by (1) appears in the modeling of a large
class of non-Newtonian fluids (see, e.g. [3], [17], [18], [20]). For instance, the Carreau
law for viscoplastic flows (see, e.g. [18], [20]) reads ¥(t) := ko + iy (1 + t2)B=2)/2
Vt e RT, with kg >0, kK >0, and 8 > 1.

Throughout this Section we assume that 1 is of class C! and that there exist C,
Cy > 0 such that for all r := (r;), s := (s;;) € R**?, there holds

0 .
[W(|e]) ri| < Chl|rflgex2, ‘M{lﬁﬂﬂ)ﬁj} < Cy Vi k le{l,2}, (2




and

2 0
Z 8r_{¢(|r|) Tij} sijs > Co ||S||]§2x2 . (3)
1=1 Ykl

i,3,k,l=

The Carreau law satisfies (2) and (3) for all ko > 0, and for all 5§ € [1,2]. In
particular, § = 2 yields the usual linear Stokes model.

We now introduce o := ¢(|Vu|)Vu—pl and t := Vu in Q as additional unknowns,
and define the tensor ¢ : R**? — R?*2 by 9(r) := (¢(|r|) ry;) for all r € R**2,
In this way, the nonlinear constitutive law and the equilibrium equation become,
respectively,

o =¢Yt) —pl and dive = —f in Q. (4)

In addition, since div(u) = tr(Vu), the incompressibility condition can be rewritten
as tr(t) = 0 in . Consequently, multiplying the relation t = Vu by a tensor T,
integrating by parts, using that u = g on I', testing appropriately the equations
of (4) and the incompressibility of the fluid, and incorporating a suitable unique-
ness condition (see [11] for details), we arrive at the following mixed variational
formulation of (1): Find (t, (o, p), (u,€)) € X1 x My x M such that

/Q?,b(t):s —/a s—/ptr =0,
_/QT;t_/thr —/u d1v7-+£/tr —(tn,g), (5

—/Qv-div0'+77/ﬂt() :/Qf-v,

for all (s,(7,q),(v,n)) € X1 X My x M, where the spaces are given by X; :=
[L2(Q)]**2, M, := H(div;Q) x L*(Q), and M := [L*(Q)]* x R.

Hereafter, (-,-) denotes the duality pairing of [H~/2(T)]? and [H'/?(T)]? with re-
spect to the [L?(I')]*-inner product, and H(div ;) is the space of tensors T €
[L2(Q2)]>*? satisfying div (1) € [L*(Q2)]?. It is well known that H(div ;(2), provided
with the inner product (C,7)m(aiv;) = (¢, T)2@)2x2 + (div {,div T)[2(q)2, is a
Hilbert space, where (-, -).2(qy2x2 and (-, -) (12 ()2 stand for the usual inner products
of [L*(Q)]**? and [L?*(Q2)]?, respectively.

We also observe that one knows in advance that £, the Lagrange multiplier intro-
duced by the uniqueness condition, vanishes. In fact, it suffices to take 7 = I and
g = —1 in the second equation of (5), and use the compatibility condition for the
Dirichlet data g. However, this artificial unknown is needed to insure the symmetry
of the whole formulation.

We now apply the abstract theory from [9] and [14] (see also [8]) to establish the
main result concerning the solvability of (5).

THEOREM 2.1 There ezists a unique (t, (o, p), (u,§)) € X; x My x M solution of



problem (5). Moreover, there exists C > 0, independent of the solution, such that

(¢, (o,p), (0, ) xixmxm < C { ||f||[L2(Q)]2 + ||g||[H1/2(F)]2} .

PrROOF. We begin by noticing that (5) has the two-fold saddle point structure
studied in [9] and [14]. Indeed, let us define the operators A; : X; — Xj, By :
X; — M, and B : M; — M’, and the functionals (G, F) € M; x M’ as follows

Air)sli= [ p@):s . B (ra)l=— [ rir = [qu@), (@)

B(r.9), (vin)] = — [ v-div(r) + 7 [ (7)., 7

G, (r.q)] ==~ (rn,g) and [F,(v,n)]:= [ £-v, ®)

for all r, s € Xy, (7,q9) € My, and (v,n) € M, where [-,-] stands for the duality
pairing induced by the corresponding operators and functionals.

Then, it is easy to see that (5) can also be stated as: Find (t,(o,p),(u,§)) €
X1 X M; x M such that

[Ai(t),s]  + [Bi(s), (o,p)] =0,
[Bi(t), (7, 9)] + [B(7,9),(w,9)] =[G, (7,9)], 9)
[B(o,p), (v,n)] = [F, (v,n)],

for all (s, (7,q),(v,n)) € X1 x My x M.

The rest of the proof reduces to show that the formulation (9) satisfies the hy-
potheses of Theorem 2.4 in [9]. We first observe that for each T € X; the Gateaux
derivative DA,(r) is given by

DAL (F)(r,s) = /

Q

2 P )
{ Z —wij(r)rklsij} Vr,s € Xy,

i1 Ok

which, according to (2) and (3), becomes a uniformly bounded and uniformly X;-
elliptic bilinear form on X; x X;. It is easy to see that these properties yield the
strong monotonicity and Lipschitz continuity of the nonlinear operator A;.

We now check that the linear operator B verifies the inf-sup condition on M; x M.
Given (v,n) € M, we have

B(7,q), (v, B(nL 0), (v,
sup [ ( ) ( 77)] Z [ (77:[ ) ( 77)] — (2|Q|)1/2 |,'7| (10)
e, (T @) |an 7L 1 (aiv ;)
(T,9)#0



Next, using that H(div;Q) = Hy(div;Q) & RI, where Hy(div;Q) = {r €
H(div;Q): [qtr(T) = 0}, we deduce (see [11] for details) that

B - / v -div (1)
wp Bl |
(T a)eM; (7, @)l asy T eH(div;0) ||7'||H(div Q)
(T,9)#0 T40

which, similarly as shown in Theorem 4.3 of [13], yields the existence of B > 0 such

that B(r,0), (v,1)
T,49),(V,N A
sup > BlIvilizzye - (11)
T T @) A
(T,9)#0

Therefore, (10) and (11) provide the continuous inf-sup condition for B.

We now introduce the null space of the operator B, that is M; := {(7,q) € M; :
div(r) =0 in Q and [ytr(7) = 0}. It follows that there exists 3; > 0 such
that for all (7,q) € M; there holds

sup [B(“)“(”” > Bu ()l (12)
sex %

In fact, we prove (12), the continuous inf-sup condition for By, by bounding below

B
the expression sup [Bi(s), (7, 9)] with suitable choices of s € Xi. If ||q||;20) <
e I8 ]lx.
|7 || 2 (aiv ;0) We take s := —dev (7) and then apply that the norms ||7|[.2(q)2~2 and

dev (7)||jL2(q)2x2 are equivalent for tensors 7 € H(div ;) satisfying [, tr(7) =0
(L2 ()] Q
see Lemma 3.1 in [2]). Similarly, if ||7||gaiv.0) < ||¢]|z2(@) We just consider s :=
(div;Q) (V)
—qI + 7. We omit further details and refer the reader to Lemma 3.3 in [16] for a
similar procedure.

Finally, noting that A;(0) is the null functional, a straightforward application of
Theorem 2.4 in [9] (see also Theorem 4.1 in [15]) completes the proof. O

We now derive finite element subspaces yielding the Galerkin scheme associated with
(9) to be well posed. To this end, we assume for simplicity that I' is a polygonal
curve, and let {75 }s>0 be a regular family of triangulations of Q) by triangles T of
diameter hy such that b := max{hy : T € T} and Q = U{T : T € T,}. Then, we let
X1hs Mf;z, Mih, and M} be finite element subspaces for the unknowns t, o, p, and
u, respectively, and define M j, := Mf;L X Mf,h and M}, := M x R. According to
Theorem 3.2 in [9], we now require the strong monotonicity and Lipschitz-continuity
of A; on X, and the discrete inf-sup conditions for B and B;. We show below
that these properties follow by adapting the arguments of the continuous case.

Since the strong monotonicity and Lipschitz-continuity of A is clearly valid on any
subspace of X, we realize that there is nothing else to prove for this nonlinear



operator. Next, in order to extend the proof of the continuous inf-sup condition for
B to the discrete case, we first require that (nI,0) belongs to M, for any n € R,
that is

nl € M%,  VneR. (13)

Secondly, since M7, = Mf‘h + RI, with Mlo;l = MZ, N Hy(div; Q), we also deduce
that for all (v,n) € M), there holds

B —/v-diVT
wp B VAT
(T 9)eMy ||(7-7Q)||M1 7'61\4{7]'1 ||T||H(div;Q)
(T,@)#0 T#0

Then, in order to derive the existence of 8 > 0, independent of h, such that

—/V-diVT _
sup —Je > ﬂ||v||[L2(Q)]2 Vv € M,lll, (14)
Tem0, 7| raiv o)
TA40

we find, using the properties of the equilibrium interpolation operator (see, e.g. [5],
[19]), as we did in Lemma 5.6 of [15], that it suffices to take

Mf;l = {‘T € H(div;Q): T|r € [R'T()(T)‘q2 VT € 'E} :

and
M = {ve [L2(Q)]2 : o vlr € [PO(T)]2 VT €Thn}.

Hereafter, RTo(T) := < (é) , (2) , (:m) > is the local Raviart-Thomas space
T2

of lowest order, and Py(T') is the space of constant functions defined on T'. It is easy
to see that this choice of Mg, L also guarantees the condition (13).

On the other hand, in order to prove the discrete inf-sup condition for By, we need
the discrete kernel of B, which is given by M, b= Mg, o X MY}, where

MZ ={reMZ : divr=0 in Q and /tr(r)zO}.
: ’ Q

It follows, according to the choice of Mﬂ, that the elements of M, ' are piecewise
constant vectors on 7,. In addition, it is clear that the norms ||T||[L2 )< and
||dev (7)||;z2()2x2 are also equivalent for each T € Mf;l. Hence, in order to extend
the proof of the continuous inf-sup condition for By to the discrete case, we need
to satisfy the following conditions:

dev(T) € X1, and (—qI + 7) € X1 V(T,q) € M. (15)



The previous analysis does not impose any restriction on M}, and therefore this
subspace is choosen as the simplest possible one, that is as piecewise constant func-
tions on the triangulation 7,. According to the properties of ]\Zf& and the choice
of M}, we observe that the requirements on X j given by (15) are satisfied if this
subspace is taken as the piecewise constant vectors on 7, which is also the simplest
possible one.

Consequently, the remaining finite element subspaces are given by
Xyp o= {s € [L2(Q]?: s|p € [Po(T)]** VT €Th},

and
MP,={qeL*(Q): qrePyT) VITeT,}.

We are now in a position to establish the unique solvability and stability of the
discrete problem, the Cea estimate, and the rate of convergence.

THEOREM 2.2 The Galerkin scheme associated with the continuous problem (9)
has a unique solution (tp, (oh,pn), (U, &) € Xip X My X My, and there exist
positive constants c, C', independent of h, such that

1(tn, (@, ), (n, G| < e {IElliz2@p + gl |

and

1(t, (,p), (0,€)) = (tn, (Tn, Pr), (Wn, &n))]|
C

< inf I(t, (,0),0) = (Sn, (Ths gn); Vi)l

(8h:(T h>qn),VR)EX1,p X My, X My}

where (t, (o, p), (u,§)) is the unique solution of (9). In addition, under the assump-
tion that t € [H'(Q)]**?, o € [H'(Q)]**?, dive € [HY(Q)]?, p € H(Q), and
u € [HY(Q)]?, there exists a positive constant C, independent of h, such that

1(t; (,0); (0,€)) = (tn; (Tn, Pn), (Wn, &n))]

< éh {HtH[Hl(Q)PX? =+ ||0'||[H1(Q)]2><2 —+ ||diV U||[H1(Q)]2 —+ ||p||H1(Q) =+ ||u||[H1(Q)]2}
PRrROOF. We refer to Theorems 3.1 and 3.2 in [11] for details. O

3 The generalized Stokes problem

In this section we deal with the boundary value problem analyzed in [6]. Let © be
and simply connected domain in R? with Lipschitz continuous boundary I'. Then,



given f € [L2(Q)]? and g € [H'/%(T")]?, we look for the velocity u := (u1,us)! and
the pressure p of a fluid occupying the region €2, such that

au—vAu+Vp =f in Q

(16)
diviu) =0 in Q, u=g on T,

where v is a positive constant called kinematic viscosity of the fluid and « is a

positive parameter proportional to the inverse of the time-step. Throughout the

rest of the paper we assume that o > v. Again, the incompressibility of the fluid

requires the Dirichlet data g to satisfy the compatibility condition [ g-nds = 0,

where n is the unit outward normal to I'.

We proceed as in Section 2 and introduce two additional unknowns in €2, namely, the
tensor gradient of the velocity t := Vu and the flux o := v Vu — pI, where I is the
identity in R?*2. Tt follows that the equilibrium equation becomes au — div (o) =
fin Q, where o := vt — pI. In addition, since div (u) = tr (t) in Q, we can rewrite
the incompressibility condition as tr (t) = 0 in €.

Now, let us define the spaces X; := [L*(Q)]**? x [L*()]?, M, := H(div; ), and
M = L*(Q) x R. Then, following the usual procedure (see [6] for details), we
obtain the following mixed variational formulation of (16) : Find ((t,u), o, (p,§)) €
X7 X M; x M such that

V/t:s+a/u-v—/o':s—/div(a' v—/ptr /fv
Q Q Q Q

—/QT:t—/QdiV(T)'u + §/Qtr(7'):—<7-n,g>,

=~ [atr(®) +n [ ¢ ~0,
|ate®) +n [ (o)
for all ((s,v),7,(q,n)) € X1 x My x M.

We now apply again the abstract theory from [9] and [14] (see also the related
results given in [8]) to establish the solvability and continuous dependence of (17).

THEOREM 3.1 Problem (17) has a unique solution ((t, ),a,( €)) € Xy xMyx M.
Moreover, there exists a positive constant C(a,v) = O(-2- ), independent of the
solution, such that

16 w), 0, (0, )llxisrens < Clavv) {IElluze + lgllmampe } - (18)

PROOF. Similarly as in the proof of Theorem 2.1, we first observe that the mixed
variational formulation (17) can be stated as the following two-fold saddle point



operator equation: Find ((t,u), o, (p,£)) € X1 X M; x M such that
[A1(t,u), (s, v)] + [Bu(s,v),a] + [BF(s,v),p] = [H, (s, V)],
[Bi(t,u), 7] + [BY(7),¢] =[G, 7], (19)

[B?(t,u),q] + [B%(o),n] =0,

for all ((s,v),7,(q,n)) € X1 X My x M, where the operators A; : X; — X],
B, : X, - M, B?: X; — L?(Q0), and B¢ : M; — R, and the functionals H € X
and G € M|, are defined as follows:

[Aq(r,w), (s, V)] :—V/I‘ s—l—a/w v,

Bi(r,w), T :—/T I’—/le
Br(rw),q) = — [t B = /Q tr(¢)
] = /Qf-v, and [G,T] = —(Tn,g),

for all (r,w), (s,v) € X1, {, 7 € M; and (¢,n) € M. For further use, we also define
the space X := X x M; and introduce the operators A : X — X' and B : X — M’,
which are given by

[A(I‘,W,C),(S,V,T)] = [Al(I‘,W),(S,V)] + [BI(I‘,W),T] + [Bl(S,V),C], (21)

and

[B(r,w,¢), (¢,m)] = [B"(r,w),q] + [B(),n]. (22)

Now, we observe that the operators A;, B; and B are all linear and bounded. In
particular, it is easy to see that [|A;|| = O(«a) and that both ||B,|| and ||B|| are of
O(1). In addition, since oo > v, we deduce from (20) that

[As(r,w), (r,W)] = vz e + allWiisgp > viEw)lk,  (23)

for all (r,w) € X1, which shows that A; is Xj-elliptic with an ellipticity constant
given by v. Therefore, according to the linear version of Theorem 2.4 in [9] (see also
Theorem 2 in [8]), it only remains to show that B and B; satisfy the corresponding
inf-sup conditions on X x M and on the kernel of B, respectively.

Indeed, given (q,n) € M we take below (s,v,7) = (0,0,7I) and (s,v,7) =
(—qI,0,0), which are in X, to get

B B I
sup  BEVTh @] [BO,0.9D), (g,m)] <2|Q|>1/2
svrex  [(s,v,7)x 17X lrz2(@ypexe

il (24)

10



and

BS,V,T, ) B(— I,0,0, )
sup [B( ), (g,m)] > [B(—q ), (g,m)] > V2 gl - (25)
(s,v,T)EX ||(S,V,T)||X \/§||Q||L2(Q)

which prove the inf-sup condition for B.

Next, we realize that the null space of the operator B is X =
Xp:={(s,v) € Xy :tr(s) =0 in Q} and M, := {17 € My : [otr

given 7 € M; we take below (s,v) = (0,—div (7)) and (s, V)
which are in X, to obtain, respectively,

) = 0}. Thus,

Xl X ]\Zfl, where
(T
= (—deV(T),O),

[B1(0, —div (7)), 7]
[div (7) [} 2202

sup [Bi(s, V), T]

>
svex [1(8:V)llx

= ||div (7')||[L2(Q)]2

and

[By(—dev (7),0), 7]

||dev (T)||[L2(Q)}2x2

sup [Bl (Sv V)v T]

>
svexi 18Vl —

= ||dev (T)||[L2(Q)]2><2 Z C ||7-||[L2(Q)]2><2

where the last inequality makes use of the fact that the norms ||7/; 2(q)2x> and
l|dev (7)]| 22~ are equivalent in M, (see Lemma 3.1 in [2]).

We end the proof by remarking that the analysis provided in Section 2 of [9] and a
particular case of Proposition 2.3 in [21] (see Theorem 3.1 in [10]), yield the order
of the continuous dependence constant C(a, ). O

Our next goal is to derive finite element subspaces yielding a well posed Galerkin
scheme. As in Section 2, we assume that I' is a polygonal curve, and let {7}n-0
be a regular family of triangulations of { by triangles 7" of diameter hy such that
h:=max{hy : T € Tz} and Q@ = U{T : T € T,}. Then, we let X}, X, M,
and M? be finite element subspaces for the unknowns t, u, o, and p, respectively,
and define X5, := X1, x X}, and M}, := M x R. According to the linear version
of Theorem 3.2 in [9], we now require the ellipticity of A; on X, and the discrete
inf-sup conditions for B and B;. Similarly as in Section 2, we show below that these
properties also follow by adapting the arguments of the continuous case.

The ellipticity of A; is certainly valid on any subspace of X;. Next, in order to extend
the proof of the continuous inf-sup condition for B to the discrete case, we require
that (0,0,7I) and (¢I,0,0) belong to X}, x X}', x My for any (¢,n) € Mf xR,
that is

nl e My, YneR and ¢l € X}, Vge M. (26)

On the other hand, the proof of the discrete inf-sup condition for B; needs the
explicit knowledge of the discrete kernel of the bilinear form B, which is given by

11



X%, x X{, x My, where
Xt, = {seXt,: /thr(s) —0 Vge M}

and 3
My = {T€My: /Qtr(T) = 0}.

It is important to observe here that ]\Zfl,h is clearly a subspace of ]\Zfl and hence
the equivalence of ||7||jzzqy:x2 and ||dev (7)||;z2(qy2x also holds for each T € M 4.
Therefore, extending the proof of the continuous inf-sup condition for B; to the
discrete case, requires

div(7) € X}, and dev(r) € Xf,h VT € M. (27)

The equations (26) and (27) do not impose any explicit condition on the elements of
MY, and hence we choose this subspace of L%(Q) as the piecewise constant functions
on the triangulation 7, which is the simplest possible one. Similarly, since the first
restriction of (26) is satisfied if the piecewise constant tensors are included in M p,
we just choose this subspace of H(div;(?) as the Raviart-Thomas space of order
zero. According to this choice, and in order to satisfy the requirement on X7, given
in (27), we realize that it suffices to take this subspace as the piecewise constant
vectors on Tp,.

Now, taking into account the choices already made for M}’ and M 4, and observing
that the trace of any deviator is zero, we find that the remaining conditions in (26)
and (27) are accomplished if X7, is choosen so that its restriction on each triangle

T € T;, becomes the local space Dy(T) = (I) & dev ([RTo(T)!]?), which, after
straightforward computations, gives

Do(T) := [Po(T)|**? @ dev ([Po(T)x']*)

-mors((32)(0)

where x! := (z;, 73) is the transpose of a generic vector x € R2.
As a consequence of the previous analysis, our finite element subspaces are
Xf,h = {s € [L*(V)**?: s|pr € Dy(T) VT € Tn},
= {ve L2 Q)] v|re[Po(D))? VYT €T},

Myp = {T € H(div;Q): 7l e [RTo(T)]" vTe Th} ,

and
MP:={qeL*(Q): qlr €Py(T) YT ET,}.

12



Finally, the unique solvability and stability of the discrete problem, the correspon-
ding Cea estimate, and the rate of convergence, are established in the following
theorem.

THEOREM 3.2 The Galerkin scheme associated with the continuous problem (19)
has a unique solution ((tp,un),on, (Pr,&n)) € Xip X Myp X My, and there exist
positive constants ¢, C' = O(%S), independent of h, such that

1((n, wn), o (o ) < ¢ (IElliz2@pe + llgllimreeye ) -

and

1((t,0), 0, (p,§)) = ((tn, un), o, (Pn,&r))l

<C inf t,u),o,p) — ((Sh, Vi), Th, ,
< ((sh,vh)n—h,qh)exl,hle,thg”(( ),0,p) = ((Sh,Vh), Thy an) |l

where ((t,u),o, (p,&)) is the unique solution of (19). In addition, under the as-
sumption that t € [H*(Q)]**2, u € [HY(Q)]?, o € [H}(Q)]?*?, div (o) € [H}(Q)]?,
and p € HY(Q), there ezists a positive constant C = O(%g), independent of h, such
that

1((t, ), 0, (p,§)) = ((tn, un), on, (Pn, &n))

< Ch{Ithppes + ol @y + lallus@yp + I1div (@)l + Pl )

PRrROOF. We refer to Theorems 3.1 and 3.2 in [6] for details. O

4 A nonlinear elasticity problem

This section deals with the problem from [16]. Again, we let 2 be a bounded and
simply connected domain in R? with Lipschitz-continuous boundary I'. Our purpose
now is to determine the displacement u := (u1,us)" and the pressure-like unknown
p of a nonlinear incompressible material occupying the region {2 under the action
of an external force. More precisely, given f € [L?(Q)]2 and g € [HY/*(T)]?, we look
for (u,p) in appropriate spaces such that

—div (¢(e(u)) + pI) =f in Q,
div(u) =0 in

(29)
, and u=g on I,

where e(u) is the strain tensor of small deformations, and % : R**? — R?*2 is a
nonlinear mapping that induces a strongly monotone and Lipschitz-continuos ope-
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rator from [L?(0)]?**? into its dual. A typical example of such a 1) is given by a
hyperelastic material satisfying the Hencky-von Mises stress-strain relation (see,
e.g. [13], [16]). We remark again that g € [H'/?(T")]?> must satisfy the condition
Jrg-nds = 0, where n is the unit outward normal to I'. Also, it is important
to observe that the present boundary value problem (29) and the nonlinear Stokes
model studied in Section 2 (cf. (1)) differ only on the fact that, instead of depend-
ing on Vu, the nonlinear tensor 1 depends now on e(u). However, although the
procedure is similar to the one employed in Section 2, this mere difference yields
the introduction of another auxiliary unknown and the need of further enrichment
of the finite element subspaces.

Indeed, we now introduce the strain tensor t := e(u), the stress tensor o :=
¥(e(u)) + pI, and the rotation v := 1 (Vu — (Vu)’) as additional unknowns.
We notice that 4 lives in the subspace of [L?(2)]**? given by

R = {5 [LXQP?%: d+6 =0}.

Then, following the usual procedure (see [16] for details), we arrive at the following
mixed variational formulation of (29): Find (t, (o, p), (u,7,&)) € X1 x M; x M such
that

/ng(t):s —/a:s+/ptr(s) =0,

—/QTZt +/thr(j:2)—/QH-ZiVT—/Q'r:TJrﬁ/Qtr(T) = —(Tn,g),

—/Qv-diva—/ﬂéza—kn/ﬂtr(o') Z/f-V

(30)
for all (s, (7,q),(v,d8,n)) € X1 x My x M, where the continuous spaces are given
by X, = [L2(Q)]>2, M, := H(div;Q) x L*(Q), and M := [L}(Q)]? x R x R.

It is not difficult to see that (30) has the same two-fold saddle point structure
obtained in Section 2 (cf. (9)). In particular, the corresponding linear operators
B, : X; — Mj and B : M; — M’ are defined by

B.(r), (1,q)] == —/QT:r + /thr(r) (31)

and
B(7,q),(v,0,n)] = — /QV-diV(T) — /96:7' + 77/Qt1“(’7'), (32)

forallr € X, (7,q9) € My, and (v,d,n) € M. In addition, the unique solvability
and stability of (30), being also a consequence of the abstract theory from [9] and
[14], follow from similar arguments to those used in the proof of Theorem 2.1. We
refer the interested reader to Section 3 in [16]. However, we do provide some more
details below in the derivation of finite element subspaces leading to a well posed
Galerkin scheme.

Indeed, as in Sections 2 and 3, we assume again that I' is a polygonal curve, and
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let {7 }n>0 be a regular family of triangulations of Q) by triangles T of diameter hy
such that h := max{hy : T € T} and Q = U{T : T € T}. Then, we let Xy, M7,

Mih, My, and M,? be finite element subspaces for the unknowns t, o, p, u, and =,
respectively.

In order to extend the proof of the continuous inf-sup condition for B to the discrete
case, we need that
nl € M, VneR, (33)

and require the existence of 3 > 0 such that for all (v,d) € M2 x M, ,7 there holds

—/V-diVT—/(s:T
sup Q Q

TEMP;L ||7'||H(div Q)
T#0

Z B ||(V7 6)||[L2(Q)]2><[L2(Q)}2><2 . (34)

Then, we recall from Lemma 4.4 in [1] that (34) is guaranteed by choosing
2 2
Mg, = {r € H(div;Q): 7lr€ [RTo(T)'] & [Po(T)curl'br| VT e Th} ,

M = {ve[l’(Q)P: v|lre[Py(T))? VT T},
and
M) = {6 € ROENQP?: dlr € [PyT)*? VT ET},
where by is the usual cubic bubble function on the triangle T € T, curl’ by :=
(% %1y and Py(T) denotes the space of polynomials of degree < 1 on 7. The

Oxa ’ oz
triple Ml(?;z x M x M, ,7 corresponds precisely to the PEERS finite element subspace
approximating (o, u,~y). It is easy to see that (33) is clearly satisfied with this choice
of MZ,.

On the other hand, the discrete kernel of B is given by ]\;_fl,h = ]\fo;l X Mf,h, where
M&::{TEMI%: divr =0in Q, /tr(T)zO, and /(5:T:0V5€M,?l}.
’ ’ Q Q

According to the definition of M7, and using that div(curl’by) = 0, we deduce
that the restriction of each element of ]\Zl'l‘?;2 to a triangle T' € T, belongs to the local

2
space [Po(T)]>? & [PO(T) curl’ bT} . In addition, similarly as for the nonlinear
Stokes model, it is not difficult to realize that the conditions required to extend the
proof of the continuous inf-sup condition for B; to the discrete case, are given by

dev(t) € Xy and (—qI + 7) € Xy, V(1,q) € Ml,h. (35)

We observe again that there is no explicit restriction on Mf, n, and hence this sub-
space of L%(Q) is taken as the simplest possible one, that is

MPy, = {qel*(Q): glrePo(T) VT €T}
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Next, taking into account the definitions of J\Zfl,h and MY, we deduce that (35) is
verified if X j, is choosen so that its restriction on each triangle T' € 7, becomes the

local space E(T) = [Po(T)]* @ {PO(T) curl’ bT}2 ® dev <{P0(T) curl’ bTr),

and therefore
X1 = {s € [L*(V)]*?: slpr € &(T) VT € Th}.

Finally, the unique solvability and stability of the Galerkin scheme associated with
(30), the corresponding Cea estimate, and the rate of convergence, are established
in a similar manner to Theorems 2.2 and 3.2. We omit details and refer to Theorems
4.1 and 4.2 in [16].

5 Summary and further remarks

The finite element subspaces providing the unique solvability and stability of the
Galerkin schemes are summarized below in Table 5.1. We only list those spaces a-
pproximating the unknowns that are common to the three boundary value problems.
We indicate the global regularity and local behaviour of the subspaces, and use the
following notations to identify each problem: NSP (Nounlinear Stokes Problem), GSP
(Generalized Stokes Problem), and NEP (Nonlinear Elasticity Problem).

Table 5.1: Finite element subspaces approximating the unknowns

t Global Local
NSP | [L2(Q)]**? | [Po(T)]**?

GSP [L2(Q)]2x2 [PO(T)]2><2 @ dev ([PO(T) Xt]2>

NEP | [LX(Q)? | [Po(T)[*® & [Po(T) curl'bs]” @ dev ([PO(T) curl’ bT]2>

o Global Local
NSP | H(div;Q) | [RTo(T)!]’

GSP | H(div:Q) | [RTo(T) ]2
NEP | H(div;Q) | [RTo(T)]* & [PO(T) curlth}2

u | Global Local
All | [L2(Q)2 | [Po(T)]

P Global Local
All | L*(Q) Py (T)
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We observe that the above ordering corresponds to an increasing degree of enrich-
ment (complexity) of the subspaces approximating the unknowns t and o. This
is particularly notorious for t, which, however, is atenuated by the fact that the
subspaces are included in [L?(©)]?*?, and hence the local approximations can be
handled independently. On the other hand, it is important to remark that, follo-
wing the same approach employed here, the derivation of finite element subspaces
of higher order is also possible.

Finally, we call the atention to the fact that reliable and quasi-efficient a-posteriori
error estimates and the associated adaptive algorithms to compute the discrete
solutions, are available for the dual-dual mixed variational formulations considered
in this paper. To this respect, we mainly refer to [12] and [6] where the theoretical
analysis and several numerical results illustrating the performance of the methods
are reported.
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