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SIAM J. NUMER. ANAL. c© 2000 Society for Industrial and Applied Mathematics
Vol. 37, No. 6, pp. 1820–1837

Abstract. We use a version of the FEM–BEM method introduced by Costabel [Boundary El-
ements IX, Vol. 1, C. A. Brebbia et al., eds., Springer-Verlag, 1987] and Han [J. Comput. Math., 8
(1990), pp. 223–232] to discretize an exterior quasilinear problem. We provide error estimates for the
Galerkin method and propose a fully discrete scheme based on simple quadrature formulas. Further-
more, we show that these numerical integration schemes preserve the optimal rates of convergence.
Finally, we present results of numerical experiments involving our discretization method.

Key words. boundary element, finite element, nonlinear problems

AMS subject classifications. 65N30, 65F10

PII. S0036142998335364

1. Introduction. In this paper we consider a discretization procedure for an ex-
terior quasilinear problem which consists in a combination of finite elements (FEM)
with boundary elements (BEM). There are two principal classes of FEM–BEM formu-
lations. The first one relies on the Johnson–Nedelec method introduced in [14] for the
Laplace equation. This formulation has also been used for FEM–BEM discretizations
of exterior Stokes problems; cf. [22, 18]. The second one is based on the so-called
symmetric FEM–BEM approach introduced independently by Costabel [5] and Han
[12]. This approach turned out to be more suitable for the elasticity system; cf. [11, 6].
It has also been successfully generalized to nonlinear boundary value problems that
become homogeneous and linear with constant coefficients outside a bounded region.
In these extensions, the error analysis is always given when the coefficients satisfy
conditions that make the nonlinear operator strongly monotone and Lipschitz contin-
uous; cf. [11, 10, 6, 2]. The advantage in this case is that Céa’s lemma is satisfied.
What to do when these conditions do not hold is discussed here.

In [24] (cf. also [20, 21, 8, 15]), Xu provides a very powerful tool to deal with
the numerical analysis of nonlinear problems on bounded domains when no version of
Céa’s lemma is available. The technique consists in linearizing the nonlinear partial
differential equation at a given isolated solution (see hypothesis (2.6)) and considering
its finite element discretization. We show here that this approach can be straight-
forwardly extended to exterior nonlinear problems without using discrete Green’s
functions but at the expense of some restrictions on the type of nonlinearity. We
could not handle the general case since no bounds are known for discrete Green’s
functions associated with FEM–BEM formulations.

The main result of this paper concerns contributions to the analysis of a fully dis-
crete nonlinear FEM–BEM formulation. We had to answer two principal difficulties.
On the one hand, unless the nonlinear operator is Lipschitz continuous and strongly
monotone, Strang’s lemma is not satisfied and there is no general framework to control
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FEM–BEM METHOD FOR AN EXTERIOR QUASILINEAR PROBLEM 1821

the effect of numerical quadratures on convergence. We show here that the method
described in [24] can be completed, at least for our quasilinear problem, in order to
deal with the effect of numerical integration.

On the other hand, one has to take some care with the pseudosingular behavior of
the kernels associated with the integral operators when using numerical quadratures.
We present here a modified version of the symmetric FEM–BEM approach that allows
us to avoid these singularities. We take advantage of the techniques given in [13, 7]
to compute in the global matrix the coefficients corresponding to boundary integrals
by quadrature formulas.

The rest of the paper is organized as follows. In section 2, we consider an exterior
quasilinear equation as a model problem and make some regularity hypotheses on
the coefficients and the solution of the continuous problem. Then, we present a new
version of the symmetric FEM–BEM formulation. This new version is equivalent to
the usual one at the continuous level, but it leads to a different discrete scheme that
offers some additional advantages. In section 3, we describe the triangulation of the
domain and prove a technical tool related to approximation of curved finite elements
on Sobolev spaces with a noninteger index. The error analysis of the Galerkin scheme
is given in section 4 and a family of full discretizations of the complete system of
equations is presented in section 5. Estimates of the quadrature error are also reported
in this section. Finally, section 6 is devoted to numerical experiments.

Sobolev spaces. Given an open set O in the plane, we consider the Hilbertian
Sobolev spaces Hm(O) endowed with their usual norms ‖ · ‖m,O. The corresponding
seminorms are denoted | · |m,O. The spaces Wm,∞(O) are those Sobolev spaces de-
rived from L∞(O) (cf.[1]). Their norms and seminorms are denoted by ‖ · ‖m,∞,O and
| · |m,∞,O, respectively.

We will also consider periodic Sobolev spaces. Let C∞ be the space of 1-periodic
infinitely often differentiable real valued functions of a single variable. Given g ∈ C∞,
we define its Fourier coefficients

ĝ(k) :=

∫ 1

0

g(s)e−2kπısds.

Then for r ∈ R we define the Sobolev space Hr to be the completion of C∞ with the
norm

‖g‖r :=

(∑
k∈Z

(1 + |k|2)r|ĝ(k)|2
)1/2

.

It is well known (see [16]) that Hr are Hilbert spaces and that Hr1 ⊂ Hr2 if r1 > r2,
the inclusion being dense and compact. Moreover, the H0-inner product

〈λ, µ〉 :=

∫ 1

0

λ(s)µ(s)ds

can be extended to represent the duality of H−r and Hr ∀r. We will keep the same
notation for this duality bracket.

Throughout this paper, C, with or without subscripts, denotes a generic constant
independent of the discretization parameter h.

2. The model problem. Let Ω0 be a bounded and simply connected domain
in R2 with sufficiently smooth boundary Γ0. We consider a closed curve Γ1 contained
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1822 SALIM MEDDAHI, MARÍA GONZÁLEZ AND PABLO PÉREZ

in R2 \ Ω0 and denote by Ωnl the annular region bounded by Γ0 and Γ1. We also

denote by Ωl the complement of Ω0 ∪ Ω
nl

in R2.

We consider three continuous nonlinear functions βi : Ω
nl ×R → R (i = 0, 1, 2)

such that the derivatives (∂βi/∂s), (∂2βi/∂s
2) and (∂βi/∂xj), (i = 0, 1, 2), (j = 1, 2),

are continuous in Ω
nl ×R. We need to approximate a function u that satisfies

−div (∇u + 1Ωnl(x)β(x, u)) + 1Ωnl(x)β0(x, u) = 0 in R2 \ Ω0,

u = 0 on Γ0,

u(x) = O(1) as |x| → ∞,

(2.1)

where β(x, u) = (β1(x, u), β2(x, u))T and 1Ωnl(·) is the indicator function of the set
Ωnl.

Some existence and uniqueness results for this type of problem are given in [11]
under some conditions on the coefficients βi. We will not dwell on such issues, but
instead, we assume that (2.1) has at least one solution and provide error estimates
for an approximate solution obtained from a FEM–BEM discretization scheme.

We introduce an artificial boundary Γ that contains in its interior the set Ω0∪Ω
nl

.
Thus, the closed curve Γ divides Ωl in two regions, a bounded domain denoted Ωl

1

and Ωl
2, which is the unbounded region exterior to Γ. We denote Ω := Ωnl ∪ Γ1 ∪ Ωl

1

and introduce the space

X := {v ∈ H1(Ω); v|Γ0 = 0}.
We assume that u, the solution of problem (2.1), satisfies

u|Ω ∈ X ∩H1+σ(Ω) with 0 < σ < 1.

Notice that, even in the linear case, we cannot expect a greater amount of regularity
(σ = 1) since, in general, the normal derivative of the solution has a jump across Γ1.
However, a Sobolev embedding theorem implies that such a solution is continuous in
Ω and thus, the semilinear form

a(u, v) =

∫
Ω

∇u · ∇v dx +

∫
Ωnl

β(x, u) · ∇v dx +

∫
Ωnl

β0(x, u)v dx

is well defined ∀v ∈ X. It follows that u satisfies in Ω the following variational
formulation:

a(u, v)−
∫

Γ

∂u

∂ν
v dσ = 0 ∀v ∈ X,(2.2)

where ν is the unit normal vector to Γ oriented from Ω to Ωl
2.

The symmetric FEM–BEM method introduced in [5] consists in coupling (2.2)
with two boundary integral identities relating the trace of u and the normal derivative
∂u
∂ν to each other. These boundary integral equations arise from Green’s representation
formula of u in Ωl

2 and the jump of the layer potentials.
In contrast to the Johnson–Nédélec FEM–BEM coupling procedure [14], the sym-

metric FEM–BEM approach allows one to take the artificial boundary Γ polygonal.
This is the choice made by all authors (cf. [5, 11, 10, 2, 19]) since, at first glance, this
seems to be more convenient for the treatment of the discrete problem. Instead, we
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FEM–BEM METHOD FOR AN EXTERIOR QUASILINEAR PROBLEM 1823

assume here that Γ is a C∞ boundary and parameterize this curve in order to change
all functions defined on Γ by periodic functions.

Then let x : R → R2 be a smooth regular 1-periodic parametric representation
of the curve Γ:

|x′(s)| > 0 ∀s ∈ R, and x(t) �= x(s), 0 < |t− s| < 1.

We define by means of x( · ) the parameterized trace on Γ as the extension of

γ : C∞(Ω) → H0,

u �→ γu( · ) := u|Γ(x( · ))

to H1(Ω). The resulting linear application γ : H1(Ω) → H1/2 is bounded and onto;
cf. Theorem 8.15 of [16].

We now consider the following integral operators:

Vg( · ) :=

∫ 1

0

V ( · , t)g(t) dt, Kg( · ) :=

∫ 1

0

K( · , t)g(t) dt,

where

V (s, t) := − 1

2π
log|x(s)− x(t)| and K(s, t) :=

1

2π

(x(s)− x(t)) · ν(x(t))

|x(s)− x(t)|2 |x′(t)|.

These operators are parameterized versions of the simple and double layer potentials,
respectively. We recall some well-known properties of the integral operators V and K.

Lemma 2.1. The operators K : Hθ → Hθ and V : Hθ → Hθ+1 are bounded ∀θ.
Moreover there exists α > 0 such that

〈µ,Vµ〉 ≥ α‖µ‖2−1/2 ∀µ ∈ H
− 1

2
0 ,

where H
− 1

2
0 := {µ ∈ H− 1

2 ; 〈µ, 1〉 = 0}.
Proof. Notice that K : R2 → R is C∞ and 1-periodic in both its variables.

Then the first result follows from standard arguments of integral operators in Sobolev

spaces. The proof of boundness and H
− 1

2
0 -ellipticity of V may be found, for instance,

in [16].
It is straightforward to show that by parameterizing the integrals on Γ in the

traditional symmetric FEM–BEM method (cf. [11, 5, 12]) we arrive at the following
global weak formulation of (2.1) (a similar strategy is used in [17] for the Johnson–
Nédélec FEM–BEM method):

find (u, λ) ∈ X ×H
− 1

2
0 ;

a(u, v) + 〈 ddt (γv),V d
dt (γu)〉 − 〈λ, ( 1

2I − K)γv〉 = 0 ∀v ∈ X,

〈µ,Vλ〉+ 〈µ, ( 1
2I − K)γu〉 = 0 ∀µ ∈ H

− 1
2

0 ,

(2.3)

where I is the identity operator. The auxiliary unknown λ is related to the normal
derivative of u on Γ by

λ( · ) :=
∂u

∂ν
(x( · ))|x′( · )|.
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1824 SALIM MEDDAHI, MARÍA GONZÁLEZ AND PABLO PÉREZ

The zero mean value condition imposed on λ is a consequence of the asymptotic
behavior of u. Without this condition u would behave like c log|x|+O(1), with c �= 0,
when |x| → ∞.

LetW := X×H
− 1

2
0 . We simplify the notation and denote u := (u, λ), v := (v, µ)

and z := (z, ξ) the elements (u, λ), (v, µ), and (z, ξ) of W. The space W is provided
with its natural Hilbertian norm:

‖v‖2W := ‖v‖21,Ω + ‖µ‖2−1/2.

We introduce the semilinear form

A(u,v) := a(u, v) + d(u,v),

where

d(u,v) := b(λ, µ) + b

(
d

dt
(γu),

d

dt
(γv)

)
− c(λ, γv) + c(µ, γu)

with the following definitions of the bilinear forms b( · , · ) and c( · , · ):

b(λ, µ) := 〈µ,Vλ〉, c(µ, γv) :=

〈
µ,

(
1

2
I − K

)
γv

〉
.

We easily deduce from Lemma 2.1 and the continuity of γ and d
dt : H

1
2 → H− 1

2 that
d( · , · ) : W ×W → R is bounded. In terms of these notations, problem (2.3) is
reduced to

find u ∈W;

A(u,v) = 0 ∀v ∈W.
(2.4)

Let us consider the bilinear form A′(u; · , · ) : W ×W→ R defined by

A′(u;v, z) :=

∫
Ω

∇v · ∇z dx +

∫
Ωnl

(∂β/∂s)(x, u) · ∇zv dx

+

∫
Ωnl

(∂β0/∂s)(x, u)vz dx + d(v, z),

where we denoted (∂β/∂s)(x, u) := ((∂β1/∂s)(x, u), (∂β2/∂s)(x, u))T .
LetW′ be the dual ofW pivotal to L2(Ω)×H0 and denote by ( · , · ) the duality

bracket betweenW′ andW. Notice that A′(u; · , · ) is bounded onW×W since the

functions (∂βi/∂s)( · , u( · )), (i = 0, 1, 2), are continuous in Ω
nl

. Then there exists an
operator A :W→W′ such that

(Av, z) = A′(u;v, z) ∀v, z ∈W.

By virtue of Lemma 2.1, it is straightforward that for a sufficiently large constant
k ≥ 0 there exists α1 > 0 such that

(Av,v) + k‖v‖20,Ω ≥ α1‖v‖2W ∀v ∈W.(2.5)

Let i : X → X ′ be the canonical injection. As X is compactly embedded in L2(Ω),
we deduce that operator J : W →W′ defined by J (v) := (i(v), 0) is also compact.
Thus, the Fredholm alternative applies for A. We assume here that

A′(u;v, z) = 0 ∀z ∈W =⇒ v = 0.(2.6)

This implies that A :W→W′ is an isomorphism.
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FEM–BEM METHOD FOR AN EXTERIOR QUASILINEAR PROBLEM 1825

3. Finite elements with curved triangles. For simplicity of exposition, in
the rest of the paper we restrict ourselves to polygonal boundaries Γ0 and Γ1. Given
h := 1/N , with N a positive integer, let {ti := (i − 1)h; i = 1, · · · , N + 1} be the
induced uniform partition of [0, 1]. We denote by Ωh the polygonal domain whose
vertices lying on Γ are ∆h = {x(ti) : i = 1, . . . , N + 1}. Let τh be a triangulation
of Ωh by triangles T of diameter hT not greater than max|x′(s)|h. We assume that
any vertex of a triangle lying on the exterior boundary of ∂Ωh belongs to ∆h. We
also suppose that Γ1 does not cut through any element of τh and that the family of
triangulations {τh}h is quasi-uniform, i.e., it is regular and there exists τ > 0 such
that

min
T∈τh

hT ≥ τh ∀h > 0.

We recall that the regularity of {τh}h can be expressed by demanding that the angles
of the triangulations are bounded below by a positive constant, independently of h.

We obtain from τh a triangulation τ̃h of Ω by replacing each triangle of τh with
one side along the exterior part of ∂Ωh by the corresponding curved triangle.

Let T̃ be a curved triangle of τ̃h. We denote by P1, P2, and P3 its vertices,
numbered in such a way that P2 and P3 are endpoints of the curved side of T̃ . Let
ti, ti+1 ∈ [0, 1] be such that x(ti) = P2 and x(ti+1) = P3. Then, the vectorial function
ϕ : [0, 1] → R2 defined by

ϕ(t) := x (ti + t h)

is a parameterization of the curved side of T̃ .
Let T̂ be the reference triangle with vertices P̂1 := (0, 0), P̂2 := (1, 0) and P̂3 :=

(0, 1). Consider the affine map FT defined by FT (P̂i) = Pi for i ∈ {1, 2, 3}. Also,

consider the function ΘT : T̂ → R2 given by

ΘT (x̂1, x̂2) :=
x̂1

1− x̂2
(ϕ(x̂2)− (1− x̂2)P2 − x̂2P3) ,

where the limiting value has to be taken as x̂2 → 1. We then introduce the C∞
mapping F̃T : T̂ → R2 given by

F̃T := FT + ΘT .

It is proved in Theorem 22.4 of [25] that this transformation is a homeomorphism

that maps one-to-one T̂ onto the curved triangle T̃ in such a way that F̃T (P̂i) = Pi
for i = 1, 2, 3. Furthermore, the image of edge P̂2P̂3 is the curved side of T̃ and the
two other edges of T̂ are transformed linearly under F̃T to the straight sides of T̃ .

A finite element is defined on T̃ by a triplet (T̃ , P1(T̃ ),ΣT ), where P1(T̃ ) is the

image under F̃T of the space P1(T̂ ) of polynomials of degree no greater than 1 on T̂ :

P1(T̃ ) = {p : T̃ → R; p = p̂ ◦ F̃−1
T , p̂ ∈ P1(T̂ )},

and ΣT = {Ni, i = 1, 2, 3} is a set of linear functionals defined by Ni(φ) =

φ(Pi) ∀φ ∈ P1(T̃ ) and ∀i = 1, 2, 3. It is easy to show that ΣT is P1(T̃ )-unisolvent

(cf. [4]), i.e., if φ ∈ P1(T̃ ) and Ni(φ) = 0 ∀i = 1, 2, 3 then φ = 0. It is also important

to note that a function φ ∈ P1(T̃ ) that satisfies Ni(φ) = Nj(φ) = 0 for 1 ≤ i �= j ≤ 3

vanishes on side PiPj of T̃ .
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1826 SALIM MEDDAHI, MARÍA GONZÁLEZ AND PABLO PÉREZ

Under the assumption of regularity of τh, Theorem 22.4 in [25] proves that, if

h is sufficiently small, the Jacobian J(F̃T )(·) of F̃T (·) does not vanish on T̂ and the
following estimates are satisfied:

‖J(F̃T )‖0,∞,T̂ = O(h2
T ), |F̃T |1,∞,T̂ = O(hT ),

|F̃−1
T |1,∞,T̃ = O(h−1

T ).
(3.1)

We denote by K an arbitrary triangle of τ̃h. Then, P1(K) is the usual space of
polynomials of degree no greater than one if K is a straight triangle and the space
P1(T̃ ) defined above if K is a curved triangle T̃ . We define the finite dimensional
subspace Xh ⊂ X by

Xh = {v ∈ X; v|K ∈ P1(K) ∀K ∈ τ̃h}.
We will need a finite element approximation property for functions in Sobolev

spaces with noninteger index. Such a result may be found in Theorem 3.3 of [23] in
the case of straight triangles. The generalization to curved elements is given below.

Lemma 3.1. There exists a constant C > 0 independent of h such that

inf
vh∈Xh

‖v − vh‖1,Ω ≤ Chσ‖v‖1+σ,Ω ∀v ∈ V ∩H1+σ(Ω).(3.2)

Proof. Let v̂ be a continuous function on the reference triangle T̂ and v defined
on K ∈ τ̃h by v(FK(x̂)) = v̂(x̂), where FK(·) is the usual affine mapping when K is a

straight triangle and is given by the application F̃T (·) if K is a curved triangle T̃ . Let
πK be the nodal interpolation operator. The associated nodal interpolation operator
π̂ on the reference triangle T̂ satisfies (πKv)(FK(x̂)) = π̂v̂(x̂) ∀x̂ in T̂ . Hence, by the

Sobolev embedding H1+σ(T̂ ) ↪→ C0(T̂ ), a change of variable and properties (3.1) we
obtain

|v − πKv|1,K ≤ c|v̂ − π̂v̂|1,T̂ .
Now, since π̂ leaves invariant linear functions we deduce from a generalized Bramble–
Hilbert lemma (cf. Theorem 2.3.1 of [23]) that

|v̂ − π̂v̂|1,T̂ ≤ C|∇̂v̂|σ,T̂ ,

where ∇̂ is the gradient with respect to the x̂ variable. Let us define the matrix valued
function B(x̂) = (∂i(FK)j(x̂))i,j . Applying the chain rule formula we compute easily
that

B−T ∇̂v̂(x̂) = ∇v ◦ FK(x̂),

where B−T is the inverse matrix of BT , the transpose of B. By definition

|∇̂v̂|2
σ,T̂

=

∫
T̂

∫
T̂

|∇̂v̂(x̂)− ∇̂v̂(ŷ)|2
|x̂− ŷ|2+2σ

dx̂dŷ

=

∫
K

∫
K

|BT (x̂)∇v(x)−BT (ŷ)∇v(y)|2
|x̂− ŷ|2+2σ

J(F−1
K )(x)J(F−1

K )(y) dxdy,

where J(F−1
K )(·) = J(FK)−1(·) is the Jacobian of F−1

K . When K is a straight triangle,
B is a constant matrix and it is straightforward to deduce that

|∇̂v̂|2
σ,T̂

≤ Ch2σ|∇v|2σ,K .
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FEM–BEM METHOD FOR AN EXTERIOR QUASILINEAR PROBLEM 1827

It remains to show the same inequality when K is a curved triangle T̃ . From (3.1) we
deduce that

|∇̂v̂|2
σ,T̂

≤ Ch−4

∫
T̃

∫
T̃

|BT (x̂)∇v(x)−BT (ŷ)∇v(y)|2
|x̂− ŷ|2+2σ

dxdy

and by the triangle inequality

|∇̂v̂|2
σ,T̂

≤ 2Ch−4{I1 + I2},
where

I1 =

∫
T̃

∫
T̃

|BT (x̂)|2 |∇v(x)−∇v(y)|2
|x̂− ŷ|2+2σ

dxdy

and

I2 =

∫
T̃

∫
T̃

|∇v(y)|2 |B
T (x̂)−BT (ŷ)|2
|x̂− ŷ|2+2σ

dxdy.

Again using (3.1), we may bound the first term I1 as follows:

I1 ≤ Ch2

∫
T̃

∫
T̃

|∇v(x)−∇v(y)|2
|x− y|2+2σ

|x− y|2+2σ

|x̂− ŷ|2+2σ
dxdy ≤ Ch4+2σ|∇v|2

σ,T̃
,

where the last inequality is a consequence of (3.1) and the mean value theorem since

|x− y| = |F̃T (x̂)− F̃T (ŷ)| ≤ Ch|x̂− ŷ|.
Now we write the second term I2 as follows:

I2 =

∫
T̃

∫
T̃

|BT (x̂)−BT (ŷ)|2
|x̂− ŷ|2

|x− y|2σ
|x̂− ŷ|2σ

|∇v(y)|2
|x− y|2σ dxdy,

and use the same arguments given above together with (3.1) to obtain

I2 ≤ Ch4+2σ

∫
T̃

(∫
T̃

dx

|x− y|2σ
)
|∇v(y)|2 dy.

We easily deduce from the hypotheses on {τh}h that there exists a constant c such
that K ⊂ B(y, ch) for any K ∈ τ̃h and ∀y ∈ K, where B(y, ch) is the ball centered at
y of radius ch. Hence,

I2 ≤ Ch4+2σ

∫
T̃

(∫
B(y,ch)

dx

|x− y|2σ
)
|∇v(y)|2 dy

and changing to polar coordinates to evaluate exactly the internal integral yields

I2 ≤ Ch6|v|2
1,T̃

.

From the estimates on I1 and I2 we deduce that

|∇̂v̂|2
σ,T̂

≤ C{h2σ|∇v|2
σ,T̃

+ h2|v|2
1,T̃
},

and the result follows.
We now introduce a finite dimensional subspace Sh ⊂ H

− 1
2

0 which consists of
1-periodic and zero meanvalue piecewise constant functions on the uniform partition:
0 = t1 < t2 < · · · < tN+1 = 1. We refer to [3] for the following approximation
property:

inf
µ∈Sh

‖λ− µ‖−1/2 ≤ Chσ‖λ‖σ−1/2 ∀λ ∈ Hσ−1/2 ∩H
− 1

2
0 ,(3.3)

where C is a constant independent of h.
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1828 SALIM MEDDAHI, MARÍA GONZÁLEZ AND PABLO PÉREZ

4. The discrete problem. We denote Wh := Xh × Sh and introduce the dis-
crete problem associated with (2.4):

find uh := (uh, λh) ∈Wh;

A(uh,v) = 0 ∀v ∈Wh.
(4.1)

From (3.2), (3.3), and the density of regular functions in X and H− 1
2 , we deduce

the following approximation property:

lim
h

inf
vh∈Wh

‖v − vh‖W = 0 ∀v ∈W.(4.2)

Theorem 10.1.2 of [3] assures that under conditions (2.5), (2.6), and (2.4) there exists
h0 ∈ (0, 1] such that the following inf-sup condition is satisfied:

sup
z∈Wh

A′(u;v, z)

‖z‖W ≥ α2‖v‖W ∀v ∈Wh,(4.3)

for some constant α2 > 0 independent of h ∀h < h0.
It is easy to deduce from (4.3) that the Galerkin projection Ph : W→Wh given

by

Phv := (Phv, ρhµ) ∈Wh;

A′(u;Phv, z) = A′(u;v, z) ∀z ∈Wh

is well defined ∀h < h0. Furthermore, this operator satisfies

‖v −Phv‖W ≤ C inf
vh∈Wh

‖v − vh‖W ,(4.4)

for some constant C independent of v and h ∀h < h0. Hence, we deduce from
Lemma 3.1 and (3.3) that, if h is sufficiently small,

‖v −Phv‖W ≤ Chσ(‖v‖21+σ,Ω + ‖µ‖2−1/2+σ)1/2,(4.5)

∀v ∈W ∩ (H1+σ(Ω)×H−1/2+σ).
Lemma 4.1. A function uh ∈Wh is a solution of (4.1) if and only if the following

equation is satisfied:

A′(u;u− uh,v) = R(u;uh, v) ∀v ∈Wh,

where

R(u;uh, v) :=

∫
Ωnl

(∫ 1

0

[
(∂2β/∂s2)(x, u + t(uh − u)) · ∇v

+ (∂2β0/∂s
2)(x, u + t(uh − u))v

]
(1− t) dt

)
(u− uh)2 dx.

Proof. Let η(t) := A(u+ t(uh − u),v). The result follows from identity

η(1) = η(0) + η′(0) +

∫ 1

0

η′′(t)(1− t) dt

and the fact that A(u,v) = A(uh,v) = 0 ∀v ∈Wh.
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FEM–BEM METHOD FOR AN EXTERIOR QUASILINEAR PROBLEM 1829

Lemma 4.2. Let Mh := {v ∈Wh; ‖v‖0,∞,Ω ≤ 1 + ‖u‖0,∞,Ω}. There exists a
constant C > 0 independent of h such that

|R(u; v, z)| ≤ C‖u− v‖21,Ω‖z‖W ∀v ∈Mh ∀z ∈Wh.

Proof. By virtue of

‖u + t(v − u)‖0,∞,Ω ≤ 1 + 2‖u‖0,∞,Ω ∀v ∈Mh

and the Cauchy–Schwarz inequality we obtain that

|R(u; v, z)| ≤ C0‖u− v‖2L4(Ω)‖z‖1,Ω,

where

C0 ≥ max
i

 sup
x∈Ω

nl

|s|≤1+2‖u‖0,∞,Ω

|(∂2βi/∂s
2)(x, s)|

 .

The result follows from the fact that X is embedded continuously in L4(Ω).
We define the nonlinear mapping Υ : Wh →Wh as follows: given v ∈Wh, Υv

is the unique solution of

A′(u;Υv, z) = A′(u;u, z)−R(u; v, z) ∀z ∈Wh.(4.6)

To prove the continuity of this operator, we consider a sequence (vn) ∈ Wh that
converges to an element v of Wh. The following identity

A′(u;Υv −Υvn, z) = R(u; vn, z)−R(u; v, z),

together with (4.3) give the estimate

‖Υv −Υvn‖W ≤ C sup
z∈Wh

|R(u; vn, z)−R(u; v, z)|
‖z‖W .

Hence, limnΥvn = Υv since the limit of the right-hand side is zero. We are now
ready to prove the main result of this section.

Theorem 4.3. Let u ∈ X ∩ H1+σ(Ω) be a solution of problem (2.1), with 0 <
σ < 1 and assume that (2.6) is satisfied. Then, there exists h0 ∈ (0, 1] such that the
discrete problem (4.1) has a solution uh ∈Wh satisfying

‖u− uh‖W ≤ Chσ,

for some constant C independent of h ∀h < h0.
Proof. We define the set

Bh := {v ∈Wh; ‖v −Phu‖W ≤ hσ}.

We will prove that, if h is sufficiently small, Bh ⊂ Mh. Let v ∈ Bh, the triangle
inequality gives

‖v‖0,∞,Ω ≤ ‖u− v‖0,∞,Ω + ‖u‖0,∞,Ω,
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1830 SALIM MEDDAHI, MARÍA GONZÁLEZ AND PABLO PÉREZ

‖u− v‖0,∞,Ω ≤ ‖u− Phu‖0,∞,Ω + ‖Phu− v‖0,∞,Ω,(4.7)

and

‖u− Phu‖0,∞,Ω ≤ ‖u− πhu‖0,∞,Ω + ‖πhu− Phu‖0,∞,Ω,

where πh : C0(Ω) → Xh is the pointwise linear interpolation operator.
Now we use the fact that {τh}h is quasi-uniform to obtain the following inverse

inequality (cf. Theorem 3.4 in [23]):

‖w‖0,∞,Ω ≤ C

(
log

1

h

)1/2

‖w‖1,Ω ∀w ∈ Xh.(4.8)

Thus,

‖Phu− v‖0,∞,Ω ≤ C

(
log

1

h

)1/2

‖Phu− v‖1,Ω ≤ Chσ
(

log
1

h

)1/2

and

‖πhu− Phu‖0,∞,Ω ≤ C

(
log

1

h

)1/2

‖πhu− Phu‖1,Ω

≤ C

(
log

1

h

)1/2

(‖u− Phu‖1,Ω + ‖u− πhu‖1,Ω).

It follows from Lemma 3.1 and (4.5) that

‖πhu− Phu‖0,∞,Ω ≤ C

(
log

1

h

)1/2

hσ(‖u‖21+σ,Ω + ‖λ‖2−1/2+σ)1/2.

Finally, proceeding as in Lemma 3.1, we obtain the following interpolation error esti-
mate:

‖u− πhu‖0,∞,Ω ≤ Chσ‖u‖1+σ,Ω.
Consequently, when h is sufficiently small,

‖u− v‖0,∞,Ω ≤ 1,

and v ∈Mh.
Now, by definition of Ph, we may write (4.6) as follows:

A′(u;Υv −Phu, z) = −R(u; v, z) ∀z ∈Wh.

We deduce from (4.3) and Lemma 4.2 that

‖Υv −Phu‖W ≤ C sup
z∈Wh

A′(u;Υv −Phu, z)
‖z‖W ≤ C sup

z∈Wh

|R(u; v, z)|
‖z‖W

≤ C‖u− v‖21,Ω.
Hence,

‖Υv −Phu‖W ≤ 2C{‖u− Phu‖21,Ω + ‖Phu− v‖21,Ω}

≤ 2C{h2σ(‖u‖21+σ,Ω + ‖λ‖2−1/2+σ) + h2σ} ≤ hσ,

D
ow

nl
oa

de
d 

11
/1

6/
15

 to
 1

93
.1

44
.6

1.
25

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



FEM–BEM METHOD FOR AN EXTERIOR QUASILINEAR PROBLEM 1831

if h is sufficiently small.
An application of Brouwer’s fixed point theorem shows that there exists uh ∈Wh

such that Υuh = uh and we deduce from Lemma 4.1 that uh is a solution of (4.1).
Furthermore,

‖u− uh‖W ≤ ‖u−Phu‖W + ‖Phu− uh‖W ≤ Chσ,

where we used (4.5) and the fact that uh ∈ Bh.
Finally, we point out that the same technique given in [24] can be easily repro-

duced here to prove a local uniqueness result for (4.1).

5. Analysis of the fully discrete method. The implementation of our method
requires numerical quadratures for all the integrals appearing in (4.1). In practice one
solves

find u∗h ∈Wh;

Ah(u∗h,v) = 0 ∀v ∈Wh,
(5.1)

where Ah( · , · ) is an approximation of A( · , · ) that we will define below.
Consider first a quadrature formula on the reference triangle

Q̂(φ̂) :=

L∑
l=1

ω̂lφ̂(ẑl)  
∫
T̂

φ̂.

On each K ∈ τ̃h we define

QK(φ) := Q̂(|J(FK)|φ ◦ FK) =

L∑
l=1

ω̂l|J(FK)|(ẑl)φ(FK(ẑl))  
∫
K

φ(x) dx.

We assume that the weights ω̂l are positive and satisfy

L∑
l=1

ω̂l =
1

2
.(5.2)

This induces us to define ah(·, ·) by

ah(u, v) = anlh (u, v) + alh(u, v) ∀u, v ∈ Xh,

where

anlh (u, v) =
∑

K⊂Ωnl

QK(β(x, u) · ∇v dx + β0(x, u)v)

and

alh(u, v) =
∑
K⊂Ω

QK(∇u · ∇v).

Now we turn to define an approximation bh( · , · ) of b( · , · ) on Sh × Sh. To this
end, we need a basic two-dimensional quadrature formula on the unit square

Z(g) :=

d∑
k=1

ηkg(zk)  
∫ 1

0

∫ 1

0

g(z) dz.
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1832 SALIM MEDDAHI, MARÍA GONZÁLEZ AND PABLO PÉREZ

We will assume that Z is exact for all polynomials of degree no greater that 1 in each
variable. Let us consider the following decomposition of V :

V (s, t) = − 1

4π
log (s− t)2 + F (s, t).

Notice that F is of class C∞ in the domain {(s, t); |s − t| < 1}. We follow [13, 7]
and approximate

Vi,j := − 1

4π

∫ ti+1

ti

∫ tj+1

tj

log (s− t)2 +

∫ ti+1

ti

∫ tj+1

tj

F (s, t)

by computing the first integral exactly and using Z for the second one. In order to
avoid the neighborhood of {(s, t); |s − t| = 1}, one may compute approximations

Ṽi,j of Vi,j for indices i, j that satisfy |i−j| ≤ N/2 and recover Ṽi,j for i, j = 1, . . . , N
by periodicity, i.e.,

Vi,j  Ṽi,j := − 1

4π

∫ ti+1

ti

∫ tj+1

tj

log (s− t)2 + h2Z(F (ti + h · , tj + h · )),

where

(i, j) =


(i, j) if |i− j| ≤ N/2,

(i, j −N) if i− j > N/2,

(i−N, j) if j − i > N/2.

Now, for any λ and µ in Sh, we define

b(λ, µ)  bh(λ, µ) :=

N∑
i,j=1

λiµj Ṽi,j ,

where λi and µi are the constant values of λ and µ on (ti, ti+1). It is important to
choose Z with nodes zk symmetric with respect to {(s, t) ∈ [0, 1]× [0, 1]; s = t} in

order to inherit the symmetry of V and obtain coefficients that satisfy Ṽi,j = Ṽj,i.
The following result is proved in [13, 7].

Lemma 5.1. There exists a constant C independent of h such that

|b(λ, µ)− bh(λ, µ)| ≤ Ch‖λ‖−1/2‖µ‖−1/2 ∀λ, µ ∈ Sh.

By construction, for any v ∈ Xh, the one variable function t �→ v(x(t)) belongs to
the space Th of 1-periodic piecewise linear and continuous functions on the uniform
partition 0 = t1 < t2 < · · · < tN+1 = 1. Hence d

dtv(x(t)) ∈ Sh and therefore, we may

approximate b( ddtγu,
d
dtγv) by bh( ddtγu,

d
dtγv) ∀u, v ∈ Xh. Furthermore, by virtue of

Lemma 5.1 and the continuity of d
dt : H

1
2 → H− 1

2 and γ,∣∣∣∣b( d

dt
γu,

d

dt
γv

)
− bh

(
d

dt
γu,

d

dt
γv

)∣∣∣∣ ≤ Ch‖u‖1,Ω‖v‖1,Ω ∀u, v ∈ Xh.(5.3)

To conclude with the approximation of the boundary terms, we need to substi-
tute c( · , · ) by a sufficiently close bilinear form ch( · , · ) on Sh × Th. Let {li, i =
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FEM–BEM METHOD FOR AN EXTERIOR QUASILINEAR PROBLEM 1833

1, . . . , N} be the nodal basis of Th, i.e., the functions of Th that satisfy li(tj) = δi,j .
For any v ∈ Xh and µ ∈ Sh we define

c(µ, γv)  ch(µ, γv) :=

N∑
i=1

hµi
γv(ti+1) + γv(ti)

4
−

N∑
i,j=1

h2µiγv(tj)Z(Ki,j),

where

Ki,j(s, t) := K(ti + sh, tj−1 + th)lj(tj−1 + th) + K(ti + sh, tj + th)lj(tj + th).

Lemma 5.2. There exists a constant C independent of h such that

|c(µ, γv)− ch(µ, γv)| ≤ Ch‖v‖1,Ω‖µ‖−1/2 ∀v ∈ Xh ∀µ ∈ Sh.

Proof. Let E := Z − ∫ 1

0

∫ 1

0
be the error functional. By construction, we have the

estimate

|c(µ, γv)− ch(µ, γv)| ≤ Ch2
N∑

i,j=1

|µi||γv(tj)||E(Ki,j)|,

∀v ∈ Xh and ∀µ ∈ Sh. Using the fact that Z is of degree 1, it follows readily from
the Bramble–Hilbert lemma that

|E(Ki,j)| ≤ C|Ki,j |2,∞,(0,1)×(0,1) ≤ C1h
2.

Thus,

|c(µ, γv)− ch(µ, γv)| ≤ Ch4
N∑
i=1

|µi|
N∑
j=1

|γv(tj)|

= Ch3

∫ 1

0

|µ|
N∑
j=1

|γv(tj)| ≤ Ch2‖µ‖0
h

N∑
j=1

γv(tj)
2

1/2

,

where in the last step we used the Cauchy–Schwarz inequality for both the integral
and the sum.

We conclude by the equivalence of the norms g �→ ‖g‖0 and g �→ (h
∑N

i=1 g(ti)
2)1/2

on Th and the inverse inequality

‖µ‖0 ≤ Ch− 1
2 ‖µ‖−1/2 ∀µ ∈ Sh.

Let us now show that the approximate semilinear form

Ah(u,v) := ah(u, v) + bh(λ, µ) + bh

(
d

dt
(γu),

d

dt
(γv)

)
− ch(λ, γv) + ch(µ, γu)

is sufficiently close to A( · , · ). We begin by recalling the following classical results;
cf. [25].

Lemma 5.3. Let K be a triangle of τ̃h. There exists a constant C independent of
K such that ∣∣∣∣∫

K

fp dx−QK(fp)

∣∣∣∣ ≤ ChK
√

mes(K)‖f‖1,∞,K‖p‖1,K(5.4)
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1834 SALIM MEDDAHI, MARÍA GONZÁLEZ AND PABLO PÉREZ

and ∣∣∣∣∫
K

∇p · ∇q dx−QK(∇p · ∇q)

∣∣∣∣ ≤ ChK‖p‖1,K‖q‖1,K ,(5.5)

∀f ∈W 1,∞(K) and ∀p, q ∈ P1(K).
We easily deduce from (5.5) that∣∣∣∣∫

Ω

∇u · ∇v dx− alh(u, v)

∣∣∣∣ ≤ Ch‖u‖1,Ω‖v‖1,Ω ∀u, v ∈ Xh.(5.6)

Lemma 5.4. Let B∗
h = {v ∈ Wh; ‖v − uh‖W ≤ hσ}, where uh ∈ Bh is the

solution of problem (4.1). There exists a constant C > 0 such that

|A(v, z)−Ah(v, z)| ≤ Ch(1 + ‖v‖W )‖z‖W ∀v ∈ B∗
h ∀z ∈Wh.(5.7)

Proof. From Lemma 5.1, Lemma 5.2, (5.3), and (5.6), we deduce that we have to
prove only the following estimate:

I1 + I2 ≤ Ch(1 + ‖v‖1,Ω)‖z‖1,Ω,

where

I1 =

∣∣∣∣∣∣
∫

Ωnl

β(x, v) · ∇z dx−
∑

K⊂Ωnl

QK(β(x, v) · ∇z)

∣∣∣∣∣∣
and

I2 =

∣∣∣∣∫
Ωnl

β0(x, v)z dx−QK(β0(x, v)z)

∣∣∣∣ .
Let us show that ‖v‖0,∞,Ω is bounded independently of h ∀v ∈ B∗

h. We use the
triangular inequality and the fact that Bh ⊂Mh to obtain the estimate

‖v‖0,∞,Ω ≤ ‖uh‖0,∞,Ω + ‖uh − v‖0,∞,Ω ≤ 1 + ‖u‖0,∞,Ω + ‖uh − v‖0,∞,Ω.

On the other hand, by (4.8),

‖uh − v‖0,∞,Ω ≤ C

(
log

1

h

)1/2

‖uh − v‖1,Ω ≤ C

(
log

1

h

)1/2

hσ.

It follows that for h sufficiently small

‖v‖0,∞,Ω ≤ 2 + ‖u‖0,∞,Ω ∀v ∈ B∗
h.

The rest of the proof follows from an idea of Feistauer; cf. [9] (see also Theorem
36.2 of [25]). We give here a sketch of the method for the sake of completeness. We
take in (5.4) f(x) = βi(x, v(x))|K (i = 1, 2) and p(x) = 1 and notice that

‖βi(·, v(·))‖1,∞,K ≤ ‖βi(·, v(·))‖0,∞,K +

2∑
j=1

‖(∂βi/∂xj)(·, v(·))‖0,∞,K

+ ‖(∂βi/∂s)(·, v(·))‖0,∞,K |∇(v|K)|.
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Summing over the triangles contained in Ω
nl

, we obtain the following estimate:

I1 ≤ Ch
∑

K⊂Ω
nl

mes(K)|∇(z|K)| (1 + |∇(v|K)|)

and deduce that

I1 ≤ Ch(1 + ‖v‖1,Ω)‖z‖1,Ω
by the Cauchy–Schwarz inequality and the fact that mes(K)1/2|∇(p|K)| = |p|1,K for
any linear function p.

Similarly, using (5.4) with f(x) = β0(x, v(x))|K and p(x) = z|K(x) leads to the
same estimate for I2.

In the rest of this section we show that problem (5.1) has at least one solution
u∗h which is, asymptotically, as close to u as uh.

Lemma 5.5. A function u∗h ∈Wh is a solution of (5.1) if and only if

A′(uh;u∗h − uh, z) = A(u∗h, z)−Ah(u∗h, z)−R(uh;u∗
h, z) ∀z ∈Wh.

Proof. Let ηh(t) = A(uh + t(u∗h − uh), z). The result follows from identity

ηh(1) = ηh(0) + η′h(0) +

∫ 1

0

η′′h(t)(1− t) dt

and the fact that A(uh, z) = Ah(u∗h, z) = 0 ∀z ∈ Xh.
Theorem 5.6. Under hypotheses of Theorem 4.3 there exists h1 ∈ (0, 1] such

that, ∀h < h1, problem (5.1) has a solution u∗h ∈Wh that satisfies

‖u− u∗h‖W ≤ Chσ.

Proof. First of all, we notice that

‖uh + t(v − uh)‖0,∞,Ω ≤ 2 + ‖u‖0,∞,Ω ∀v ∈ B∗
h ∀t ∈ [0, 1].

Thus, proceeding as in Lemma 4.2, we may show that there exists a constant C
independent of h such that

|R(uh; v, z)| ≤ C‖uh − v‖21,Ω‖z‖W ∀v ∈ B∗
h ∀z ∈Wh.

Let us define the nonlinear mapping Υ∗ : Wh →Wh by

A′(uh;Υ∗v, z) = A′(uh;uh, z) + A(v, z)−Ah(v, z)−R(uh; v, z).

This application is well defined and continuous since the bilinear form A′(uh; · , · ) :
Wh ×Wh → R satisfies the inf-sup condition

sup
z∈Wh

A′(uh;v, z)

‖z‖W ≥ C‖v‖W ∀v ∈Wh,(5.8)

for some constant C independent of h, if h is sufficiently small. Indeed,

|A′(u;v, z)−A′(uh;v, z)| =

∣∣∣∣∫
Ωnl

∫ 1

0

(∂2β/∂s2)(x, u + t(uh − u))∇z(u− uh)v dt dx

+

∫
Ωnl

∫ 1

0

(∂2β0/∂s
2)(x, u + t(uh − u))z(u− uh)v dt dx

∣∣∣∣
≤ C

∫
Ωnl

{|∇z||(u− uh)v|+ |(u− uh)vz|} dx,
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where

C ≥

max
i

sup
x∈Ω

nl

|s|≤2+‖u‖0,∞,Ω

|(∂2βi/∂s
2)(x, s)|

 .

By the Cauchy–Schwarz inequality and the continuous embedding of H1(Ω) in L4(Ω)
we deduce that

|A′(u;v, z)−A′(uh;v, z)| ≤ C‖u− uh‖L4(Ω)‖v‖L4(Ω)‖z‖1,Ω
≤ C1‖u− uh‖1,Ω‖v‖1,Ω‖z‖1,Ω.

Finally, Theorem 4.3 implies that for h sufficiently small

|A′(u;v, z)−A′(uh;v, z)| ≤ Chσ‖z‖1,Ω‖v‖1,Ω

and inequality (5.8) follows.
We are now ready to prove that Υ∗(B∗

h) ⊂ B∗
h, let v ∈ B∗

h,

‖Υ∗v − uh‖W ≤ C sup
z∈Wh

A′(uh;Υ∗v − uh, z)
‖z‖W

≤ C sup
z∈Wh

|A(v, z)−Ah(v, z)|
‖z‖W + C1‖v − uh‖21,Ω.

Consequently, we deduce from Lemma 5.4 that

‖Υ∗v − uh‖1,Ω ≤ C3{(1 + ‖v‖W )h1−σ + hσ}hσ < hσ (0 < σ < 1)

for h sufficiently small, since ‖v‖1,Ω is bounded. We conclude by Brouwer’s fixed point
theorem as in Theorem 4.3.

6. Numerical results. In this section, we present results of numerical experi-
ments. We take Ω0 = (−0.5, 0.5)×(−0.5, 0.5), Ωnl = (−1.5, 1.5)×(−1.5, 1.5)\Ω0 and
the artificial boundary Γ is the circle centered at the origin of radius 3. We present
results of numerical experiments for problem (5.1) when βi vanishes identically for
i = 1, 2 and

β0(x, s) = f(x)− s√
1 + s2

1Ωnl(x).

The Dirichlet boundary condition on Γ0 and the function f are chosen in such a way
that the exact solution is u(x, y) = x/(x2 + y2).

We use Newton’s method to solve the nonlinear discrete equations. As an ini-
tial guess for Newton’s algorithm we take the discrete solution of the linear problem
obtained by dropping the nonlinear term u√

1+u2
1Ωnl(x) from the equation. The iter-

ations of Newton’s method are performed until the stopping criterion |Un+1 −Un| ≤
10−6|Un| is satisfied. Here, Un is the vectorial representation of the solution at step
n of Newton’s method. Table 5.1 shows the number of iterations and the error in the
discrete L∞-norm as we vary the discretization parameter h.
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Table 5.1
Convergence history of Newton’s method versus the mesh parameter.

h Iterations maxi|(u− uh)(xi)|

1/18 4 1.11× 10−1

1/36 4 3, 53× 10−2

1/72 4 1, 82× 10−2

1/144 4 7, 14× 10−3
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