

Proyecto número: 14-04 REMOLCADOR ROMPEHIELOS

CUADERNO 3: Coeficientes y Plano de Formas

<u>ALUMNO:</u> MIGUEL PÉREZ-LAFUENTE RECUNA

DEPARTAMENTO DE INGENIERÍA NAVAL Y OCEÁNICA

ANTEPROYECTO Y PROYECTO FIN DE CARRERA

CURSO 2.013-2014

PROYECTO NÚMERO 14-04

TIPO DE BUQUE: Buque remolcador rompehielos de 100 TPF OPERACIONES EN PUERTO CON ALTO NIVEL DE HIELO PARA ESCOLTA DE GRANDES BUQUES Y OPERACIONES ROMPEHIELOS

CLASIFICACIÓN, COTA Y REGLAMENTOS DE APLICACIÓN: REGISTRO RUSO, KM, SOLAS, MARPOL, DYNPOS-1, Icebreaker6, FF3WS, AUT1-ICS, OMBO, EPP, ECO-S, Oil recovery ship (>60°C), Tug

CARACTERÍSTICAS DE LA CARGA: 100 TPF 2000 TPM 400 M2 DE SUPERFICIE DE CUBIERTA

VELOCIDAD Y AUTONOMÍA: 15 nudos en condiciones de servicio 80% MCR y 18% MM

SISTEMAS Y EQUIPOS DE CARGA / DESCARGA: Maquinilla de remolque en cubierta y en proa. Grúa en cubierta

PROPULSIÓN: Diésel eléctrica MDO, AZIPODS EN PROA Y POPA, 10 MW DE POTENCIA

TRIPULACIÓN Y PASAJE: 30 personas de tripulación 40 náufragos

OTROS EQUIPOS E INSTALACIONES: Los habituales en este tipo de buques

Ferrol, Febrero de 2.014

ALUMNO: D. MIGUEL PÉREZ-LAFUENTE RECUNA

PROYECTO Nº 14-04 REMOLCADOR ROMPEHIELOS 100 TPF UNIVERSIDADE DA CORUÑA

ÍNDICE

1. Presentación	4
2. Cálculo de Coeficientes	5
3. Diseño de Formas	7
4. Contorno de Proa	9
5. Contorno de Popa	15
6. Cartilla de trazado final	19
7. Comprobación de Coeficientes	21
ANEXO I: Formas de Referencia	24
ANEXO II: Cartilla de Trazado - Buque Base	31
ANEXO III: Plano de Formas - Buque Base	33
ANEXO IV: Hidrostáticas - Buque Base	35
ANEXO V: Curva de Áreas - Buque Base	.37
ANEXO VI: Cartilla de Trazado - Buque Proyecto	.39
ANEXO VII: Plano de Formas - Buque Proyecto	41
ANEXO VIII: Hidrostáticas - Buque Proyecto	46
ANEXO IX: Curva de Áreas - Buque Provecto	48

1. Presentación

En este cuaderno se obtendrá el plano de formas del buque de este proyecto.

El buque es un remolcador rompehielos de 58,25 m de eslora entre perpendiculares, 16,2 m de manga y 6,4 m de calado y 4479 Tn de desplazamiento.

En primer lugar se volverán a calcular los coeficientes adimensionales del buque del mismo modo que en el cuaderno 1, para posteriormente compararlos con los coeficientes de las formas obtenidas.

Para diseñar las formas del buque se puede proceder por dos métodos:

- Series Sistemáticas
- Derivación de buque base

El método escogido es el de derivación de un buque base, se parte de la caja de cuadernas de un buque remolcador ("Punta Mayor") de 60 metros de eslora, de la que se obtendrá la cartilla de trazado y a la que se le realizará una transformación afín, obteniendo así la cartilla de trazado del buque.

Esta cartilla se introducirá en el programa MaxSurf y se diseñarán las formas del buque. Se moldearán los contornos de popa y proa, comprobando en este último sus formas en base a los requisitos impuestos por la Sociedad de Clasificación para buque rompehielos, y finalmente se obtendrá el plano de formas del buque de este proyecto.

Por último se comprobarán los coeficientes de forma obtenidos con los calculados previamente.

Las dimensiones principales del buque son:

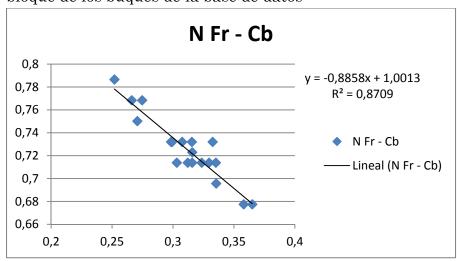
Lpp (m)	58,25	$\Delta(T_n)$	4495
L _{total} (m)	66,60	Cb	0,66
B (m)	16,20	Potencia (kW)	10660
D (m)	8,00	Vel. Servicio (nudos)	15
T (m)	6,40	Área de Cubierta (m²)	402,12

Sus características principales son la de rompehielos y la de remolcador. A mayores, este buque tiene sistemas de succión de aceites en la superficie del mar, cuenta con equipo de rescate y con equipos para combatir incendios en otros buques.

2. Cálculo de Coeficientes

Se calcularán a continuación los coeficientes adimensionales del buque, del mismo modo que en el Cuaderno 1:

- Número de Froude


Pese a no ser un coeficiente de la carena, lo incluimos en este punto ya que nos servirá para calcular el coeficiente de bloque.

La ecuación utilizada es la siguiente:

$$Fr = \frac{v}{\sqrt{(Lpp \ x \ g)}}$$

Para v = 15 nudos=7.716m/s y Lpp = $58,25 \text{ m} \rightarrow \text{Fr}=0,3228$

 Coeficiente de Bloque (Cb)
 El coeficiente de bloque se calculará según la relación establecida en el Cuaderno 1 entre los números de Froude y los coeficientes de bloque de los buques de la base de datos:

$$Cb = -0.8858* Fr + 1,0013 = -0.8858*0.3228+1.0013 = 0.71$$

Se calculará también a partir de las dimensiones del buque y su desplazamiento:

$$Cb = \frac{\Delta}{(\rho \ x \ Lpp \ x \ B \ x \ T)} = \frac{4479}{(1.030 * 58,25 * 16.2 * 6.4)} = 0.72$$

- Coeficiente de la Maestra

Se calculará mediante la ecuación del libro del profesor Fernando Junco.

$$Cm = 1-2* Fr^4 = 1-2* 0.3228^4 = 0.978$$

- Coeficiente Prismático

Calcularemos Cp mediante la siguiente relación: Cp = Cb/Cm, considerando Cb como 0,71

$$Cp = 0.726$$

- Coeficiente de la flotación:

Se calculará el Cf mediante las fórmulas de los apuntes de la asignatura Proyectos I:

$$Cf = 1 - 0.3 * (1 - Cp)$$

$$Cf_1 = 0.918$$

$$Cf = Cm * Cp + 0.1$$

$$Cf_2 = 0.810$$

$$Cf = 0.33 + 0.66 * Cm * Cp$$

$$Cf_3 = 0.798$$

- Situación Longitudinal del centro de Carena Se calculará mediante la fórmula de L. Troost:

$$Xb = 17.5 * Cp - 12.5 = 0.205 m$$

El valor obtenido se mide desde la cuaderna maestra, y el signo positivo indica que se mide hacia proa.

A continuación se muestra una tabla resumen con las dimensiones y coeficientes del buque:

TPF	100
Potencia (BHP)	10085
Potencia (kW)	7520
Lpp (m)	58,25
L (m)	66,60
B (m)	16,20
D (m)	8,00
T(m)	6,4
Fb (mm)	1600
Peso Muerto (Tn)	2000
Sup. Min. Cub. (m2)	400
Velocidad (kn)	15
Desplazamiento (Tn)	4479
Cb	0,72
Cm	0,978
Ср	0,726
Cf 1	0,918
Cf 2	0,810
Cf 3	0,798
XB (m) desde la s. media	0,205

3. Diseño de formas

Justificación de formas escogidas

Las formas del buque se han obtenido mediante la derivación de un buque

base. El buque elegido es el remolcador "Punta Mayor" de 60 metros, del que contamos con su caja de cuadernas, que se muestra en el ANEXO I de este cuaderno. La elección de este buque se basa en que sus funciones de remolcador y salvamento son como las de este proyecto, y sus dimensiones y velocidad de servicio (15 nudos) también.

Cartilla de trazado del buque base

Tomando medidas en la caja de cuadernas del ANEXO I, se obtiene la siguiente cartilla de trazado (Presentada en el ANEXO II).

Sec	cción	0	0,5	1	2	3	4	5	6	7	8	9	10
Pos. Lo	Pos. Long. (m)		1,5	3	6	9	12	15	18	21	24	27	30
0,00	LB	1	0,2	0,2	0,2	0,2	0,2	0,2	0,2	1,35	1,73	1,73	1,75
0,36	LA1/2	-	•	-	•	-	-	1,5	3,11	4,04	4,72	4,72	4,41
0,73	LA1	-	0,25	0,25	0,25	0,25	1,66	3,61	5,44	6,5	6,5	6,5	6,4
1,46	LA2	-	0,3	0,3	0,3	2,38	5,19	6,5	6,5	6,5	6,5	6,5	6,4
2,18	LA3	-	0,35	0,35	2,31	5,5	6,5	6,5	6,5	6,5	6,5	6,5	6,4
2,91	LA4	-	0,4	1,78	5,32	6,5	6,5	6,5	6,5	6,5	6,5	6,5	6,4
3,64	LA5	4,14	5,24	6,5	6,5	6,5	6,5	6,5	6,5	6,5	6,5	6,5	6,4
4,37	LA6	6,17	6,17	6,5	6,5	6,5	6,5	6,5	6,5	6,5	6,5	6,5	6,4
5,10	LA7	6,17	6,17	6,5	6,5	6,5	6,5	6,5	6,5	6,5	6,5	6,5	6,4

11	12	13	14	15	16	17	18	18 y 1/2	19	19 y 1/2	20	Sección	
33	36	39	42	45	48	51	54	55,5	57	58,5	60	Pos. Lor	ng. (m)
1,75	1,73	1,7	1,05	0,65	0,25	0,05	0	0	ı	1	1	LB	0,00
4,41	4,02	3,16	2,86	2,1	1,33	0,8	0,45	0,27	ı	-	-	LA1/2	0,36
6,4	6,17	5,47	5,02	3,81	2,51	1,56	0,85	0,55	0,1	-	1	LA1	0,73
6,4	6,22	5,82	5,62	5,09	4,16	3,12	1,7	1,05	0,4	-	1	LA2	1,46
6,4	6,4	5,92	5,77	5,27	4,42	3,36	2,16	1,4	0,7	-	1	LA3	2,18
6,4	6,4	6,07	5,92	5,47	4,72	3,66	2,41	1,7	0,98	0,25	1	LA4	2,91
6,4	6,4	6,17	6,07	5,67	5	4	2,78	2,06	1,3	0,55	1	LA5	3,64
6,4	6,4	6,4	6,22	5,85	5,27	4,34	3,19	2,46	1,73	0,95	0	LA6	4,37
6,4	6,4	6,4	6,4	6,05	5,52	4,67	3,61	2,86	2,13	1,38	0,53	LA7	5,10

^{**} Las semi mangas y las alturas de línea de agua están expresadas en metros.

El plano de formas del buque base se presenta en el ANEXO III, para obtenerlo, se ha introducido la cartilla de trazado anterior en el programa MaxSurf, generando así unos puntos que se han agrupado por curvas. Estas curvas han servido para generar las superficies del casco del buque.

Cartilla de trazado derivada

La siguiente cartilla de trazado se ha obtenido por derivación de la cartilla de trazado anterior. Se ha realizado una transformación afín, mediante la cual obtendremos unas dimensiones a escala que mantendrán la proporcionalidad. Las ecuaciones de transformación afín son las siguientes:

$$X_{p} = \frac{Lpp_{p}}{Lpp_{b}} * X_{b} ; Y_{p} = \frac{B_{p}}{B_{b}} * Y_{b} ; Z_{p} = \frac{T_{p}}{T_{b}} * Z_{b}$$

De esta manera los coeficientes por los que se van a multiplicar los valores de la cartilla de trazado del buque base son:

$$X_p = \frac{58,25}{60} * X_b = 0.97 * X_b$$

$$16,2$$

$$Y_p = \frac{16,2}{13} * Y_b = 1.246 * Y_b$$

$$Z_p = \frac{6.4}{4.2} * Z_b = 1.524 * Z_b$$

Una vez multiplicados los valores se obtiene la siguiente cartilla de trazado:

Sec	ción	0,00	0,50	1,00	2,00	3,00	4,00	5,00	6,00	7,00	8,00	9,00	10,00
Pos. Lo	ng. (m)	0,00	1,46	2,91	5,82	8,73	11,64	14,55	17,46	20,37	23,28	26,19	29,10
0	LB	1	0,25	0,25	0,25	0,25	0,25	0,25	0,25	1,68	2,16	2,16	2,18
0,55	LA1/2	-	ı	1	1	ı	ı	1,87	3,88	5,03	5,88	5,88	5,49
1,11	LA1	-	0,31	0,31	0,31	0,31	2,07	4,50	6,78	7,85	7,97	7,97	7,97
2,22	LA2	-	0,37	0,37	0,37	2,97	6,47	8,10	8,10	8,10	8,10	8,10	7,97
3,33	LA3	-	0,44	0,44	2,88	6,85	8,10	8,10	8,10	8,10	8,10	8,10	7,97
4,44	LA4	-	0,50	2,22	6,63	8,10	8,10	8,10	8,10	8,10	8,10	8,10	7,97
5,55	LA5	5,16	6,53	8,10	8,10	8,10	8,10	8,10	8,10	8,10	8,10	8,10	7,97
6,66	LA6	7,69	7,69	8,10	8,10	8,10	8,10	8,10	8,10	8,10	8,10	8,10	7,97
7,77	LA7	7,69	7,69	8,10	8,10	8,10	8,10	8,10	8,10	8,10	8,10	8,10	7,97

11,00	12,00	13,00	14,00	15,00	16,00	17,00	18,00	18,50	19,00	19,50	20,00	Sección	
32,01	34,92	37,83	40,74	43,65	46,56	49,47	52,38	53,84	55,29	56,75	58,25	Pos. Lo	ng. (m)
2,18	2,16	2,12	1,31	0,81	0,31	0,06	0,00	0,00	-	1	-	LB	0
5,49	5,01	3,94	3,56	2,62	1,66	1,00	0,56	0,34	-	-	-	LA1/2	0,55
7,97	7,69	6,82	6,25	4,75	3,13	1,94	1,06	0,69	0,12	-	-	LA1	1,11
7,97	7,75	7,25	7,00	6,34	5,18	3,89	2,12	1,31	0,50	-	-	LA2	2,22
7,97	7,97	7,38	7,19	6,57	5,51	4,19	2,69	1,74	0,87	-	-	LA3	3,33
7,97	7,97	7,56	7,38	6,82	5,88	4,56	3,00	2,12	1,22	0,31	-	LA4	4,44
7,97	7,97	7,69	7,56	7,06	6,23	4,98	3,46	2,57	1,62	0,69	-	LA5	5,55
7,97	7,97	7,97	7,75	7,29	6,57	5,41	3,97	3,07	2,16	1,18	0,00	LA6	6,66
7,97	7,97	7,97	7,97	7,54	6,88	5,82	4,50	3,56	2,65	1,72	0,66	LA7	7,77

Estos valores se han introducido en el programa MaxSurf del mismo modo que se ha procedido con la cartilla de trazado del buque de referencia.

4. Contorno de Proa

En este apartado se determinará la necesidad o no de la instalación de un bulbo de proa, así como los cálculos necesarios para determinar sus parámetros, en caso de que fuese necesario.

Para ello comenzaremos por analizar el margen de aplicación del bulbo.

Es recomendable si:

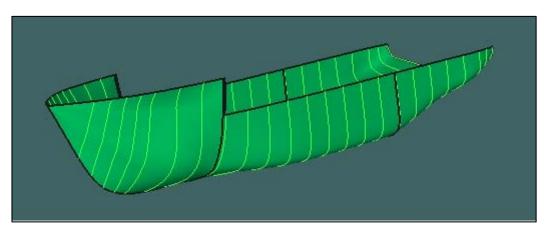
- -0.65 < Cb < 0.815
- 5.5 < Lpp/B < 7.0
- Wiggley $\rightarrow 0.24 < \text{Fn} < 0.57$
- $-\frac{Cb*B}{Lpp} > 0,135$

Para el buque de nuestro proyecto tenemos (Datos calculados en el Cuaderno I):

- Cb = 0.72
- Lpp/B = 3,59
- Fn = 0.32
- Cb*B/Lpp = 0.20

Pese a que se cumplen 3 de los 4 criterios, se toma la decisión de no instalar un bulbo en el buque dada su condición de rompehielos. La instalación de un bulbo en proa reduciría la cantidad de peso que el

buque podría tener encima de una capa de hielo, pudiendo llegar a impedir su tarea. Para tomar esta decisión nos basamos en el mismo buque que tomamos de referencia para realizar la proa del buque de este proyecto, el buque 'Tor II Viking'.


- Cb = 0.73
- Lpp/B = 4.17
- Fn = 0.30
- Cb*B/Lpp = 0.17

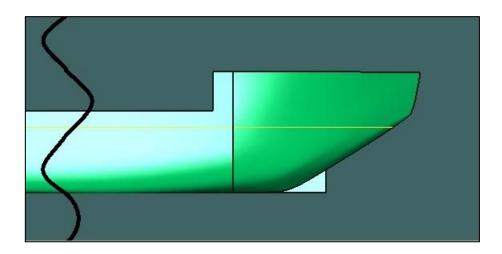
Como se puede comprobar, el buque cumple con 3 de 4 criterios, sin embargo no lleva incorporado un bulbo en proa (El perfil longitudinal de este buque se presenta en el ANEXO I).

La condición de rompehielos no solo influye en la decisión de no incorporar bulbo en proa, sino que además influye directamente en las formas del buque, siendo así muy importante la proa del mismo, ya que debe permitir que el buque suba por encima de la capa de hielo para poder romperlo, y esto se consigue mediante una proa lanzada. Como las formas de las que partimos son de un buque remolcador, y su proa no es la más adecuada, la zona de proa de nuestro buque se ha modificado en base al perfil del buque "Tor II Viking" adjuntado en el ANEXO I. Se han medido varios puntos de control en la zona de la proa, y se les ha realizado una transformación afín, para posteriormente ajustar las formas del buque con los valores obtenidos.

Los puntos considerados han sido a distinta posición longitudinal y en línea de crujía, de manera que se pudiera obtener valores de la pendiente de la proa del buque.

A continuación se muestra la evolución de las formas de proa del buque de este proyecto:

Proa original por cartilla de trazado

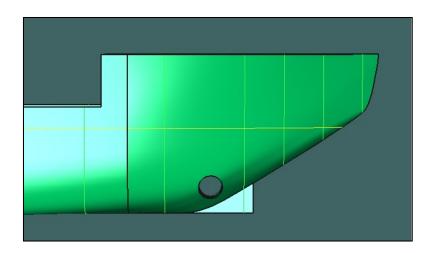


La proa anterior es la que se obtiene al introducir la cartilla de trazado transformada en MaxSurf y después de suavizar las superficies para producir un casco continuo y sin abolladuras.

Una vez tenemos estas formas, medimos en el perfil longitudinal del buque "Tor II Viking" mostrado a continuación:

Una vez modificados los puntos del perfil en las formas del buque de este proyecto, la proa adquiere la siguiente forma:

Como se puede comprobar la proa final tiene una forma muy similar a la proa del buque "Tor II Viking", asimismo se ha incorporado un talón en la proa, cuyo fin es evitar que en labores de rompehielos, el buque salga de más del agua por encima del hielo y se encuentre encallado en el hielo. Este talón tiene un ancho de 0,4 m y se prolonga aproximadamente 4 metros desde que el fondo del buque se separa de la línea de base, hasta coincidir con el mamparo de colisión, calculado en el cuaderno 4.

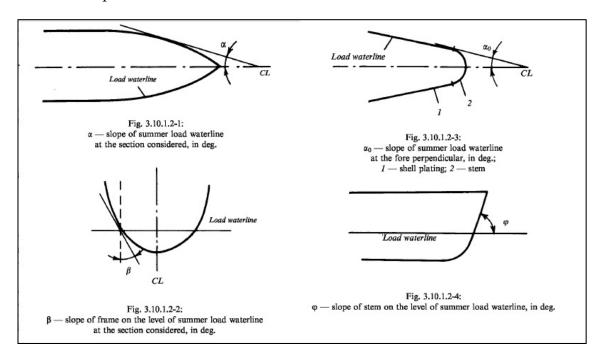


Se ha tenido en cuenta solamente los valores del perfil, las cuadernas de la proa se han adecuado al cuerpo cilíndrico del buque de manera que se produzca una transición suave de formas.

Por último y dada la cota DYNPOS-1 que hace referencia a la capacidad de posicionamiento dinámico del buque, se decide incorporar en proa una hélice transversal que permita maniobrar al buque con mayor facilidad. Tomando como referencia la hélice transversal del "Tor II Viking" (Cuya cota de posicionamiento dinámico es similar), se escoge el modelo ICE/DPN/DPD 700-780 kW (1650 mm de diámetro) de la marca Rolls Royce.

Main	dimension	s (mm)	Weigh	t (kg)*	Motor input	Propeller	Tip speed			Maximum	
D			AUX/	ICE/	(rpm)	(rpm)	(m/s)	Electric motor			
(Dla)	(Length)	(Shaft length)	AUD	DPN/ DPD					ICE/DPN/ DPD	DPN/DPD	
1100	1370	867	1150	1150	1465 1775	465 556	27 22	330 - 390	200 250	200 250	
FP*	1223	867	1150	1150	1465 - 1775	465 - 556	27 - 32	330-390	300 - 350	300 - 350	
1300	1540	1024	2000	2000	1470 1760	200 522	27 22	405 505	445 525	445 525	
FP	1360	1024	2000	2000	1470 - 1760	390 - 532	27 - 32	495 - 595	445 - 535	445 - 535	
1650	1850	1332	3550	3700	1100 1770	212 416	27. 26	750 050	700 700	700 010	
FP	1572	1332	3440	3440	1180 - 1770	312 - 416	27 - 36	750 - 950	700 - 780	700 - 810	

Una vez incorporado el agujero para la hélice transversal, la proa adquiere la siguiente forma:



La situación del agujero para la hélice se ha decidido en base a la del buque de referencia "Tor II Viking". Se sitúa en la vertical del talón de proa y entre las secciones 8 y 9.

Ya tenemos listo el contorno de proa. El último paso será verificar que las formas cumplen con los requisitos del Reglamento Ruso para los buques con cota de rompehielos:

3.10.1.2.2 The hull configuration parameters of ice class ships shall be within the limits stated in Table 3.10.1.2.2.

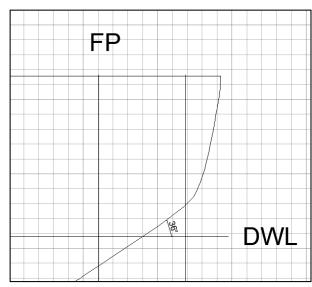
Table 3.10.1.2.2

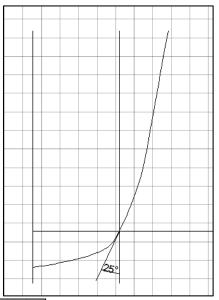
Hull configuration	Category of ice strengthening							
parameter	Arc8, Arc9	Arc7, Arc6	Arc5	Arc4	Ice1, Ice2, Ice3			
$φ$ not greater than $α_0$ not greater than $β$ within $0.05L$ from fore perpendicular, min	25° 30° 45°	30° 30° 40°	45° 40° 25°	60° 40° 20°	50° —			
β amidships, min	15°	_	_	-	-			

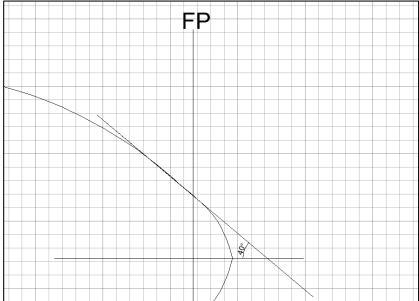
Los ángulos que se considerarán son:

- 6: ángulo del costado medido desde la perpendicular, en la cuaderna, en la ínea de flotación de verano.
- α₀: ángulo desde la línea de crujía hasta el costado medido en el eje de la perpendicular de proa con la línea de flotación de verano.
- φ: ángulo formado por la línea de flotación de verano y la inclinación de la roda

A continuación se muestra la comprobación de dichos ángulos en base a las 4 posibles cotas del buque dada su condición de remolcador además de la de




rompehielos (ICE2, ICE3, Arc4, Arc 5). Se comprobarán los ángulos de la más restrictiva, Arc5:


$$\phi \quad \leq \quad 45^o \qquad ; \qquad \quad \alpha_0 \ \leq \quad 40^o \qquad ; \qquad \quad \beta \ \geq \quad 25^o$$

$$\alpha_0 \leq 40^{\circ}$$

$$\beta \geq 25^{\circ}$$

$$\phi \quad \leq \quad 45^o \qquad ; \qquad \quad \alpha_0 \ \leq \quad 40^o \qquad ; \qquad \quad \beta \ \geq \quad$$

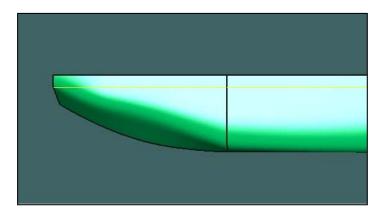
$$\alpha_0 \leq 40^{\circ}$$

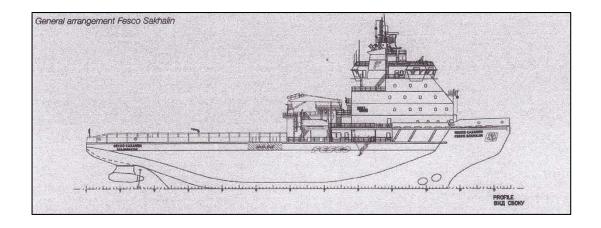
$$\beta \geq 25^{\circ}$$

$$\varphi = 36^{\circ}$$
 ; $\alpha_0 = 40^{\circ}$; $\beta = 25^{\circ}$

$$a_0 = 40^{\circ}$$

$$\beta = 25^{\circ}$$

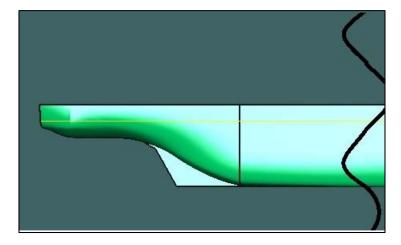

Se cumplen los 3 requisitos para las formas en proa impuestos por la sociedad de clasificación, por lo que se considera que las formas de proa diseñadas son válidas.


5. Contorno de Popa

Para diseñar el contorno de popa del buque, se debe tener en cuenta que el buque de este proyecto tiene propulsión AziPod, en lugar de una propulsión convencional. El buque base del que partimos ("Punta Mayor") es un buque de propulsión convencional, por lo que, del mismo modo que con el contorno de proa, nos basaremos en el codaste de un buque con propulsión AziPod para el diseño del codaste del buque de este proyecto.

Codaste original obtenido con la cartilla de trazado del buque base

En este caso elegimos como buque referencia para el codaste el Fesco Sakhalin, que figura en la base de datos del Cuaderno 1, y cuya disposición general se presenta en el ANEXO I.



Perfil Longitudinal del buque Fesco Sakhalin

Tomando medidas en el plano longitudinal y realizando una transformación afín, el codaste del buque queda de la siguiente forma:

Se puede comprobar que el codaste final del buque es similar al del buque referencia. Se ha incorporado un quillote de las mismas características que el del buque referencia y con un ancho igual al del talón de proa, 0,4 m.

Se ha tenido en cuenta solamente los valores del perfil, las cuadernas de la proa se han adecuado al cuerpo cilíndrico del buque de manera que se produzca una transición suave de formas.

Dado que la propulsión es AziPod, y la cota de posicionamiento dinámico no es la más exigente, se toma la decisión de no incorporar ninguna hélice transversal en popa, puesto que con dos propulsores capaces de girar 360° sobre su propio eje, el buque cuenta con una maniobrabilidad suficiente en popa.

Con el codaste ya definido, procederemos a calcular y comprobar los márgenes mínimos según el Reglamento Ruso. En la siguiente imagen se muestran los huelgos mínimos que debe tener la hélice. Aunque la imagen muestra una hélice de propulsión convencional, y el buque de este proyecto lleva propulsión AziPod, se han calculado y comprobado de la manera más semejante posible a la situación de una hélice tradicional.

.1 the sternframe shall have such dimensions as to provide the clearances between sternframe and propeller, and between propeller and rudder (Fig. 2.10.2.2) not less than indicated in Table 2.10.2.2;

Table 2.10.2.2

Dimensions	а	b	с	d	e						
Clearances, in mm	$0,2R_p$	$0,42R_{p}$	$0,36R_{p}$	$0,08R_{p}$	200 — 250						
R _p — radius o	R_{ρ} — radius of propeller, in mm.										

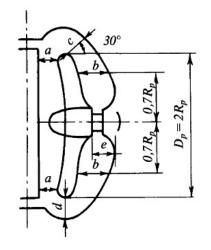
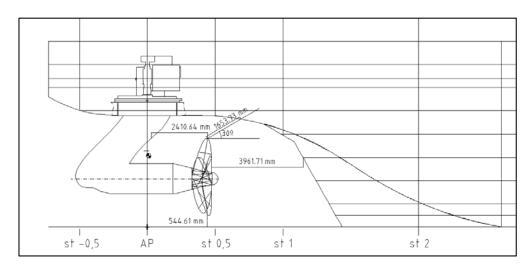


Fig. 2.10.2.2

Valores mínimos (Considerando R= 1750 mm):

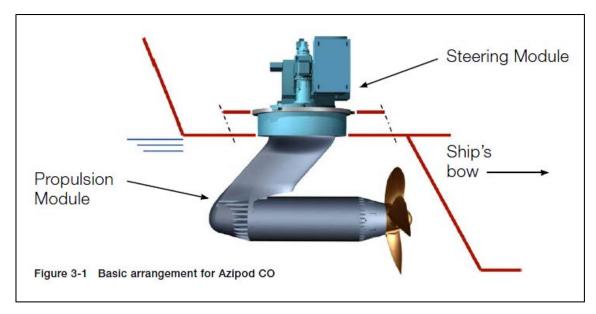

a = 350 mm; b = 735 mm; c = 630 mm; d = 140 mm; e = 250 mm

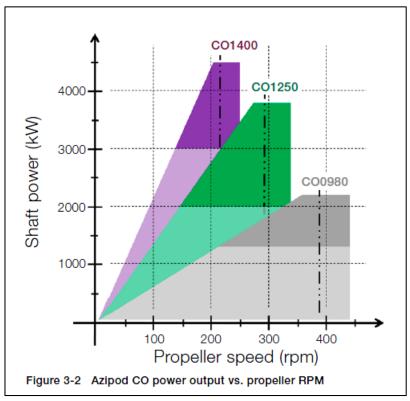
Valores reales (Imagen de abajo):

a = 3961,71 mm (orientado hacia popa)

 $b = 2410,44 \text{ mm}; \quad c = 1653,73 \text{ mm}$

d = 544, 61 mm (Este valor está medido hasta la línea de base, ya que el codaste propuesto no requiere de ningún talón para el timón).




Se puede comprobar que el codaste propuesto cumple con los márgenes mínimos.

Para la comprobación de márgenes se ha escogido el AziPod de la marca ABB modelo CO 1400.

6. Cartilla de trazado final

Una vez diseñados los contornos del buque y suavizado sus formas, se calcula mediante MaxSurf su cartilla de trazado. Para la estructura de la cartilla de trazado se ha optado por definir 10 secciones espaciadas entre las perpendiculares del buque, y se representan a mayores, secciones intermedias en proa y popa. El número de líneas de agua se corresponde con el de la cartilla de referencia (7 Líneas de Agua) y se han espaciado de 1 metro en 1 metro. Por último se establecen 4 longitudinales espaciados 2 metros, empezando a 1 metro de la línea de crujía.

La cartilla de trazado, el plano de formas, la curva de áreas y las hidrostáticas del buque de este proyecto se presentan en los ANEXOS VI, VII, VIII y IX, respectivamente.

A continuación se muestra la cartilla de trazado final del buque:

	Sec	ción	-0,5	0	0,5	1	2	3	4	5
	Pos. Lo	ng. (m)	-2,91	0,00	2,91	5,82	11,65	17,48	23,30	29,13
	0,0	LB	-	ı	ı	ı	ı	0,00	0,00	0,00
۲0	1,0	LA1	-	ı	ı	ı	0,20	7,84	7,85	7,76
SEMIMANGAS	2,0	LA2	-	ı	1	ı	7,52	8,03	8,00	7,91
AN	3,0	LA3	-	1	1	1	7,84	8,09	8,05	7,97
Σ	4,0	LA4	-	ı	1	0,20	7,97	8,10	8,06	7,99
SEN	5,0	LA5	-	3,734	3,75	7,06	8,04	8,10	8,10	8,01
	6,0	LA6	7,40	7,778	7,70	7,90	8,07	8,10	8,10	8,02
	7,0	LA7	7,85	8,008	8,02	8,05	8,09	8,10	8,10	8,03
S	1,0	L. I	5,102	4,829	4,827	4,212	1,082	0,038	0,02	0,009
JRA	3,0	L.II	5,284	4,942	4,941	4,297	1,166	0,111	0,057	0,022
ALTURAS	5,0 L. III		5,497	5,148	5,141	4,483	1,372	0,186	0,092	0,03
▼	7,0	L. IV	5,76	5,552	5,573	4,971	1,69	0,278	0,135	0,079

6	7	8	9	9,5	10	10,5	Sección		
34,95	40,78	46,60	52,43	55,34	58,25	61,16	Pos. Long. (m)		
0,00	0,00	0,00	1	1	1	1	LB	0,0	
7,53	7,04	5,45	0,20	ı	ı	-	LA1	1,0	10
7,75	7,45	6,48	1,22	1	1	-	LA2	2,0	SEV
7,84	7,61	6,83	4,26	ı	ı	ı	LA3	3,0	SEMIMANGAS
7,88	7,69	7,02	5,33	2,49	1	1	LA4	4,0	AN
7,90	7,73	7,15	5,68	3,96	-	-	LA5	5,0	GAS
7,93	7,78	7,27	5,92	4,47	2,05	1	LA6	6,0	•
7,95	7,82	7,40	6,13	4,73	2,60	-	LA7	7,0	
0,001	0,01	0,098	1,96	3,712	5,602	10,697	L. I	1,0	Þ
0,006	0,092	0,346	2,43	4,175	8,243	-	L.II	3,0	ALTURAS
0,02	0,215	0,818	3,546	8,361	-	-	L. III	5,0	JRA
0,271	0,95	3,894	11,067		-	-	L. IV	7,0	S

7. Comprobación de Coeficientes

Una vez obtenidas las formas del buque se calculan las curvas hidrostáticas al calado de diseño (T=6,4m) para comparar los coeficientes de las formas obtenidas con los calculados previamente:

Con el programa MaxSurf se obtiene los siguientes resultados:

Displacement	4495	lt
Volume (displaced)	4384,993	m^3
Draft Amidships	6,4	m
Immersed depth	6,4	m
WL Length	63,961	m
Beam max extents on WL	16,2	m
Wetted Area	1537,013	m^2
Max sect. area	100,992	m^2
Waterpl. Area	942,466	m^2
Prismatic coeff. (Cp)	0,745	
Block coeff. (Cb)	0,726	
Max Sect. area coeff. (Cm)	0,978	
Waterpl. area coeff. (Cwp)	0,999	
LCB length	28,585	from zero pt. (+ve fwd) m
LCF length	25,482	from zero pt. (+ve fwd) m
LCB %	49,073	from zero pt. (+ve fwd) % Lbp
LCF %	43,746	from zero pt. (+ve fwd) % Lbp
KB	3,609	m
KG fluid	0	m
BMt	4,247	m
BML	64,242	m
GMt corrected	7,856	m
GML	67,851	m
KMt	7,856	m
KML	67,851	m
Immersion (TPc)	9,66	tonne/cm
MTc	52,354	tonne.m
RM at 1deg = GMt.Disp.sin(1)	616,265	tonne.m
Length:Beam ratio	3,596	
Beam:Draft ratio	2,531	
Length:Vol^0.333 ratio	3,559	
Precision	Highest	217 stations

De los cuales nos interesan en este momento el Coeficiente de bloque, el de maestra, el prismático y el de flotación, así como la posición longitudinal del centro de carena.

En la siguiente tabla se muestran los valores de dichos coeficientes. Tanto los calculados previamente como los obtenidos mediante las curvas hidrostáticas:

	Cálculos	Hidrostáticas al Calado de
	Previos	Diseño
Cb	0,72	0,726
Cm	0,978	0,978
Ср	0,726	0,746
Cf1	0,918	0,999
Cf2	0,81	0,999
Cf3	0,798	0,999
Xb	29,33 m	28,58 m

Los valores de los coeficientes obtenidos por MaxSurf están calculados con la eslora entre perpendiculares como referencia. Se han calculado previamente éstas hidrostáticas para poder comparar con los valores iniciales, los cuales se han calculado a partir de la eslora entre perpendiculares.

Se comprueba entonces que los valores de Coeficiente de Bloque, Coeficiente de Maestra y Coeficiente prismático son semejantes a los calculados previamente en el dimensionamiento del buque.

El valor del coeficiente en flotación se ve afectado por el cálculo a partir de la eslora entre perpendiculares y por eso tiene un valor tan elevado.

En cuanto a la situación del centro de carena se ha desplazado hacia popa 0,75 m.

Una vez comprobados los coeficientes iniciales, el siguiente paso es calcular los coeficientes tomando como referencia la eslora en flotación. Estos nuevos coeficientes serán los definitivos del buque que se utilizarán para cálculos posteriores.

Si la comparación de coeficientes se hubiera hecho con los obtenidos para la eslora en flotación, la comparativa no sería fiable, ya que estaríamos comparando coeficientes con diferentes referencias.

A continuación se muestra las hidrostáticas al calado de diseño con la eslora en flotación como referencia:

Displacement	4495	t
Volume (displaced)	4384,993	m^3
Draft Amidships	6,4	m
Immersed depth	6,4	m
WL Length	63,961	m
Beam max extents on WL	16,2	m
Wetted Area	1537,013	m^2
Max sect. area	100,992	m^2
Waterpl. Area	942,466	m^2
Prismatic coeff. (Cp)	0,679	
Block coeff. (Cb)	0,661	
Max Sect. area coeff. (Cm)	0,978	
Waterpl. area coeff. (Cwp)	0,91	
LCB length	28,585	from zero pt. (+ve fwd) m
LCF length	25,482	from zero pt. (+ve fwd) m
LCB %	44,691	from zero pt. (+ve fwd) % Lwl
LCF %	39,84	from zero pt. (+ve fwd) % Lwl
KB	3,609	m
KG fluid	0	m
BMt	4,247	m
BML	64,242	m
GMt corrected	7,856	m
GML	67,851	m
KMt	7,856	m
KML	67,851	m
Immersion (TPc)	9,66	tonne/cm
MTc	52,354	tonne.m
RM at 1deg = GMt.Disp.sin(1)	616,265	tonne.m
Length:Beam ratio	3,948	
Beam:Draft ratio	2,531	
Length:Vol^0.333 ratio	3,908	
Precision	Highest	217 stations

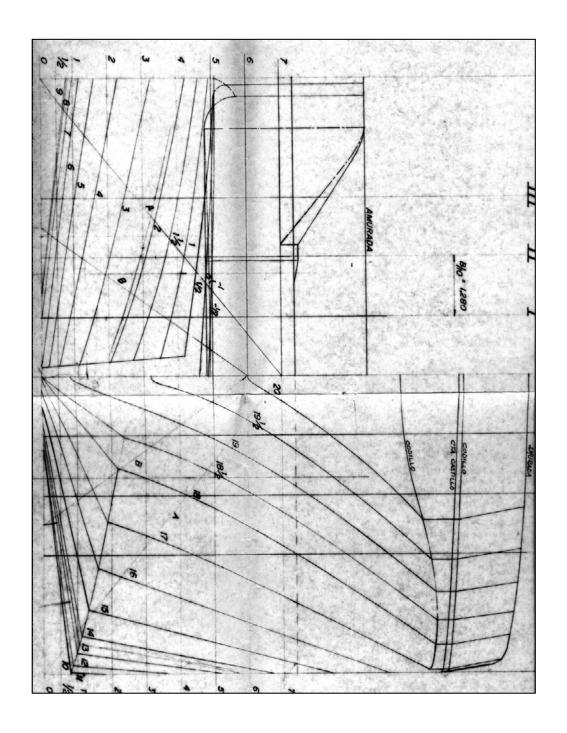
 En la siguiente tabla se presentan los valores principales, iniciales y finales,

del buque:

Dimensiones Iniciales		Dimensiones Finales
100	TPF	100
7520	Potencia (kW)	7520
58,25	Lpp (m)	58,25
16,2	B (m)	16,2
8	D (m)	8
6,4	T(m)	6,4
400	Sup. Min. Cub. (m2)	400
4479	Desplazamiento (Tn)	4495
0,72	Coef. Bloque	0,661
0,978	Coef. Maestra	0,978
0,726	Coef. Prismático	0,679
0,918	Coef. Flotación	0,91
0,205	XB (m) desde la s. media	-0,54

ANEXO I: Formas de Referencia

Formas de Referencia 1 Buque "Punta Mayor"

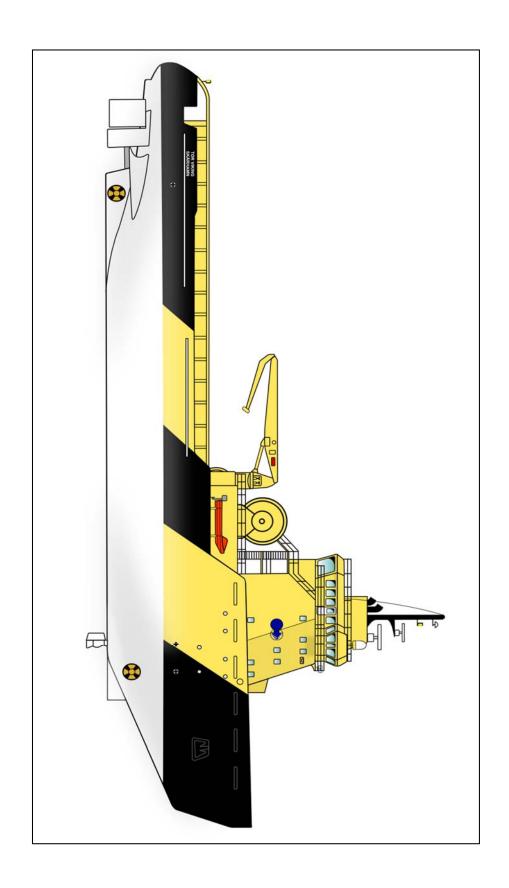


PROYECTO Nº 14-04 REMOLCADOR ROMPEHIELOS 100 TPF UNIVERSIDADE DA CORUÑA

Caja de cuadernas del buque "Punta Mayor".

Escala 1:80

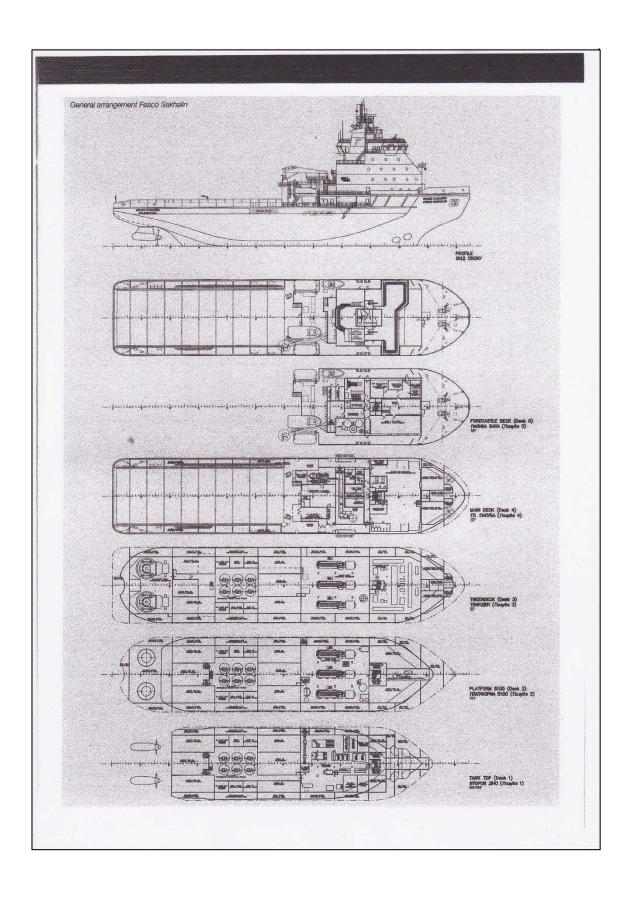
Formas de Referencia 2 Buque "Tor II Viking"



PROYECTO Nº 14-04 REMOLCADOR ROMPEHIELOS 100 TPF UNIVERSIDADE DA CORUÑA

Perfil Longitudinal del buque "Tor II Viking".

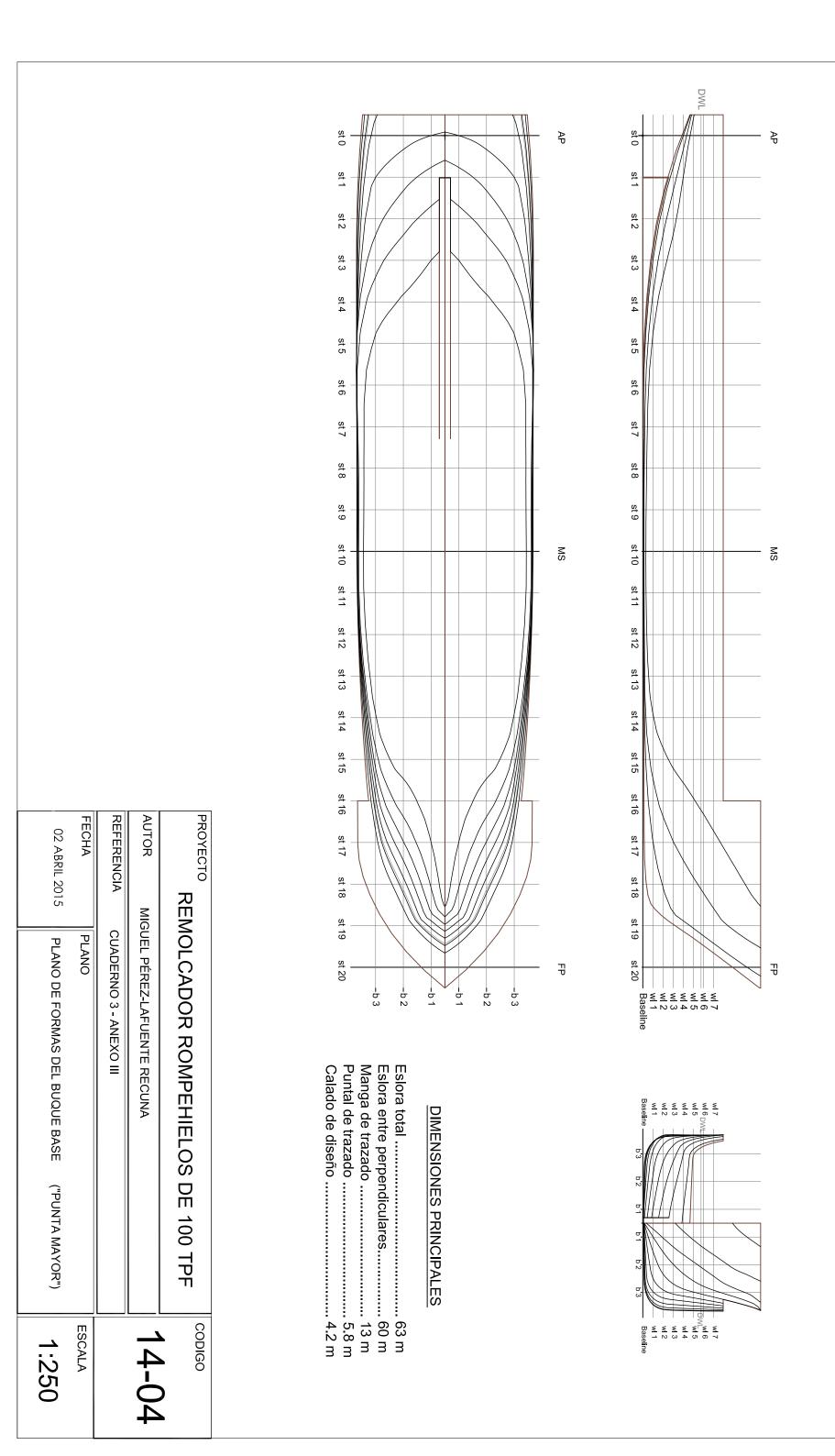
Escala 1:500



Formas de Referencia 3 Buque "Fesco Sakhalin"

Perfil Longitudinal del buque "Fesco Sakhalin".

ANEXO II: Cartilla de Trazado Buque Base

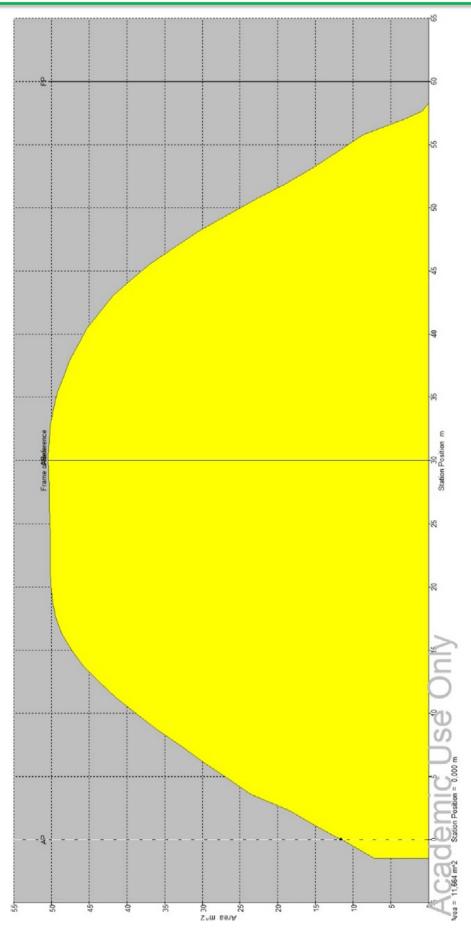

PROYECTO Nº 14-04 REMOLCADOR ROMPEHIELOS 100 TPF UNIVERSIDADE DA CORUÑA

ión	lg. (m)	00'0	98'0	0,73	1,46	2,18	2,91	3,64	4,37	5,10
Sección	Pos. Long.	81	LA1/2	LA1	LA2	LA3	LA4	LA5	LA6	LA7
20	09								0	0,53
19 19 y 1/2	58,5	-		-	-	-	0,25	0,55	0,95	1,38
19	57			0,1	0,4	2'0	86′0	1,3	1,73	2,13
18 18 y 1/2	52,5	0	0,27	0,55	1,05	1,4	1,7	2,06	2,46	2,86
18	54	0	0,45	0,85	1,7	2,16	2,41	2,78	3,19	3,61
17	51	0,05	8′0	1,56	3,12	3,36	3,66	4	4,34	4,67
16	48	0,25	1,33	2,51	4,16	4,42	4,72 3,66	5	5,27	5,52
15	45	0,65	2,1	3,81	5,09	5,27	5,47	2,67	5,85 5,27	6,05 5,52 4,67
14	42	1,05	2,86	5,02	5,62	5,77	5,92	6,07	6,22	6,4
13 14	39	1,7	3,16	5,47	5,82	5,95	6,07	6,17	6,4	6,4
12	36	1,73	4,02 3,16	6,17	6,22 5,82	6,4	6,4	6,4	6,4	6,4
11	33	1,75	4,41	6,4	6,4	6,4	6,4	6,4	6,4	6,4
10	30	1,75	4,41	6,4	6,4	6,4	6,4	6,4	6,4	6,4
9	27	1,73	4,72	6,5	6,5	6,5	6,5	6,5	6,5	6,5
8	24	1,73	4,72	6,5	6,5	6,5	6,5	6,5	6,5	6,5
7	21	1,35	4,04	6,5	6,5	6,5	6,5	6,5	6,5	6,5
9	18	0,2	3,11	5,44	6,5	6,5	6,5	6,5	6,5	6,5
5	15	0,2	1,5	3,61	6,5	6,5	6,5	6,5	6,5	6,5
4	12	0,2	٠	1,66	5,19	6,5	6,5	6,5	6,5	6,5
3	6	0,2	-	0,25	2,38	2'2	9'2	9'2	9'2	6,5
2	9	0,2	-	0,25	0,3	2,31	2,32	9'2	9'2	6,5
1	3	0,2		0,25	0,3	0,35	1,78	6,5	6,5	6,5
0,5	1,5	0,2	•	0,25	0,3	0,35	0,4	5,24	6,17	6,17
0	0	•						4,14	6,17	6,17
Sección	Pos. Long. (m)	87	LA1/2	LA1	LA2	LA3	LA4	LA5	LA6	LA7
Se	Pos. L	00'0	98'0	0,73	1,46	2,18	2,91	3,64	4,37	5,10

ANEXO III: Plano de Formas Buque Base

ANEXO IV:

Hidrostáticas Buque Base

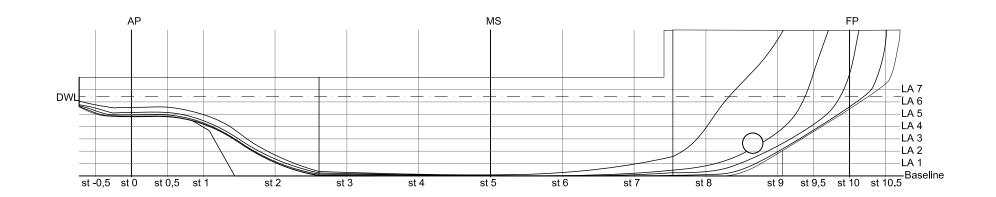

Measurement	Value	Units
Displacement	2260	t
Volume (displace	2205,086	m^3
Draft Amidships	4,200	m
Immersed depth	4,200	m
WL Length	59,808	m
Beam max exten	12,733	m
Wetted Area	990,837	m^2
Max sect. area	50,425	m^2
Waterpl. Area	674,029	m^2
Prismatic coeff. (0,731	
Block coeff. (Cb)	0,689	
Max Sect. area c	0,962	
Waterpl. area co	0,885	
LCB length	27,299	from z
LCF length	25,984	from z
LCB %	45,645	from z
LCF %	43,446	from z
KB	2,389	m
KG fluid	0,000	m
BMt	3,613	m
BML	77,446	m
GMt corrected	6,001	m
GML	79,835	m
KMt	6,001	m
KML	79,835	m
Immersion (TPc)	6,909	tonne/
MTc	30,074	tonne.
RM at 1deg = G	236,721	tonne.
Length:Beam rati	4,697	
Beam:Draft ratio	3,032	
Length:Vol^0.333	4,595	
Precision	Medium	65 sta
	Volume (displace Draft Amidships Immersed depth WL Length Beam max exten Wetted Area Max sect. area Waterpl. Area Prismatic coeff. (Cb) Max Sect. area c Waterpl. area co LCB length LCF length LCF % KB KG fluid BMt BML GMt corrected GML KMt KML Immersion (TPc) MTc RM at 1deg = G Length:	Volume (displace 2205,086 Draft Amidships 4,200 Immersed depth 4,200 WL Length 59,808 Beam max exten 12,733 Wetted Area 990,837 Max sect. area 50,425 Waterpl. Area 674,029 Prismatic coeff. (0,731 Block coeff. (Cb) 0,689 Max Sect. area c 0,962 Waterpl. area co 0,885 LCB length 27,299 LCF length 25,984 LCF % 43,446 KB 2,389 KG fluid 0,000 BMt 3,613 BML 77,446 GMt corrected 6,001 KMt 6,001 KML 79,835 KMt 6,909 MTc 30,074 RM at 1deg = G 236,721 Length: Beam rati 4,697

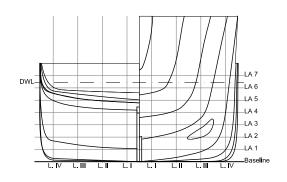
ANEXO V: Curva de Áreas Buque Base

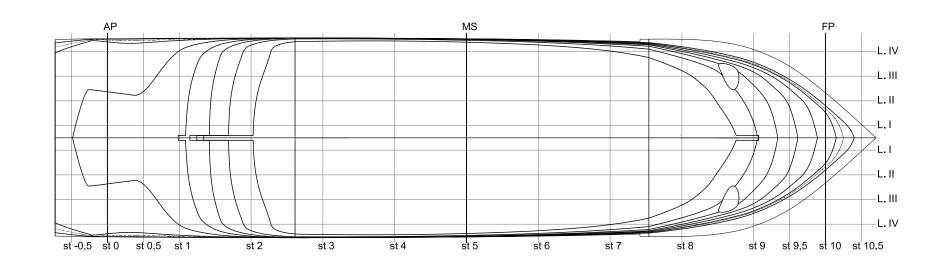
PROYECTO Nº 14-04 REMOLCADOR ROMPEHIELOS 100 TPF UNIVERSIDADE DA CORUÑA

ANEXO VI:

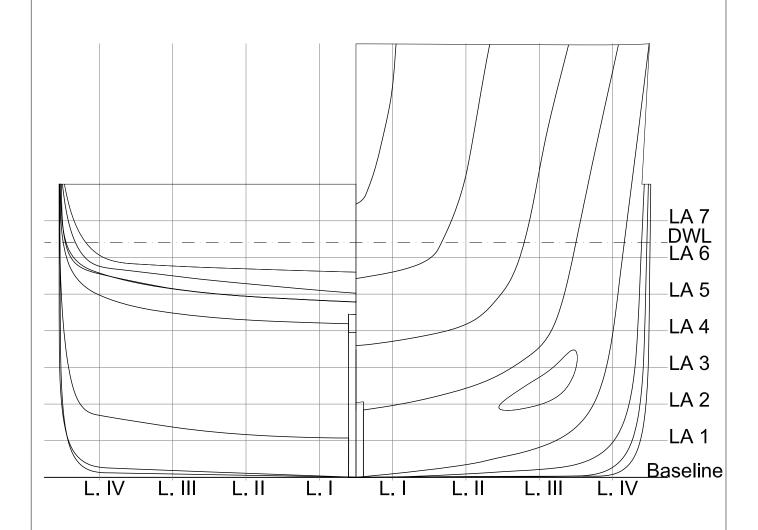
Cartilla de trazado Buque Proyecto

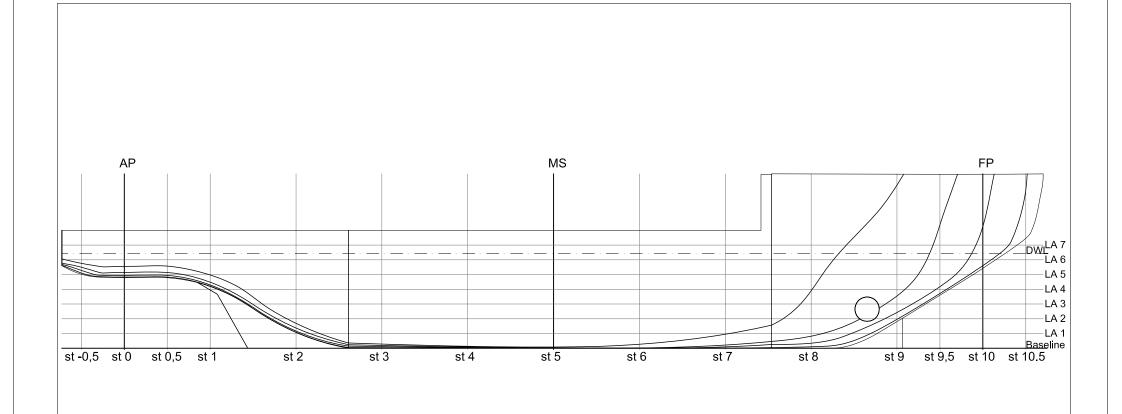

PROYECTO Nº 14-04 REMOLCADOR ROMPEHIELOS 100 TPF



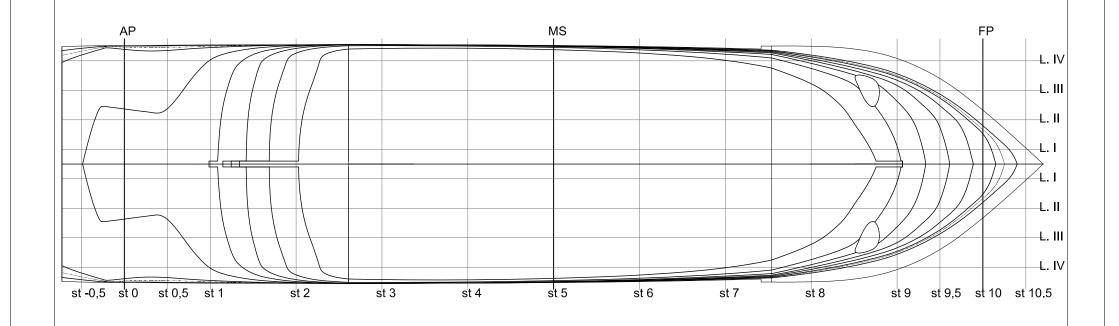

			S	SEM	IIM.	ANG	GAS	•		Α	LTU	JRA	S
Sección	Pos. Long. (m)	0'0	1,0	2,0	3,0	4,0	5,0	0′9	7,0	1,0	3,0	2,0	2,0
Se	Pos. I	LB	LA1	LA2	LA3	LA4	LA5	LA6	LA7		=:	≡	۲.
10,5	61,16	-	-	-	-	-	-	-	-	10,697	-	-	
10	58,25	-	ı	-	ı	-		2,05	2,60	5,602	8,243	-	ı
9,5	55,34	-		-		2,49	96'8	4,47	4,73	3,712	4,175	8,361	ı
9	52,43	-	0,20	1,22	4,26	5,33	5,68	5,92	6,13	1,96	2,43	3,546	11,067
8	46,60	0,00	5,45	6,48	6,83	7,02	7,15	7,27	7,40	860′0	0,346	0,818	3,894
7	40,78	00'0	7,04	7,45	7,61	69'2	7,73	7,78	7,82	0,01	0,092	0,215	0,95
9	34,95	00'0	7,53	7,75	7,84	7,88	2,90	7,93	7,95	0,001	900′0	0,02	0,271
2	29,13	00'0	7,76	7,91	7,97	7,99	8,01	8,02	8,03	0000	0,022	0,03	0,079
4	23,30	00'0	7,85	8,00	8,05	90'8	8,10	8,10	8,10	0,02	0,057	0,092	0,135
3	17,48	00'0	7,84	8,03	8,09	8,10	8,10	8,10	8,10	0,038	0,111	0,186	0,278
2	11,65	-	0,20	7,52	7,84	7,97	8,04	8,07	8,09	1,082	1,166	1,372	1,69
1	5,82	•	ı	1	ı	0,20	2,06	7,90	8,05	4,212	4,297	4,483	4,971
0,5	2,91	-	ı	-	ı	-	3,75	7,70	8,02	4,827	4,941	5,141	5,573
0	00'0	•	ı	1	ı	•	3,734	7,778	8,008	4,829	4,942	5,148	5,552
-0,5	-2,91	1	ı	1	ı	1	-	7,40	7,85	5,102	5,284	5,497	5,76
Sección	Pos. Long. (m)	81	LA1	LA2	LA3	LA4	LA5	LA6	LA7	l.l	l.I	≡ :	L N
Sec	Pos. Lo	0′0	1,0	2,0	3,0	4,0	2,0	0′9	2,0	1,0	3,0	2,0	2,0
			S	SA5	NΑ	MIN	SEV			S	√Яſ	ידבו	√

ANEXO VII: Plano de Formas Buque Proyecto




DIMENSIONES PRINCIPALES

Eslora total	66.50	m
Eslora entre perpendiculares	58.25	m
Manga de trazado	16.20	m
Puntal de trazado	8.00	m
Calado de diseño	6.40 (m


PROYECTO REN	MOLCADOR ROMPEHIELOS DE 100 TPF	CODIGO
AUTOR MIG	GUEL PÉREZ-LAFUENTE RECUNA	14-04
REFERENCIA (CUADERNO 3 - ANEXO VII	
FECHA	PLANO	ESCALA
02 ABRIL 2015	PLANO DE FORMAS BUQUE PROYECTO	1:300

PROYECTO REN	MOLCADOR ROMPEHIELOS DE 100 TPF	CODIGO
AUTOR MIG	GUEL PÉREZ-LAFUENTE RECUNA	14-04
REFERENCIA	CUADERNO 3 - ANEXO VII	
FECHA	PLANO	ESCALA
02 ABRIL 2015	PLANO DE FORMAS BUQUE PROYECTO (CAJA DE CUADERNAS)	1:100

PROYECTO REN	MOLCADOR ROMPEHIELOS DE 100 TPF	CODIGO
AUTOR MIG	GUEL PÉREZ-LAFUENTE RECUNA	14-04
REFERENCIA	CUADERNO 3 - ANEXO VII	
FECHA	PLANO DE ECRMAS, DUQUE PROVECTO	ESCALA
02 ABRIL 2015	PLANO DE FORMAS BUQUE PROYECTO (PERFIL LONGITUDINAL)	1:250

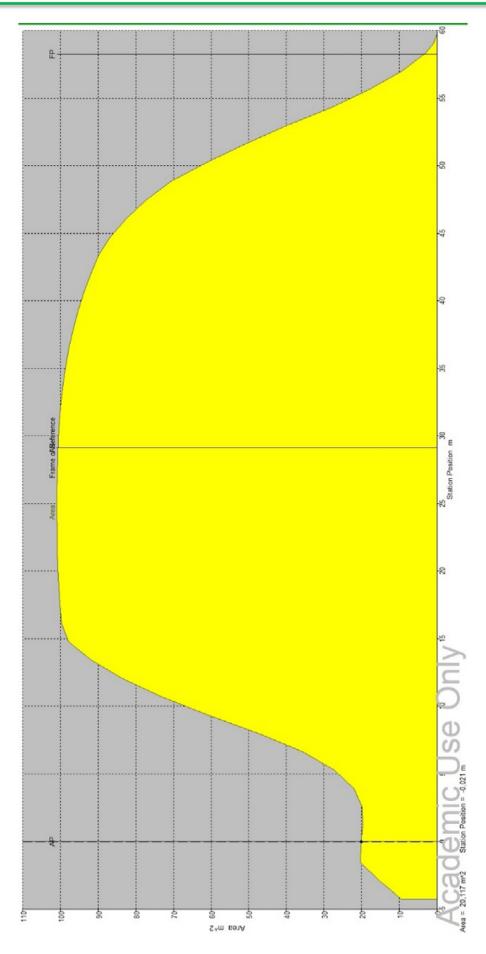
PROYECTO REN	MOLCADOR ROMPEHIELOS DE 100 TPF	CODIGO
AUTOR MIG	GUEL PÉREZ-LAFUENTE RECUNA	14-04
REFERENCIA	CUADERNO 3 - ANEXO VII	
FECHA	PLANO	ESCALA
02 ABRIL 2015	PLANO DE FORMAS BUQUE PROYECTO (LINEAS DE AGUA)	1:250

ANEXO VIII: Hidrostáticas Buque Proyecto

PROYECTO Nº 14-04 REMOLCADOR ROMPEHIELOS 100 TPF

	Measurement	Value	Units
1	Displacement	4495	t
2	Volume (displace	4384,993	m^3
3	Draft Amidships	6,400	m
4	Immersed depth	6,400	m
5	WL Length	63,961	m
6	Beam max exten	16,200	m
7	Wetted Area	1537,013	m^2
8	Max sect. area	100,992	m^2
9	Waterpl. Area	942,466	m^2
10	Prismatic coeff. (0,679	
11	Block coeff. (Cb)	0,661	•
12	Max Sect. area c	0,978	
13	Waterpl. area co	0,910	
14	LCB length	28,585	from z
	LCF length	25,482	from z
	LCB %	44,691	from z
17	LCF %	39,840	from z
18	KB	3,609	m
19	KG fluid	0,000	m
20	BMt	4,247	m
21	BML	64,242	m
22	GMt corrected	7,856	m
23	GML	67,851	m
24	KMt	7,856	m
	KML	67,851	m
_	Immersion (TPc)		tonne/
	MTc	52,354	&
	RM at 1deg = G	616,265	tonne.
	Length:Beam rati	3,948	
	Beam:Draft ratio	2,531	<u>.</u>
31	Length:Vol^0.333	3,908	å
32	Precision	Highest	217 st
32	Precision	Hignest	21/ St

Density (water)


1,025 tonne/m^3

ANEXO IX: Curva de Áreas Buque Proyecto

PROYECTO Nº 14-04 REMOLCADOR ROMPEHIELOS 100 TPF UNIVERSIDADE DA CORUÑA

