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CHAPTER1
Introduction

This thesis presents the research carried along the development of a power grids Computer-

Aided-Design (CAD) application. Started on 2008, it spawned 4 years intertwined with

other research projects hired by an international power utility company. The central

line of work was the improvement of the power grids visualization performed by the

aforesaid application. A new rendering engine was developed and later increasingly

enhanced with the different versions of the graphic technologies available in Microsoft

Windows. As those graphic technologies evolved, new techniques were researched to

take advance of the new capabilities they offered.

The rendering engine started by taking advance of the graphics hardware to perform

the power grid visualization rendering. Later, efforts moved to simplifying the involved

data, first at the database where it was stored and then, upon its processing by the

graphics hardware. As new features were made available by the evolving hardware and

software, the work was revisited, analyzing if those new features could be exploited and

how.

1.1 Power grids visualization

A powerful technique, transversal to any field of engineering, is the visualization of

data. Power grids are no exception and when analyzing and designing them, it is useful

to be able to perform visualizations of the different entities and magnitudes involved

such as the power loads, the current flows, or the networks formed by power lines.

Although there are many visualizations that can be created for a given power grid,

the scope of this work is restricted to power grid networks: the representation of the

branches composing a power grid. Each branch corresponds to a polyline – a succession

of interconnected lines – defined using geographic coordinates. Thus, these polylines
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Chapter 1. Introduction

correspond to the power lines physically laid over the ground. Those polylines are

exactly the primitives that this work focuses on in order to reduce the power grid

complexity upon visualization.

This work is concerned with improving the performance of any kind of visualization

and not with which particular visualization might be more suitable for a given context.

Therefore, the dominant visualization used in this work consists on representing the

power grid network using either unitary or fixed-width lines to represent each segment

of the branches. An example of another visualization could be parameterizing the power

lines width with some significant measurement – for instance, with the power load they

carry.

1.2 What to expect from this thesis

The main focus of this thesis is to present the techniques developed to improve the

rendering performance for distribution power grids visualization by means of reducing

the complexity of those grids. However, the following chapters have been written not

only aiming at that goal, but also with the intent on providing the reader some insight

into the following areas:

The use of spatial databases as an example of the traditional approach to reducing

data complexity: storing the data in a database and pre-processing it, so that no

further computations are required upon its consumption.

The evolution of graphics hardware from its inception, why it ended having the

architecture found in most modern graphics cards, and how close the graphics

APIs mimic that architecture.

The versatility of modern graphics hardware and how, even when employing

graphic-oriented features, they can be tamed to perform general-purpose compu-

tations.

How data pre-processing can be complemented or even replaced by dynamic pro-

cessing performed by graphics hardware, thanks to its vast processing power

available in most modern computers.
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1.3 Thesis outline

1.3 Thesis outline

This thesis begins by contextualizing the work, presenting its aims and an initial so-

lution based on a classical approach. Then, graphics systems are introduced through

its history. Their architectures are then analyzed before presenting the developed tech-

niques that take advantage of them.

More in detail, the first two chapters introduce the context and motivation of this

work, and present the datasets employed in the rest of the chapters.

A non graphics-hardware-bound approach is presented in Chapter 3, where spatial

databases are employed to reduce the complexity of the datasets, using spatial operators

to operate over lines and the points composing them.

The rest of the work, is related with graphics. Chapter 4 presents a brief history

of graphics hardware, so that it is easier to understand the integration of hardware

and software in graphics. The main concepts involved in three-dimensional graphics

which concern this work are presented in Chapter 5. Those two chapters should give

the reader the foundations to understand modern graphics APIs, such as OpenGL and

DirectX. The latter is introduced in Chapter 6.

Chapter 7 presents the developed power grid simplification techniques, implemented

using the DirectX API, with Chapter 8 analyzing the experimentation results. The

techniques explore the different capabilities offered by the DirectX API. Such capa-

bilities depend on the software – the DirectX version, which in turn depends on the

Windows operative system version – as well as on the graphics hardware. Thus, each

technique might be more suitable than others for a given scenario, depending on the

specific combination of available software and hardware.

Appendixes I and II present common patterns used to implement visualization and

different options to integrate them into Windows applications, respectively. These

topics are transversal to the whole presented work.

On top of this introductory chapter, this thesis is structured in the following chap-

ters and appendices:

Chapter 2 introduces the research domain: electrical distribution power grid vi-
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Chapter 1. Introduction

sualization. The electrical power system is outlined, power grid visualization is

introduced, and the datasets used along this work are presented and character-

ized.

Chapter 3 presents the results of processing power grids using spatial relational

databases to improve rendering times by means of reducing data volumes and

complexity through off-line processing in the database. Although the main focus

of this work was on-line (dynamic) simplification through graphics hardware, this

chapter presents a more conventional approach.

Chapter 4 relates the evolution of graphics hardware from its origins up to nowa-

days, when graphics hardware is capable of performing general-purpose comput-

ing.

Chapter 5 introduces the main concepts involved in the processing of three-

dimensional graphics. It commonly follows a pipelined architecture, mimicked

by graphics hardware during its evolution as well as by the Application Program-

ming Interfaces (APIs) supporting that hardware.

Chapter 6 focuses on the DirectX implementation of the graphics pipeline. Its key

concepts and API are introduced since it was the technology used to implement

the researched techniques. Furthermore, a second pipeline available for general

purpose computations is also presented.

Chapter 7 describes three different techniques to perform power grid simplification

dynamically – i.e. upon its rendering. In one technique, the graphics hardware is

employed as a general purpose processor, simplifying the polylines composing the

power grid before rendering it. This is accomplished using the DirectX Compute

Pipeline. The other two techniques perform similar general purpose computations

but strictly using the graphic hardware features (DirectX Graphics Pipeline),

through the Geometry Shader and Tessellation stages, respectively.

Chapter 8 analyzes the results of experimentation performed over the different

implemented techniques for the power grid datasets. The techniques are compared

based on their performance both in terms of computational and space costs.

Furthermore, their software and hardware requirements are also analyzed.

Chapter 9 draws the conclusions extracted from this work. Moreover, possible

future lines of work are introduced.

Appendix I outlines the most common design patterns employed to render infor-

mation visualizations, emphasizing those employed in this work.
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1.3 Thesis outline

Appendix II exposes issues with the DirectX integration into windowed applica-

tions for the different versions of Microsoft Windows used in this work. As a

result of the supported integration, two different graphics rendering patterns had

to be employed during this work.

Appendix III reproduces a summary of this thesis in Spanish, in accordance with

the Regulations of the Ph.D. studies passed by the Governing Council of the

University of A Coruña at its meeting of July 17th 2012.

Appendix IV reproduces a summary of this thesis in Galician, in accordance with

the Regulations of the Ph.D. studies passed by the Governing Council of the

University of A Coruña at its meeting of July 17th 2012.
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CHAPTER2
Electrical Distribution Power Grids

This work is concerned with the efficient visualization of distribution power grids. More

specifically, the visualization of the network formed by power lines that form part of

the electricity distribution system. Power grid visualization has traditionally been

focused on transport networks [34, 48]. While these networks configure the backbone

of the power grid, distribution systems account for up to 90% of all customer reliability

problems [23]. Therefore, electric power utilities need their Computer-Aided-Design

(CAD) applications to be able to manage distribution networks as well. These concepts

are briefly introduced in the first section of this chapter.

Five datasets corresponding to distribution power grids from disparate areas were

used through this work. They are presented in this chapter, analyzing their character-

istics and the specifics of the power grid data subsets employed.

2.1 The electric utility system

Electric energy is a potential energy due to a difference in electric charges. Electric

power is the rate at which electric energy is transferred by an electric circuit and it

is the product of an electric current and an electric potential, also known as voltage.

Indeed, electric power – measured in watts – is the product of electric current and

voltage – measured in amperes and volts respectively.

Power management comprises disparate areas that conform a very complex system

known as the electric utility system. A power grid – or electrical grid – is a part

of the electric utility system: an interconnected network employed to deliver electricity

from suppliers to consumers. In order to categorize it, it is usually divided into three

stages: generation, transmission, and distribution. In complex systems, a fourth stage

called sub-transmission may be introduced [24]. However, since it usually overlaps with
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Chapter 2. Electrical Distribution Power Grids

transmission and distribution stages, it is omitted from this characterization. Moreover,

the following depiction will focus on general classic power grids, not taking into account

smart grids or small renewable-energy power sources.

Most electricity has its origin in classical power generation systems, such as fos-

sil fuel or nuclear power plants, which transform kinetic energy into electric energy

through electromechanical generators, and yield voltages typically ranging between 11

and 30 kV. From these plants, the electricity must be transported and distributed to its

consumers. Energy losses during transmission are proportional to the current flowing

through the power lines. Therefore, in order to minimize the transmission losses, the

current is reduced by increasing the voltage.

Generation plants are connected to the transmission power lines through generation

substations, where a step-up transformer increases the voltage, generally up to well over

110 kV. Through that transformation, the electricity moves from the generation to the

transmission stage, in which it is transported over long distances – dozens or hundreds

of kilometers. During that journey, several transmission substations may be traversed,

where the voltages might be varied. These voltages usually stay over 30 kV, which is

considered a high-voltage and thus, the transmission stage portion of power grids are

usually called high-voltage networks. These networks are relatively simple since they

consist on long branches with few ramifications.

Once the electricity has been transported to the vicinities of its consumers, it must

be distributed to them, thus entering the distribution stage. In some countries such as

Spain, the transmission network is considered strategic and it is managed by a public or

at least partially state-controlled company. However, the distribution stage is normally

handled by competing private power utilities.

The distribution system can be split into primary and secondary distribution sys-

tems:

Primary distribution systems

Consists on feeders that deliver power from distribution substations to distribu-

tion transformers, joining the transmission stage with the secondary distribution

systems. Distribution power lines usually carry voltages ranging between 1 and

35 kV and thus, are also known as medium-voltage networks. Some large cus-

tomers such as factories may be directly connected to these networks, skipping
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2.1 The electric utility system

Figure 2.1: The electric utility system.

the secondary distribution systems. Primary distribution systems have been the

focus of this research and will onwards be referred to as electrical distribution

power grids, or just power grids for short.

Secondary distribution systems

These systems retail the power from the distribution transformers to the con-

sumers. They contain power lines covering neighborhoods and arriving at con-

sumer homes. Since the carried voltages are usually between 220 and 240 V,

they are also named low-voltage networks. The complexity of these systems vary

greatly between regions. For instance, in the United States it is common to find
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less than ten consumers connected to each transformer, whereas in Europe the

number may go up to several hundreds.

Summing up, high-voltage networks carry power along many kilometers. Then it

traverses a medium-voltage network, covering distances between a few hundred meters

up to a few kilometers. Finally, the power is delivered to consumers through the low-

voltage network which typically cover distances shorter than a kilometer. The whole

process is resumed in Figure 2.1.

This research is focused on high-performance visualization of electrical distribution

power grids (medium-voltage networks, secondary distribution systems). The following

section introduces this area of visualization.

2.2 Visualization in electrical engineering

Traditionally, one-line diagram models – which provide schematic representations –

have been used as the main tool for mathematical analysis in electric networks design.

Their main tradeoff is the absence of any spatial attributes which also play an important

role in the networks design. Thanks to the progressive adoption of Geographic Infor-

mation Systems (GIS) by the utilities, CAD applications can now access very precise

data about the spatial relations within the networks and how they relate to external

elements in the real world. Several power grid visualization techniques that consume

this information have been developed over the years [47, 68, 32], the most common

being the Geographic Data Views (GDVs) which overlay technical power data such as

loads, flows, and contours over the geographic representation of the grid [49].

Depending on the intended usage, some forms of visualizations are more desirable

than others. The aforesaid one-line diagram models are useful for analysis and simula-

tion tools. Animated current flows are useful for real-time overseeing of power systems.

When studying physical coverage or terrain concerns, the physical layout of the network

is required.

This work is concerned with the efficient visualization of power distribution net-

works. This involves representing the power lines that conform a given network, main-

taining their topological and spatial relationships. As it will be seen in the following
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section, the branches (power lines) forming the networks are defined using geographic

coordinates and thus, the visualization must try to properly display the network ac-

cording to its physical layout.

The aim was neither studying the existing power grid visualizations, nor introducing

new ones. Instead, the effort was put into improving the rendering of the most basic

visualization, so that more complex ones would also benefit from the performance

increase. Therefore, two visualizations are present through this work: representing

the network with lines having unitary-width or with all of them having the same fixed

width. Figure 2.2 shows the former: the visualization of the power distribution network

of the northeasternmost area of Spain, representing power lines as unitary-width lines.

Figure 2.2: Unitary-width lines visualization of a distribution power grid.

Many other visualizations are possible. For instance, power loads can be taken into

account to give varying widths to the rendered power lines. Furthermore, animations

showing the current flow could be introduced. Also, colors could be used to remark

problematic areas – such as those reaching maximum capabilities. Moreover, substa-

tions can also be represented in many ways – for instance, their size may be proportional

to their capacity.
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2.3 Geographic and projected coordinate systems

A coordinate system is a reference system used to represent some location by using one

or more numbers, called coordinates. This is a rather vague definition which applies to

many fields. One such field is the representation of physical locations on the surface of

the Earth. While many different coordinate systems can be defined for this, most fall

into one of the following two groups [2]:

Geographic coordinate systems are global or spherical coordinate systems,

such as latitude-longitude where angles are used to locate a point within an ellip-

soid modeling the shape of the Earth. Since the shape of the Earth is not uniform

and does not perfectly match an ellipsoid, depending on the requirements for the

geographic coordinate system, different ellipsoids will be used. For instance, the

Global Positioning System (GPS) uses an ellipsoid called GRS80 which is de-

signed to best-fit the whole Earth. The ellipsoid used for mapping in Britain is

the Airy 1830, which matches more closely the shape of the Earth in that specific

area, but is less exact than GRS80 for other parts of the Earth. Analogously,

when height must also be taken into account, the surface of the Earth must also

be modeled through what is called a geoid [45].

These parameters and others omitted here, define what is called the datum of

the geographic coordinate systems. The same geographic coordinate will most

likely yield different physical locations for different datums – the difference can

be up to hundreds of meters. However, it is possible to convert coordinates from

one geographic coordinate system to another, using well-defined mathematical

methods that take both datums into account.

Projected coordinate systems project Earth’s three-dimensional surface onto

a two-dimensional Cartesian coordinate plane. Because of this, they are also

known as map projections. A map projection cannot be a perfect representa-

tion, because it is not possible to show a curved surface on a flat map without

creating distortions and discontinuities. Therefore, different types of projections

exist, each one having its strengths and drawbacks; the chosen projection depends

on the requirements – whenever shapes, area or distances must be accurate. The

Universal Transverse Mercator (UTM) coordinate system is an example of a pro-

jected coordinate system.

12



2.4 Datasets employed in this work

All the coordinates present in the datasets used in this work, are UTM coordinates.

As can be glimpsed in Figure 2.3, this coordinate system splits the Earth between

80oS and 84oN into 60 zones covering 6 degrees of latitude each. Each zone is further

split into 20 latitude bands lettered from ”C” to ”X”. Each UTM coordinate has two

components, a northing and a easting, which are offsets in meters into a zone from the

lower left corner. UTM takes its name from the projection it uses, Transverse Mercator.

This projection preserves angles and approximates shapes, but distorts distances and

areas. Although the ellipsoid used in the UTM coordinate system varied over time,

nowadays the WGS84 ellipsoid is normally used to model the Earth.

Figure 2.3: Universal Transverse Mercator zones.

When integrating data using different coordinate systems, a common coordinate

system must be used. For instance, satellite imagery might be available, having the

area covered by each image indicated through the GPS coordinates of each corner of

the image. Even more, since images are bi-dimensional, a projection must be used. If

we were to visualize our datasets on top of the satellite images, coordinates would have

to be translated from one system to another. In order to do so, complex mathematical

operations are required, taking into account the datums of each geographic coordinate

systems and the projections applied for each one of them.
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2.4 Datasets employed in this work

Five different datasets have been used through this work. They are presented here,

explaining the physical areas they cover, the population densities in those areas, and

the available data for each one of them.

The data corresponds to the power grids of four countries and a significant region

within a fifth country:

Three different Central American countries: Guatemala, with a high population

density, and Nicaragua and Panama, with low population densities.

One Eastern European country, Moldova, which has a medium population density.

Galicia, the northwesternmost area of Spain, formed by 4 provinces with a scat-

tered, medium-density population.

Region Population Area (km2) Density

Nicaragua 5,677,771 130,373 43.55

Panama 3,394,528 75,517 44.95

Galicia 2,783,100 29,574 94.11

Moldova 3,633,369 33,846 107.35

Guatemala 13,675,714 108,890 125.59

Table 2.1: Population density by region.

Table 2.1 summarizes some population characteristics of the mentioned regions,

which have quite different populations and densities [69]. Population density provides

an indicator of the potential complexity of the distribution network, since the higher

the population the more likely that more power will be required.

For each region, we are interested in the available power grid data concerning the

networks – i.e. components of the network and their geographic and topological infor-

mation, not measurements such as power load or voltages. The available data for the

aforesaid regions in this regard can be divided into two categories:

Knots: points where three or more branches converge on. Typically, distribution

substations, transformers, and feeders are located at these points.
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Branches: segments connecting knots and composed by two or more nodes linked

by power lines. Besides power lines interconnections, the nodes may also be

switchgear or medium-to-medium voltage transformers.

Table 2.2 shows the available data for each region, detailing the number of knots and

branches for each network. Furthermore, the number of lines and nodes that compose

the branches are also shown.

Region Knots Branches Nodes Lines

Moldova 59,726 43,769 160,717 116,948

Nicaragua 34,912 95,771 245,136 149,365

Panama 85,990 85,319 262,319 177,000

Guatemala 142,427 142,507 345,645 203,138

Galicia 23,812 91,959 301,118 209,159

Table 2.2: Distribution networks datasets.

As stated before, this work is focused on the visualization of power grid distribution

networks, more specifically the power lines composing them. Branches begin and end

in knots and thus, the position of their begin and end nodes coincide with those of the

knots they link. Thus, branches contain all the relevant information. Furthermore, the

type of node forming the branch – whenever it is a simple power post or a transformer

– is also irrelevant: only the position of the nodes forming the branch is required for

the visualization.

For each region, a dataset was created containing the power lines subset of the

branches. This information accounts for polylines whose points correspond to UTM

geographic coordinates. Thus, when represented preserving their spatial relationships,

they can be overlaid on a properly scaled map to be able to visualize its layout over

the terrain.

Figure 2.4 shows a visualization for each described dataset using one of the tech-

niques presented in this work. This visualization uses fixed-width lines for the power

lines and, as previously stated, is one of the two visualizations used through this work.

The other one consists on rendering the power lines with an unitary width. This was

earlier exhibited in Figure 2.2, where the Galicia dataset – same as in Figure 2.4e –

was visualized using an early implementation of the developed graphics engine.
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(a) Moldova. (b) Nicaragua.

(c) Guatemala. (d) Panama.

(e) Galicia.

Figure 2.4: Rendered visualization for the different datasets.
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CHAPTER3
Polyline Simplification Using Spatial Databases

This chapter presents the application of graphic cartography generalization techniques

to reduce the spatial resolution of power grids. This reduction decreases the data

volume involved in visualization which has two desirable consequences: it improves

optical legibility and yields faster rendering times.

The utter aim is to adjust the power grid resolution to the scale being used in the

visualization so that only the visually relevant data is processed and displayed. For

instance, a power grid may cover a whole state down to the city streets level; while

visualizing the whole power grid, there is no point in processing and displaying the

power lines covering streets since they will not be noticeable in the visualization.

Geographic Information Systems (GIS) support operations over data referenced

to a spatial coordinate system [27]. Commonly, they are implemented through spa-

tial databases which offer storage for primitives such as bi-dimensional and three-

dimensional points, lines, and polygons, as well as operations to efficiently manipulate

them. When employing spatial databases for GIS, a point will most likely correspond to

a geographic coordinate. Given the particularities of the shape of the earth, many dif-

ferent geographic coordinate systems are defined to support different needs. The proper

handling and translation of different coordinate systems is also a common feature of

spatial databases.

Since power grids are composed of branches whose nodes are defined using geo-

graphic coordinates, the graphic generalization is carried through a spatial database

where the data is stored and processed in order to generate the resolutions. The process-

ing is performed through stored procedures and each resolution is stored in a dedicated

table. It is an off-line process, that only requires being launched when the original

power grid data changes or whenever a new resolution is desired. The application per-

forming the power grid visualization simply queries the database to obtain the data
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from the table most closely matching the visualization resolution.

Due to historical data availability, in this chapter the Guatemala dataset is replaced

by a Central Spain dataset which comprises 9 provinces in the center of Spain, including

Madrid – the province with the highest population density in the country – and most

of the less densely-populated provinces of the country.

3.1 Data visualization collisions

No matter whenever a power grid is to be visualized on a screen or plotted on paper,

the physical space available is very limited. Thus, it imposes constraints on the rep-

resentation of the data that can be performed, yielding the need for the data to be

abstracted somehow to create a meaningful representation. That is what cartography

does through maps, as explained in the following section. Prior to that, this section

illustrates such need by analyzing the visualization of the datasets on a limited screen

area.

The Galicia dataset suffices to illustrate the resolution problems upon visualiza-

tion. Being the dataset covering the least area among the available ones, the following

considerations are aggravated when trying to visualize larger areas in the same visual-

ization resolution. This dataset contains branches ranging from a few meters up to 13

kilometers which are spread all over the northwestern-most region of Spain. The width

of the area covered by this region is 210 kilometers while the average power grid branch

length is 192 meters. Thus, an straight branch of average length represents only a 0.09%

of the total width of the Galicia area. When visualizing the whole region, there is no

point in processing all the data since most of the branches will not be visible and even

those which are visible may not be easily discerned if there are many branches in their

proximities. These two problems respectively correspond to the imperceptibility and

coalescence conditions of cartographic generalization.

In order to get an idea of how much redundancy is introduced by processing all

the available data to visualize a whole dataset, a matrix simulating the visualization

area was employed. The size of this matrix was the same as the screen visualization

area in Figure 3.1: 1,440 pixels of width and 820 pixels of height – thus having a total

of 1,180,800 positions. Each matrix entry holds the number of times that a point,

corresponding to the geographic coordinates of a node from the branches, has been
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Figure 3.1: Visualization of the whole Galicia power grid.

painted on the screen in the corresponding pixel. Note that only nodes are considered,

thus only pixels where the beginning and end points of individual lines are located are

considered, while pixels corresponding to the actual lines linking them are not.

Figure 3.1 exhibits a screenshot of a very simple visualization of the whole Galicia

dataset using unitary width-lines for the power lines. Coalescence is a condition spe-

cially found in cities, where there are hundreds of branches serving the streets which

can not be distinguished when using a small visualization scale. As a result, city areas

are too cluttered in the visualization.

Dataset Collisions Points % Collisions Max. Collisions

Galicia 258,285 301,118 86.15 % 331

Central Spain 468,750 493,121 95.06 % 2,991

Moldova 142,319 160,717 88.55 % 1,101

Nicaragua 217,637 245,135 88.78 % 295

Panama 232,122 262,319 88.49 % 309

Table 3.1: Points colliding in the same pixel of the visualization area.

Table 3.1 shows, for each dataset, how many times a pixel had more than a point

assigned (collisions), the total number of points that form the branches, the percentage
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of points that end up colliding with others in the same pixel, and the maximum number

of collisions for a single pixel. Between a 86.15% and a 95.06% of the points fall in

the same physical position of the visualization area. Even more, in the case of the

Central Spain dataset, there is one pixel of the screen which ended up being painted

2,991 which means that 2,990 node computations and coordinate translations could

have been afforded just for that pixel. By skipping the processing all of those nodes in

the first place, a big percentage of the computations required to visualize the data can

be avoided, resulting in a faster rendering of the visualization.

3.2 Cartographic generalization techniques

Cartography is in essence the discipline of making visual representations of a certain

area, using symbols to express spatial relationships between elements present in that

area. These representations are called maps and in most cases, are drawn to a scale:

the ratio of a distance on the map to the corresponding real distance on the ground.

For instance, a centimeter in a 1:25,000 scale map represents 250 meters on the ground.

Such a scale is considered a large scale, while a 1:1,000,000 – which is common for road

maps – is normally referred to as a small scale. The larger/smaller scale terminology

arises from the fact that it is common to write the scale as a fraction, which yields that

1/25,000 is larger than 1/1,000,000.

Obviously, maps can not capture all the detail existing in the area they repre-

sent. In cartography, generalization is the process of abstracting the representation

of geographic information to match the scale requirements of a map. By applying car-

tographic generalization, different maps carrying different levels of detail are generated

for different scales. This may result in different symbols being used to represent the

same information or the alteration of the existing ones. Following this consideration,

cartography generalization can be divided into two categories: conceptual and graphic

generalization. In the former – which is also known as information abstraction – either

the symbolization or the meaning of the symbols changes. On other hand, in graphic

cartography, which is focused on reducing spatial resolution, the type of symboliza-

tion used in the map is not changed but the symbols themselves may be transformed

– e.g. enhanced or exaggerated – to keep its optical legibility.

McMaster and Shea studied the generalization process by answering three questions:

why, when, and how to generalize [35] [36]. Why generalize is the most general question,
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its answer being: to counteract the undesirable consequences of scale reduction on a

map. These consequences define the conditions on when to generalize the map, while

the concrete techniques employed to perform the generalization correspond to the how.

3.2.1 Conditions – when to generalize

The generalization conditions can be summarized in: congestion, coalescence, conflict,

complication, inconsistency and imperceptibility. Congestion and imperceptibility are

the more dominant forces in this work.

Congestion refers to the fact that upon scale reduction too many geographic fea-

tures need to be represented in a limited physical space on the map. This is the case

of geographic points colliding in the same physical pixel, seen in Section 3.1.

Imperceptibility occurs when some features of the map are not optically legible

for some reason – for instance when visualizing a large region, a branch which is only

a few meters long will fall below the minimal portrayal size of the map at that scale.

Another related condition is coalescence. In this case the features can be repre-

sented in the map but they are too close or in some kind of juxtaposition with other

features, making their area of the map too clogged. This would be the case of the cities

when the map is being visualized using a small scale.

3.2.2 Techniques – how to generalize

Generalization techniques help counteract the undesirable consequences of scale reduc-

tion and they can be grouped under six categories: reducing complexity, maintaining

spatial accuracy, maintaining attribute accuracy, maintaining aesthetic quality, main-

taining a logical hierarchy, and consistently applying generalization rules. While all of

these goals are desirable, this work is mainly focused on reducing the complexity while

maintaining spatial accuracy and improving the aesthetic quality.

McMaster and Shea classified generalization operators into spatial and attribute

transformations [36]. In this work, we are only concerted about the geographical and

topological perspective of the data and thus, attribute transformations do not apply.
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The authors identified ten spatial transformations: simplification, smoothing, collapse,

refinement, exaggeration, enhancement, displacement, aggregation, merging and amal-

gamation. The last three operations are essentially the same but operating on different

dimensions (points, lines or areas respectively). Spatial transformations over line fea-

tures are restricted to simplification, smoothing, displacement, merging and enhance-

ment.

In order to reduce the complexity of power grid topologies, simplification and merg-

ing operators were used, as described in the next sections after introducing the selection

process. Selection counteracts imperceptibility while merging reduces both congestion

and coalescence. While focused on reducing imperceptibility, line simplification may

also reduce congestion.

3.2.2.1 Selection

Before any technique can be applied, the involved data must be retrieved. This consti-

tutes the first chance to reduce the data volume by selecting only a relevant subset.

The most fundamental requirement is for the data to be optically visible in the final

visualization. Thus, any imperceptible feature found in the data upon retrieval, can be

dimmed as irrelevant and filtered out of the selection process. In order to apply this

filtering, a visibility measure must be introduced. The width and height of the area

covered by the power grid in meters, divided by the screen resolution of the visualization

area in pixels yield the meters per pixel (mpx) ratios. The most conservative – i.e.

the smallest ratio – of the two is used as the minimum length that a branch from the

power grid must have to be considered perceptible and thus selected.

In the case of branches composed by more than one line, the smallest bounding box

containing them is compared against the mpx ratios. The bounding box must be either

vertically or horizontally equal or larger than the corresponding mpx ratio.

Furthermore, in electrical power grids, the same physical line can be considered

as two different branches composed of the same points but with different directions.

However, when the power grid visualization is not concerned about the current flow

direction – as is the case of this work – those two branches are equivalent. Thus, the

first time that intersecting lines are found, a check is made to find whenever some of
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them are equivalent. If they are, only one of them will be kept and all the equivalent

ones will be removed.

3.2.2.2 Line simplification

In the simplification context, the term line refers to the LineString OpenGIS standard

datatype, consisting of a set of interconnected line segments [44], referred to as a

polyline in the rest of this work. Line simplification produces a reduction in the

number of segments by removing inner points without modifying the coordinate position

of any point. In the case of power grid branches, this accounts for the removal of certain

nodes while leaving unchanged the geographic coordinates of the rest – i.e. those nodes

passing the line simplification filter.

Given its simplicity and efficient implementation in modern spatial databases, the

Ramer-Douglas-Pecker algorithm was used to perform the simplification [26]. It oper-

ates by recursively discarding those nodes that are not significant based on a certain

threshold, following the next steps:

1. Form a line connecting the beginning and end points.

2. For each other point, compute the orthogonal distance to that line.

3. Select the point with the largest orthogonal distance.

4. If the distance is larger than the threshold, repeat the process for the lines formed

by that point and the beginning and end points.

The algorithm ends whenever there are no points left, or none of them meet the

criteria. The threshold was set to the computed mpx ratio for a power grid area and a

visualization resolution.

3.2.2.3 Merging

The process of joining map symbols on the basis of their proximity is called aggre-

gation [46]. Its objective is generally a reduction of the spatial resolution, not only
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increasing the legibility of the symbols but also avoiding excessive accumulation of

symbols in a small area. Aggregation comprises a number of techniques among which

are amalgamation and merging. Amalgamation replaces two or more symbols of the

same or different type into a single symbol of a different type. Merging substitutes

symbols having the same type into a single symbol of that very same type. Two merge

operations were applied to power grid branches in this work:

1. Merge branches that share their beginning and end nodes.

Two branches, one having its end node as the beginning point of the other, can

be merged into a single branch. Merged branches can also share their beginning

and end nodes with other branches. This results in an iterative merging process

where several interconnected branches are merged into a single branch. Since the

resulting merged branches have more intermediate nodes, they become eligible

for line simplification. However, the beginning and end nodes of branches usually

correspond to significant power grid entities such as substations. Thus, applying

line simplification to merged branches may remove relevant nodes.

2. Merge branches located too close to each other to be individually distinguished.

Two close branches can be merged into a single branch formed by the equidistant

points to those of the branches. Since merged branches may be eligible for merging

with others, it is an iterative process just like the previous technique. However, the

original branches cease to exist since they do not form part of the merged branch

– as was the case with the previous technique. Furthermore, in the process, the

geographic coordinates of the nodes change, which impacts the aesthetics and

accuracy of the map. The process is controlled by a neighborhood parameter

determining the area surrounding a given branch to look into for other branches

for merging. The bigger this parameter is, the more branches that will be merged

and as a result, the more aesthetically noticeable in the visualization and the

higher the loss of accuracy.

Summing up, the first merge technique reduces the overall number of branches but

only removes redundant nodes, while the second technique replaces the two involved

branches by a new one, thus not only halving the number of branches but also the num-

ber of nodes. Moreover, the latter is visually noticeable as it removes the original nodes

and creates new ones on different locations, while the former is not. Both techniques

work at a higher level than line simplification since they operate over entire branches

instead of over the nodes within a given branch.
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3.3 Implementation

The described generalization techniques were implemented through stored procedures

in a spatial database. Specifically, the PostgreSQL relational database management

system [11] and its PostGIS spatial extensions [10] were employed, while using its

PL/pgSQL language to program the stored procedures. A spatial-enabled database was

created for each power grid dataset, containing different tables for the base data and the

different scales. This way, a multi-scale database architecture was implemented,

where multiple representations of the spatial data are stored using different resolutions

(scales) and a set of rules are applied to support the generalization decisions, selecting

the appropriate representations, governing updates, and maintaining database integrity

[31].

The stored procedures make intensive use of the spatial indexing system available

in PostGIS [29], notably the merging operator, which uses it to find the branches

intersecting with every branch and its neighbors, and the selection operator which

employs a bounding box to retrieve all the branches within the power grid subarea to

be visualized.

A set of 19 PostGIS functions were employed to implement the different techniques,

ranging from simple functions such as ST NPoints which enumerates the number of

points in a LineString to more complex functions like ST LineMerge or ST MakeLine.

Notably, the line simplification invokes ST SimplifyPreserveTopology which provides

an implementation of the Ramer-Douglas-Pecker algorithm.

The components of this implementation are the following:

Stored procedures library

Contains PL/pgSQL procedures implementing the different techniques, the gen-

eralization process using them, and a batch multi-scale generation in charge of

producing the tables with the different generalized scales.

Base and multi-scale tables

The original power grid data is stored in a base table and then each generalized

scale is stored in a dedicate table.

Trigger functions
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Triggers are used to keep the multi-scale tables synchronized with the base table

so that any change in the power grid data is reflected in all the generalized scales.

The generalization and multi-scale generation procedures require some parameters:

Generalization process

Requires the mpx and the merge neighborhood factor. The former is the meters

per pixel ratio representing the minimum desired segment length, while the latter

is used to define how far around a branch to look for its neighbors. The bigger

this parameter is, the more branches are merged and the more noticeable the

process becomes in the visualization. Based on the performed experimentation,

reasonable values are 2 and 3 times the mpx, which represents the maximum

number of pixels between branches to be considered neighbors.

Multi-scale generation

Requires the visualization and smallest desired scale resolutions, the number of in-

termediate scales to generate between them, and the generalization neighborhood

factor. Intermediate scales resolutions are calculated by interpolating the visu-

alization and smallest scale resolutions. Furthermore, for each one of them, the

corresponding mpx value is calculated by dividing the interpolated scale resolu-

tion by the visualization resolution. That value is passed along the neighborhood

parameter to the generalization process procedure during the batch generaliza-

tion. The pseudo-code for this procedure is shown in Algorithm 1.

Algorithm 1: Multi-scale generation pseudo-code.
Data: LineStrings← LineString primitives composing the power grid

NumberOfScales← Number of desired scales to generate
BaseScale← Original scale of the data
SmallestScale← Smallest desired scale
VisualizationScale ← Width and height of the target visualization area, in pixels

Result: GeneralizedTables← Tables containing the LineStrings generalizations

for i← 1 to NumberOfScales do
scale← (BaseScale - SmallestScale) / i
mpx← min(scale.Width / VisualizationScale.Width, scale.Height /
VisualizationScale.Height)
GeneralizedTables[i]← Generalize(LineStrings, mpx, NeighborhoodFactor)

end
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Once the different scales have been generated and stored in dedicated tables, they

can be consumed. In order to do so, a client application chooses the more suitable

table: the one holding the closest scale to the visualization resolution. That table is

queried using a two-dimensional bounding box with the same geographic coordinates as

the area being visualized. A box covering a larger area can be employed if pre-caching

of the surrounding regions is desired – for instance, to avoid delays or visual artifacts

when panning the power grid visualization.

3.4 Experimentation results

In order to analyze the developed implementation, some tests were conducted on a

PostgreSQL 8.4 with PostGIS 1.5.1 running on Windows XP SP3 in a Intel Core2 Q6600

2.4 GHz CPU machine with 2 GBs of memory. The experimentation objectives were

to measure the time required to perform the generalization, the data volume reduction,

and the resulting faster visualization rendering times. Also, the non-generalized and

generalized visualizations were optically compared.

The generalization was executed for the most intensive scenario: generalizing power

grid branches using their original scale resolution but restraining the visualization reso-

lution to an area with 1,440 pixels of width by 820 pixels of height. This corresponds to

the whole power grids being displayed in the visualization area, resulting in one of the

larger scales that may be required. As the user zooms into the visualization, a smaller

subarea of the power grid is displayed, thus requiring a smaller scale. Furthermore, the

generalization was performed for two neighborhood factors, corresponding to 2 and 3

times the mpx.

Dataset Branches
Neighborhood

2x mpx 3x mpx

Galicia 91,959 427s 430s

Central Spain 147,651 142s 158s

Moldova 45,769 294s 305s

Nicaragua 95,770 100s 101s

Panama 85,319 52s 55s

Table 3.2: Time consumed by the generalization process.
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Table 3.2 exhibits the time consumed by the generalization process for each dataset

using 2 and 3 times the mpx as the neighborhood factor. Using a neighborhood factor of

3 times thempx resulted in a 4.5% average time increase compared to a factor of 2 times

thempx. As the neighborhood factor is increased, so is the area around each branch into

which included or intersecting branches are searched. While this yields more merged

branches, it also increases the computational requirements, yielding higher execution

times.

The faster time resulted in almost a minute, making it obvious that the generaliza-

tion process can only be performed off-line. Therefore, the results must be stored so

they can be retrieved without incurring in delays.

Dataset Original Generalized 1st Merges 2nd Merges

Galicia 91,959 13,767 8,960 / 5 iters 2,120 / 5 iters

Central Spain 147,651 8,660 4,387 / 4 iters 3,035 / 7 iters

Moldova 43,769 9,012 6,049 / 4 iters 1,090 / 5 iters

Nicaragua 95,770 6,482 5,550 / 6 iters 900 / 4 iters

Panama 85,319 4,777 3,632 / 5 iters 831 / 6 iters

Table 3.3: Number of branches as a result of the generalization process with a neigh-
borhood factor of 3.

Table 3.3 shows the results of generalizing the different datasets for a neighborhood

factor of 3. 1st Merges column refer to the merging of branches that share their ending

and beginning points, while the 2nd Merges are those creating a new branch averaging

a pair of branches. The generalized versions contain the 10.58% of the original data

on average. Since the merging is an iterative process stopping when there are no more

branches eligible for merging, the iterations required to complete each kind of merge

are also shown.

The same process with a neighborhood parameter of 2 times the mpx is shown

in Table 3.4. Compared to the previous result, it can be seen that using a factor

of 2 instead of 3, yields an average of 27.66% less 2nd Merges. The number of 1st

Merges do not change since they are not affected by the neighborhood parameter. The

generalized version contains in this case the 11.81% of the original data, slightly more

than the 10.58% yielded by the use of a neighborhood factor of 3.
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Dataset Original Generalized 1st Merges 2nd Merges

Galicia 91,959 15,253 8,960 / 5 iters 634 / 4 iters

Central Spain 147,651 10,616 4,387 / 4 iters 1,079 / 7 iters

Moldova 43,769 9,806 6,049 / 4 iters 296 / 4 iters

Nicaragua 95,770 7,198 5,550 / 6 iters 184 / 3 iters

Panama 85,319 5,398 3,632 / 5 iters 210 / 5 iters

Table 3.4: Number of branches as a result of the generalization process with a neigh-
borhood factor of 2.

Dataset
Non Neighborhood

generalized 2x mpx 3x mpx

Galicia 343.75 70.32 62.50

Central Spain 521.25 54.69 46.88

Moldova 187.50 54.69 46.88

Nicaragua 296.88 46.88 31.25

Panama 281.26 39.07 31.25

Table 3.5: Time required to render the different generalizations (in milliseconds).

Table 3.5 exhibits the time required to render the visualization of the non-generalized

and generalized datasets using a DirectX 9 off-screen renderer integrated into a win-

dowed application1. The generalized visualizations using a neighborhood parameter

of 2 and 3 need respectively an average of only a 16.29% and a 12.80% of the time

required to visualize the non-generalized datasets. Figure 3.2 shows the comparison of

the generalized and non-generalized visualizations of a metropolitan area from the Gali-

cia dataset. This area covers two cities with a combined population of about 395,000

inhabitants over approximately 376 km2. The figure on the left shows a detail of the

non-generalized visualization where the cities areas appear clogged. In the visualization

generalized using a neighborhood parameter of 2 times the mpx – figure 3.2b – these

areas are slightly cleaner while retaining the relevant information.

Summing up, experimentation shows that by using a multi-scale architecture im-

plemented using spatial databases, the data volume is minimized in its origin to better

1Renderer types are presented in Appendix I, while their integration in Windows applications is
detailed in Appendix II.
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(a) Non-generalized visualization. (b) Generalized visualization.

Figure 3.2: Comparison of generalized and non-generalized visualizations of a
metropolitan area.

fit the scale requirements imposed by the visualization. Up to a 90% of the data can

be skipped and thus, no processing time is wasted on trying to visualize irrelevant ele-

ments, requiring only a 15% of the time required previously to render the visualization.

Furthermore, the legibility of the visualization itself is improved.
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CHAPTER4
Graphics Cards Evolution

Graphics cards have undergone a huge evolution since its origins in the eighties. Born

as mere adapters that allowed a computer to show characters on a screen, they quickly

evolved towards complex hardware equipped with powerful Graphical Processing Units

(GPUs) and dedicated high-performance memory. Graphics cards enabled the tran-

sition from command-line to graphical user interfaces. As video games became more

sophisticated, they started focusing on three-dimensional environments and consumer

graphics cards gradually adopted the pipelined architectures of high-end graphics work-

stations. More recently, as their hardware became more and more parallelized, general-

purpose computational applications beyond graphics rendering arose. Such is the com-

puting power of modern graphics cards that they are replacing many of the multi-core

CPU clusters typically used in supercomputers.

4.1 Origins

The history of consumer graphics cards – also known as video cards or graphics adapters

– can be said to have its origin in 1983 when IBM [6] launched its IBM 5150 Personal

Computer. It was shipped with the IBM Monochrome Display Adapter (MDA): a 8-bit

Industry Standard Architecture (ISA) expansion card with 4 KBs of memory allowing

to display single colored text in 80 columns by 25 lines. Consumers could opt to replace

it with the more advanced Color Graphics Adapter (CGA) which allowed not only text

modes but also graphics modes with a maximum resolution of 640 pixels of width by

200 pixels of height (640x200) and a 4-bit color depth, thus allowing the use of up to 16

colors – either 320x200 and 16 colors or 640x200 and 2 colors. The following year, the

first non-IBM vendor graphics card was released: the Hercules Graphics Card, offering

an increased resolution and compatibility with both MDA and CGA cards.
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Arguably, there were more advanced graphics systems around the time the IBM

Personal Computer (PC) was launched. For instance, the Commodore 64 and its

successor, the Amiga – released respectively in 1982 and 1985 – and the Apple II series

in the consumer field, or high-end SGI [15] workstations in the professional segment.

Nevertheless, it was the high level of customization – through ISA cards – offered by

the IBM PC architecture and its popularity among computer enthusiasts that fueled

the development of graphics cards by third-party vendors and the fierce competition

among them that led to modern graphics cards.

The successor of the IBM PC – the IBM PC/AT – was launched in 1984, offering

two new graphics cards: the Enhanced and the Professional Graphics Adapters (EGA

and PGA). On one hand, the former featured 64 KBs of video memory – expandable

to 256 KBs through a daughter-board – and increased resolution modes, while also

allowing the simultaneous use of 16 colors from a palette of 64. At the same time,

other vendors like ATI (now part of AMD [1]) and Paradise launched compatible cards.

Video modes offered by the EGA and compatible cards kept being supported by DOS

video-games until the early nineties. Notably, the EGA introduced an early form of

hardware acceleration by allowing mask registers and bitwise operations. On the other

hand, the PGA was not so successful. Targeted for users of Computer-Aided-Design

(CAD) applications, the PGA consisted of three cards in one. It was equipped with a

8088-2 microprocessor which could be depicted as the predecessor of dedicated graphics

processing units.

The launch of the IBM PS/2 in 1987 introduced the Video Graphics Array (VGA)

which conforms the basis of modern graphics systems. Its hardware was designed using

application-specific integrated circuits which led to the launch of the first motherboards

with integrated graphics systems. The VGA soon became a de facto standard and its

640x480 resolution stands nowadays as the lowest supported resolution to be expected

from any system without proper graphics drivers configured.

Up to this point, the graphics cards were mostly adapters connecting the video

output with the monitor. Hence, the adapter term employed to name most of the

graphics cards systems of the time. Vendors were focused on offering more resolution

and more colors than the competition – increasingly needing more video memory as a

result – while being able to connect to most monitors and keep compatibility with ex-

isting software. Circuitry present in these graphics cards consisted mostly of a graphics

controller chip, a BIOS ROM, a video memory, a Digital-to-Analog converter – to be

able to produce the analog output required by monitors – and some connectors. The
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video memory is commonly known as the frame buffer since it would merely hold the

color value of each screen pixel to be displayed in the output monitor. The set of pixels

being displayed is called a frame, and the amount of frames a graphics system is able

to generate and display per second is known as the frame-rate. Because of memory

limitations, only a small set of colors could be offered. In order to allow more colors to

be available, palettes were used as indexing schemes. Given a big spectrum of colors

available, a subset of them is selected at each time to be displayed. These colors are the

entries of a palette and palette indices are stored in the frame buffer instead of color

values. Therefore, a palette is required in order for the graphics system to know which

color from the available spectrum correspond to each index found in the frame-buffer.

By changing the palette, different sets of colors can be used.

A video mode is the combination of a color depth and a given resolution. The

frame buffer size is a direct function of these values and thus, each video mode requires a

different amount of video memory in order to store the frame buffer. A given graphics

card would allow different video modes, some of them requiring less video memory

than others. For certain video modes, the frame buffer consumes half or less than the

available memory. In such cases, more than one frame can be stored simultaneously

in video memory. This led to the introduction of new techniques such as double

buffering, which reduces the visual flickering that would happen each time a new

frame is displayed. It works by using two frame buffers, one holding the output display

frame and other storing the next frame being rendered. Once the next frame is ready,

buffers are almost instantaneously swapped. As a result, there is no delay caused by

having to wait for its renderization since it is already in video memory. Following this

usage, the frame buffer can be seen as an image memory used to decouple the render

frame rate from the display frame rate.

The launch of many different graphics hardware along with different monitor config-

urations and working modes lacking standardization, created a chaos in the consumer

graphics industry that led to the foundation of the Video Electronics Standards Asso-

ciation (VESA) [17] in 1989. Its most significant standard is the VESA BIOS Exten-

sion specification which defines ”standard software access to graphics display controllers

which support resolutions, color depths, and frame buffer organizations beyond the VGA

hardware standard” [65].

In the same way that the graphics cards evolved, so did the bus used to communicate

them with the motherboard. As graphics cards became more powerful and enabled

larger resolutions, the amount of memory that could be transferred over the bus became
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the performance bottleneck. The Peripheral Component Interconnect (PCI) Local Bus

was launched in 1993 to replace the ISA and was itself replaced by PCI-X in 1998. These

were generic expansion cards buses, but graphics-oriented buses were also introduced

at the time: VESA created the VESA Local Bus to extend the existing ISA expansion

cards and Intel’s [5] Accelerated Graphics Port could also be found in motherboards

along PCI cards. Nowadays, all these buses have been replaced by the PCI Express

(PCIe) in its different versions.

4.2 2D acceleration

The IBM 8514/A graphics card was launched in 1987 – about the same time as the VGA

– and instead of being a mere controller, it was equipped with a coprocessor able to

execute graphics commands. It supported line drawing, area fills and video memory bit

block transfers (commonly known as BITBLTs), offloading the CPU from such work.

IBM released a programming interface called Adapter Interface which allowed to take

advantage of these features. For instance, instead of having to calculate the positions

of the pixels for a line and setting the proper color values in the frame-buffer, one could

paint a line simply by specifying the beginning and end points as well as its color. The

IBM 8514/A used a proprietary IBM bus and it was not backwards-compatible but it

was designed to be able to work along a standard VGA card for compatibility.

One year before, in 1986, Texas Instruments had released the TMS34010: the first

fully-programmable graphics card. Its hardwired graphics commands included those

of the 8514/A, plus pixel operations but it consisted on a full-fledged processor able

to execute complete programs. Since it was not compatible with the existing software,

the Texas Instruments Graphics Architecture was released for programming. It fea-

tured ”a CMOS 32-bit processor with hardware support for graphics operations such

as PixBlts [raster ops]2 and curve-drawing algorithms. Also included is a complete set

of general-purpose instructions with addressing tuned to support high-level languages.

(. . . ) TMS34010 graphics processing hardware supports pixel and pixel-array processing

capabilities for both monochrome and color systems that have a variety of pixel sizes.

The hardware incorporates two-operand raster operations with Boolean and arithmetic

operations, XY addressing, window clipping, window checking operations, 1 to n bits

per pixel transforms, transparency, and plane masking.” [63].

2The term raster operations refers to operations performed over the pixels that compose images.
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Microsoft [7] introduced graphical user interfaces (GUIs) to the PC market with the

launch of its Windows graphical environment. The popularity gained by its third re-

lease in 1990 resulted in a milestone in graphics cards evolution. As time passed, GUIs

started to become more common, gradually replacing DOS command line applications.

While applications requiring high-performance graphics, such as video games, contin-

ued being developed as DOS applications because of the direct access to the graphics

hardware it allowed, it soon became apparent that the future was in GUI applications

requiring graphics performance to be improved. Microsoft, working closely with graph-

ics hardware vendors, introduced the WinG library more oriented to animations than

its original Graphics Device Interface (GDI) library.

In 1991, S3 Graphics [14] released the S3 86C911 chip, which is commonly stated

to be the origin of main-stream 2D acceleration. This chip, designed for both moth-

erboards and graphics cards, was created with graphical user interfaces acceleration in

mind – in fact, S3 marketed it as a GUI accelerator. On top of the classic raster op-

erations, it included instructions to accelerate other GUI-specific areas such as mouse

cursors and hit-testing. These features were quickly adopted by other vendors.

With the launch of Windows 95, IBM PC Compatibles definitively moved from the

command line to graphical user interfaces. The Windows Games SDK was launched

to attract DOS video game developers to Windows. It was soon renamed as DirectX

and consisted on a set of libraries trying to cover all the aspects of game developments

from graphics or sound to control. The graphics library was called DirectDraw and

supported hardware overlays which allow each application to have a dedicated video

memory buffer for its visual representation. The graphics system automatically merges

all the individual buffers to the frame-buffer. As a result, there are no concurrency

issues because of different applications trying to write to the frame-buffer at the same

time.

ATI Mach series are an example of the evolution of 2D graphics acceleration cards

through this period of time. The first one – the Mach 8 released in 1991 – was a 8514/A

clone while its successor – the Mach 32, launched one year later – was regarded as a

GUI accelerator following the suit of the S3 86C911 chip. In 1994, the Mach 64 was

launched and one year later, the Mach 64 GT – later rebranded to 3D Rage – offered

basic 3D acceleration. Other common features of the time were video decoding and TV

tuning.
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4.3 3D acceleration

Main-stream 3D graphics systems have their origin at Silicon Graphics Incorporated

(SGI), which in 1984 launched the IRIS Workstation. Aimed at professionals requiring

high-end graphics performance, ”conceptually, the IRIS is divided into three pipelined

components: the CPU, the Geometry Engine (GE) subsystem, and the raster subsystem.

The system’s CPU, a Motorola 68000 or 68010, manages display lists, runs applica-

tion programs, and controls the Geometry Engine and raster subsystems. The geometry

subsystem provides 2-D and 3-D geometric processing with either 32-bit floating-point

or integer formats. All transformations, clipping, and scaling with perspective calcu-

lations are performed in the GEs. Geometric primitives for drawing lines, polygons,

characters, and parametric and rational cubic curves are supported by the geometry

subsystem. The raster subsystem controls up to 24 bit planes of image memory, which

can be used in either single- or double-buffered modes.” [40]. This architecture set the

foundation of upcoming graphics hardware which was following this concept of a geom-

etry transformation and rasterization pipeline. It evolved fast, firstly adding flat and

smooth shading as well as depth buffering. Reductions in memory costs and advances

in the development of application-specific integrated circuits (ASICs) led to huge im-

provements of the raster subsystem; chips equipped with multiple rendering processors

were introduced. At a following stage of evolution, anti-aliasing and texture mapping

features were introduced [20]. In 1992, and based on their previous graphics APIs,

SGI launched the OpenGL API and founded a board among other industry players to

oversee its evolution. Their aim was to provide a common graphics API that hardware

vendors would support through their software drivers.

Back in the consumer PC market, by 1995 2D hardware acceleration had become a

standard and graphics cards vendors starting shifting their innovations towards 3D ac-

celeration as a result of the increasing popularity of 3D video games of the time such as

Quake (which was the first blockbuster game offering full real-time 3D rendering). For

instance, Virge’s S3d Engine ”incorporates the key Windows accelerator functions of

BitBLT, line draw and polygon fill. 3D features include flat shading, Gouraud shading

and texture mapping support. Advanced texture mapping features include perspective

correction, bilinear and tri-linear filtering, MIP-Mapping, and Z-buffering. The S3d

Engine also includes direct support for utilizing video as a texture map. These fea-

tures provide the most realistic user experience for interactive 3D applications” [18].

Following the architecture engineered by SGI, the S3d Engine supported OpenGL.

36



4.3 3D acceleration

Vendors continued to launch new graphics cards offering slightly different architec-

tures such as unified frame-buffer and texture memory. Nevertheless, most of them

featured hardware triangle-based rasterization; some offered hardware triangle setup

and clipping support such as the ATI Rage Pro or the Rendition Vérité 1000. It should

be noted that up to this point, 3D acceleration was really a evolution of the 2D raster

operations oriented towards speeding common 3D post-rasterization operations: blend-

ing pixels with alpha or fog values as well as textures, and executing operations based

on particular masks or Z values stored in special memory buffers. Most of the effort was

focused on maximizing the quality and performance of the texture mapping, while the

geometry processing such as vector-matrix multiplications were still being performed

entirely by the CPU.

Figure 4.1: Abstract rendering engine of the Voodoo Graphics [19].

Particularly successful were the Voodoo series by 3dfx which were add-in cards

providing 3D acceleration and which required a 2D card. Despite having launched

a couple of 2D/3D cards, their more successful ones were the exclusively 3D add-in
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cards. These cards offered a superior performance and its proprietary Glide API gained

wide acceptance among game developers. Since this API was specifically designed for

3dfx graphics cards, it was closer to the hardware than OpenGL implementations and

thus, offered a superior performance. Its first product – the Voodoo Graphics card

– consisted on two ASICs, one managing the frame buffer and another in charge of

textured rasterization with dedicated texture memory. Thus, it supported hardware

triangle-based rasterization and pixel operations, leaving geometry operations to the

CPU [19]. The architecture of the Voodoo Graphics card is presented Figure 4.1.

While the original card incorporated one texture unit (TREX), several cards could

work together, thus providing several texture units – 3 in the case of the figure.

All the graphics cards of the time supported OpenGL, which had became the domi-

nant graphics API in the video game market after its advantageous start position since

it dominated the high-end graphics workstations market. Microsoft launched its Di-

rectX API aiming at providing a whole set of libraries – not only graphics – to promote

video game development for Windows. Direct3D – launched with DirectX 2.0 – was the

response from Microsoft to OpenGL. Despite being difficult to program at the begin-

ning, Direct3D started to become more popular with each release of DirectX. At least

one new version of DirectX was launched every year from 1995 until 2006 – versions

2.0 and 3.0 were both launched in 1996 and version 4 was skipped. DirectX 10.1 was

released in 2008, followed by version 11 in 2009 and version 11.1 in 2012 – which was

launched along with the Windows 8 operating system. Current version is DirectX 11.2,

released in October 2013. DirectX 12 is expected to be launched in July 2015 along with

Windows 10 and follows the recent trend of graphics hardware of focusing on power

consumption efficiency. The fast release cycle enabled Microsoft to both influence and

adapt to the fast graphics hardware development, gradually gaining popularity among

video game and even CAD application developers who wanted to take advance of the

state of the art technologies. Direct3D eventually became the most relevant subsystem

of DirectX and nowadays, both names are used interchangeably most of the time.

Particularly relevant was the launch of DirectX 7, which introduced support for

transform and lighting hardware acceleration. The first DirectX 7-compliant graphics

card was the GeForce 256 – ”Ge” standing for Geometry and ”256” referencing the

four existing 64-bit rendering pipelines – released in October 1999. It was the first PC

consumer graphics card offering transform and lighting (T&L) hardware, thus offload-

ing geometry calculations from the CPU. These calculations account for matrix-vector

multiplications required to translate, scale and/or rotate the coordinates of vertices –

i.e. geometry transformation – and vector operations required for lighting. The per-
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formance gain was more than significant, even doubling the frame rate on some video

games.

Figure 4.2: Migration of different graphics pipeline parts from the CPU to the GPU.

Figure 4.2 provides a picture of the evolution of the graphics pipeline in terms of

how different parts of the graphics pipeline were gradually moved from the CPU to the

GPU in the late nineties [42].

4.4 Programmable GPUs

Three-dimensional applications – mainly video games – became more and more de-

manding with the graphics hardware. Not only did they require increased performance,

but also more flexibility. This led to the redesign of the graphics pipeline. Until this

point, the pipeline was composed of a sequence of fixed-function stages which could be

configured through the graphics card driver – and at a higher level using Direct3D or

OpenGL API calls.

DirectX 8, launched in 2000, introduced programmable vertex and pixel shaders,

which allowed to perform new operations on the hardware beyond the fixed vector cal-

culations and pixel blending. Through an assembly-level language, developers could

replace the per-vertex (transform and lighting) and per-pixel (raster operations) fixed-

function pipeline operations if supported by the hardware. DirectX 9 further enhanced

this functionality when it was released in 2002, introducing the High Level Shader Lan-
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guage (HLSL) which offered a higher-level C-like language for shading programming.

Shaders written in this language are compiled to a machine-independent intermediate

language which is translated to GPU-specific machine instructions at runtime using a

Just-In-Time compiler provided by the graphics card driver.

OpenGL 2.0, released in 2004, introduced a similar high-level shading language

called GLSL. Previously, vendors had to offer support for new features of their hardware

through a number of non-official extensions to the specification. This is a common trend

in the competition between DirectX and OpenGL: since several vendors must agree on

specification changes, OpenGL – which started with a significant advantage – lagged

behind DirectX when it came to supporting new features. Microsoft would not only

release new versions of its API quicker but also, given its dominant position in the PC

operative systems market, it was also able to influence the graphics cards manufacturers

and work closely with them to develop and support new graphics features.

DirectX 10 in 2006 and OpenGL 3.2 in 2009, introduced a new kind of shaders

operating over primitives as a whole, instead of single vertices: the geometry shaders.

DirectX 10 supposed a huge redesign of the Direct3D API, which had become quite

complex and cluttered. Unlike previous versions – based on the now deprecated fixed-

function pipeline – this new design was engineered with shaders in mind. Furthermore,

DirectX became part of the core of the operative system. It was released along a new

graphics architecture introduced by Microsoft in Windows Vista, called the DirectX

Graphics Infrastructure (DXGI) built upon a redesigned driver model named Windows

Driver Display Model (WDDM). This new architecture, moved DirectX to the core

of the graphics system and while legacy support for GDI was still offered, all the

graphics were channeled through the DirectX API. With DirectX 10, the default fixed-

function pipeline was abandoned and even the most basic transform operations have

to be explicitly defined by the developer3.

Up to this point, graphics cards mimicked the stages of the streamlined 3D-graphics

generation process in hardware. Cards supporting vertex and pixel shaders introduced

dedicated processors to execute them. In initial designs, the pixel processors would

outnumber the vertex processors since the number of pixels is normally much higher

than the number of vertices to process. For instance, ATI’s Radeon X800 – released

in 2004 and supporting DirecX 9.0b and OpenGL 2.0 – divided its 3D core into three

engines: the vertex processing engine featuring 6 programmable vertex processing units

3A more detailed depiction of this new architecture is provided in Appendix II.
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plus a series of fixed function stages; the pixel processing engine, divided into four

independent blocks of four pixel pipelines each – thus composed by a total of 16 pixel

processing units –; and the setup engine linking the other two [21]. Both vertex and

pixel processing units offered dynamic flow control. Also in 2004, Nvidia [8] – ATI’s

main competitor – launched the GeForce 6800 with a similar architecture, shown in

Figure 4.3. Figures 4.4 and 4.5 exhibit the inner architecture of its vertex and shader

processing units respectively [39]. The next minor iteration of this architecture, the

GeForce 7 Series was the foundation of the GPU used in the PlayStation 3 console,

launched in 2006 by Sony [16]. PlayStation 3 and Microsoft’s Xbox 360 constituted

the most relevant console platforms for seven years – until the end of 2013, when they

were replaced by PlayStation 4 and Xbox One respectively.

Figure 4.3: Architecture of the Nvidia GeForce 6800 [39].
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Figure 4.4: Architecture of the Nvidia GeForce 6800 vertex processing units [39].

Figure 4.5: Architecture of the Nvidia GeForce 6800 pixel processing units [39].

After several generations of graphics cards, designers became aware of load balanc-

ing issues since there would be times when the pixel processors would be idle waiting

for early parts of the pipeline to finish. In other cases, the vertex processors would be

idle waiting for completion of following stages of the pipeline. As a result, graphics

cards engineers decided to create a unified shader architecture in which processors
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could be used to either process vertices or pixels and thus, being able to maximize the

utilization of the graphics processors. Microsoft Xbox 360 – launched by the end of

2005, a few months before the PlayStation 3 – equipped a custom GPU named Xenos

which is based on the Radeon R600 GPU, ATI’s first unified shader architecture. Until

this point, each shader type would use its own instruction set derived from the spe-

cific hardware implementation. DirectX 10 was launched approximately one year later

and, while not imposing a unified shader GPU implementation, it specified a unified

instruction set that compatible graphics cards must comply with. For this reason,

while not all the shaders offer the same capabilities, most of them – such as reading

from textures, data buffers, and arithmetic operations – are shared and based on the

same unified instruction set. It is important to note the decoupling between the real

hardware implementation – whether it uses unified shaders or not – and the instruction

set it supports. For instance, Xbox 360’s Xenos GPU is equipped with unified shaders

but it does not support the DirectX 10 unified shader instruction set. Those graphics

cards compatible with DirectX 10 must support the unified shader instruction set but

it is up to them whether they have different types of processors for each kind of shader

or they use unified shader processors.

Figure 4.6: Unified shader architecture of the Nvidia GeForce 8800 [43].
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About the same time DirectX 10 was released, Nvidia launched the GeForce 8800

which became the first unified shader GPU fully supporting it. Its architecture is

shown in Figure 4.6, shipped with 128 unified shader processors – called unified stream

processors (SPs) – grouped into 8 blocks. Each block has its own texture filter and

address units as well as a local cache shared by its 16 SPs. Texture and math operations

are decoupled, effectively reducing latency. Each SP output can be passed to any other

SP as input. The GPU dispatch and control logic dynamically assigns vertex, geometry

or pixel operations to available SPs. There are 6 raster operations partitions with 6

corresponding video memory partitions [43].

Nowadays, the dominance of mobile devices has driven the focus towards lowering

the power consumption. Nvidia moved along this line with its Kepler (2012) and

Maxwell (2014) GPU architectures, which evolved the foundation set by the Fermi

architecture – launched in 2010. Its main competitor – ATI, now part of AMD –

followed suit.

4.5 General Purpose GPUs and High Performance Com-

puting

The 3D graphics pipeline can be seen as a function that takes vertices and optionally

textures as inputs, and outputs pixels. These pixels normally consist of four component

numbers. Vertices can be customized; indeed, they are flexible data structures. Since

GPUs incorporate several parallel processing elements, they can be seen as stream

processors. Since GPUs started to offer hardware rasterization, efforts to employ them

for non-graphical applications – coined by the term GPGPU (General Purpose GPU)

– have been underway. Early experiments using graphics cards as stream processors

were based on adapting pixel processing to general parallel computation: each fragment

in the pipeline is a unit of data to be processed by a kernel (implemented as a pixel

shader). The pixels forming the render output in the frame-buffer actually correspond

not to an image but instead to the results of the computation – which can be thought

of as a result matrix.

As graphics cards evolved, shaders became increasingly capable of doing complex

computations, notably after the introduction of flow control instructions. Unified

shader architectures implementing versatile unified instruction sets, definitely enabled
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GPUs to be used as powerful stream processors available in most consumer Personal

Computers. Since hardware is not designed for specific graphics pipeline stages it is

easier to use the GPU for non-graphic parallel computations. APIs such as Nvidia’s

CUDA [41] or OpenCL [9] were launched to allow developers to easily perform complex

parallel computations. Version 11 of DirectX introduced Compute Shaders which use

a new exclusive pipeline, different than the traditional graphics one. Even high-level

languages such as C# introduced parallel extensions which internally take advance of

these features.

Graphics cards continued to multiply their parallel performance over time by in-

corporating more processing elements, smaller as fabrication techniques evolved. On

the other hand, multi-core CPUs seem to have found a cost-imposed ceiling in their

development. This has led to the irruption of GPUs in the High Performance Com-

puting (HPC) market as well as the adoption of heterogenous computing in Personal

Computers. Heterogenous computing refers to systems using different types of com-

putational units – in this case CPUs and GPUs. Despite having been traditionally a

graphics cards manufacturer oriented to the PC gaming market, Nvidia experienced a

notable growth due to the popular usage of their graphics cards for GPGPU through

its CUDA API. Nvidia, aiming at this market – which they labeled as GPU Computing

–, launched the Tesla product line offering GPUs specifically designed for computing

instead of graphics renderization. It is based on the Fermi unified shader architec-

ture, usually incorporating more memory and more processing elements with improved

double-precision floating-point performance – more critical in scientific applications.

Nowadays, these GPUs form part of many supercomputers, progressively displacing

multi-core CPU clusters.

Processor architectures are evolving, taking on a long-term bet on using vector

processors to empower High Performance Computing. There seems to be little reward

in integrating more than four CISC cores in a single CPU and thus, the next step

in order to increase the processing power comes from the parallel architectures of the

GPUs and the adoption of heterogeneous computing. IBM’s Cell Broadband Engine

– present for instance in the PlayStation 3 – is an example. It consists on a general-

purpose processor optimized for complicated power control and eight computation-

intensive RISC processors interconnected to the main memory, graphics processor and

the rest of the system through a high-speed four rings bus [61]. Even Intel, who is the

arguably most interested defender of CISC multi-core systems has studied the viability

of a less-complex many-core approach [60].
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4.6 Non-discrete graphics cards

As their name implies, graphics cards were born as independent hardware pieces plugged

into the motherboard through expansion slots. These are known more specifically as

discrete graphics cards.

Systems not requiring a lot of graphics power and those with physical space limita-

tion – such as laptops – incorporated an Integrated Graphics Processor (IGP) into the

motherboard instead of a discrete card. Although there are some examples with dedi-

cated memory, IGPs would typically use the system RAM, accessing the same bus as

the CPU. As a result, they would have to compete against the CPU for the bus usage,

yielding a reduced performance. A notable example of these kind of GPUs present in

many early 2000s laptops is the Intel Graphics Media Accelerator family.

More recent are the Accelerated Processing Units (APUs) which consist on a CPU

equipped with a specialized processor on its same physical die, the most notable example

of such a processor being a GPU. By locating it on the same die as the CPU instead

of on the motherboard, latency is decreased and data transfers are hugely improved;

at the same time, power consumption is greatly reduced. This is specially important

in modern devices such as tablets or smart-phones where long-life battery is a greatly

desired characteristic. AMD’s [1] Fusion and Intel Core processors are examples of

APUs. Nvidia’s Tegra line targeted for tablets and smart-phones is a more complex

example. It is a system on a chip (SoC) containing the CPU, GPU, bridges and memory

controllers.

No matter whenever it is through a discrete graphics card plugged into an expan-

sion slot, through a stand-alone graphics processor integrated in the motherboard, or

integrated in the same die as the CPU, modern GPUs are very powerful parallel pro-

cessors featuring from dozens up to more than a thousand processing elements that

offer total programmability and which can be used not only to produce high frame-rate

very detailed graphics but also for advanced parallel computations.
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Three-dimensional computer graphics deal with the process of converting models of ob-

jects into a visualization. Such models are defined by either mathematical or geometric

descriptions in three-dimensional spaces, and after being processed they are visualized

in finite bi-dimensional spaces such as computer screens.

Many techniques have been developed over time in order to increase the realism of

the generated visualization. Arguably, the most relevant one is the use of bi-dimensional

images as textures applied to the three-dimensional models. These textures constitute

the look of a model and may simulate materials such as wood or bricks. The creation

and editing of textures is as important as the definition of the model of the object itself.

Techniques processing textures such as bump mapping were introduced to increase the

realism – in this case by altering the texture, replacing a smooth surface by a bumpy

one.

Another important group of techniques are those in charge of shading. Their func-

tion is to simulate lighting in a three-dimensional scene, giving a more realistic sense of

depth to the objects. Different types of light sources may be added to a scene, affecting

the coloring of objects.

Most of the algorithms are both computationally and data intensive and thus, a

great deal of effort has always been put in their optimization. The smaller the amount

of required resources, the more of them that can be used to further enhance the realism.

Rendering is a loose term used to refer to the aforesaid processes, or ”the collection

of operations necessary to project a view of an object or a scene onto a view surface”

[66]. Those operations are implemented by renderers which usually follow the pipeline

design pattern, regarded as graphics pipeline and composed of linear stages.
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Figure 5.1: A simple graphics pipeline.

Figure 5.1 illustrates the general rendering process and the data involved which

are briefly presented in this chapter. Modeling tools are employed to create three-

dimensional representations of objects or scenes, commonly through models and asso-

ciated textures. This data is fed to the graphics pipeline, which will process the model

as necessary, project it to the bi-dimensional domain (rasterization) and then modify

its appearance – normally according to lighting parameters. As a result of this process,

an image is usually generated to be displayed on the screen.

It must be noted that rendering is a very broad subject; different strategies exist

involving many different techniques. Even more, although most renderers are imple-

mented as graphics pipelines, their stages may follow different orders depending on the

specific techniques chosen. A basic graphics pipeline processing polygonal mesh mod-

els is presented in this chapter, introducing techniques such as back-face and occlusion

culling, clipping, Gourand and Phong shading, Z-buffering, and texturing.

5.1 Three-dimensional modeling

A three-dimensional scene is composed of different objects such as persons, cars, build-

ings, etc. Such objects can be defined in different number of ways. For instance, for

simple shapes – such as spheres or boxes – their mathematical formula can be used to

model them. Boolean operations can be performed over such simple objects to form

new ones using what is known as constructive solid geometry (CSG). Nevertheless,

there are two dominant modeling techniques: polygonal mesh models – which is by far

the most common one – and parametric surfaces.
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5.1.1 Polygonal mesh models

Modern graphics systems generally represent three-dimensional objects as polygonal

mesh models. Such a model is composed by planar polygons that in some cases, such

as cubes, are able to exactly represent the desired shape. In other cases, such as

curved figures like spheres or cylinders, the shape is approximated by using a number

of polygons to compose them; the more polygons used to approximate it, the bigger its

resemblance to the desired shape. Furthermore, any polygon can be split into triangles

and as a result, that is the main primitive that graphics systems work with.

Object Surfaces Polygons Edges/Vertices

Edge

Vertex

Figure 5.2: Generating a mesh from an object.

A mesh is defined by a set of vertices and information about how those vertices

form polygons. Figure 5.2 illustrates the process of defining a polygon mesh from an

object – in this case a cylinder. The object is split into elemental surfaces that are then

approximated by polygons. These polygons are defined by a list of vertices and edges

linking those vertices. Normally, these polygons will be split into triangles and meshes

will be processed as lists of vertices and edges forming triangles.

Complex polygonal meshes composed by up to millions of triangles can be created

using 3D modeling tools in order to be used in three-dimensional scenes. Each indi-

vidual mesh may probably have been created using its own local coordinate system.

Therefore, in order to integrate several meshes in a scene, a transformation is required

for them to use a common coordinate system – known as world or scene coordinates.

Even more, different copies of the same mesh can be used in a scene by slightly trans-
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forming it.

Mesh transformations usually comprise scaling, rotation, and translation. Scaling

and rotation are linear operations; therefore, they can be performed through vector-

matrix multiplication. Meshes are composed of vertices, located at three-dimensional

points, thus having three components (X, Y and Z) which constitute a vector. This

vector is multiplied by a 3x3 transform matrix whose components parameterize the

desired scaling and rotation. By increasing the dimensionality of the space, translation

also becomes a linear transformation. In order to do so, a fourth coordinate is added

to each point, and the other coordinates are divided by its value. These are called

homogenous coordinates and the value of the fourth coordinate is usually 1. The

transformation matrix is then extended up to a 4x4 matrix, and translation parameters

are also inserted into it. This matrix can be set up to perform several linear transfor-

mations in just one multiplication and also allows to perform different transformations

to different coordinates at once – for instance, a mesh can be scaled only in its vertical

axis, leaving the other two unchanged.

The input of a polygonal renderer is a list of polygons and the output is a color for

each pixel onto which each polygon projects on the screen. Polygons may be treated

as independent units, enabling very efficient parallel processing.

5.1.2 Parametric surfaces

Parametric surfaces are defined using mathematical equations governed by control

points. A well known example of a parametric geometry are Bézier curves, which

are parametric curves frequently used in vector graphics to model smooth curves [22].

By using a set of control points – normally three or four – the shape of the curve is

defined. This set of control points parameterizes the equation of the curve, and forms

what is called a patch. This concept can be extended for bi-cubic parametric surfaces

modeling quadrangles (or quads). Figure 5.3 shows a quad parametric surface and the

patch that defines it, in this case formed by 16 control points. Lifting one of the control

points would have the effect of pulling up the area of the surface below it.
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Figure 5.3: Parametric surface defined by 16 control points.

Although there are algorithms that render directly from a parametric description,

surfaces are more commonly approximated by polygon meshes. Modeling using para-

metric surfaces and then converting to polygonal meshes has two main advantages.

First, it allows for very detailed modeling bearing great resemblance with real objects.

Second, and more important, is that different levels of detail can be generated from

the parametric surfaces. By controlling the amount of subdivision to be performed on

each surface, modeling tools can export parametric surfaces as polygon meshes using

different amount of polygons. For instance, as shown in Figure 5.4, a sphere can be

converted using very few polygons which will yield a polygonal look or using thousands

of polygons which would be seen as an almost perfect sphere.

Figure 5.4: Different levels of detail for a sphere.

Modern graphics hardware implement tessellation units that allow to perform dy-

namic parametric subdivisions. Current graphics pipeline implementations accept not

only polygons but also patches as input that can be used to dynamically generate

parametric surfaces. Depending on how much detail is required in each moment, those

surfaces can be subdivided into a different number. The closer the location of an object

to the front of a scene, the more detail is given by subdividing its surfaces into more

polygons; when the object is located farther, less subdivision is performed and thus less

polygons are generated. While patches control the shape of the surfaces, tessellation

factors are defined to control the subdivision.
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5.2 Geometry processing

Different renderers have been created to process different types of models, but the most

commonly used ones are planar polygon renderers.

Polygonal meshes must undergone a series of transformations in order to be inte-

grated in a scene along with other meshes and then be projected to a screen. These

transformations account for a number of coordinate spaces translations that can be per-

formed using linear transformations through vector-matrix multiplication. The most

common coordinate spaces involved, presented in sequential order, are:

1. Local coordinate space

The local coordinate space is the one in which each mesh has been defined, nor-

mally having the origin at the mesh center. For instance, when using a 3D

modeling tool to create a mesh for a car, the origin of this local coordinate space

would probably be located inside the car.

2. World coordinate space

It is the common space of all the meshes composing a scene. Each mesh has to

be translated into it; as a result, relative spatial relationships between them are

implicitly established.

3. View coordinate space

Also known as camera or eye space. Objects are transformed according to a set

of viewing parameters representing a camera or the point from which a viewer

is looking at the scene. These parameters include a view point, a direction and a

viewing volume. This volume is also known as viewing frustum and is normally

defined as a rectangular pyramid delimited by near and far clipping planes which

are perpendicular to the view vector, as exhibited in Figure 5.5.
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Figure 5.5: View frustum.

Before coordinates have been translated to view space, relations between camera

and polygon directions are unknown. By taking advance of this newly available

information, new optimizations can be performed. Back face elimination is a

culling technique that checks whether polygons are not facing the camera or view

point and thus can be removed. The operation is pretty straight-forward since it

consists on computing the dot product of each polygon’s normal and the line of

sight vector. Only those polygons yielding a positive dot product are kept and

the rest are discarded. In an empty volumetric model such as that of a person,

this could account for approximately half of the polygons composing it – i.e. if

the person is facing the camera with its back pointing the opposite way, then the

polygons corresponding to its back can be discarded.

4. 3D screen space

This is the final space where the rendering operations take place. Objects in view

space are projected into a view or screen plane which is perpendicular to the

view vector. In order to introduce a sense of depth, a perspective projection is

normally applied but other projections such as parallel ones can be used. Once

projected, all the lines originating in the camera or view point become parallel

and perpendicular to the screen plane. In the process, vertex position coordinates

are also normalized with their values ranging between -1 and 1.

Transforming the view frustum to this space changes its shape from a rectangular

pyramid to a box. This makes it extremely easy to check whenever polygons fall

inside, outside, or intersect the boundaries. This is known as clipping and will

discard those polygons that fall outside the frustum and clip those intersecting the

boundaries. Clipping algorithms such as Sutherland-Hodgman – which performs

polygon edge clipping by performing dot products against clip boundaries recur-

sively – can be easily implemented on hardware [62]. More advanced clipping

techniques deal with bounding volumes such as boxes or spheres than enclose
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objects; clipping is performed over objects as a whole instead of its individual

polygons saving a lot of processing.

As its name implies, the projection plane corresponds to the screen. Thus, posi-

tions in the plane are directly related to those of the pixels in the bi-dimensional

rendering output. Transformation of the third coordinate (Z) – representing depth

or distance from the camera – may seem superfluous, but it is of great useful-

ness for hidden surface removal. As polygons are processed, their Z values can

be compared with those of the previous ones and they can be discarded if they

are hidden by any of them. Like clipping, higher order hidden surface removal

can be accomplished by comparing the Z values of objects instead of individual

polygons.

At this point, two clarifications about hidden surface removal must be made.

First, it may be performed at one stage of the graphics pipeline or another,

depending on whenever an object, a polygon, or a pixel is checked; normally it

follows rasterization. Second, although hidden surface removal is also a culling

technique, it is not to be confused with back-face elimination. More specialized

terms would be occlusion culling for hidden surface removal and back-face

culling for back-face elimination.

Back-face and occlusion culling, along with frustum clipping, are optimization

techniques that vastly reduce the number of polygons to be processed. For this

reason, they are implemented in the geometry processing stages of most graphics

pipelines implementing planar polygon renderers.

The bulk of geometry processing consists on coordinate space transformations, per-

formed using vector-matrix multiplications which can be efficiently implemented in

hardware. Furthermore, the usage of polygons allows for a great deal of parallel pro-

cessing given their independence from one another. Polygons and their vertices can be

processed in isolation with no side effects, even in the case of polygons forming a mesh.

Many vertices will form part of more than one polygon; in this case, the vertex will be

computed several times, potentially wasting some computing power. However, in most

occasions some of the output vertex data varies depending of the polygon they form

part of – normal vectors, for instance. Even when this is not the case, the increase

in performance derived from the attained degree of parallelism hugely overcomes this

waste.

A related issue is the fact that because of out-of-order polygon computations, many

of them may be rendered only to be occluded by other polygons closer to the viewer.
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This has traditionally been an important field of research through the aforesaid hidden

surface removal techniques. For instance, in the same way that high-order clipping

techniques were developed, hidden surface removal techniques have been designed to

organize a three-dimensional scene as a graph ordered by proximity to the viewer; this

way, some nodes or whole branches of the graph can be early discarded if they are

occluded by others.

5.3 Rasterization

Rasterization – also historically named scan conversion – is the process of matching non-

discrete screen plane positions to discrete pixel positions. Many different algorithms

exist to perform this discretization but commonly, polygon edges are rasterized first and

then, based on their positions, the interior of the polygon is filled. Rasterization involves

a resolution reduction and detail loss is one of its consequences. The most noticeable

effects are usually located on the edges of the polygons which become jagged. This is

called aliasing and the development of anti-aliasing techniques is an important on-going

field of research.

Figure 5.6: Line, curve, and polygon rasterization examples.

Rasterization determines pixel positions covered by polygons, as illustrated in Fig-

ure 5.6. For each one of those positions, a pixel fragment – or fragment for short – is

generated. Fragments are the unit of information that will flow from the rasterizer to

the rest of the pipeline and eventually may turn into pixels in the output image. In the

same way that vertex position coordinates are interpolated to perform the rasterization,
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the rest of the vertex data is also interpolated and assigned to each fragment.

A very common optimization technique called Z-buffering is normally performed

after rasterization. It is a hidden surface removal technique that operates over fragments

and thus, does not require a specific model type [25]. In the case of polygonal mesh

models, each fragment has an associated Z value calculated from interpolating the

Z values of the vertices of its corresponding polygon. A Z-buffer having the same

dimensions as the output image is defined. For each pixel position, this buffer stores

the smallest Z value of a fragment generated for that position. If Z-buffer hidden surface

removal is active, for each fragment its Z value is checked against the one stored in

the corresponding Z-buffer position; if its larger, the fragment is discarded since it is

located farther from the camera than some other fragment and thus it is occluded by

it. Being its only disadvantage that it increases memory usage by requiring an extra

buffer, this technique is implemented by most of the renderers.

5.4 Shading

Shading calculates the appearance of each fragment. Normally, an output pixel color

will be generated based on the attributes defining that appearance. Most shading

techniques fall into two main categories: local reflection models and global shading

algorithms. Local models compute light at different points of a polygon by examining

its position relative to a light source. Since different objects may reflect light and thus

affect other objects, global algorithms take into account relations not only with light

sources but also between the objects in the scene. Obviously, global techniques are

much more expensive than local ones and most of the times are implemented in off-line

(non real-time) renderers.

Local reflection models base their computations on the angle between a polygon

surface and the light source shading it. This can be easily calculated using the normal

of the polygon surface, usually computed per vertex in the earlier geometry processing

stage. Based on distance, intensity and color of the light source, its angle with the

polygon surface, and reflection properties assigned to the surface, a shade value is

calculated for each point of the polygon.

Since normals are only calculated per vertex, interpolation must be performed in

order to shade the polygon surface. Vertices can be shaded individually and then

56



5.4 Shading

their values can be interpolated to obtain the corresponding value of each point on the

polygon surface. This is the basis of Gouraud shading which is computational cheap

[28]. More expensive but also more accurate is Phong shading, which interpolates

vertex normals across the polygon interior to obtain an interpolated normal, and then

performs the shading [50].

Up to this point, only lighting has been discussed. But in order for lighting to

impact the appearance of objects, they must have colors that can be affected by lighting.

This can be accomplished by using color attributes as part of vertex data that will be

interpolated after rasterization and passed to fragments. However, this interpolation

does not allow much control of the coloring. The most popular technique used to assign

colors to surfaces is texturing.

5.4.1 Texturing

Texturing refers to the process of simulating textures on object surfaces. Although

it is a very broad subject, texturing is normally accomplished through the use of bi-

dimensional color maps to modulate surface color or other properties of the shading

operation. A typical example consists on an image resembling a wooden surface being

mapped onto a polygon to give it a wooden look. Each generated fragment would access

the texture according to its position within the polygon in order to obtain its color.

This value would then be modified by lighting parameters in the shading process.

In order to know which position of the texture to access, UVW coordinates are

used. Their name comes from the alphabet letters preceding XYZ which are used for

vertex position coordinates. Normally, textures are bi-dimensional and so only two-

component coordinates – accordingly named UV – are used, ranging between 0 and 1.

These coordinates form part of the vertex data and are interpolated for each fragment,

effectively representing the position of the fragment within the polygon surface.

The same way 3D modeling tools are used to define complex meshes modeling ob-

jects, there are tools – in many cases integrated with those 3D modeling ones – to

generate textures that properly fit those meshes. This process, known as UV map-

ping, takes an input texture and generates a new one based on a projection algorithm

that fits the three-dimensional mesh. Upon rendering, the texture can be properly

mapped onto the mesh by using that projection.
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As previously stated, textures are usually bi-dimensional images with its pixels

having different meanings depending on the technique. These images are normally

rectangular, thus having both a different shape and resolution than the polygon they

are mapped onto. This generates a number of problems among which are aliasing

and anisotropy. Aliasing is a consequence of the resolution difference, analog to the

problem found in rasterization. Anisotropy refers to the visible blur and distortion

of shapes and angles that may occur as a consequence of the shape difference and

the required projection, specially when the polygon is on an almost oblique position

to the camera. Both problems are commonly attacked by sampling more than one

value from the texture for each fragment, normally from neighbor locations. By using

several samples to calculate the fragment’s value, edges can be smoothed and distortions

reduced.

Changes in the distance of the textured surfaces from the camera further aggravate

these problems since the resolution is varied. Mipmaps is a texture level-of-detail

technique used to store a texture in several resolutions [67]. An initial resolution – for

instance a 256x256 pixels texture – is reduced several times, to a quarter of its size

each time – thus yielding 128x128 pixels, 64x64 pixels, and so on. Commonly, all the

resolutions are stored in a single bigger texture which is accessed through offsetting to

the area of the texture where the desired resolution is located. Each resolution is called

a mipmap level. As a texture object moves away from the camera, smaller resolutions

can be used. This yields two advantages: faster processing times and higher resolutions

than required available for multi-sampling when smaller mipmap levels are used. Its

main disadvantage is that textures are bigger thus requiring more memory.

Although the most common usage of textures is simulating the look of different

materials, many other techniques also take advantage of them. Texture shadows for

instance, can be used to pre-compute fixed shadows of objects. Another technique uses

billboards: textured rectangles that are always perpendicular to the camera which

are commonly used to simulate clouds. Bump mapping stores height values as grey-

scale colors in a bi-dimensional image. This height is taken into account upon shading

to generate output pixel colors simulating non-flat polygon surfaces. Combining this

with a rock-looking material texture could produce a rock bumpy looking surface, for

example. A similar concept is used in displacement mapping which actually modifies

the geometry of the mesh based on the values stored in a texture. For example, a grey-

scale texture could be generated by computing the topographic map of a real terrain

area; this texture could then be used to dynamically modify the height of parts of a

grid mesh covering that area in a scene.
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5.5 Frame buffer output

Once a color has been generated for each fragment, it can be written to the corre-

sponding pixel of the frame buffer. This buffer contains the final image that is

usually displayed on a screen. Post-processing effects can be applied on the moment of

writing each pixel to the buffer. For instance, by using transparency, several fragments

with different depths can contribute to the same pixel color value. This is common for

objects that lie behind glass materials in a scene or when simulating fog.

5.6 Multi-pass rendering

Graphics hardware evolved implementing most of the graphics pipeline stages and in-

creasing the available video memory, making it possible to store more data where

initially there was only room for the frame buffer. New techniques have kept arising

requiring more and more flexibility and in some cases, requiring several passes over the

graphics pipeline. Each pass would configure the pipeline in a specific way to produce

an intermediate result saved in video memory. The combination of all those results

would provide the desired outcome of the technique. This allowed the introduction of

advanced techniques such as a geometric shadows, where silhouettes of the meshes are

generated and stored in one pass, and then used for calculating shadowed volumes in

a subsequent pass.
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CHAPTER6
Direct3D 11 Pipelines

Direct3D is the main API of DirectX, in charge of graphics. Like the rest of DirectX,

it is a C++ API using Component Object Model (COM) interfaces. It implements a

graphics rendering pipeline consisting on several stages, covering from the definition of

geometry composed by triangles and textures to apply after rasterization, up to the

generation of the final rendered image.

Graphics rendering pipelines – also known as the draw pipelines – have been the

traditional approach to programming graphics cards with 3D acceleration. In the be-

ginning, all the pipeline stages were fixed-function: both Direct3D and OpenGL APIs

functioned much like state-driven machines where developers would configure different

parameters of the pipeline before each renderization. With the increasing programma-

bility of graphics cards, several stages of the pipeline moved from fixed-function to

being fully programmable through small programs called shaders.

While each stage has its own specialized type of shaders, they quickly increased their

capabilities up to a point were shaders from different stages would share most of their

functionality. Following this trend, Microsoft introduced a unified shader instruction

set that graphics cards vendors were to support in order to be compatible with DirectX

10 and beyond. By that time, the usage of GPUs for non-graphics computations –

also known as General Purpose GPU (GPGPU) applications – was becoming more and

more popular and therefore, DirectX 11 introduced a new non-graphics pipeline: the

compute shader pipeline – also known as the dispatch pipeline. It consists on only one

programmable stage, the Compute Shader.

As graphics hardware evolved, each system would support a different set of features

making it hard for developers to handle all the possible scenarios. Direct3D 11 intro-

duced the concept of feature levels in order to be able to work with different hardware

supporting different features. A feature level is a well defined set of GPU functionality.
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This way, hardware supporting feature level 11 0 implements all the functionality of-

fered by Direct3D 11. Current hardware feature level support can be queried through

the API and a required feature level must be declared before any processing can be

done.

Both graphics and compute shader pipelines are just high-level abstractions offered

by Direct3D. They both use the same underlying hardware and resources even while

the latter only uses a subset of the available capabilities – e.g., it doesn’t use rasteri-

zation units. In this chapter, both pipelines are presented, discussing their individual

stages. The most relevant Direct3D 11 API calls and structures are introduced with-

out delving into details. Since shader stages are very flexible and can be programmed

in very different ways, more emphasis has been put into explaining the fixed-function

stages. The main source for this chapter is the Direct3D documentation found in the

Microsoft Developer Network, particularly the Programming Guide for Direct3D 11

and the Direct3D 11 Reference [3].

6.1 High Level Shading Language

Initially, shaders were programmed using an assembly-level language, directly mapping

to the hardware instructions. As their complexity grew, a C-like language called High

Level Shading Language (HLSL) was introduced. Using this language, shaders can

easily be defined using functions, control flow structures (if supported) and even objects.

HLSL shaders are compiled to a hardware neutral intermediate language that is then

mapped to specific hardware by the graphics driver. This compilation can either be done

off-line – thus compiled shaders are bundled as application resources – or be compiled

from source code at run-time. A particularly useful feature is the specification of pre-

processor constants upon compiling, which allows the parametrization of shaders for

specific execution environments.

Since its introduction along Direct3D 9, HLSL has evolved offering more features

to program shaders such as better control flow, more intrinsic functions, or new objects

for interaction with new pipeline stages. Nevertheless, in order to be able to use these

features, they must be supported by the underlying hardware. As stated before, in

Direct3D 11 hardware capabilities are organized through feature levels. Within feature

levels, shader support is further categorized by different shader models, with Direct3D

11 supporting up to Shader Model 5. Each shader model builds on the capabilities of
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the previous model and supports one or more shader profiles which are set as targets

for shader compilation. Each type of shader has its own profile and can even have

several versions within a same shader model. For instance, Shader Model 4 includes

pixel shader profiles ps 4 0 and ps 4 1. Shaders compiled for a shader profile will be

able to use features available only to that and previous profiles and will only run on

hardware supporting that or posterior profiles.

6.1.1 Effects

A DirectX effect is a set of pipeline states organized into a single rendering function

called technique, written in HLSL. This includes not only shaders but also other pipeline

parameters such as rasterizer, blending, texture or sampler states. A technique is

composed by one or more passes, each pass corresponding to a execution of the pipeline

– either the graphics or the compute shader pipeline. Furthermore, techniques can be

grouped for better organization.

This Effects Framework allows for very advanced use of HLSL. Techniques can be

implemented altogether using HLSL, replacing most Direct3D API calls controlling the

pipeline state by a single call simply to set the appropriate technique in each moment.

This way, rendering logic can be separated from more general graphics hardware han-

dling logic. The application is left with the tasks of managing the Direct3D device and

its resources, choosing the required technique in every moment, and supplying data to

the pipeline.

6.2 Graphics rendering pipeline

The Direct3D graphics pipeline is a high-performance three-dimensional graphics ren-

derer. Its core is similar to the pipeline engineered by Silicon Graphics Incorporated

(SGI) [15] in the eighties, which is the foundation of OpenGL (the historical rival of

Direct3D in the field of graphics APIs). The general workflow of this pipeline is the

following. A polygonal geometry is defined by its vertices which need to be processed in

order to fit properly into the three-dimensional scene being rendered. Triangles formed

by these transformed vertices are rasterized into pixel fragments and given a color, ei-

ther interpolating vertex colors or using texture images. These pixel fragments can be
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further processed, be discarded if they fall behind fragments closer to the scene camera

(Z-buffering), merged with others (blending), etc. Once processed, the fragment’s color

may be written to its associated pixel within a render target – usually a bi-dimensional

image representing the frame buffer.

The Direct3D 11 graphics pipeline is the result of evolving the described core to

support the different graphics hardware generations and their increased capabilities.

Its stages are shown in Figure 6.1. There are two kinds of stages: fixed-function stages

and shader stages. While the former can be configured through a set of parameters,

its behavior is mostly fixed. On the other hand, shader stages are fully programmable

through shader programs written in HLSL. The first programmable stages were the

Vertex and Pixel Shader stages, introduced in Direct3D 8, allowing to customize the

operations to be performed over the vertices and over the pixel fragments, respectively.

Figure 6.1: Direct3D 11 graphics pipeline.

DirectX 10 supposed a huge redesign of both Direct3D API and its underlying

architecture. Available video memory resources, their capabilities and management

were also drastically improved. Two new pipeline stages – Geometry Shaders and

Stream Output – were also introduced. Version 11 was an incremental evolution of
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Direct3D 10 which introduced significant new features among which are multi-threading

support, hardware feature levels, the compute shader pipeline, and tessellation support

– comprising the fixed-function Tessellator stage and the programmable Hull Shader

and Domain Shader stages. Following, the stages of the Direct3D 11 graphics rendering

pipeline are presented.

6.2.1 Input Assembler

The pipeline execution begins upon a Draw API call and its first stage is the Input

Assembler, in charge of supplying geometry data to the pipeline. The execution of

this stage can be split into three phases: fetch primitives data from user-filled buffers,

assembly them and attach system-generated values to them – i.e. information supplied

by the pipeline, such as an identification number for each vertex. In order to carry

these operations, the Input Assembler must be first properly set up.

6.2.1.1 Configuration

The Input Assembler consumes geometry data, consisting on different types of prim-

itives: points, lines and triangles. They are defined by one, two and three vertices

respectively. Vertices are stored in one or more video memory buffers called vertex

buffers, which can be bound to the pipeline through the Input Assembler by calling the

IASetVertexBuffers API call. In order to assembly each primitive, the Input Assembler

fetches the proper vertices from the corresponding vertex buffer.

The information required to set up the Input Assembler before a Draw call can be

invoked, is the following:

Input layout

It covers the description of the elements composing each vertex – which form

the different geometry primitives. In a common 3D application it could consist

of 3 elements: vertex position coordinates, requiring 3 floats, its normal vector

required for illumination (also 3 floats), and texture coordinates (2 floats). Each

element receives a semantic name, a format, and an input buffer slot from which

the data will be read. The semantic name will be used to map input data to

65



Chapter 6. Direct3D 11 Pipelines

variables in shader code. The input layout normally matches the input signature

of the vertex shader. This means that the vertex shader function receives the

elements of the vertex through its parameters. Which parameter receives which

element is defined by associating the semantic name of an element to the desired

parameter in the vertex shader function HLSL code.

Input vertex buffers

This information establishes the input buffers holding the vertices that compose

the primitives. Several input buffers can be defined, being 32 the maximum for

hardware supporting Direct3D 11. In order to fetch data from the proper input

buffer, the Input Assembler uses the input buffer slot number specified for each

element in the input layout.

Input index buffer

This information is required only when using an index buffer to store topology

information. Index buffers store indices pointing to positions of the vertex buffer.

Consecutive indices form a primitive and thus, the Input Assembler reads the

index buffer in order to know which vertices need to be fetched from the vertex

buffer in order to assembly each primitive. An index buffer can be bound through

the IASetIndexBuffer API call. In order for the Input Assembler to use it, the

pipeline must be executed by invoking DrawIndexed.

Primitive topology

This information indicates how to link vertices to form primitives. For instance, if

triangle list topology is set, the Input Assembler will retrieve vertices in groups of

3 and set up a triangle with them. There are 9 basic types of primitive topologies

– which come from different allocation modes of either points, lines, or triangles

– shown in Figure 6.2, found in the Microsoft Developer Network (MSDN) doc-

umentation [12]. Moreover, there are also 32 patch list topologies. Supported

primitive topologies are the following:

– Primitive lists: either point, line, or triangle lists. Primitives are to be set

up in groups of one, two, or three vertices. Suppose the set topology were

triangle lists and Draw(12, 0) was invoked to draw 12 vertices, starting

from the beginning of the vertex buffer – the second parameter indicates the

start vertex location within the input vertex buffer. In this case, the Input

Assembler would fetch the first 12 vertices from the vertex buffer, using the

first 3 vertices to form a triangle, the next 3 to form a second triangle and
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so forth until setting up 4 triangles.

– Primitive strips: strips are series of connected primitives, and these primi-

tives may be either lines or triangles. For instance, having the topology set

to line strips, upon a Draw(12, 0) call, the Input Assembler would fetch 12

vertices and generate 11 consecutively connected lines. The first line would

link the first and second vertices, the second would be formed by the second

and third vertices, and so on. A separate Draw call is required for each

strip. In the case of triangles, previous two vertices are reused to form a

new triangle with the next fetched vertex. Obviously, there is no point strip

primitive since they only have one vertex.

– Primitive lists or strips, with adjacency: with the introduction of geometry

shaders in Direct3D 10, adjacency information became available. The prim-

itives supporting this new information, include extra vertices corresponding

to the adjacent primitives. For the triangle list with adjacency, a Draw(12,

0) call would cause the Input Assembler to fetch 12 vertices and issue 2

triangles. As illustrated in Figure 6.2, the first triangle would be formed by

vertices 0, 2 and 4, with vertex 1 conforming the adjacent triangle of the

side formed by vertices 0 and 2. Vertices 2, 3, 4 and 0, 4 and 5 would con-

form the other 2 adjacent triangles. The second triangle would be formed

by vertices 6, 8 and 10, while the adjacent triangles would be respectively

formed by vertices 6, 7 and 8, vertices 8, 9 and 10, and finally 6, 10 and

11. For the same call and the line strips with adjacency topology, 10 lines

would be issued, with vertices 0 and 11 conforming the adjacent lines along

with vertices 1 and 10 respectively. Adjacent vertices are only visible to

geometry shaders which receive the whole primitive topology – i.e. all the

vertices forming it, including the adjacent ones.

– Patch lists: patches are the input topologies used in tessellation. There are

32 different types, corresponding to the number of control points that can

form the input patch, from 1 up to 32.
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Figure 6.2: Primitive topologies [12].

6.2.1.2 Data fetching

Once the Input Assembler is configured, a Draw call can be invoked to start the pro-

cessing by the graphics pipeline. There are 5 different versions of the Draw call, which

affect how to Input Assembler fetches the data:

1. Draw(UINT VertexCount, UINT StartVertexLocation)

Draws non-indexed, non-instanced primitives. The first parameter indicates the

number of vertices to draw while the second is used as an offset in the vertex
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buffer that points to where to start reading the vertices. Algorithm 2 exhibits

the pseudo-code for the vertex fetched associated with this call.

Algorithm 2: Draw vertex fetching pseudo-code.
Data: VertexBuffer← Bound input vertices, VertexBuffer = {v1, . . . , vn}

VertexCount← Number of vertices to fetch
StartVertexLocation← Initial position to start reading vertices from

/* Fetch the required vertices from the vertex buffer */

1 Vertex[] fetchedV ertices← new Vertex[VertexCount]
2 for i← 0 to VertexCount do
3 fetchedV ertices[i]← VertexBuffer[ StartVertexLocation + i ]

end

2. DrawIndexed(UINT IndexCount, UINT StartIndexLocation, INT BaseVertexLo-

cation)

Draws indexed, non-instanced primitives. This call requires an index buffer to

have been bound by calling IASetIndexBuffer. While vertex buffers contain the

data of the actual vertices, index buffers store indices pointing to positions inside

the vertex buffer. For instance, when using triangle list as primitive topology

the first 3 entries of the index buffer would contain the positions in the vertex

buffer of the corresponding vertices that form a triangle. By using index buffers,

the same vertex from the vertex buffer can be used in more than one primitive.

Therefore, index buffers can be used for optimization.

Algorithm 3: DrawIndexed vertex fetching pseudo-code.

Data: VertexBuffer← Bound input vertices, VertexBuffer = {v1, . . . , vn}
IndexBuffer← Bound indices pointing to VertexBuffer positions
IndexCount← Number of indices to draw
StartIndexLocation← Initial position into the index buffer to start reading indices from
BaseVertexLocation ← Initial position into the vertex buffer to start reading vertices from

/* Fetch the required vertices from the vertex buffer */

1 Vertex[] fetchedV ertices← new Vertex[IndexCount]
2 for i← 0 to IndexCount do
3 index← IndexBuffer[StartIndexLocation, i] + BaseVertexLocation
4 fetchedV ertices[i]← VertexBuffer[ index ]

end

The third parameter specifies a value to be added to each index before reading

the vertex at that position in the vertex buffer. This is illustrated in Algorithm

3, exhibiting the pseudo-code for the vertex fetched performed when this call is
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invoked.

3. DrawInstanced(UINT VertexCountPerInstance, UINT InstanceCount, UINT StartVer-

texLocation, UINT StartInstanceLocation)

Draws non-indexed, instanced primitives. Primitive instancing allows to reuse

the same model geometry – i.e. vertex data – which may be partly modified.

An example could be the geometry of a soldier, which is instanced multiple times

varying only the relative position of arms and legs. An extra buffer called instance

buffer is required. This buffer holds the modification information for each instance

of the model geometry and it is set as an extra vertex buffer input with its

particular vertex input layout – i.e. vertex format. Algorithm 4 presents the

pseudo-code for the corresponding vertex fetching.

Algorithm 4: DrawInstanced vertex fetching pseudo-code.

Data: VertexBuffer← Bound input vertices, VertexBuffer = {v1, . . . , vn}
PerInstanceData← Instance-specific data buffer
VertexCountPerInstance← Number of vertices to fetch
InstanceCount← Number of instances to draw
StartVertexLocation← Initial position to start reading vertices from
StartInstanceLocation← Initial position to start reading instance-specific data from

/* Fetch the required vertices from the vertex buffer once */

1 Vertex[] fetchedV ertices← new Vertex[VertexCountPerInstance]
2 for i← 0 to VertexCountPerInstance do
3 fetchedV ertices[i]← VertexBuffer[ StartVertexLocation + i ]

end

/* Obtain per-instance vertices by updating the vertices with per-instance data

*/

4 Vertex[] perInstanceV ertices← new Vertex[VertexCountPerInstance]
5 for i← 0 to InstanceCount do
6 perInstanceV ertices← updateVertices(fetchedVertices, PerInstanceData[i +

StartInstanceLocation])

end

4. DrawIndexedInstanced(UINT IndexCountPerInstance, UINT InstanceCount, UINT

StartIndexLocation, INT BaseVertexLocation, UINT StartInstanceLocation)

Draws indexed, instanced primitives. Its a merge of both DrawIndexed and Draw-

Instanced.

5. DrawAuto()
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Begins the pipeline execution for an unknown amount of vertices stored in a

read/write buffer. The content of that buffer must be the output of the Stream

Output stage. This stage, introduced in Direct3D 10, allows to save output

vertices from the Vertex and/or Geometry Shader stages to video memory. Its

combination with DrawAuto is very useful in scenarios where previous work per-

formed by the pipeline can be later reused, and it allows to do so without incurring

in a performance penalty due to requiring data interchange between the CPU and

the GPU. An internal counter keeps track of the size of the buffer and thus, there

is no need to query the GPU for it. However, the input layout – i.e. the format of

the vertices stored in the buffer – must be properly set before invoking DrawAuto.

6.2.1.3 Primitive assembly

After the vertices have been fetched from the vertex buffers, primitives can be assem-

bled. This is performed by linking vertices to form primitives, according to the con-

figured primitive topology. Primitive assembly is executed once the vertices have been

retrieved, right after the last lines of Algorithms 2 and 3, and within the per-instance

loop in the case of instanced draws – after line 6 in Algorithm 4.

6.2.1.4 System-generated values attaching

After vertex fetching and primitive assembly, the Input Assembler attaches system-

generated values both to the primitives and their composing vertices. In the same way

a semantic name for each element of a vertex input layout is defined, system-generated

values have predefined semantic names, used to indicate the pipeline to which shader

variables it must supply those values. More specifically, by examining semantic names

present in shader input and output signatures, the pipeline knows which data must be

carried from one shader to another, and into which shader variables it must be stored.

System-generated values are not generated unless they are included in some shader

signature. For instance, in order for SV PrimitiveID to be generated, it must be part

of the input signature of either a geometry or pixel shader bound to the pipeline.

Several system-generated values are issued by different pipeline stages. The values

that can be generated by the Input Assembler are:
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SV VertexID : visible to vertex shaders, it is unique among vertices issued within

the same Draw call and it gets reset between calls. In the case of indexed Draw

calls, it represents the index value.

SV InstanceID : visible to vertex shaders, it identifies the instance of the geometry

being processed.

SV PrimitiveID : visible to geometry and pixel shaders, it distinguishes assembled

primitives. In the case of primitives with adjacency, no value is generated for the

adjacent primitives, only for the interior ones. When using primitive instancing,

values are unique only for primitives within the same instance.

Once the Input Assembler has fetched the required vertices, assembled the proper

primitives and set up the system-generated values involved, vertices are passed as input

to the Vertex Shader stage.

Table 6.1 shows the API calls used to configure the Input Assembler stage. For

each call, there is a corresponding one retrieving the configured state.

Function name Description Remarks

IASetInputLayout Sets the layout of the ver-
tices contained in vertex
buffers

IASetPrimitiveTopology Specifies the topology used
to link vertices

IASetVertexBuffers Binds buffers from where
vertex data will be read

Buffers must have been created with the
D3D11 BIND VERTEX BUFFER flag

IASetIndexBuffer Binds an index buffer that
specifies how to read vertices

The buffer must have been created with
the D3D11 BIND INDEX BUFFER flag.
Requires invoking DrawIndexed*

Table 6.1: Input Assembler configuration API functions.

6.2.2 Vertex Shader

The Vertex Shader stage processes vertices received from the Input Assembler stage.

This stage is fully programmed and even if no transformation is to be performed over

vertices, a so called pass-through shader must be defined simply returning the input

vertex. A vertex shader can be bound to this stage by calling VSSetVertexShader.

If the Effects Framework is being used instead of the API, it will be bound through
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the SetVertexShader HLSL function. The shader receives a single vertex as input and

outputs a single vertex as well. It is executed for all vertices, including the adjacent

ones in those primitives with adjacency. It is possible to query the number of times the

bound vertex shader has been executed through the VSInvocations pipeline statistic.

The Vertex Shader stage replaces the traditional fixed-function transform and light-

ing (T&L) stage. As a result, vertex shaders are usually in charge of transforming ver-

tex coordinates through vector-matrix multiplication and calculating vertex normals

for lighting.

All vertices forming a primitive must have been processed by the Vertex Shader

stage before they are fed to the next stage of the pipeline, no matter which stage is

next. Optionally, the output of this stage can be fed up to the Stream Output stage in

order to write the output vertices to a vertex buffer in memory.

Both the input and output vertex must include at least one scalar value and can

be comprised of up to 16 vectors, each formed by 4 components of 32-bits. The Input

Assembler can supply two system-generated values: SV VertexID and SV InstanceID.

No system-value semantics are compulsory for this stage but either the Vertex Shader

or the Geometry Shader stages must output a vector associated to the SV Position

semantic name, which is consumed by the Rasterizer stage.

Function name Description Remarks

VSSetShader Binds a vertex shader

VSSetShaderResources Binds shader resources to be
accessible from the shader

Receives Shader Resource Views which re-
quire resources to be created with the
D3D11 BIND SHADER RESOURCE flag

VSSetConstantBuffers Binds constant buffers Buffers must have been created with the
D3D11 BIND CONSTANT BUFFER flag

VSSetSamplers Binds sampler states

Table 6.2: Vertex Shader configuration API functions.

Table 6.2 shows the API calls used to configure the Vertex Shader stage. For each

call, there is a corresponding one retrieving the current state.
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6.2.3 Tessellation stages

Tessellation is a process that essentially consists on subdividing a surface. Normally,

it is used to generate primitives from parametric surfaces. As explained in Section

5.1.2, these surfaces have a domain and are parameterized by a set of control points

forming a patch. In Direct3D 11, the domain can be either a quadrangle, a triangle

or an isoline and through tessellation they can be split into triangles, lines and points.

Control points may be used to determine the exact vertex positions of the generated

primitives. Three new stages were introduced in Direct3D 11 to support tessellation:

the Hull Shader, Tessellation and Domain Shader stages.

As stated in Section 6.2.1, in Direct3D 11 there are four types of primitives: points,

lines, triangles, and patches. For tessellation, the input primitives must be patches.

Patches are composed by a fixed number of control points ranging between 1 and 32.

Unlike triangles and lines, patches can only be defined using lists. Since they have a

fixed size, there is no strip support. Also, tessellation is not compatible with geometry

shaders receiving primitives with adjacency.

Cubic Bézier curves are a good example of tessellation. They can be defined us-

ing four control points, thus requiring patches composed by four points as primitive

topology. Four vertices are to be stored per curve – i.e. per patch – in the vertex

buffer. In essence each control point is a vertex. Indeed, control points are individually

processed by the Vertex Shader stage just like any vertex would. When tessellation is

active, the Vertex Shader stage operates over control points. While internally they are

actual vertices, their semantics change. Thus, when processing control points vertex

shaders usually perform different operations than when processing vertices. One exam-

ple is coarse mesh animation: controlling the animation through a few control points,

complex computations can be vastly optimized.

Once control points pass the Vertex Shader Stage, input patches are processed

by the Hull Shader stage. For each input patch, an output patch is generated and

tessellation factors are calculated. These factors are used by the Tessellator stage to

split a certain domain into smaller objects, generating point or topology lists. Following

the cubic Bézier curve example, a hull shader could just let the control points through

and set the tessellation factor to 64. As a result, the isoline domain input surface would

be split into 64 individual lines.
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Finally, the Domain Shader stage is in charge of taking the split results – i.e. the

generated primitives – and calculating the corresponding vertex positions. For a cubic

Bézier curve, the 64 generated lines would be positioned consecutively, with their vertex

positions calculated using the four control points along with their relative position

within the generated curve. The Domain Shader stage is in charge of processing the

vertices generated by the Tessellator stage. Therefore, classic vertex shader operations

like world, view and projection matrix multiplication are performed in the domain

shader.
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Figure 6.3: Bézier curve tessellation into 9 lines using 4 control points.

The process described is illustrated by Figure 6.3, although 9 lines are generated

instead of 64 for clarity. The input of the tessellation is a patch composed by 4 control

points and the result are 10 vertices composing 9 lines along the curve. The larger the

tessellation factor, the more lines will be generated and the better the approximation

of the curve will be. No patch processing is required by the hull shader beyond setting

the tessellator factors for the amount of lines to be generated – 9 in this case. Following

the value of the tessellation factor, the Tessellator stage simply generates 10 different

coordinates for the vertices. The domain shader, using these coordinates and the control

points, calculates each vertex position along the curve.
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The most common use for tessellation is the generation of levels of detail for para-

metric surfaces. Each surface is defined by a patch and thus, complex surfaces are

defined using a few control points. Since the surface division process is controlled dy-

namically through tessellation factors, different levels of detail – i.e. different amounts

of primitives – can be generated depending on the requirements of the rendered scene.

Although this is the more common scenario, the concrete meaning given to control

points and how to determine the location of generated primitives from them is up to

the developer.

6.2.3.1 Hull Shader

Being the first of the three tessellation stages, this programmable stage serves two main

purposes: transforming an input patch into an output patch and establishing tessellator

factors that control how finely the subsequent Tessellator stage must divide a domain.

In order to do this, a hull shader requires at least two functions: the main hull shader

function and a patch-constant function.

The main hull shader function is executed for each output control point. The

number of control points defining the output patch can be different from that of the

input patch and is specified by the HLSL attribute [outputcontrolpoints()]. The shader

has access to all the input control points in case it needs to perform some calculation

based on them. One example of a hull program could be basis transformation, taking

for instance 32 input control points and outputting 16 control points. Note that in

that example, the hull shader would be executed 16 times: it is executed once for each

output control point, not per input control point.

Patches are associated with a surface domain type which can either be ”quad”, ”tri”

(triangle) or ”isoline”. The domain must be specified by using the [domain()] attribute

with any of the previous values to annotate the main hull shader function. The following

stage (Tessellator) will take this domain and subdivide it into primitives. The type of

these primitives must also be declared in the hull shader using the [outputtopology()]

annotation which can take the values ”point”, ”line”, ”triangle cw” or ”triangle ccw”.

There are two possible values for triangles depending on whether the Tessellator stage

should define them using a clockwise or counter-clockwise winding. Output topologies

correspond to the available basic primitives and so, [outputtopology()] determines the

type of primitives result of the whole tessellation process.
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The other function required by a hull shader is the patch-constant function. Unlike

the main hull shader function, it is executed only once per patch. It is in charge of calcu-

lating tessellation factors as well as any other desired per-patch data. This function has

read-only access to both input and output control points and must be specified in the

main hull shader function using the annotation [patchconstantfunc(”function name”)].

It receives an array containing the input patch control points and may use both the

SV PrimitiveID system-value identifying the input patch and SV OutputControlPointID

that identifies, within each output patch, the control point being processed. It returns

a structure that must contain at least the tessellation factors.

Domain
SV TessFactor SV InsideTessFactor

Type Meaning Type Meaning

quad float[4] Sides of the quad float[2] Vertical and horizontal subdivi-
sions of the quad center

triangle float[3] Sides of the triangle float Inner subdivisions

isoline float[2] Number of isolines (detail) and
number of lines per isoline (den-
sity) to generate

– –

Table 6.3: Format and semantics of tessellation factors varying with the domain.

Tessellation factors indicate the Tessellator stage how to split the domain into

smaller primitives. There are two types of tessellation factors: edge and inside fac-

tors. Each type of domain requires a different number of factors, as shown in Table

6.3. The maximum value for any tessellation factor is 64.

Once the Hull Shader stage is done processing the patches, it outputs the tessellation

factors to the Tessellator stage. Later, the output control points will be fed along with

the data outputted by the Tessellator stage to the Domain Shader stage.

Function name Description Remarks

HSSetShader Binds a hull shader

HSSetShaderResources Binds shader resources to be
accessible from the shader

Receives Shader Resource Views which re-
quire resources to be created with the
D3D11 BIND SHADER RESOURCE flag

HSSetConstantBuffers Binds constant buffers Buffers must have been created with the
D3D11 BIND CONSTANT BUFFER flag

HSSetSamplers Binds sampler states

Table 6.4: Hull Shader configuration API functions.

Table 6.4 shows the API calls used to configure the Hull Shader stage. For each

call, there is a corresponding one retrieving the configured state. These functions are
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analogous to those used to configure the Vertex Shader stage.

6.2.3.2 Tessellator

This is a fixed-function stage in charge of the actual tessellation operation per se. It

subdivides a domain into smaller objects. The domain can be a quad, a triangle or

a line which may be split into triangles, lines or points. The amount of divisions to

be performed is controlled by the patch tessellation factors calculated in the previous

stage by the patch-constant function. This is the only data that is consumed by the

Tessellator stage; it does not use any of the control points or other per-patch data.

Several of the annotations in the main hull shader are used to configure the Tes-

sellator stage, namely [domain()] and [outputtopology()] – introduced in the previous

section. There is another required annotation that indicates the desired tessellation

scheme: [partitioning()]. These annotations are static definitions that can not be

changed after the shader is compiled. There is no API call used to configure any

state of the Tessellator stage, it is controlled through these annotations of the main

hull shader.

The tessellation actually generates either two or three dimensional coordinates that

represent sampling points over the surface domain. The coordinates of each sample

are fed to the Domain Shader stage to calculate its corresponding vertex position.

Furthermore, point or topology lists are issued – i.e. information about how samples

are connected to form primitives.

It is worth mentioning that the tessellator uses 16-bit fractions with fixed-point

arithmetic. This leads to some precision issues with an equivalent sampling precision

of 2 millimeters within a 64 meter wide patch.

6.2.3.3 Domain Shader

The Domain Shader stage could be pictured as a vertex shader running after the tes-

sellation, since a domain shader will be executed for each coordinate generated by the

Tessellator stage. However, domain shaders have access to the data of the tessellated

patch, thus allowing more complex operations than vertex shaders.
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Recapitulating, between the Vertex Shader and this stage, two processes have taken

place. First, each input patch formed by control points was transformed into another

patch, and the fixed-function tessellator was configured. Second, a number of sam-

pling points were taken from a given domain surface, and a primitive list linking those

points was issued. In the Domain Shader stage, a shader is executed for each sampling

point, having access to the transformed patch. Its mission is to generate a vertex for

each point, using the coordinates of that point within the tessellated domain and the

transformed patch data.

The domain shader receives the SV PrimitiveID system-value identifying the tessel-

lated patch, its control points and per-patch data outputted by the Hull Shader stage,

along with the coordinates generated by the Tessellator stage through the SV Domain-

Location system-value. These coordinates have two components for quad and isoline

domains, and three components in the case of the tri domain. As in the hull shader,

the domain must be declared through the [domain()] attribute. The difference in the

number of coordinate components for different domains respond to different address-

ing methods. While both quad and isoline domains follow a grid coordinate system,

barycentric coordinates are used for the tri domain. In barycentric coordinates, each

component represents a weight, being 1 the sum of the three of them. For instance, a

value of 0.333 in the three components corresponds to the center of the triangle.

Using the available data, the domain shader generates the output vertex, forming

part of a newly generated primitive – whose topology was specified by the [outputtopol-

ogy()] attribute in the hull shader – which flows to the next stage in the pipeline.

A typical example of domain shader usage are parametric surfaces. For instance,

using a single four control points patch, a quad could be tessellated into 8192 triangles.

The domain shader would process the vertices of those triangles, calculating their posi-

tion using some parametric equation such as that of a sphere surface. After calculating

the position within the parametric surface, the domain shader would perform the cor-

responding world, view, and projection matrix multiplication, as well as the normal

vector calculation for lighting [64].

Table 6.5 shows the API calls used to configure the Domain Shader stage. For each

call, there is a corresponding one retrieving the configured state. These functions are

essentially the same used to configure the Vertex and Hull Shader stages.
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Function name Description Remarks

DSSetShader Binds a domain shader

DSSetShaderResources Binds shader resources to be
accessible from the shader

Receives Shader Resource Views which re-
quire resources to be created with the
D3D11 BIND SHADER RESOURCE flag

DSSetConstantBuffers Binds constant buffers Buffers must have been created with the
D3D11 BIND CONSTANT BUFFER flag

DSSetSamplers Binds sampler states

Table 6.5: Domain Shader configuration API functions.

6.2.4 Geometry Shader

The Geometry Shader stage follows either the Vertex Shader or the Domain Shader

stages, depending on whenever tessellation is enabled or not. Unlike Vertex Shader, the

Geometry Shader stage is optional and is only executed if there is a bound geometry

shader.

Geometry shaders are invoked per-primitive and receive the whole primitive as in-

put. Specifically they receive an array containing all the vertices that conform the

primitive plus the adjacent vertices if a topology with adjacency is being used. They

output one of 3 different topologies: point lists, line strips and triangle strips. The

number of primitives outputted can vary between invocations, and the primitive may

be discarded by outputting nothing; the only restriction is that the maximum num-

ber of emitted components must be declared statically through the [maxvertexcount()]

geometry shader attribute. Despite its name, the value indicated in this attribute ac-

tually corresponds to the maximum number of components outputted, not the actual

maximum number of vertices – i.e. the product of the maximum number of vertices

multiplied by the number of components that form each vertex. This number has a

great impact on performance so it should always be set to the lowest possible value.

The maximum supported value in Direct3D 11 is 1024.

Primitives accepted by the geometry shader are not limited to either points, lines or

triangles with or without adjacency: they can also be patches. If no shaders are bound

to the Hull or Domain Shader stages then tessellation is inactive. As a result, given

a patch of any dimension set as primitive in the Input Assembler, its control points

will be processed by the Vertex Shader stage and they will be fed altogether to the

geometry shader input.
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Primitives are outputted by the geometry shader by using either PointStream,

LineStream, or TriangleStream HLSL objects – depending on the chosen output topol-

ogy, which is declared statically in the geometry shader signature. These objects sup-

port the Append and RestartStrip operations to append a vertex to the current primitive

strip or start a new strip respectively. A new strip is automatically generated upon

each execution of a geometry shader. Outputs from executions of geometry shaders

running in parallel are independent from one another, even while ordering is respected.

Although the output HLSL objects work with strips, internally they are expanded to

primitive lists. These primitives can be the input of the Rasterizer and/or Stream

Output stages.

Geometry shader instancing was introduced in Direct3D 11 to allow the execu-

tion of a geometry shader several times for the same primitive. In order to activate it,

the geometry shader function must be annotated with the [instance()] attribute, spec-

ifying the number of desired geometry shader instances to be executed per primitive.

In Direct3D 11 the maximum instance count is 32. The SV GSInstanceID system-

generated value semantic may be attached to a geometry shader variable to track which

instance of the geometry shader is being executed.

Function name Description Remarks

GSSetShader Binds a geometry shader

GSSetShaderResources Binds shader resources to be
accessible from the shader

Receives Shader Resource Views which re-
quire resources to be created with the
D3D11 BIND SHADER RESOURCE flag

GSSetConstantBuffers Binds constant buffers Buffers must have been created with the
D3D11 BIND CONSTANT BUFFER flag

GSSetSamplers Binds sampler states

Table 6.6: Geometry Shader configuration API functions.

Table 6.6 shows the API calls used to configure the Geometry Shader stage. For

each call, there is a corresponding one retrieving the configured state. These functions

are essentially the same used to configure the Vertex, Hull and Domain Shader stages.

6.2.5 Stream Output

This optional stage streams out input vertices, received from either the Vertex or Geom-

etry Shader stages, to memory. It can stream vertices to up to 4 buffers simultaneously.

If streaming to a single buffer, 64 scalar components per vertex or vertices with up to
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2048 bytes of stride can be outputted. When streaming to more than one buffer, only

one element having up to 4 components can be written to each buffer. In the same way

that vertex or index buffers must be created using specific bind flags, a buffer that is

to be bound to this stage requires the D3D11 BIND STREAM OUTPUT binding flag

upon creation.

In order for this stage to be active, a geometry shader created through the Cre-

ateGeometryShaderWithStreamOutput API call must be bound, and the destination

stream output buffers must have been set using SOSetTargets. Streaming the output

of the Vertex Shader stage instead of that of Geometry Shader stage is also possible. In

order to set it up, CreateGeometryShaderWithStreamOutput must also be called, but

instead of passing a pointer to the compiled geometry shader as first argument, either

a pointer to the compiled vertex shader or to its output signature must passed.

In the Stream Output stage, primitives are written as a whole – i.e. all their vertices

at the same time. Furthermore, strips are converted into lists before being streamed

out and adjacency data is discarded. The streamed-out vertex buffer can be used as

input for the Input Assembler stage, be bound to and read by shaders, or even be

copied to another buffer accessible by the CPU.

If needed, the number of streamed primitives can be queried. In order to do this,

a D3D11 QUERY SO STATISTICS query must be created to enclose the API calls

leading to the streaming. Once the pipeline has finished its execution, the GetData

method will fill a D3D11 QUERY DATA SO STATISTICS structure containing the

number of primitives written, and the number that would have been written in the case

of the buffers not having enough space. As querying imposes a performance penalty,

the DrawAuto call is available for those cases where a streamed-out vertex buffer is to

be used as input for the Input Assembler stage.

Function name Description Remarks

SOSetTargets Binds target output buffer Buffers must have been created with the
D3D11 BIND STREAM OUTPUT flag

SOGetTargets Gets the target output
buffers

Table 6.7: Stream Output configuration API functions.

Table 6.7 shows the API calls used to configure the Stream Output stage.
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6.2.6 Rasterizer

This stage is in charge of taking vector information – i.e. primitives composed of vertices

– and generating raster images. This process, known as rasterization, was introduced in

Section 5.3. In this section, Direct3D implementation is explained, which also includes

some of the geometric processing optimizations presented in Section 5.2.

The output of the Rasterizer stage are pre-pixels commonly called pixel fragments.

They are the input of the Pixel Shader stage whose output are the actual pixels per

se. While both fragments and pixels have implicit coordinates into either a 2D or 3D

buffer, pixels contain only color information whereas fragments usually consist on more

complex attributes.

”The Rasterizer stage clips (including custom clip boundaries) primitives, performs

perspective divide on primitives, implements viewport and scissor selection, performs

render-target selection, and performs primitive setup”, according to the MSDN docu-

mentation [13]. These operations can be divided into three phases: pre-rasterization

operations executed over primitives, rasterization per se, and raster operations involv-

ing pixel fragments. The most relevant operations implemented by the Rasterizer stage

are, in order:

1. Culling

By default, a triangle is considered front-facing if its vertices are counter-clockwise

and back-facing if they are clockwise. Culling consists on discarding those trian-

gles that are either front- or back-facing. This is useful in complex models where

only the outer part of the model is to be seen and thus, rendering of the inner

side of the triangles can be skipped for optimization.

2. Clipping

Vertices arriving at the Rasterizer stage have been transformed normally using

world, view, and projection matrix multiplication. Now, the rasterizer must apply

a perspective transformation to them. Through this transformation, the viewing

frustum is converted into a new coordinate space and it becomes a cuboid. The

rasterizer takes this cuboid shape and discards primitives not contained by it.

Those with edges outside the cuboid are clipped. Therefore, only primitives
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within the viewing frustum will be rasterized.

3. Viewport mapping

A viewport is used to map vertex positions (in clip space) into render target

positions, projecting 3D positions into 2D space. Normally, a viewport will map

to the whole render target, but its size can actually be smaller; thus, the viewport

may map to a part of the render target.

4. Rasterization

This is the phase performing the actual rasterization – sometimes also called scan

conversion. It determines which pixels are affected by each primitive and gen-

erates fragments associated with them. Rasterization is divided in the following

operations:

(a) Pixel coverage

While primitives are defined in a non-discrete domain, the amount of avail-

able pixels is limited. No matter whenever they are to be stored in memory

or displayed on a screen, the available resolution is finite. Sampling is per-

formed by superposing the primitive on top of a squared grid. The inter-

sections of the grid correspond to pixel centers and those overlapped by the

primitive are said to be covered by it.

Optionally, spatial anti-aliasing techniques can be applied. Aliasing usually

appears as a result of the primitive edge mapping. Edges may appear jagged

because of the discrete resolution offered by the raster image in contrast

of the non-discrete vector data space. Anti-aliasing techniques use higher

intermediate resolutions to obtain more samples of the vector data – i.e.

a more finely grained grid. Then, a filter is applied to those samples to

determine how the available pixels are affected. Line anti-aliasing and multi-

sample anti-aliasing (MSAA) are offered by Direct3D, while other custom

techniques can be implemented.

(b) Fragment generation and attribute interpolation

Once it has been determined which pixels are covered, a fragment must be

created for each one of them. Vertex attributes are interpolated in order to

calculate the values of the attributes composing the fragments.
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Pixels are ultimately positions filled by colors but fragments normally have

several attributes. Color may be one of those attributes whose value can be

determined by interpolating those of the vertices. More commonly, color is

assigned from a texture in the Pixel Shader stage.

The Rasterizer stage can be configured to only generate fragments for those

lines connecting the vertices, thus performing what is known as wire-frame

rendering. In that case, fragments are generated only for those pixels covered

by triangle edges; since no fragments are generated for pixels covered by the

interior of triangles, they are rendered unfilled.

(c) Pixel occlusion

Also known as early depth test, pixel occlusion is an implementation of

the classic Z-buffer algorithm. It checks whenever the affected pixels are

occluded by previously rendered pixels – i.e. they are located behind them.

If that is the case, they are discarded since they will not be visible.

Pixel occlusion requires a depth buffer where the depth of each pixel in

the render target is stored. The interpolated depth of each covered pixel is

checked against the corresponding entry in the depth buffer. If the covered

pixel is occluded – i.e. has more depth – it is discarded and won’t be further

processed. This way, occluded pixels are discarded as soon as possible instead

of being fed to the Pixel Shader stage.

However, there are times when this operation is postponed until pixel shad-

ing finalizes. This may happen for instance, when a pixel shader directly

modifies a fragment’s depth through the SV Depth system-value semantic.

5. Scissor test

This optional test allows the use a of a scissor rectangle to discard rasterized

fragments that fall outside the rectangle. It gives the opportunity to reduce the

number of pixels being sent to the Output-Merger stage. The scissor rectangle

has integer dimensions with maximum values being those of the render target size.

Note that while clipping and viewport mapping operate with vertices, scissor test

is performed over pixels.

Scissor test must be enabled through the ScissorEnable field of the structure used

to configure the rasterizer through the RSSetState API call. Several rectangles

can be set by calling RSSetScissorRects. The default rectangle is an empty rect,

which has the effect of discarding all the pixels if the scissor test is enabled.
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The Rasterizer stage functionality is configured through the RSSetState call. Fur-

thermore, several viewports and scissor rects can be set up passing them to RSSetView-

ports and RSSetScissorRects as arrays. Only one viewport and one scissor rect can be

applied at once. The SV ViewportArrayIndex semantic can be used at runtime to index

both arrays and thus, select a viewport and a rect. If this semantic is not set, the first

element of each array is used. There are a number of system-value semantics generated

by the Rasterizer stage which are passed to the Pixel Shader stage if required, such as

SV IsFrontFace.

The Rasterizer can be disabled by setting no pixel shader and disabling depth and

stencil testing in the Output-Merger stage.

Function name Description Remarks

RSSetState Sets the bulk of the raster-
izer state

RSSetViewports Binds viewports Receives an array of D3D11 VIEWPORT
structs which are essentially volumes

RSSetScissorRects Binds scissor rectangles Receives an array of D3D11 RECT structs
representing rectangles

Table 6.8: Rasterizer configuration API functions.

Table 6.8 shows the API calls used to configure the Rasterizer stage. For each call,

there is a corresponding one retrieving the configured state.

6.2.6.1 Multi-Sample Anti-Aliasing

Single sampling pixel coverage makes a simple yes-or-no decision to determine whenever

a pixel is covered by a primitive. Thus, each pixel will only be covered by a single

primitive and the attributes affecting that pixel – i.e. forming the fragment – come

from the interpolation of that unique primitive, potentially producing jagged edges. As

previously mentioned, anti-aliasing can be used to smooth primitive edges.

When using anti-aliasing, the coverage decision is more complex. Several samples

are taken from different parts of a pixel. Work is done on a sub-pixel level – hence

a higher intermediate resolution is attained. This way, pixels can be considered to be

partly covered. Furthermore, by overlapping different samples of the same pixel, several

primitives may overlap a single pixel. As a result, in order to determine the attributes

of a fragment, the amount of coverage might need to be weighted and more than one
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primitive may need to be considered. Not only does this result in more processing work,

but also more data must be shared between pipeline stages.

At a quick glance, multi-sample anti-aliasing (MSAA) uses a mask to determine

how a pixel is covered by a primitive. For instance, a 4xMSAA could use a 2x2 grid

mask to check four points – known as sub-samples – within each pixel. If these 4 sub-

samples are covered by the primitive then the whole pixel is. The amount of covered

sub-samples can be used to weight the pixel interpolated value. For instance, a pixel

inside a triangle composed by three red vertices would be colored in the very same red

while an edge pixel with only half of the sub-samples covered could get a dim red. As

a result, the color of pixels close to an edge vary on a gradient fashion depending on

how covered they are, effectively smoothing the appearance of the edge.

At some pixels, different primitives may cover some of the sub-samples. Using

4xMSAA – 4 sub-samples – up to four different triangles could fall into a single pixel,

one at each different sub-sample. Each one of those sub-samples would have different

values calculated from the interpolation of their respective vertices. If occlusion testing

is active, only one primitive can be assigned to each sub-sample.

In order to solve these scenarios, a render target big enough to hold pixel attributes

for all sub-samples is required. In a 8xMSAA it must store eight times as many pixels.

This is also true for the depth buffer since it is required to store the depth values for

the different sub-samples of each pixel. Each entry corresponds to a sub-sample and

holds the output of the pixel shader for the pixel that covers that sub-sample.

By default, vertex attributes are interpolated to a pixel center. If the center is

not covered by the primitive but a sub-sample is, attributes are extrapolated to the

corresponding pixel center. These attributes are passed to the Pixel Shader stage. The

pixel shader will be executed once per pixel and only for those pixels with at last one

covered sub-sample, but its output will be replicated in the MSAA Render Target in

all its corresponding covered sub-sample positions. For a pixel half covered by two

primitives in a 8xMSAA – each primitive covering four sub-samples – there will be two

pixel shader executions – one for each primitive covering that pixel. Each pixel shader

will write its output to all the entries in the MSAA Render Target assigned to the

covered sub-samples.

The MSAA Render Target is bigger than the output render target (the actual frame

buffer). Thus, it must be reduced to the output resolution. In order to perform this,
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MSAA Resolve is applied. The default resolve implementation averages all sub-samples

within given pixel. MSAA with the default resolve can be enabled simply by setting

MultisampleEnable rasterizer state to true. The number of samples is specified when

creating the render target, and support can be checked using the CheckMultisample-

QualityLevels method.

Custom anti-aliasing techniques can be implemented through pixel shaders by using

multiple render passes and custom MSAA Render Targets that can be accessed from

the shaders. The default resolve can be explicitly invoked using ResolveSubresource

which takes as arguments the source MSAA Render Target and the destination output

render target.

Besides custom anti-aliasing, vendors have launched hardware implementing more

advanced techniques. Since they are vendor-specific, the availability depends on hard-

ware support and they may not be accessible through Direct3D. For instance, Nvidia

offers Covered-Sample Anti-Aliasing (CSAA) in its GeForce 8 Series GPUs. If sup-

ported by the hardware, CSAA can be configured in Direct3D by setting certain values

of the DXGI SAMPLE DESC structure required to create render targets.

As a final note, it is worth mentioning that sampling is a broad term. Multi-

sampling anti-aliasing must not to be confused with texture sampling. The former refers

to techniques mainly used to smooth jagged edges caused by lowering the resolution

of primitives, while the latter regards the different ways in which texture data can be

read and processed in order to be applied onto triangles.

6.2.7 Pixel Shader

Although much more common than the Geometry Shader stage, the Pixel Shader stage

is also optional and will be skipped if no pixel shader is bound to the pipeline. If active,

it is executed for each pixel fragment generated by the Rasterizer stage.

The pixel shader maximum input size depends on whenever a geometry shader was

executed or not. If it was, the pixel shader can receive up to 32 inputs, each having

up to 4-component of 32-bits, otherwise it is limited to 16 inputs. Besides fragment

attributes, constant buffers and texture data are also commonly consumed by pixel

shaders.
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A pixel shader can output from 0 up to 8 colors, each having up to 4 component of

32-bits. This could be used for instance to write a different RGBA (red, green, blue, and

alpha) color to 8 different render targets. Pixels outputted by the Pixel Shader stage

are said to be shaded and are passed to the Output Merger stage for final operations.

In order to do so, shader variables must be attached to the SV Target[n] system-value

semantic. The other system-value semantic that the pixel shader can modify is the

SV Depth which accesses the corresponding depth value of the pixel being processed in

the depth buffer.

Function name Description Remarks

PSSetShader Binds a pixel shader

PSSetShaderResources Binds shader resources to be
accessible from the shader

Receives Shader Resource Views which re-
quire resources to be created with the
D3D11 BIND SHADER RESOURCE flag

PSSetConstantBuffers Binds constant buffers Buffers must have been created with the
D3D11 BIND CONSTANT BUFFER flag

PSSetSamplers Binds sampler states

Table 6.9: Pixel Shader configuration API functions.

Table 6.9 shows the API calls used to configure the Pixel Shader stage. For each

call, there is a corresponding one retrieving the configured state. These functions are

essentially the same used to configure the other shader stages of the pipeline – namely

the Vertex, Hull, Domain and Geometry Shader stages.

6.2.8 Output Merger

The Output Merger stage is in charge of generating the final rendered pixel color. It

is divided into two phases; first, it performs the last checks to determine if any pixels

shall be discarded and then, it blends the final pixel colors. While it is a fixed-function

stage, the operations are highly configurable and it can also be programmed through

shaders using multi-pass techniques.

There are two tests that can be used to filter pixels that should make it to the

final blending phase. These are the depth and stencil testing which can be individually

activated. They require a depth-stencil buffer. This buffer holds two components per

pixel, corresponding to depth and stencil values. When only depth testing is activated,

the depth-stencil buffer will contain only depth information.
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Depth testing is also known as depth- or Z-buffering. No matter whenever a pixel

comes from a pixel shader or straight from the Rasterizer stage, it has an associated

depth value. This value, is compared through a configurable function against the

corresponding value in the depth buffer. If the result of this comparison is negative

then the pixel is discarded. Otherwise, if stencil testing is also passed the depth buffer

will be updated. A depth write mask can be set in order to control how this update

is performed. Note that if both depth and stencil testing are active and a pixel passes

the depth test but fails the stencil one, it will not only be discarded but also its value

in the depth buffer will not be updated.

If stencil testing is activated, pixels passing the depth test – all pixels if depth

test is disabled – get their stencil value inside the depth-stencil buffer checked against

a reference value. This value can be specified by calling OMSetDepthStencilState. The

depth-stencil buffer value can be both read and written using a mask. Two actual tests

can be configured: one for pixels whose surface normal is facing towards the camera,

and other for those facing away from the camera. In each case, the stencil comparison

function as well as the fail and pass operations can be individually set. Unlike in the

depth test, when a stencil testing fails the stencil component of the depth-stencil buffer

can be updated if required. Stencil testing allows a lot of flexibility, enabling complex

techniques such as compositing or shadow mapping through silhouettes. The depth-

stencil buffer can be read by a shader as a texture when it is not active in the Output

Merger stage. Thus, one rendering pass could write to it and a second pass would

access it from a shader.

The final step performed by the Output Merger stage is blending, which creates the

final pixel color by combining one or more pixel values. The final color can be written

to up to eight render targets and blending can be individually configured for each one

of them. For each pixel, blending is split into two operations: color – i.e. red, green

and blue components – and alpha component blending. In each case, three operations

must be defined: what to do with the pixel shader output, what to do with the value

already in the render target and how to combine the results of both operations. If

MSAA is activated, blending is done at a sub-sample level for sub-samples that passed

the rasterization coverage test.

Normally, each color outputted by the Pixel Shader stage is blended with the color

already stored in the corresponding position in the render target. However, it is also

possible to use another pixel shader output instead. In this case, the resulting pixel

color written to the render target will be the result of blending two pixel shader outputs.
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Like depth and stencil testing, blending can be disabled. If that is the case, the

pixel shader output is written to the render target using the render target write mask,

if set.

There is an additional feature that can be performed by the Output Merger stage:

Alpha-To-Coverage. It is a multi-sampling technique that uses the alpha component

of the pixel shader output as a n-step coverage mask. The Output Merger performs a

logical and operation of this mask with the proper coverage mask for the pixel. This

technique is very useful in situations with high density, low volume geometries.

Despite its flexibility, the Output Merger stages is easily configurable through a few

API calls. Both depth and stencil testing and blending are configured through the func-

tions OMSetDepthStencilState and OMSetBlendState. Furthermore, the render targets

and the depth-stencil buffer are bound to the pipeline by calling OMSetRenderTargets.

These API calls are resumed in Table 6.10. For each call, there is a corresponding one

retrieving the configured state.

Function name Description Remarks

OMSetBlendState Sets the blending state

OMSetDepthStencilState Sets the depth-stencil state

OMSetRenderTargets Binds render targets
and/or a depth-stencil
target

Receives an array of Render Target
Views representing textures created with
the D3D11 BIND RENDER TARGET
flag. A texture created with the
D3D11 BIND DEPTH STENCIL can
be bound as depth-stencil target by
passing a corresponding Depth Stencil
View

OMSetRenderTargets-
AndUnorderedAccess-
Views

Binds render targets, a
depth-stencil buffer and
unordered access resources

Same as OMSetRenderTargets but also re-
ceives an array of Unordered Access Views
that binds unordered access resources to
the Pixel Shader stage

Table 6.10: Output-Merger configuration API functions.

6.3 Compute shader pipeline

DirectX 11 introduced a new pipeline for general-purpose computations: the compute

shader pipeline. Although initially designed to be offered through a new API of the

DirectX family called DirectCompute, it is so tightly integrated with Direct3D that

it has become part of it. Despite being released with DirectX 11, a sub-set of its
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functionality can be run on some DirectX 10 hardware.

Most of the API calls used to set up the graphics pipeline are also required in order

to create a device and configure it to run compute shaders. However, the compute

shader pipeline execution starts by invoking a Dispatch call, in constrast to the Draw

calls that fire the graphics pipeline. For this reason, sometimes the compute shader

pipeline is also referred to as the dispatch pipeline. It consists of only one programmable

stage: the Compute Shader stage. Compute shaders allow to get out of the graphics

domain and see the GPU as a generic grid of parallel processors.

The Dispatch call takes three unsigned integer values whose product determines

how many thread groups to launch. A thread is an execution of the compute shader

and several threads are grouped in order to share memory and synchronization barriers.

The maximum value for each parameter of Dispatch is 65535. This does not mean that

the maximum number of groups that can be issued is 65535. Instead, it means that

each one of the three parameters can be up to 65535.

The compute shader function must be annotated with the HLSL [numthreads(X,Y,Z)]

attribute which specifies the number of threads to be executed in a single group. The

first two dimensions can take values up to 1024 while the third has a maximum value of

64. However, the product of the three dimensions can not be greater than 1024, which

is the maximum number of threads supported per group. These values are not to be

confused with those of the Dispatch call. The numthreads attribute specifies how many

threads are executed per group whereas Dispatch parameters determine how many

groups to launch.

There are four optional system-value semantics that can be consumed by compute

shaders. These semantics correspond to different ways of identifying the thread being

executed as well as its group. This information is commonly used to access a corre-

sponding subset of the input data for processing.

SV DispatchThreadID

It corresponds to the indices for the thread being executed by the compute

shader, within the total number of threads issued. This total number counts

all the threads from all groups. For instance, if a compute shader declared with

[numthreads(3,3,3)] is executed by calling Dispatch(2,2,2), SV DispatchThreadID

would range between 0 and 5 for each dimension.
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SV GroupID

It holds the indices of the thread group to which the thread being executed

belongs. Values will range within those passed to Dispatch – i.e. the number of

groups launched in each dimension.

SV GroupThreadID

It contains the indices for the thread being executed within its thread group.

Possible values range within those specified in the [numthreads] compute shader

attribute.

SV GroupIndex

This is a scalar value corresponding to the flattened index of the thread within

its group – i.e. turns the three-dimensional SV GroupThreadID indices into a one-

dimensional value. Given [numthreads(numThreadsX,numThreadsY,numThreadsZ)],

its value ranges from 0 up to (numThreadsX * numThreadsY * numThreadsZ) –

1 and its formula is:

SV GroupIndex = SV GroupThreadID.z * numThreadsX * numThreadsY

+ SV GroupThreadID.y * numThreadsX

+ SV GroupThreadID.x

Figure 6.4, extracted from the MSDN documentation, shows the relation between

the different values for a Dispatch(5,3,2) call executing a compute shader declared with

[numthreads(10,8,3)] [4].

Memory sharing and thread synchronization are offered to allow more effective par-

allel programming. Variables can be declared to be shared within threads in the same

group by using the groupshared keyword. A number of HLSL intrinsic functions allow

for thread synchronization and memory barriers. For instance, GroupMemoryBarrier-

WithGroupSync, blocks execution of all threads in a group until all group shared access

have been completed and all threads in the group have reached the call (barrier).
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Figure 6.4: System-values semantics according to Dispatch and numthreads parameters
[4].

As memory bandwidth is the main limitation in today applications using the GPU,

shared memory is actually the main reason for the existence of thread groups. Reads

and writes to shared memory are faster than buffer loads and stores.

Direct3D 11 supports double types in shader code but since it is not required by

any feature level it depends on hardware support. Check for its support by the cur-

rent graphics driver can be performed by querying CheckFeatureSupport for D3D11-

FEATURE DOUBLES.

Switching between the compute and graphics pipeline causes a hardware context

switch. Thus, pipeline switching should be minimized.

Table 6.11 shows the API calls used to configure the Compute Shader stage. For

each call, there is a corresponding one retrieving the configured state. With the excep-
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Function name Description Remarks

CSSetShader Binds a compute shader

CSSetShaderResources Binds shader resources to be
accessible from the shader

Receives Shader Resource Views which re-
quire resources to be created with the
D3D11 BIND SHADER RESOURCE flag

CSSetUnorderedAccessViews Binds resources supporting
unordered access

Receives Unordered Access Views which
require resources to be created with the
D3D11 BIND UNORDERED ACCESS
flag. It allows to specify the initial position
into the buffer, if the views support such
functionality

CSSetConstantBuffers Binds constant buffers Buffers must have been created with the
D3D11 BIND CONSTANT BUFFER flag

CSSetSamplers Binds sampler states

Table 6.11: Compute Shader configuration API functions.

tion of CSSetUnorderedAccessViews, these functions are essentially the same used to

configure the shader stages of the graphics pipeline.

6.4 Memory resources

Memory resources contain the data consumed or produced by the Direct3D pipelines.

At a high level, resources can be split into buffers and textures, created using the

CreateBuffer and CreateTexture API calls respectively. For each pipeline stage, up to

128 resources can be active.

Resources may be accessed from CPU, GPU, or both; each case may support read

access, write access, or both. Table 6.12 shows the different categories of resources

according to its intended usage. This usage is specified upon creation through the

D3D11 USAGE enumeration. CPU access is optional for those usages supporting it:

CPU write access can be given to dynamic and staging resources, as well as CPU

read access to staging resources. Resources should be created based on its exact usage

requirements in order to be optimized. For instance, immutable resources should be

used if their content will never get updated; a staging resource should not be given

CPU write access if it will only be used to copy data from the GPU to the CPU.
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Usage Description
GPU Access CPU Access

Bindable
Read Write Read Write

Default Most common resource usage ✓ ✓ Input,
Output

Immutable Initialized upon creation and then only
readable by the GPU

✓ Input

Dynamic Read by the GPU and updated by
the CPU – typically once per frame –
through the Map/Unmap API calls

✓ (✓) Input

Staging Used to transfer data from the GPU to
the CPU using CopyResource

Copy Copy (✓) (✓) No

Table 6.12: Resource usages with their supported accesses and stage binding.

6.4.1 Buffers

A buffer resource contains unstructured memory. Buffers may contain any kind of data,

managed by the CPU through the API or by the GPU through shaders. Direct3D is

not concerned about its format, types or semantics. The information required upon

creation comprises its total size in bytes, how it will be accessed by the GPU and

optionally the CPU, and how it will be bound to the pipeline.

Notwithstanding the general purpose and flexibility of buffers, there are three special

types employed for specific functions:

Vertex buffers

Contain the vertex data forming a geometry. Each vertex contains a number

of attributes defined through a layout, usually including position coordinates,

normal data for illumination algorithms and texture coordinates. They are read

by the Input Assembler stage to feed vertex data to the pipeline. In order to

do so, they must be bound by calling IASetVertexBuffers and the vertex layout

must also be specified through IASetInputLayout.

Index buffers

Constitute arrays of 16 or 32-bit integers. Each entry in an index buffer points

to the location of a vertex inside a vertex buffer. By using index buffers, vertices

can be reused and primitives can be rendered more efficiently. An index buffer

can be bound to the Input Assembler stage by calling IASetIndexBuffer.

Constant buffers
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Contain 1-to-4 component elements that can be efficiently supplied as shader

constant data to the pipeline. Constant buffers must be bound to the shader

stage that requires them using the proper SetConstantBuffers API call. Up to

16 shader-constant buffers can be bound to a shader stage, each holding up to

4096 constants. Although constant buffers provide an efficient way of supplying

constant data to the shaders, they should be updated as few times as possible

in order to minimize pipeline state changes and data transfers between the CPU

and the GPU. In order to do so, data is usually grouped into constant buffers

according to update frequency.

Buffers can be simultaneously bound to multiple pipeline stages for reading. Also,

they can be bound to a single pipeline stage for writing, but the same buffer cannot be

bound simultaneously for reading and writing. Respecting this restriction, either vertex

or index buffers can be bound as targets to be written by the Stream Output stage by

calling SOSetTargets. Furthermore, if they are created as generic shader resources, they

can be bound to any stage using a Shader Resource View and calling the corresponding

SetShaderResources API function.

6.4.2 Textures

A texture is a structured resource with a known size storing texels. Each texel contains

1-to-4 components following one of the formats enumerated by the DXGI FORMAT

structure – provided by the DirectX Graphics Infrastructure, the underlying graphics

architecture. The format may be typeless or it may specify the data type of the com-

ponents. Furthermore, textures can be either 1D, 2D, or 3D; each of them created with

or without mipmap levels. Arrays of both 1D and 2D textures are also supported.

A mipmap level is a texture that is a power-of-two smaller than the level about it.

Mipmaps are used for level-of-detail (LOD) texturing as each level contains a different

level of the detail of the texture.

Figure 6.5 exhibits the composition of a 2D texture array with 3 mipmap levels.

Each element of the array is a 2D texture with 3 mipmap levels: the base level with

the complete grid of 5x3 texels, the second level with bottom rounded square root

dimensions (2x1) and the third with just one texel (its dimensions calculated the same

way). In HLSL shader code, texture objects have a mips method that can be used to
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access texels from a specific mipmap level.

Figure 6.5: Texture2D array of 3 elements with 3 mipmap levels.

Textures can be read directly but unlike buffers, they can also be filtered using up

to 16 samplers. Since they may be bound and read from different pipeline stages, the

*SetSamplers API methods are used to set samplers for each shader stage.

Unlike buffers, textures must always have an associated format specified through

the DXGI FORMAT enumeration. This format can include a type or not but at least

it will always specify the number of components and their size. If a texture is created

typeless, the type will be fully specified using a view adapter when the texture is bound

to the pipeline.

As stated in Section 5.4.1, while nowadays more sophisticated techniques have been

developed, traditionally textures have been used as images mapped onto polygons.

Related with this interpretation of textures as images, is their use as render targets

where the Output Merger stage stores the result of the rendering. The frame or front

buffer – storing what is shown in the screen as result of the rendering – is nothing more

than a bi-dimensional texture used as render target and internally associated with an

area of the screen.

6.4.3 Accessing resources from shaders

It has been explained that upon resource creation, its intended usage must be specified.

Using this information, Direct3D can perform optimizations. Another important issue

is how a resource is to be bound to the pipeline. For instance, a texture can be created

in order to be used as a render target for the Output Merger stage, an index buffer as

input for the Input Assembler stage, or a vertex buffer as an output buffer of the Stream

Output stage. By specifying the intended binding, Direct3D can further optimize the

resource allocation and usage. However, a resource can also be created indicating that it
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is a generic shader resource and thus, it can be bound to any shader stage. Although this

has certain restrictions and is generally less efficient, generic shader resources provide

great flexibility.

Resources in Shader Model 4 are read only from shader code, and can only be read

through the HLSL Load method of either Buffer or Texture objects. Introduced with

Direct3D 11, Shader Model 5 extends the objects supporting the resources, not only

adding write access to existing objects – as is the case with RWTexture and RWBuffer

– but also introducing new objects with new access and structure capabilities:

RWTexture1D, RWTexture1DArray, RWTexture2D, RWTexture2DArray, RWTex-

ture3D : provide read and write access to textures as well as a mips method to

specify the mipmap level.

RWBuffer : provides read and write access to a buffer which can be indexed using

square brackets.

StructuredBuffer, RWStructuredBuffer : they provide read only, and read and

write access buffers containing elements of equal sizes. Its structure must be

declared through a struct type that is passed to its declaration and whose fields

can be used to access the individual elements of each position in the buffer.

ByteAddressBuffer, RWByteAddressBuffer : they provide read only, and read and

write access to raw buffers respectively through byte indexing – i.e. addressing

bytes instead of indexing the position of an element of the buffer. They can

be accessed through chunks of 1-to-4 32-bit typeless address values. These raw

buffers – also called byte address buffers – are not compatible with constant or

structured buffers.

A special type of structured buffers areAppendStructuredBuffer and ConsumeStruc-

turedBuffer which are stacked resources allowing unordered access from multiple

threads without memory conflicts.

6.4.3.1 Unordered access resources

Resources created with the D3D11 BIND UNORDERED ACCESS support temporary

unordered reads and writes from multiple threads and can be bound to either pixel or

compute shaders. For compute shaders, unordered access resources are set through the
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CSSetUnorderedAccessViews API call. In the case of pixel shaders, they are set through

the method OMSetRenderTargetsAndUnorderedAccessViews along with render targets

and the depth-stencil buffer if desired. Unordered access views used to bind these kind

of resources to the pipeline must be created with the DXGI FORMAT UNKNOWN

format.

Shader Model 5 objects AppendStructuredBuffer and ConsumeStructuredBuffer sup-

port unordered access. They behave like stack data structures, allowing respectively

to add and remove values from the end of a buffer through the Append and Consume

methods respectively. These objects are templated by a user-defined struct type that

specifies the format of each entry in the buffer.

While Direct3D 11 only supports unordered access resources in the Pixel and Com-

pute Shader stages, DirectX 11.1 enables their use from other shader stages.

6.4.4 Typeless resources and views

Resources can be typeless by specifying the number of components and bit count of its

elements, but not the type of the components. For instance, a resource may be formed

by elements of 4 components occupying 32 bits but it may not be specified whenever

the values of the components are integer, unsigned integer, floating point, etc. The

desired data type is established when the resource is bound to the pipeline through

a resource view – note that the number of components and bits per component must

match, only the type can vary. Views are data adapters indicating a pipeline stage

how to interpret resource data – this can be pictured as casting the resource data to a

particular context. Depending on the type of view, other capabilities are also exposed.

In Direct3D 11 there are 4 types of views:

ID3D11ShaderResourceView : used to bind generic resources to shader stages

through *SetShaderResources.

ID3D11UnorderedAccessView : used to bind unordered access resources to either a

pixel shader or a compute shader through OMSetRenderTargetsAndUnorderedAc-

cessViews and CSSetUnorderedAccessViews respectively.

ID3D11RenderTargetView : used to bind textures as render targets through OM-

SetRenderTargets* – i.e. as destination resources where the Output Merger stage
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will write to.

ID3D11DepthStencilView : used to bind a texture as depth-stencil buffer through

OMSetRenderTargets*.

6.5 Configuration and execution examples

Two examples of applications using Direct3D 11 are illustrated in this section. The

first one, consists of a Windows application drawing an empty triangle by rendering

three lines using the graphics pipeline. The other one is a console application that uses

the compute pipeline to perform a matrix addition on the GPU and then print the

result.

Instead of C++, pseudo-code is used respecting API function names as well as

constant names, although stripped of their ”D3D11 ” prefix. Furthermore, parameters

are simplified, using individual elements instead of structures and focusing only on

those relevant for the example.

6.5.1 Graphics pipeline example: drawing a triangle using lines

In this section, a basic example of windowed application using Direct3D 11 is presented.

This example is intended to provide a quick but overall look of the Direct3D API and

how it is used to manage the graphics pipeline. Moreover, the concepts of swap chains

and contexts are introduced.

The pseudo-code in Algorithm 5 presents how to set up Direct3D 11. Algorithm

6 configures the pipeline and executes the rendering of three lines forming a triangle.

The code requires a window handle to a Windows window, and the width and height

of the render area within that window. Furthermore, two arrays are used: one holding

the vertices forming the lines and the other storing indices that define how to use the

vertices for drawing. Finally, a vertex and a pixel shader are used; their byte-code must

have been either loaded from a file or previously compiled at run-time from the HLSL

source.

The vertices array is composed of just 3 vertices that will be interconnected through

101



Chapter 6. Direct3D 11 Pipelines

Algorithm 5: Direct3D 11 device and resource creation pseudo-code.
Data: windowHandle← Handle to the application window

width← Width of the render area within the window

height← Height of the render area within the window

vertices← Array with the vertex data

indices← Array with the indices pointing to vertex positions

vertexShaderBytecode← Pointer to the vertex shader byte-code

pixelShaderBytecode← Pointer to the pixel shader byte-code

/* Device and swap chain creation */

1 device, swapChain← D3D11CreateDeviceAndSwapChain(DRIVER TYPE HARDWARE,

FEATURE LEVEL 11 0, width, height, windowHandle,

USAGE RENDER TARGET OUTPUT, SWAP EFFECT DISCARD)

/* Buffer creation */

2 vertexBuffer← device.CreateBuffer(USAGE IMMUTABLE, BIND VERTEX BUFFER,

vertices)

3 indexBuffer ← device.CreateBuffer(USAGE IMMUTABLE, BIND INDEX BUFFER,

indices)

4 constantBuffer ← device.CreateBuffer(USAGE DYNAMIC, CPU ACCESS WRITE,

BIND CONSTANT BUFFER)

/* Render target view creation */

5 renderTargetT exture← swapChain.GetBuffer(0)

6 renterTargetV iew ← device.CreateRenderTargetView(renderTargetTexture)

/* Depth buffer, view required to bind it and associated state */

7 depthBuffer← device.CreateTexture2D(USAGE DEFAULT, BIND DEPTH STENCIL,

width, height)

8 depthV iew← device.CreateDepthStencilView(depthBuffer)

9 depthState← device.CreateDepthStencilState(COMPARISON LESS)

/* Input layout and more fixed-function state */

10 layout← device.CreateInputLayout(...)

11 blendState← device.CreateBlendState(ALPHA BLEND)

12 rasterizerState← device.CreateRasterizerState(FILL SOLID, CULL NONE)

/* Vertex and pixel shaders creation from previously compiled bytecode */

13 vertexShader← device.CreateVertexShader(vertexShaderBytecode)

14 pixelShader← device.CreatePixelShader(pixelShaderBytecode)
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lines, thus drawing an empty triangle. This is achieved by using an indices array holding

the following six integers: { 0, 1, 1, 2, 2, 3 }. These numbers correspond to positions

of the vertices buffer and each successive pair forms a line connecting the corresponding

vertices. Both arrays are defined in main memory and need to be transferred to video

memory in order to be available for the Input Assembler stage. This is performed

through the creation of the vertex and index buffers at lines 2 and 3 of Algorithm 5.

Both buffers are created as immutable resources since they will not be updated, and

each one has a specific flag indicating its special purpose for the Input Assembler. A

constant buffer is also created in order to supply per-frame constant data to the vertex

shader from the CPU. In this example, this data consists on the transformation matrix

used to convert vertex positions.

Vertex detail is omitted from the code. In this example, they would be composed

by 7 floats: 3 for vertex position coordinates and 4 for red, green, blue, and alpha color

channels. This is specified through an input layout, created at line 10 of Algorithm 5,

and then passed to the Input Assembler at line 2 of Algorithm 6.

A swap chain is used to handle the presentation of the render results to the appli-

cation render area within the window. Swap chains are a generalization of the double

buffering technique. Double buffering uses two buffers: the back buffer, and the front

or frame buffer. The former is the working buffer, where the rendering result is being

written. The latter is the buffer corresponding to the graphics being shown on the

screen. When a new rendering pass has finished, the buffers are swapped: the back

buffer holding the result becomes the frame buffer and the next render is written to the

former frame buffer. This way, visual flickering resulting from intermediate rendering

results is avoided. Moreover, the swapping can be synchronized with the screen update

interval. As its name implies, swap chains extend the double buffering technique by

enabling the creation of chains composed of several back buffers.

Each buffer of a swap chain corresponds to a render target. Render targets are

resources where the pipeline can write its output to. More specifically, render targets

are bi-dimensional textures – i.e. images. Furthermore, render targets are usually as-

sociated to DXGI surfaces which are memory buffers associated to areas of the screen

handled by DXGI. In this example, this association is established upon swap chain cre-

ation by passing the application window handle to D3D11CreateDeviceAndSwapChain

at line 1 of Algorithm 5. Given the flexibility of render targets, a view adapter must be
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used in order to bind a resource as render target for the pipeline. This is accomplished

through the render target view created at line 6.

A bi-dimensional texture is created to be used as a depth buffer at line 7. In this

case, each pixel of the texture holds a depth value instead of a color. A view is also

created in order to instruct the pipeline to properly interpret it. Furthermore, it is

required to indicate which comparison the depth test must perform. A blending state

is created in order for the Output Merger to blend pixels based on their alpha color

component at line 11.

Algorithm 6 shows the pseudo-code in charge of configuring the pipeline and then

managing the rendering in the render loop. First, all the pipeline stages are configured:

resources are bound, states are set for fixed-function stages, and shaders are bound

to shader stages. Unless any of these change between render passes, there is no need

to configure the pipeline again. This is accomplished by the use of contexts. In the

example an immediate context is obtained from the device at line 11. While resources

are managed through the device interface, rendering is performed through contexts,

which can either be immediate or deferred. Immediate contexts are single-threaded

and are used to actually execute the render commands whereas deferred contexts can

be accessed from multiple threads recording differing render commands that will be

later executed by an immediate context. Contexts were introduced in Direct3D 11,

enabling a more efficient usage of the GPU through multi-threading.

The render loop is in charge of invoking the rendering. In this example, only

one pass (Draw invocation) is required per frame, but normally, several passes are

involved in order to generate a single frame. Furthermore, this example contemplates

the continuous rendering of frames while in some applications this is not the case and

rendering is performed upon request.

Line 14 updates the world-view-projection matrix in the constant buffer. In order

to do so, it must be mapped to main memory – hence the calls enclosing that line.

getUpdatedWorldViewProjMatrix call states an entry point for the transformation ma-

trix update logic, which normally takes into account a time variable for animation and

camera moves.

Both the render target and the depth buffer are reset, through their corresponding
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Algorithm 6: Direct3D 11 graphics pipeline configuration and execution pseudo-

code.
Data: device, resources, views, and states created in Algorithm 5

1 context← device.GetImmediateContext()

/* Configure the Input Assembler stage */

2 context.IASetInputLayout(layout)

3 context.IASetPrimitiveTopology(PRIMITIVE TOPOLOGY LINELIST)

4 context.IASetVertexBuffers(vertexBuffer)

5 context.IASetIndexBuffer(indexBuffer)

/* Configure shader stages */

6 context.VSSetShader(vertexShader)

7 context.PSSetShader(pixelShader)

/* Configure Rasterizer and Output-Merger stages */

8 context.RSSetState(rasterizerState)

9 context.OMSetBlendState(blendState)

10 context.OMSetDepthStencilState(depthState)

11 context.OMSetRenderTargets(1, renterTargetView, depthView)

/* Render loop */

12 for each render pass do

/* Update per-frame constant data */

13 context.Map(constantBuffer, MAP WRITE DISCARD)

14 constantBuffer.Matrix← getUpdatedWorldViewProjMatrix()

15 context.Unmap(constantBuffer)

16 context.VSSetConstantBuffer(constantBuffer)

/* Clear render target and depth-stencil buffers */

17 context.ClearRenderTargetView(renderTargetView, black)

18 context.ClearDepthStencilView(depthView, CLEAR DEPTH, 1)

/* Begin the pipeline execution */

19 context.DrawIndexed(6, 0, 0)

20 swapChain.Present()

end
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view adapters, prior to the draw call. The render target is cleared to a black color and

the depth buffer to 1 which corresponds to the farthest possible value since the default

viewport ranges between 0 and 1.

A DrawIndexed call is performed in order to launch the graphics pipeline execution.

Following the supplied parameters, the Input Assembler will read the first six indices

with neither vertex nor index offsets. Since the topology set corresponds to a line list,

each two indices are used to fetch the pointed vertices from the vertex buffer, assembly

a line primitive connecting them and feed it to the pipeline. Following, those vertices

are processed by the bound vertex shader, where the transform matrix stored in the

constant buffer is used to multiply the vertex position coordinates. After this operation,

primitives pass to the Rasterizer stage in charge of outputting pixel fragments to the

Pixel Shader stage. There, the pixel shader will output a color value for each fragment.

Finally, the Output Merger stage will take this color and perform alpha blending with

the color already stored in the same render target pixel, if any. Once the Output

Merger finishes processing all the colors outputted by the pixel shader, the render

target contains the final image, which can then be swapped to the frame buffer. This

is performed through the call to Present at line 20.

Algorithm 7: Vertex and pixel shaders HLSL code.

1 cbuffer cbPerFrame { // Constant Buffer
2 matrix g mViewProjection;
3 };

4 struct VS INOUT { // Vertex structure
5 float4 Color : COLOR;
6 float3 Position : SV Position;
7 };

8 VS INOUT VS ( VS INOUT Input ) { // Vertex shader function
9 VS INOUT output = Input; // Input is read-only, so a copy is used for modification

10 output.Position = mul( float4( Input.Position, 0.5), g mViewProjection) ;
11 return output;
12 }

13 float4 PS ( VS INOUT Input ) : SV Target { // Pixel shader function
14 return Input.Color; // No-op: just pass through the color
15 }

Algorithm 7 shows the HLSL code implementing both shaders. cbPerFrame declares

the constant buffer expected to be bound when the shaders are executed; it contains the

matrix used to transform vertex positions in the vertex shader at line 10. A structure

is defined in order to be used as both input and output of the vertex shader function
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(VS ) as well as the input of the pixel shader function (PS ). In many cases the input

and output of the vertex shader differs, thus declaring two different data structures.

The pixel shader simply receives the output of the vertex shader and outputs the

color, which was previously interpolated by the rasterizer using the involved vertices

colors in each case. Two system-value semantics are used: SV Position and SV Target

system-value semantics, used to indicate the pipeline which data represents the vertex

position and the pixel output color, respectively. The other semantic name – (COLOR),

used in the VS INOUT struct – is user-defined, and matches the Color field with the

corresponding entry of the input layout set in the Input Assembler.

This example uses three lines to paint an empty triangle. This could have also been

accomplished by rendering directly an empty triangle using TOPOLOGY TRIANGLE-

LIST and FILL WIREFRAME at line 3 of Algorithm 6 and line 12 of Algorithm 5,

respectively. Furthermore, the draw call at line 19 would have to be replaced by Draw(3,

0), or by DrawIndexed(3, 0, 0) and the index buffer updated to { 0, 1, 2 }. However,

when the rasterizer is configured with wire-frame filling, no color interpolation is done

and thus, the lines would be painted in plain white unless the pixel shader takes care

of this.

6.5.1.1 Managing pipeline state using Effects

Using the Effects framework, all the graphics pipeline state can be managed using

HLSL code. Although in the example the Direct3D device and buffers creation, along

the Input Assembler configuration would still need to be created through the API, the

rest of the state and shader management could be disregarded. By managing it through

HLSL, the only concern for the application would be to load and compile the HLSL

file containing the effect and invoke it in the render loop. The HLSL code is shown in

Algorithm 8. Note that the vertex and pixel shaders from Algorithm 7 are also included

in this file at line 1. The HLSL structs defining the state correlate to those of the API.

6.5.2 Compute pipeline example: matrix addition

In this section, a simple sample of a compute shader performing the addition of two

8192-elements matrices is shown. Its pseudo-code is exhibited in Algorithm 9. The
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Algorithm 8: HLSL code of an Effect managing the pipeline state.

1 #include ”shaders.fx” // VS and PS shader functions

2 RasterizerState rs // Rasterizer stage state
3 {
4 FillMode = Solid;
5 CullMode = NONE;
6 };

7 DepthStencilState ds // Output-Merger depth-stencil state
8 {
9 DepthEnable = true;

10 DepthFunc = Less;
11 };

12 BlendState bs // Output-Merger blending state
13 {
14 BlendEnable[0] = true;
15 };

16 technique10 Render
17 {
18 pass P0
19 {
20 SetVertexShader( CompileShader( vs 5 0, VS ) );
21 SetPixelShader( CompileShader( ps 5 0, PS ) );
22 SetRasterizerState(rs);
23 SetDepthStencilState(ds);
24 SetBlendState(bs);
25 }
26 }

result obtained is stored in a buffer in video memory and then mapped to the CPU in

order to print the data. The inputs for this operation are both matrices, their size and

the byte-code of the compiled compute shader.

A Direct3D 11 hardware device is created at line 1, followed by the creation of the

compute shader. Then, four buffers are created. The first two buffers, are initialized

with the data of the matrices, and are created as structured buffers, bindable as shader

resources. They are also immutable since their contents will not change. The third

buffer, also a structured one, will store the result of the matrix addition and is bindable

as unordered access view in order to support unordered writing from the different

threads performing the addition. These three buffers have the same byte size and

number of elements. The fourth buffer is a staging buffer, used to copy the data

contained in the result buffer and making it available to the CPU for reading through
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Algorithm 9: Direct3D 11 compute shader example pseudo-code.
Data: matrixSize← Number of floats composing the matrices: 8192

matrixA← Matrix A of size matrixSize

matrixB← Matrix A of size matrixSize

computeShaderBytecode← Pointer to the compute shader byte-code

/* Device and compute shader creation */

1 device← D3D11CreateDevice(DRIVER TYPE HARDWARE, FEATURE LEVEL 11 0)

2 computeShader← device.CreateComputeShader(computeShaderBytecode)

/* Buffer creation */

3 bufferSize← sizeof(float) * matrixSize

4 bufferA← device.CreateBuffer(USAGE IMMUTABLE, BIND SHADER RESOURCE,

RESOURCE MISC BUFFER STRUCTURED, bufferSize, matrixSize, matrixA)

5 bufferB ← device.CreateBuffer(USAGE IMMUTABLE, BIND SHADER RESOURCE,

RESOURCE MISC BUFFER STRUCTURED, bufferSize, matrixSize, matrixB)

6 resultBuffer ← device.CreateBuffer(USAGE DEFAULT, BIND UNORDERED ACCESS,

RESOURCE MISC BUFFER STRUCTURED, bufferSize, matrixSize)

7 copyBuffer ← device.CreateBuffer(USAGE STAGING, CPU ACCESS READ)

/* View creation */

8 shaderResourceV iewA← device.CreateUnorderedAccessView(bufferA,

SRV DIMENSION BUFFEREX, DXGI FORMAT UNKNOWN)

9 shaderResourceV iewB ← device.CreateUnorderedAccessView(bufferB,

SRV DIMENSION BUFFEREX, DXGI FORMAT UNKNOWN)

10 resultUnorderedAccessV iew← device.CreateUnorderedAccessView(resultBuffer,

UAV DIMENSION BUFFER, DXGI FORMAT UNKNOWN)

/* Configure the Compute Shader stage */

11 context← device.GetImmediateContext()

12 context.CSSetShader(pixelShader)

13 context.CSSetShaderResources(shaderResourceViewA, shaderResourceViewB)

14 context.CSSetUnorderedAccessViews(resultUnorderedAccessView)

/* Begin the execution: dispatch groups of threads */

15 context.Dispatch(matrixSize, 1, 1)

/* Copy the results to a CPU-readable buffer and map it for CPU access */

16 context.CopyResource(copyBuffer, resultBuffer)

17 mappedResource← context.Map(copyBuffer, MAP READ)

18 printResult(mappedResource.pData)

19 context.Unmap(copyBuffer)
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mapping.

Following, view adapters are created in order to bind the resources to the compute

shader. Two shader resource views are created for the input buffers storing the matrices

as well as an unordered access view for the result buffer. For structured buffers, the

DXGI FORMAT UNKNOWN is compulsory since buffer elements follow user-defined

structures instead of abiding a predefined DXGI format. If raw buffers were to be used

instead, DXGI FORMAT R32 TYPELESS would be required.

In order to prepare the compute pipeline for executing, its only stage must be

configured, in our example by binding the shader and the three views. Once this has

been done, the execution can begin. The call at line 15 dispatches 8192 groups of

threads. The number of threads forming each group is declared in the shader code, in

this example it would be just one, declared through the attribute [numthreads(1,1,1)]

annotating the main compute shader function.

After dispatching the thread groups, the result buffer is copied into the staging

buffer. Then, the staging buffer is mapped to the CPU for reading. The contents can

then be used, in this case being passed to a function in charge of printing the results

to a console, as illustrated at line 18.

Algorithm 10: Compute shader HLSL code.

1 StructuredBuffer<float> InputMatrixA : register(t0);
2 StructuredBuffer <float> InputMatrixB : register(t1);
3 RWStructuredBuffer<float> ResultMatrix : register(u0);

4 [numthreads(1,1,1)] // 1 thread per group
5 void main ( uint gi : SV GroupIndex ) {
6 ResultMatrix[gi] = InputMatrixA[gi] + InputMatrixB[gi];
7 }

Algorithm 10 shows the HLSL code for the compute shader. It declares the required

structured buffers and simply performs the addition of the position corresponding to

the thread being executed within input matrices, storing it in the same position of the

result matrix.
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CHAPTER7
Dynamic Polyline Simplification On The GPU

Power grids are formed by power lines sprawled over the geography linking different

types of nodes such as substations, power plants, or consumers. Geometrically, they

are nothing more than polylines: sets of interconnected segments (or individual lines).

They are analogous to the Direct3D line strip primitive topology, defined by a set of

points where each point forms a line with its predecessor. This chapter presents three

different approaches to polyline simplification using the Direct3D 11 pipelines. They

all perform the simplification in the GPU and the results stay in its memory. Moreover,

each implementation performs the simplification on a different stage of the pipelines:

the Geometry and Hull Shader stages of the graphics pipeline, and the Compute stage

of the compute pipeline.

A windowed application has been implemented for each approach, with two vari-

ations in the case of geometry shader polyline simplification. Before presenting each

implementation in detail, the process of generating a quadrangle from a line primitive

is explained since it is extensively used by all of them. Furthermore, they all can be

compiled with support to output the number of rendered primitives, which is useful to

gather statistics of the simplification results. This is accomplished by taking advance

of the Stream Output stage features, as explained in this chapter along with the use of

the D3DX Utility Library (DXUT) to develop Graphical User Interfaces (GUI) for the

different applications.

7.1 Quads generation

Quadrangles – usually called quads for short – are planar polygons with four sides (or

edges) that can be formed using two adjacent triangles. Rectangles are a special case
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of quads, having four edges of same lengths in pairs and thus, can be defined by two

lengths and an orientation. When that orientation is either vertical or horizontal, a

rectangle can be defined through a width and height. Figure 7.1 illustrates the process

of generating a quad from these two parameters: a width and a line corresponding to

its height. The width defines the length of the base of the rectangle while the line

defines its height. Once the dimensions of a rectangle are defined, the location of its

four vertices must be determined, yielding as result a positioned and oriented rectangle.

This can be done in several ways using the coordinates of the two points composing

the line that defines its length. For instance, the line itself could be used as the left

edge of the rectangle and the opposite edge calculated by adding the product of the

left normal vector to both vertices. Another approach consists on establishing the line

as the bisector line of the width: for each one of the points of the line, two vertices

are located in the perpendicular direction of the line at half the width distance from

it, one to the left and the other to the right. This is illustrated in the middle of Figure

7.1. By placing the line as the bisector, the rectangle widens uniformly to the left

and right of it, leaving the original line always in the center. This is useful when the

location is relevant as is the case of this work, where the position of the lines correspond

to geographic coordinates and maximum consistency is desired. Once the four vertex

positions have been calculated, two adjacent triangles can be created to form the quad.

Figure 7.1: Quad generation from a line and a width.

Other types of quadrilaterals besides rectangles can be formed by using two different

widths. Only a small modification of the algorithm would be required in order to use

the width of each point of the line instead of both points using the same width [33].

This width would be part of the vertex data for each point of the line and thus, would

be available for the vertex and geometry shaders just like its coordinates. However,
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in all the implementations presented in this chapter the same width is given to all the

quads being rendering and instead of passing it along other vertex data, it is supplied

to the shaders through a constant buffer. The value of the width contained in the

constant buffer can be updated before each rendering, allowing for the application to

modify the width of all the lines composing the rendered power grid.

In this section, two quad generation approaches are presented. The first one uses

vertex shaders to properly place pre-defined vertices, while the second takes advantage

of the capabilities of geometry shaders to generate new primitives dynamically. This

second approach is the one employed by all the different implementations presented in

this chapter. Nevertheless, the first approach is interesting since it is compatible with

older hardware.

7.1.1 Vertex shaders

Vertex shaders can be used to calculate the position of each of the four vertices of a

quad from its bisector line and its width. In order to do so, two vertices must have been

previously created for each point of the bisector line. These two vertices have the same

coordinates and must also include the coordinate of the other point of the bisector line

they form. Furthermore, they also must include the width required to calculate their

final coordinates. Actually, the width is halved and this is the only value where both

vertices created for the same point of the bisector line differ: they have the same width

value with opposite signs. Optionally, they can also have different colors. Summing

up, for each quad, four vertices must exist in the vertex buffer, each one including in

its vertex data at least two coordinates, a width and a color.

Figure 7.2: Vertex displacement from the bisector line.

Once the vertices have been properly stored in the vertex buffer, a triangle list
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topology may then be used along with an index buffer. For each quad, six entries are

stored in the index buffer pointing to the four vertices of the vertex buffer forming two

adjacent triangles.

Algorithm 11 shows the High-Level Shading Language (HLSL) code for the vertex

shader. The vertex shader function is called Widen and it receives all the enumer-

ated vertex data. It also has the transform matrix – required to transform vertex

coordinates to screen space – stored in a constant buffer, through the WorldViewProj

variable. The shader updates the vertex position according to the vector linking both

points of the bisector line and the width value. Then, multiplies the calculated po-

sition by the transform matrix, and returns the result along the received color. This

positioning is illustrated in Figure 7.2. The vertex shader is only concerned about cal-

culating the proper vertex positions. Based on the indices stored in the index buffer,

the corresponding vertices will be linked to form the triangles that will be received by

the Rasterizer stage.

Algorithm 11: Vertex shader quad generation HLSL code.

1 float4x4 WorldViewProj : WORLDVIEWPROJECTION;

2 struct VS OUTPUT {

3 float4 pos : POSITION;

4 float4 color : COLOR0;

5 };

6 VS OUTPUT Widen(float4 Pos : POSITION0, float4 Opp : POSITION1, float Width :

PSIZE0, float4 Color : COLOR) {

7 VS OUTPUT Out = (VS OUTPUT) 0;

8 float2 dir = Width * normalize(Pos.xy - Opp.xy);

9 Pos.x += dir.y;

10 Pos.y -= dir.x;

11 Out.pos = mul(Pos, WorldViewProj);

12 Out.color = Color;

13 return Out;

14 }
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The HLSL code in Algorithm 11 only requires a vs 2 0 vertex shader profile and

thus, it may be used in older hardware. The main drawback of this approach is that

since each vertex requires to store not only the position corresponding to its point but

also the other point of the line, a lot of redundant information is required and thus,

storage requirements are increased. The next section shows how a geometry shader can

not only avoid this per-vertex data redundancy, but also halve the number of vertices

by only requiring two vertices per quad to be stored in the vertex buffer. As a result, by

using geometry shaders, the video memory required to store vertex positions is reduced

in a 75%. Nevertheless, as it was already stated, this vertex shader implementation can

be used in older hardware where geometry shaders will most likely not be supported.

7.1.2 Geometry shaders

Geometry shaders – introduced in Section 6.2.4 – are executed over the whole primitives

and allow to output a varying number of primitives. Furthermore, the type of the input

and output primitives can be different. These capabilities make geometry shaders ideal

for quad generation: a geometry shader can receive the bisector line as primitive and

output two adjacent triangles forming the quad. This allows to work with lines as

primitives, either using line lists or strips topologies. Neither duplicated vertices nor

vertex data besides the vertex position is required – although color and width may also

be included. This saves both memory and processing time.

The HLSL code of the geometry shader performing the quad generation is shown in

Algorithm 12. The calculation is analogous to that performed by the vertex shader in

the previous section, but in this case it is performed for all four vertices in one execution

of the geometry shader. Both vertices forming the line are received as input, following

the VS OUTPUT structure outputted by the vertex shader. The vertex shader code, in

charge of performing the vector-matrix multiplication, has been omitted for simplicity.

Note that since this matrix transformation is performed in the vertex shader, it is

carried only twice per line, whereas in the vertex shader quad generation it is performed

four times per line.

In the code shown, both the width and color are vertex data. Instead, they could be

provided as global variables supplied through constant buffers. The geometry shader

first calculates the quantities it must offset each of the line’s coordinates and then
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appends four vertices to the output TriangleStream object corresponding to each quad

vertex. The HLSL TriangleStream object behaves like a strip and thus, by outputting

four vertices, two adjacent triangles are emitted. Since the geometry shader always

outputs four vertices, this is the maximum output vertex count. Accordingly, the

geometry shader function is annotated with [maxvertexcount(4)].

A comparison of vertex shader and geometry shader quad generation for power grid

visualization has been presented in [53]. In that work, two implementations of the

geometry shader quad generation were tested. The first one, performs the geometry

shader quad generation on every render – the same way it was presented in this section.

The second implementation performs the quad generation only when the width setting

is changed and then saves the results to a vertex buffer through the Stream Output

stage. That vertex buffer is then bound as input for rendering. Results show that the

latter is more expensive than the former both in terms of speed and memory. This

is due to the large amount of new vertices emitted by the geometry shader that are

stored in video memory and that must be processed by the vertex shader when reusing

its output in subsequent draws. When the quads are generated per-draw, only two

vertices per line must be processed by the vertex shader as opposed to the six vertices

of the two triangles generated by the geometry shader per line. Even the vertex shader

implementation requires less executions at the Vertex Shader stage, since it processes

four vertices per line. Even more, for power grids composed by more than one million

lines, when the geometry shader needs to write the generated quads to the Stream

Output buffer, it yields even slower rendering times than the implementation using

vertex shaders [53].

7.2 Stream Output statistics support

The different implementations presented in this chapter perform the simplification at

different stages of the graphics pipeline or using the compute pipeline, but all have

a common point at which the simplification has already been performed: after the

geometry shader. Primitives outputted by the Geometry Shader stage are those who

made it through the simplification process, no matter where it was performed. Know-

ing this, the Stream Output stage can be used to find out how many primitives are

being outputted by the geometry shader and thus, how many primitives yielded the
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Algorithm 12: Geometry shader quad generation HLSL code.

1 struct VS OUTPUT {

2 float4 Position : POSITION;

3 float Width : WIDTH;

4 float4 Color : COLOR;

5 };

6 struct GS OUTPUT {

7 float4 Pos : SV Position;

8 float4 Color : COLOR;

9 };

10 [maxvertexcount(4)]

11 void GS( line VS OUTPUT input[2], inout TriangleStream<GS OUTPUT> Stream ) {

12 GS OUTPUT output = (GS OUTPUT) 0;

13 float2 dir = normalize(input[0].Position.xy - input[1].Position.xy);

14 float2 offset0 = input[0].Width / 2 * dir;

15 float2 offset1 = input[1].Width / 2 * dir;

16 output.Color = input[0].Color;

17 output.Pos = input[0].Position;

18 output.Pos.x -= offset0.y;

19 output.Pos.y += offset0.x;

20 Stream.Append(output);

21 output.Color = input[1].Color;

22 output.Pos = input[1].Position;

23 output.Pos.x -= offset1.y;

24 output.Pos.y += offset1.x;

25 Stream.Append(output);

26 output.Color = input[0].Color;

27 output.Pos = input[0].Position;

28 output.Pos.x += offset0.y;

29 output.Pos.y -= offset0.x;

30 Stream.Append(output);

31 output.Color = input[1].Color;

32 output.Pos = input[1].Position;

33 output.Pos.x += offset1.y;

34 output.Pos.y -= offset1.x;

35 Stream.Append(output);

36 }
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simplification.

In order to be able to use the Stream Output stage, geometry shaders must be

compiled with Stream Output support. Normally this is done by calling CreateGeome-

tryShaderWithStreamOutput instead of the CreateGeometryShader API call. The only

difference is that the former requires a D3D11 SO DECLARATION ENTRY array

specifying the elements being outputted by the geometry shader to the Stream Output

stage. No buffers are created to hold those elements since the only interest for this

work is finding out their total count. To do so, a D3D11 QUERY SO STATISTICS

query must be created, and the Draw calls performing the rendering must be en-

closed between Begin and End calls received the query as parameter. After the End

has been called, a D3D11 QUERY DATA SO STATISTICS structure can be obtained

through the GetData call. This structure contains two fields: NumPrimitivesWritten

and PrimitivesStorageNeeded. The former indicates how many primitives have actually

been written to Stream Output buffers. In the event of buffers getting filled or if there

are no bound Stream Output buffers (as is the case presented here), the PrimitivesStor-

ageNeeded field hold the number of primitives that would have been written – on top

of those already written, if any.

It is worth mentioning that activating the Stream Output stage – by compiling

a shader with its support – imposes a small performance penalty, even if no data is

actually being written to Stream Output buffers. Because of this penalty, the Stream

Output support by the different implementations depends on a specific compiler flag.

When it is active, the GUI of the developed application has an extra button labeled

Peek SO primitives. When the user clicks this button, the number of primitives being

outputted by the geometry shader is queried in the next rendering and a message

is shown in the application console reporting the value. The rationale behind this

implementation is performing the query only after a request by the user – i.e. for the

subsequent draw – instead of continuously on every rendering, which would impact

performance.
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7.3 D3DX Utility Library

The D3DX Utility Library (DXUT) is a support library providing helper functions for

Direct3D set up, texture handling, or graphical user interface (GUI) components among

others. Although its usage has been deprecated in Windows 8, it is nevertheless useful

for quick development and experimental applications. Evidencing the full integration of

DirectX with Windows, starting with Windows 8, the DirectX Software Development

Kit (SDK) has become part of the Windows SDK. The DXUT is no longer shipped

with it, but it can still be obtained from previous versions of the DirectX SDK. It is

distributed as C++ source code that has to be compiled prior to its use. Thus, it is

common to include it as a library project during development that is statically linked

to the application upon compilation.

Figure 7.3: Capture of a windowed Direct3D application with a DXUT GUI.

In this work, the DXUT has been used to initialize Direct3D, create a GUI and

manage the main loop of the application. DXUT handles the main loop by listening

for events and invoking the proper callbacks. These events include Direct3D events,

DXUT GUI interaction events, or Windows messages – such as the request to close the
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main window.

A capture of a windowed Direct3D application using DXUT is displayed in Figure

7.3. This application corresponds to one of the implementations detailed later in this

chapter. Text drawing is not supported by Direct3D and thus, all the text displayed

is being drawn through DXUT. Furthermore, button, slider, and toggle button DXUT

GUI components are also used. When the user interacts with any of these components,

DXUT invokes a GUI event handler function which must have been set by the developer

during DXUT initialization.

7.3.1 Common GUI components

While several GUI components appear on Figure 7.3, the most relevant ones are the

Width and Threshold sliders. These sliders control the corresponding values passed

through constant buffers to the shaders. The width setting is used to control the quad

generation, as explained in the previous section. As it will be described in the following

sections, the threshold setting is in charge of controlling the polyline simplification

by establishing the minimum length that lines must have to survive the simplification

process. The third slider, labeled Tessellators, is specific for the implementation shown

in the figure and its purpose is explained in Section 7.4.4.4.

The first two sliders are common to all the implementations developed. Further-

more, the yellow text on the top left corner shows information about the current frame-

rate, dimension and format of the front and back buffers, as well as the current device

in use. Other controls that are common to the developed implementations are:

1. Toggle full screen: switches between windowed and full screen modes.

2. Toggle REF: switches the type of Direct3D device used for rendering, between a

hardware device and the reference software implementation. The latter provides a

software emulation device supporting all the Direct3D features but it is obviously

slower than hardware devices.

3. Change device: opens a detailed settings environment where advanced Direct3D

options can be changed.
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4. Save bitmap: writes the next rendered frame to a bitmap file on disk.

5. Peek SO primitives: available only when compiled with Stream Output support

(see Section 7.2). Once this button is clicked, the application prints to the console

the number of primitives outputted by the Geometry Shader stage.

6. Toggle HUD: shows or hides the user interface that is displayed on top of the

rendered power grid visualization.

7. Alpha blend: if checked, alpha blending is activated in the Output Merger stage.

8. Toggle wires: if checked, the rasterizer will only generate fragments for the poly-

gon edges – thus not filling the polygons.

Some of these controls have keyboard shortcuts, shown in parenthesis after their

names.

7.4 GPU polyline simplification implementations

Four different applications implementing three different GPU polyline simplification

approaches are presented in this section. They differ in the stage at which the sim-

plification is performed and the number of shaders involved. These stages correspond

to the Compute Shader stage of the compute pipeline, and the Geometry Shader and

Tessellation stages of the graphics pipeline. In order to test the Geometry Shader stage

approach more thoroughly, two applications have been developed instead of just one,

allowing for different configurations of geometry shaders to be tested.

All four applications present the render results in a window while also having a

console enabled to output log information such as average rendering performance, con-

figuration changes, number of primitives being processed on the GPU, or data statistics.

They all share the DXUT GUI previously introduced, they all can be compiled with

Stream Output statistics support to find out how many primitives survive the simpli-

fication, and they all perform quad generation through geometry shaders. They also

share the simplification algorithm, although the way it is implemented varies greatly.

Following, the simplification algorithm is presented before delving into the different

implementations.
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7.4.1 Simplification algorithm

The main purpose of this work was to reduce the complexity of power grids through

polyline simplification in order to enhance the rendering performance and to make the

visualization appear less cluttered. More specifically, the intention was to engineer

different solutions taking advance of modern graphics cards. As a result, the main

focus was studying the different possible approaches, and less focus was put into the

specific algorithm performing the polyline simplification.

Algorithm 13: Polyline simplification pseudo-code.
Data: inPolyline← Ordered list of points forming the input polyline

Threshold← Minimum length required for the segments of the polyline

Result: outPolyline← Ordered list of points forming the output polyline

1 outPolyline.Add(inPolyline.First)

2 previousPoint← inPolyline.First

3 for i← 1 to inPolyline.Size - 1 do

4 point← inPolyline.Get(i)

5 if distance(point, previousPoint) >= Threshold then

6 outPolyline.Add(point)

7 previousPoint← point

end

end

/* The last point has not been added */

8 if outPolyline.Last != inPolyline.Last then

outPolyline.Add(inPolyline.Last)

end

The pseudo-code of the polyline simplification algorithm implemented by the dif-

ferent solutions is shown in Algorithm 13. It is a simple algorithm, checking the length

of each segment forming the polyline. It does so in order, beginning by the segment

formed by the first and second points, then the next segment formed by the second

and third points and so forth, until the last point is reached. A segment must have a

length equal or greater than a certain threshold value in order to be kept. Otherwise,

its ending point is discarded and a new segment composed by the starting point and

the next point from the original polyline is formed. The length of this segment is then

checked against the threshold. This process goes on until either a new segment long
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enough is formed or the last point of the input polyline is reached. It may happen

that no segment including the last point was long enough. This scenario is handled

at line 8, where the last point of the input polyline is added to the output polyline if

it was not already there. The first point of the input polyline is always also the first

point of the output polyline, as can be seen at line 1. Keeping the same first and last

points is the only restriction of the algorithm. This is required in order to maintain the

topological connectivity between polylines. If the first and last points of polyline were

discarded, some polylines would cease to be connected with others. Thus, in the most

extreme case of simplification, the algorithm will return a polyline composed of just

one segment – i.e. a single line – linking the first and last points of the input polyline.

7.4.2 Polyline simplification using the Compute pipeline

In this implementation, a compute shader is used to perform the power grid simplifi-

cation. Branches of the power grid are stored as vertices composing consecutive line

strips in a vertex buffer, while another buffer holds strips information – namely, the po-

sition within the vertex buffer where each strip begins and how many vertices conform

it. The compute shader accesses these two buffers and processes the strips, removing

lines considered too short to be noticeable – criterion configurable through a threshold

value. As a result, the compute shader generates an index buffer that is used along the

original vertex buffer to render the power grid lines.

While rendering is performed continuously, the simplification is performed on-

demand. This means that the simplification is only performed when required: after the

application is initialized and prior to the first render, and every time the threshold is

changed. The user is allowed to modify the threshold through a slider of the GUI; when

that happens, the compute shader is executed previous to the next rendering. Since

the compute shader writes the simplification results to an index buffer stored in video

memory, it does not need to be executed again until the threshold parameter varies.

7.4.2.1 Simplification

The compute shader is invoked to operate over strips performing the simplification by

calling Dispatch; for each strip, a thread is dispatched, as illustrated in Figure 7.4. The
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shader requires access to each strip, the vertices forming part of it, and a threshold

constant defining the minimum length required for the lines composing the strip. This

data is supplied through three buffers. First, an immutable vertex buffer with raw

views support stores the vertices, and a shader resource view is created in order to bind

it to the compute shader as a byte address buffer. Second, the strips information is

stored in an immutable structured shader resource buffer, and the corresponding shader

resource view is created for its binding. Lastly, the threshold constant and the total

number of strips, are supplied through a constant buffer, updateable from the CPU.

Besides the three input buffers, two more buffers must be created. One is required by

the compute shader to write its output: a structured shader resource buffer, supporting

unordered access. Since unordered access buffers can not be bound as index buffers,

another buffer must be created for this. Once the compute shader has finished, the

content of the unordered access structured buffer is copied into it. As exhibited in

Figure 7.4, this is performed through the CopyResource function.

Figure 7.4: Compute shader invocation.

Prior to the execution of the compute shader, the constant buffer is updated and

then bound through the CSSetConstantBuffers API call. The vertex and strips buffers

are bound by calling CSSetShaderResources, and the output structured buffer is also

bound through CSSetUnorderedAccessViews. Once the resources have been set, the
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compute shader can be invoked by dispatching as many threads as existing strips.

This is performed by calling Dispatch. Since memory sharing between threads is not

required, a group composed by a single thread is dispatched for each strip.

The compute shader uses its unique SV DispatchThreadID semantic value to access

the strips structured buffer. Each entry in that buffer contains two unsigned integers:

the first is an index pointing to the position of the initial vertex of the strip within the

vertex buffer, while the second holds the vertex count for that strip. Vertices forming

strips are stored consecutively in the vertex buffer. Thus, the compute shader loops

over the strip vertex count. On each iteration, the next vertex is loaded and the length

of the line formed by the retrieved vertex and the one loaded in the previous iteration

is checked against the threshold supplied through the constant buffer. If the length is

smaller than the threshold, the line is discarded and the previous vertex is marked as

pending of being connected. This vertex will then be used in the following iteration

as the starting vertex to form the next line, instead of the vertex which ended the line

discarded. If that line does not pass the test either, the process continues until another

does or the final vertex of the strip is reached. In the latter case, the pending vertex is

connected to the final one. Lines are outputted by the shader by writing the indices of

the two vertices composing each line to the output unordered access structured buffer.

The pseudo-code for the compute shader is shown in Algorithm 14. A simpler

version of this algorithm consists on merely discarding those lines not passing the

test, regardless of the topological connectivity. This yields a lighter algorithm and a

reduced number of outputted primitives. The drawback is that it has a great impact

on visualization since it removes the topological connectivity not only between strips

but also between the segments within strips.

As soon as the compute shader has processed all the strips, indices for the lines that

made through the simplification are stored in the output structured buffer. As stated

before, buffers created with index buffer bind flags can not be bound as unordered

resources and thus, the contents of the compute shader output buffer must be copied

onto an index buffer that will later be bound to the Input Assembler for rendering.
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Algorithm 14: Compute shader strip simplification pseudo-code.
Data: ThreadID← Unique thread identifier, ranging between 0 and the total number of strips

Strips← Structured buffer containing the beginning vertex and vertex count for each strip

VertexBuffer← Vertex buffer containing all the vertices

Threshold← Minimum length a line must have

Result: OutputBuffer← Unordered access structured output buffer

1 strip← Strips[ThreadID]

/* Initialize the previous vertex to the first vertex of the strip. None is

pending until a line too short is found. Each vertex occupies 32 bytes */

2 pending ← false

3 pendingIndex← strip.beginIndex

4 previousV ertex← VertexBuffer.Load(strip.beginIndex * 32)

/* Iterate for each line */

5 for i← 1 to strip.length - 1 do

6 vertexIndex← strip.beginIndex + i

7 vertex← VertexBuffer.Load( vertexIndex * 32 )

if distance(previousVertex, vertex) >= Threshold then

if pending then

8 OutputBuffer.Append(pendingIndex, vertexIndex - 1)

9 pending ← false

end

10 OutputBuffer.Append(vertexIndex - 1, vertexIndex)

else

/* Current line is too short. If there is already a pending vertex we

keep going, otherwise we establish the current previous as pending */

if ! pending then

11 pendingIndex← vertexIndex - 1

12 pending ← true

end

end

13 previousV ertex← vertex

end

if pending then

/* The last line was too short (hence the pending vertex): the pending and

the last vertex of the strip must be connected */

14 OutputBuffer.Append(pendingIndex, strip.beginIndex + strip.length - 1)

end
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7.4.2.2 Rendering

Once the strips have been simplified by the compute shader and the resulting output

structured buffer has been copied into the index buffer bindable to the Input Assembler

stage, the graphics pipeline execution in charge of rendering the lines can begin. As

it has been stated, it is not required for the compute shader to be executed prior to

each render, only when the threshold parameter controlling the minimum length for

the lines has changed.

Figure 7.5: Graphics pipeline configuration to render the results of the compute
pipeline.
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Figure 7.5 exhibits all the active graphics pipeline stages with the most relevant

configured behavior. A DrawIndexed call is used to execute the pipeline and thus, not

only the vertex buffer but also an index buffer is required to be bound to the Input

Assembler. Furthermore, the consumed topology is line lists. After being fetched from

the vertex buffer, the required vertices are passed to the vertex shader where their

coordinates are transformed to screen space through vector-matrix multiplication. The

transformation matrix is used to control the viewpoint of the rendered scene and it is

passed from the application to the shader through a constant buffer that needs to be

explicitly bound to the vertex shader. This constant buffer is not the same as the one

used to pass the threshold to the compute shader, since neither the data nor the update

requirements are the same.

Lines with their vertices transformed by the vertex shader arrive at the geometry

shader which is in charge of generating a quad – i.e. two adjacent triangles forming a

rectangle – for each line. In order to do so, a width is required. In this implementation,

this information is obtained from the same constant buffer where the transformation

matrix is stored and thus, it must also be bound to the geometry shader. Note that

storing the width as vertex data would provide more flexibility, allowing each line its

own width and even different beginning and end widths. This would only impact

vertex storage requirements, not execution times, but would make updating widths

more costly. By passing a fixed width for all lines through the constant buffer, the

width can be easily updated between renderings.

The Rasterizer is configured to fill the triangles by interpolating the color values

of the vertices. Alternatively, wire-frame rendering can be activated through the GUI

in order to instruct the Rasterizer not to fill the generated triangles. Culling is not

required since the power grid topology has geographic coordinates without height and

thus, it is planar. Fragments generated by the Rasterizer arrive at the pixel shader

who simply outputs the interpolated color values. If alpha blending has been activated

through the GUI, these color values are then blended by the Output Merger with the

values already present in their corresponding render target pixels – if any – based on

the alpha component. When alpha blending is disabled, pixel colors present in the

render target are overwritten.
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7.4.2.3 Graphical user interface

A capture of the GUI of the implemented application is shown in Figure 7.6. All the

components are common to the other applications (described in Section 7.3.1) except

for the toggle button labeled Keep topology. When this toggle is checked (default)

Algorithm 14 is used, which maintains topological relationships. This means that

beginning and end points are always kept and that connectivity is always ensured

both between polylines and between segments within a polyline. When the toggle is

unchecked, these restrictions are ignored and polylines segments are discarded whenever

their length is smaller than the threshold. As a result, more primitives are discarded

at the expense of no longer maintaining the topology.

Figure 7.6: Windowed Direct3D application implementing the compute shader simpli-
fication.
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7.4.3 Polyline simplification using the Geometry Shader stage

In this implementation, the polyline simplification is performed at the Geometry Shader

stage. Three buffers are required: a constant buffer, an immutable byte access buffer

and an immutable vertex buffer. The constant buffer contains the vertex transformation

matrix, the threshold that controls the minimum length for the lines, and the width

desired for the generated quads. It may be updated a maximum of once per frame,

if either the view point, the width, or the threshold value are modified by the user

through the GUI. The immutable byte access buffer holds the vertices composing the

polylines, stored as strips. This means that vertices are laid out in the buffer following

their order in the strips and that vertices forming part of more than one strip will be

repeated. Furthermore, the strips have been sorted out by their length, in an ascending

fashion. Although vertices are stored in this buffer, it will not be bound as input of the

Input Assembler stage. Instead, the third buffer, holding information about the strips

will be bound as the input vertex buffer for the pipeline. Each entry of this vertex

buffer consists on two unsigned integers. The first one points to a position of the byte

access buffer where the initial vertex of a strip is located. The second integer, indicates

the length of that strip – i.e. the number of vertices composing it and thus, consecutive

positions on the byte access buffer containing the corresponding vertices. No primitive

is to be set up from this data and thus, the Input Assembler is configured with the

point list primitive topology. Since the byte access buffer is to be accessed from the

geometry shader, a shader resource view needs to be created in order to bind it. Figure

7.7 shows a strips buffer and its entries, pointing to the corresponding vertex buffer

locations; the layout of the data contained in each of those locations is also presented.

No vertex data is actually fed to the pipeline and thus, there is no work to do for the

vertex shader except just returning the received strip information. This information,

consisting on the strip initial vertex location and the strip length is then passed to the

Geometry Shader stage. There, a shader loads those vertices forming the strip from

the immutable byte access buffer. It does so iterating over the strip length, loading one

vertex on each iteration and checking whenever the line formed by the loaded vertex

and the previous one has a length equal or larger than the threshold parameter. The

geometry shader HLSL code is shown in Algorithm 15.
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Figure 7.7: Strips and vertex buffers used by the geometry shader implementation.

The HLSL code is the implementation of the Algorithm 14, adapted to the specifics

of the geometry shader and using the described buffers. The immutable byte access

buffer is accessed through the VertexBufferIn object. Using its Load2 method, two

floats corresponding to the first two coordinates of a vertex are retrieved from the

buffer on each iteration. A global color is used for all quads instead of using the value

from the vertex data. This value is stored in the UP TO 32 COLOR constant which

is specified at shader compile time. Also, the g fThreshold global variable holds the

threshold parameter passed through the bound constant buffer – whose declaration has

been omitted from the code for convenience.

The EmitQuad is an HLSL function created to factor code and omitted for sim-

plicity. Its code is basically the same shown in Algorithm 12, but receiving the two

vertices as two parameters instead of through a 2-element array, and also receiving the

output TriangleStream object as well as the desired color for the quad. Vector-matrix

multiplication is performed over the two input vertices to transform their positions to

screen space – subsuming the typical task of the vertex shader. Before returning, the

EmitQuad also calls the RestartStrip method of the TriangleStream, so that it is ready

to generate a new quad on a subsequent invocation.

The geometry shader is limited by its maximum output, restricted in Direct3D 11
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Algorithm 15: HLSL code for a geometry shader simplifying up to 32-vertices

strips.

struct VS OUTPUT {

uint beginIndex : BASE INDEX;

uint length : VERTEX COUNT;

};

struct GS OUTPUT {

float4 Pos : SV Position;

float4 Color : COLOR;

};

ByteAddressBuffer VertexBufferIn : register(t0);

[maxvertexcount(128)]

void GS upto32( point VS OUTPUT strip[1], inout TriangleStream<GS OUTPUT> Stream )

{

bool isPending = false;

float2 vertex;

float2 prev = asfloat(VertexBufferIn.Load2( strip[0].beginIndex * 32));

float2 pendingVertex = prev;

float4 color = UP TO 32 COLOR;

for (uint i = 1; i < strip[0].length; i++) {

vertex = asfloat(VertexBufferIn.Load2( (strip[0].beginIndex + i) * 32 ));

if ( distance(prev, vertex) >= g fThreshold ) {

if (isPending) {

EmitQuad(pendingVertex , prev, Stream, color);

isPending = false;

}

EmitQuad( prev, vertex, Stream, color);

} else if (!isPending) {

pendingVertex = prev;

isPending = true;

}

prev = vertex;

}

if (isPending)

EmitQuad( pendingVertex, vertex, Stream, color);

}
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to 1024 scalar components. Each vertex outputted by the geometry shader – written

to the TriangleStream object from the EmitQuad function – contains 8 scalars (Pos

and Color fields of GS OUTPUT). Thus, 128 vertices is the maximum value that can

be outputted by the implemented geometry shader, as evidenced by the [maxvertex-

count(128)] attribute in Algorithm 15. Since each quad requires four vertices, the

maximum number of lines that can be outputted by an execution of the geometry

shader is 31. This limits the maximum length of the resulting simplified polylines. Fur-

thermore, the value provided to the [maxvertexcount()] attribute has a notable impact

on performance: the larger its value, the bigger the performance penalty. This penalty

is based on the indicated value and is incurred even when that maximum is not actually

reached – i.e. fewer vertices are outputted.

In order to minimize this performance penalty, multiple versions of the same geom-

etry shader with different values for [maxvertexcount()] can be compiled. For instance,

instead of using the geometry shader exhibited in Algorithm 15 for all polylines from

2 up to 32 points, another copy of the same shader but annotated with [maxvertex-

count(64)] could be used to process polylines composed by up to 16 points. Those

having between 17 and 32 points would be processed by the previous shader. Since the

vertices composing strips are laid out in the buffer according to its strip length, batch

draws are trivial. Upon buffer creation, positions pointing to where a new strip length

begins are stored. Using these indices, Draw calls are issued for each range of desired

strip lengths after binding the proper geometry shader.

Another obvious optimization related to [maxvertexcount()] is the case of single

lines – i.e. polylines with just two points. These lines do not require any simplification

and they will always output 4 vertices (a single quad). The code for the geometry

shader used to generate single lines is shown in Algorithm 16.

Algorithm 16: HLSL code for a geometry shader generating a quad for a single

line.

[maxvertexcount(4)]

void GS line( point VS OUTPUT strip[1], inout TriangleStream<GS OUTPUT> Stream )

{

EmitQuad(asfloat(VertexBufferIn.Load2( strip[0].beginIndex * 32)) ,

asfloat(VertexBufferIn.Load2( (strip[0].beginIndex + 1) * 32)), Stream,

SINGLE LINE COLOR);

}
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The Rasterizer and Output Merger stages are configured exactly as in the Compute

Shader implementation. The Rasterizer is configured either to fill the triangles by

interpolating the color values of vertices or to generate just wire-frames. Culling is not

required since the power grid topology has geographic coordinates without height and

thus, it is planar. Fragments generated by the rasterizer arrive at the pixel shader who

simply outputs the interpolated color values. If enabled through the GUI, these color

values are then blended by the Output Merger with the values already present in their

corresponding render target pixels – if any – based on the alpha component.

Two geometry shaders have been presented in this section: one simply generating

a quad for single lines, and other performing simplification over polylines but which

is able to only output up to 32 points. Although several versions of the latter have

been proposed in order to perform optimizations based on the lengths of the polylines,

the maximum output count of 32 points stands. In order to overcome this limitation,

geometry shader instancing was used.

7.4.3.1 Geometry shader instancing

Geometry shader instancing consists on executing the same geometry shader more than

once for the same primitive. It was introduced with Direct3D 11 and for that version,

the maximum instance count is 32 – i.e. a geometry shader may be executed up to 32

times for the same primitive. It is activated simply by annotating the geometry shader

function with [instance()], specifying the desired number of instances to be run for each

primitive.

When instancing is enabled, the SV GSInstanceID system-value semantic may be

assigned to a geometry shader parameter in order to check which instance is being

executed. Using instancing, the geometry shader presented in Algorithm 15, could be

used to output up to 1024 points for a single polyline. Note that the size of the input

polyline is theoretically unlimited since it is being directly accessed through the byte

access buffer instead of flowing from one pipeline stage onto another. In practice, it is

limited by the maximum loop iterations supported by Direct3D.

In order to support the simplification of polylines composed by more than 32 points

– more specifically, polylines that after having been simplified still have more than 32
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points – different versions of the geometry shader with [maxvertexcount(128)] (maxi-

mum 32 outputted points) were compiled, only differing in the [instance()] attribute.

The shader compiled with [instance(2)] can output up to 64 points, the one compiled

with [instance(3)] up to 96, and so on. By looking at the SV GSInstanceID value, each

shader instance focuses on a different subset of 32 points of the polyline. The downside

of this approach is that the segments where one instance ends and other begins are not

eligible for simplification. Furthermore, in this work, only the shader outputting up to

32 points has been instanced. Some performance gain could be attained by instancing

shaders with smaller [maxvertexcount()] at the expense of making more segments not

eligible for simplification – because the first and last points of each polyline must always

be kept.

7.4.3.2 Graphical user interfaces

Two applications using geometry shaders for polyline simplification have been devel-

oped. The first one allows the user to chose among 3 different polyline simplification

configurations, using either 4, 5, or 6 geometry shaders. These configurations are shown

in Table 7.1 and a capture of its GUI is shown in Figure 7.8. The Geometry shaders

slider has three different positions corresponding to each one of the mentioned config-

urations.

Configuration

1st 2nd 3rd

2 - 32

2 (single lines) 2 (single lines)

3 - 32
3 - 5

6 - 32

33 - 64 (2 instances)

65 - 96 (3 instances)

97 - 128 (4 instances)

Table 7.1: Range of points covered by each geometry shader for each possible configu-
ration.
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Figure 7.8: Windowed Direct3D application implementing the geometry shader simpli-
fication with three possible shader configurations.

The second application allows the user to chose between 5 and 34 geometry shaders

through the slider labeled with # GS [3-32] – for the number of geometry shaders in

use – which ranges between 0 and 30. When set to 0, 5 geometry shaders are used: one

generating quads for single lines, other simplifying polylines having between 3 and 32

points inclusive, and 3 instanced versions of the latter, ranging between 33 and 64, 65

and 96, and 97 and 128 points inclusive. By increasing the value assigned to the slider,

other geometry shaders are introduced which adjust to specific polyline lengths. For

instance, when 1 is set, another geometry shader simplifying polylines composed of 3

points is used on top of the other 5. If the slider is set to 2, another one for polylines of

length 4 is added, for a total number of 7 geometry shaders being executed. This goes

on until the setting of 30, in which case, 34 geometry shaders are executed: one for

single lines, 30 for each length between 3 and 32 inclusive, and three instanced versions

of the 32-points length geometry shader for 2, 3, and 4 instance counts. A list of these

34 shaders can be seen on the left of the capture of this implementation, shown in
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Figure 7.9. Furthermore, the number of polylines having the corresponding length is

displayed in parenthesis for each shader.

Figure 7.9: Windowed Direct3D application implementing the variable geometry shader
simplification.

Note that all the 30 geometry shaders adjustable through the slider consist ex-

actly on the same HLSL code with their only difference being the value assigned to

the [maxvertexcount()] annotation. This value can be parameterized at compile time

through a constant passed to the shader compiler. This way, instead of repeating the

shader code, a simple loop compiling the same geometry shader code after updating

the corresponding value for each iteration can be used.

Like the compute shader implementation, both implementations feature an alter-

native simplification geometry shader that does not take into account topological con-

nectivity: its only regard is whenever each individual line has a length larger than the

threshold. The Keep topology toggle allows to switch to this geometry shader.
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7.4.4 Polyline simplification in the tessellation stages

Tessellation employs a different set of topologies than the classic graphics pipeline:

the pipeline must be fed with patches instead of points, lines or triangles – either

as strips or lists, with or without adjacency information. Patches are composed by

between 1 and 32 control points. These control points can represent anything and

actually are handled as vertices by the pipeline, requiring an associated input layout

just like any other vertex. Therefore, polylines composed by up to 32 points can be

fed to the pipeline as patches. The potential benefit compared to the geometry shader

implementation presented in the previous section, is avoiding a considerable number of

direct memory accesses from the shader to retrieve the vertices for each strip. However,

the largest patch has 32 points, thus requiring other means to perform simplification

over larger polylines.

The implementation presented in this section, follows a mixed approach: for poly-

lines composed by up to 32 points, the simplification is performed in the patch-constant

function of the hull shader, while for lines with more than 32 points, it is carried by a

geometry shader with instancing. Actually, the length of the polylines to be simplified

through tessellation stages can be controlled by the user through a Tessellators param-

eter. The geometry shader will be in charge of simplifying those lengths not covered

by tessellation and, when the user sets the Tessellators parameter to 0, the implemen-

tation is equivalent to the geometry shader simplification from previous section. Thus,

this implementation can be seen as an extension of the geometry shader simplification,

introducing an alternative method for polylines having between 3 and 32 points.

7.4.4.1 Implementation

The same three buffers used by the geometry shader simplification are required for this

implementation: a constant buffer employed to pass the transformation matrix along

with the threshold and width parameters, an immutable byte access buffer storing the

vertices, and an immutable buffer holding the strips information bindable as input

vertex buffer. The only difference is that in this implementation, the byte access buffer

is also bindable as input vertex buffer – this is accomplished simply by enabling the

D3D11 BIND VERTEX BUFFER extra flag upon its creation. This buffer serves a

double purpose, depending on whether the simplification is being performed by the
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tessellation or the geometry shader. In the case of tessellation, it is bound as the input

vertex buffer and the patches control points are fetched from it. When simplification

is performed by the geometry shader, it is accessed directly from the geometry as

described in the previous section – a shader resource view is used to bind the resource

to the geometry shader. Two input layouts are required: one for the patches formed

by the vertices from the byte access buffer, and other for the strips.

The byte access buffer actually contains the vertices forming the strips, stored in a

increasing order by strip length, beginning by the single lines. Indices are kept for the

positions of the buffer where the length of stored strips change. These indices are used

to invoke batch draws for all the strips having the same length using the proper shaders,

as shown in Algorithm 17. Since there are many variables involved, their description

has been omitted from the pseudo-code, being shown instead in Table 7.2.

Rasterizer, Pixel Shader and Output Merger stages are independent of the simplifi-

cation method used and thus, are configured only once per rendered frame. The pixel

shader simply outputs the received fragment color. Like in the other implementations,

both the Rasterizer and Output Merger stages are configured according to what the

user has selected in the GUI. This allows the user to select whenever he wants alpha

blending to be active and/or wire-frame rendering – i.e. rendering only the edges of

the triangles.

First, polylines simplified using tessellators are rendered. In this work, the term tes-

sellator refers to a certain Tessellation stage state, including hull and domain shaders

for a given patch size. The byte access buffer holding the vertices is bound as input

vertex buffer and its layout is passed to the Input Assembler stage. The user selects

how many tessellators to use through a slider in the GUI. Possible values range from

0 (no tessellation simplification, only geometry shader simplification) up to 30 (corre-

sponding to polylines composed by 3 up to 32 points). A loop iterates over the selected

value, setting the proper hull and domain shaders and invoking the Draw upon the

polylines with the length corresponding to that iteration. The vertex and geometry

shaders are the same for all these draws, performing matrix multiplication and quad

generation, respectively.

Once the tessellation simplification has been performed, it is turn for the geometry

shader simplification, in charge of simplifying and rendering the rest of the polylines.
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Algorithm 17: Rendering pseudo-code using tessellation and geometry shader

simplification.

/* Common pipeline state (Pixel Shader, Rasterizer and Output Merger stages) */

1 PSSetShader(PS)

if WireframeChecked then
RSSetState(Wireframe)

else
RSSetState(Fill)

end

if AlphaBlendChecked then
OMSetBlendState(AlphaBlend)

else
OMSetBlendState(NoBlend)

end

/* Render polylines using Tessellation simplification */

2 IASetInputLayout(VertexLayout)

3 IASetVertexBuffers(0, 1, VertexBuffer)

4 VSSetShader(VSmul) // Position transformation using the transformation Matrix

5 VSSetConstantBuffers(CB) // VS requires the transformation Matrix

6 GSSetShader(GSquadFromLine)

7 GSSetConstantBuffers(CB) // GS requires the desired Width

8 for i← 1 to TessellatorsCount do

9 IASetPrimitiveTopology()

10 HSSetShader(HullShaders[i-1])

11 DSSetShader(DomainShaders[i-1])

12 Draw(Indices[i+1] - Indices[i], Indices[i])

end

/* Render polylines using Geometry Shader simplification */

13 IASetInputLayout(StripLayout)

14 IASetVertexBuffers(0, 1, StripsBuffer)

15 IASetPrimitiveTopology(TOPOLOGY POINTLIST)

16 VSSetShader(VSpass) // No-op, just returns the strip (pass-through)

17 HSSetShader(NULL)

18 DSSetShader(NULL)

19 GSSetShaderResources(VertexBufferSRV)

20 GSSetConstantBuffers(CB) // GS requires the transformation Matrix and the desired Width

21 GSSetShader(GeometryShaders[0]) // No simplification: direct quad generation

22 Draw(Indices[1], 0)

23 for i← TessellatorsCount + 1 to size(Indices) do

24 GSSetShader(GeometryShaders[i])

25 Draw(Indices[i+1] - Indices[i], Indices[i])

end
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Block Variable Description

Common

PS Pixel shader returning the color fragment.

WireframeChecked Boolean stating whether or not the user has chosen to

render wireframe instead of filled triangles.

Fill Rasterizer state: fill triangles and no culling.

Wireframe Rasterizer state: do not fill triangles and no culling.

AlphaBlendChecked Boolean stating whether or not the user has activated the

alpha blending.

AlphaBlend Alpha blending state for the Output Merger.

NoBlend Output Merger state without blending.

CB Constant buffer holding the width and threshold param-

eters, and the transformation matrix.

Indices Array containing the positions of VertexBuffer where the

strip length varies.

TessellatorsCount Number of tessellators to be used (set by the user).

Tessellation

VertexBuffer Byte access vertex buffer storing the strip vertices.

VertexLayout Layout of each vertex in VertexBuffer.

VSmul Vertex shader transforming vertex position through

vector-matrix multiplication.

GSquadFromLine Geometry shader generating a quad from a single input

line.

TessellatorCount Number of tessellators to employ, set by the user through

the GUI (0-30).

HullShaders Array containing 30 hull shaders.

DomainShaders Array containing 30 domain shaders.

Geometry shaders

StripsBuffer Vertex buffer containing strip information.

StripLayout Layout of each entry of the StripsBuffer.

VSpass Vertex shader simply returning the input vertex (pass-

through).

VertexBufferSRV Shader resource view used to bind VertexBuffer to the

geometry shaders.

GeometryShaders Array containing 34 geometry shaders (2, 3 .. 32, 33-64,

65-96, 97-128).

Table 7.2: Variables used in the pseudo-code shown in Algorithm 17.
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Furthermore, another geometry shader is also used to render single lines without per-

forming any simplification. For all these geometry shaders, the Input Assembler is

configured to bind the strips buffer as input vertex buffer, and its layout is set accord-

ingly. As a result, unlike the geometry shaders used after the tessellation simplification

which receive the resulting lines, these geometry shaders receive a strip as input. Thus,

they must access the byte access buffer and retrieve the vertices forming the lines.

The second entry of the Indices array points to the position of the byte access

buffer where the first vertex of the first polyline composed of 3 points is stored. Thus,

it accounts for the total number of vertices forming single lines – and the number of

single lines is that same number halved. The third entry of the Indices array points to

the position where the first vertex of the first polyline composed of 4 points is stored.

An so forth until 32 points is reached. From that point on, lengths vary in multiples

of 32 – i.e. up to 64, 96, 128, etc. As shown in Algorithm 17, this information is

used to invoke the Draw calls, specifying how many vertices to draw and where to

begin reading from the bound vertex buffer. Note the parallelism between the Indices

and the GeometryShaders array: for each strips length pointed in the Indices array, a

corresponding geometry shader exists in the GeometryShaders array.

The HullShaders and DomainShaders arrays contain the same shaders compiled

only varying a constant reflecting the number of points forming the polylines: 30 shaders

covering polylines having between 3 and 32 points. The same happens for elements

from 1 up to 30 of the GeometryShaders array. The first element (position 0) of the

GeometryShaders array contains the geometry shader for single lines and those beyond

position 30, geometry shaders with instancing, covering polylines with lengths multiple

of 32.

7.4.4.2 Hull Shader simplification

The geometry shader simplification in this implementation is the same developed in

Section 7.4.3. In this section, the simplification performed by the tessellation stages

is presented. More specifically, the simplification is performed by the patch-constant

function of the hull shader, executed once per patch. The main hull shader function is

a simple pass-through shader, returning each input control point untouched.
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The pseudo-code of the patch-constant function has been split into Algorithms 18

and 19 for convenience. It receives an input patch composed of the control points

representing the points composing the polyline, and outputs a structure composed of

two arrays. The first array is called ReorderIndices and represents the polyline after

its simplification. It actually holds the positions within the input patch array of those

points of the polyline that made it through the simplification. They are ordered so that

the corresponding strip can be generated. The second array is named Edges and it is

composed of two floats and has the system-value semantic SV TessFactor associated.

These two values will be consumed by the subsequent Tessellator stage in order to

generate line primitives.

Algorithm 18 corresponds to the first half of the hull shader patch-constant function.

First, the input patch is examined. Points having a negative width are marked as invalid

by setting their corresponding entries in the ReorderIndices array to -1. This can be

used to pass patches containing actually smaller polylines than their size by simply

setting the widths of the extra control points to negative values. Once finished, the

ReorderIndices array contains the positions of the strip points within the input patch.

Moreover, the lastValidPos variable indicates which is the last useful position of the

array. After this initialization, distances are calculated for all the lines composing the

strip – i.e. segments of the polyline. For those lines with a length smaller than the

Threshold, their corresponding ReorderIndices value is set to -1.

Algorithm 19 shows the second half the hull shader patch-constant function, contin-

uing where Algorithm 18 ends. The first step consists on reordering the ReorderIndices

array, moving invalid indices (those with a -1 value) to the end of the array. Then,

a check is made for those cases where all the segments of a polyline are too small.

In those cases, a single line must be generated connecting the start and end points.

Finally, the Edges array is set in order to instruct the Tessellator stage to generate one

line primitive for each segment of the polyline that passed the simplification.

Once the patches have been processed by the Hull Shader stage, the Tessellator

stage generates the required lines based on the SV TessFactor values received. In

order to do so, a bi-dimensional coordinate is generated for each vertex composing

those lines. These coordinates are called UV coordinates since they actually account

for a sampling performed over a planar rectangular mesh to obtain as many samples

as vertices required to form the lines. This sampling follows the pattern of laying lines
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Algorithm 18: Hull shader patch-constant function pseudo-code (first half).

Data: InputPatch← Input patch control points

InputPatchSize← Number of control points in the input patch

Threshold← Minimum length for a line

Result: Output← Per-patch data: ReorderIndices array containing the indices of the control

points to keep, and the Edges array required by the Tessellator stage to generate the

lines

/* Initialization */

1 lastV alidPos← 0

2 for i← 0 to InputPatchSize - 1 do

3 if InputPatch[i].Width < 0 then

4 lastV alidPos← i

5 Output.ReorderIndices[i]← -1

6 for j ← i + 1 to InputPatchSize -1 do

7 Output.ReorderIndices[j]← - 1

end

8 break

else

9 Output.ReorderIndices[i]← i

end

end

10 if lastValidPos == 0 then

/* All indices were valid */

11 lastV alidPos← InputPatchSize - 1

end

/* Segment distances calculation */

12 for i← 0 to lastValidPos - 1 do

13 distances[i]← distance(InputPatch[i-1], InputPatch[i])

end

/* Mark points forming segments shorter than the threshold */

14 for i← 1 to lastValidPos - 1 do

15 if distances[i-1] < Threshold AND distances[i] < Threshold then

16 Output.ReorderIndices[i]← - 1

end

end
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Algorithm 19: Hull shader patch-constant function pseudo-code (second half).

Data: InputPatch← Input patch control points

InputPatchSize← Number of control points in the input patch

Threshold← Minimum length for a line

Result: Output← Per-patch data: ReorderIndices array containing the indices of the control

points to keep, and the Edges array required by the Tessellator stage to generate the

lines

/* Vertex reordering */

1 for i← 1 to lastValidPos - 1 do

2 if Output.ReorderIndices[i] == - 1 then

3 for j ← i + 1 to lastValidPos do

4 if Output.ReorderIndices[j] != -1 then

5 Output.ReorderIndices[i]← Output.ReorderIndices[j]

6 Output.ReorderIndices[j]← -1

7 break

end

end

end

end

/* Special case: if all segments were discarded, the start and end vertices

must be kept to maintain topological connectivity */

8 if Output.ReorderIndices[1] == -1 then

9 Output.ReorderIndices[0]← 0

10 Output.ReorderIndices[1]← lastValidPos - 1

end

/* Configure the Tessellator stage: set the number of lines it must generate

*/

11 lines← 1

12 for i← 2 to InputPatchSize - 1 do

13 if Output.ReorderIndices[i] != -1 then

14 lines← lines + 1

end

end

15 Output.Edges[0]← lines

16 Output.Edges[1]← 1
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over the theoretical rectangle so that contiguous coordinates represent vertices forming

a line primitive.

Algorithm 20: HLSL code of the domain shader returning the proper vertex.

struct HS CONSTANT DATA OUTPUT {

float Edges[2] : SV TessFactor;

uint ReorderIndices[INPUT PATCH SIZE] : KEEPERS;

};

struct HS OUTPUT {

float4 Position : POSITION;

float Width : WIDTH;

float4 Color : COLOR;

};

struct DS OUTPUT {

float4 Position : SV POSITION;

float Width : WIDTH;

float4 Color : COLOR;

};

[domain(”isoline”)]

DS OUTPUT DS( HS CONSTANT DATA OUTPUT input, float2 UV : SV DomainLocation,

const OutputPatch<HS OUTPUT, OUTPUT PATCH SIZE> patch ) {

DS OUTPUT Output = (DS OUTPUT) 0;

int index = input.ReorderIndices[ round(UV.y * input.Edges[0] + UV.x) ];

Output.Position = patch[index].Position;

Output.Width = patch[index].Width;

Output.Color = patch[index].Color;

return Output;

}

The Domain Shader stage executes the domain shader function over each UV co-

ordinate generated by the tessellator. This function returns the proper output patch

control point, obtained by using the UV coordinates received from the Tessellator stage

to access the proper control point from the input patch, as shown in the HLSL code of

Algorithm 20. The INPUT PATCH SIZE and OUTPUT PATCH SIZE constants are

supplied by the compiler in order to automate the compilation of the domain shaders
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required for the different polyline lengths.

Figure 7.10: Tessellation simplification process.

The process is illustrated in Figure 7.10, where a strip composed by three lines

gets two of its lines – highlighted in red – removed by the simplification carried in

the hull shader patch-constant function. This is effectively accomplished through the

ReorderIndices array where indices pointing to the kept control points are stored. The

number of control points kept minus one yields the number of lines, passed to the

tessellator so that it generates the appropriate UV coordinates. The domain shader is

then executed for each generated coordinate, and outputs the control point pointed by

the location in the ReorderIndices array computed from the coordinate. It is essential

to maintain the topology implicitly generated by the tessellator through contiguous

coordinates, as it will later be used to assembly the line primitives.

The Domain Shader stages outputs control points corresponding to vertices forming

lines. Then, line primitives are sent to the Geometry Shader stage, where a quad is
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generated for each one of them. After that, the normal execution of the pipeline

continues: the Rasterizer stage generates fragments from the triangles which are fed to

the Pixel Shader stage; there, a pixel shader returns the color of each fragment, which

is subsequently merged into the frame buffer by the Output Merger stage. Just like in

the other implementations, alpha blending and wire-frame rendering can be configured

through the GUI.

7.4.4.3 Compiled tessellation shaders reutilization

The hull shader patch-constant function, whose pseudo-code is shown in Algorithms

18 and 19, exhibits a significant number of loops. When compiled, these loops are un-

rolled, converting the iteration into a sequence of repeated instructions. This increases

the number of total instructions and thus the length of the byte-code, but saves the

performance penalty imposed by flow control. However, as the number of iterations

grow along with the patch size, the loop unrolling yields prohibitive compilation times

that can reach up to several minutes for patches with more than 25 control points.

In order to overcome this issue, the implementation saves to disk each compiled

shader. Upon application start, it looks for the compiled shader file and, if present,

skips the compilation. The shader HLSL code is the same for all the tessellators ex-

cept for the patch sizes. This is parameterized through the INPUT PATCH SIZE and

OUTPUT PATCH SIZE constants supplied through the compiler. As a result, the

compilation process must be performed only once. Even more, since they are com-

piled to intermediate byte-code, the compiled shaders can be distributed along the the

application if desired.

7.4.4.4 Graphical user interface

The GUI of the implemented application is exhibited in Figure 7.11. It is very similar

to that of the other implementations presented in this chapter. The main difference

consists on the Tessellators slider, which allows the user to specify which polylines must

be simplified using tessellation. The slider ranges from 0 up to 30, corresponding to

polylines composed from 3 up to 32 points. The rest of the polylines will be simplified

using geometry shaders – with instancing for those having more than 32 points. Since
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single lines require no simplification, and they are always shown in order to keep topo-

logical connectivity, a geometry shader generating a quad for the input line is used to

render them.

The capture shown in Figure 7.11 shows a Tessellator slider setting of 17. As can

be seen on the list on the left, this means that polylines having between 3 and 19 points

inclusive are being rendered using simplification in the Tessellation stages. Polylines

having between 20 and 32 points inclusive are simplified using geometry shaders. Fur-

thermore, three instanced shaders are in charge of simplifying the rest of the polylines.

Single lines – 62537 in the capture – are being rendered using a geometry shader.

Figure 7.11: Windowed Direct3D application implementing the tessellation and geom-
etry shader simplification.

149



Chapter 7. Dynamic Polyline Simplification On The GPU

150



CHAPTER8
GPU Polyline Simplification Results

In this chapter, experimentation results are presented for the different implementations

performing polyline simplification on the GPU over five real power grids datasets. An

application rendering the whole datasets using indexed line primitives was also devel-

oped in order to provide reference values from an application performing the rendering

without any kind of simplification. This application is referred to as Bulk implementa-

tion through the chapter.

Tests were carried in order to analyze the different implementations from three

points of view: rendering performance, video memory consumption, and visual accuracy

of the rendered visualization.

8.1 Rendering performance

In order to measure the rendering performance, the frame rate or frames per second

(FPS) value was used. This value accounts for the number of complete render cycles

performed per second. A render cycle comprises the complete rendering process, from

the required pipeline configuration and invocation of draw calls up to the rendered

frame being presented to the screen – in this case, to the dedicated area of the window.

It does not include neither the device creation and set up, nor the resources creation;

this is performed upon application initialization, or whenever the device is lost for some

reason – e.g. the window is resized or the screen resolution is changed.

The FPS value usually fluctuates due to the same graphics hardware being used by

a significant number of applications simultaneously, including of course the operating

system. Thus, the average of 1024 consecutive FPS measurements has been calculated,
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also taking the maximum and minimum FPS obtained values in order to watch out for

possible outliers. The DXUT GUI was disabled during the process in order to avoid

the performance penalty of rendering it. The benchmark was carried on an Intel Core2

Quad Q6600 2.40 GHz CPU, equipped with 4 GBs of RAM and an NVIDIA GeForce

GTX 560 Ti graphics card, running on Windows 7 Professional 64-bit Service Pack 1

and NVIDIA graphics driver version 301.42.

The applications were compiled using default optimizations and disabling debug

support. Furthermore, the Stream Output support was disabled to avoid its perfor-

mance penalty, although small. As explained in Section 7.2, when supported, a GUI

button allows to output to the application console the number of primitives returned

by the Geometry Shader stage. Although disabled for the performance measurements,

versions compiled with Stream Output support were used to assess the number of prim-

itives returned for different threshold values as well as validating that the number is

consistent among all the implementations for the same threshold values – i.e. all the

implementations are performing the same simplification over the datasets.

The number of primitives outputted by the Geometry Shader stage for each dataset

is shown in Table 8.1. Although the datasets are composed of polylines and the input of

the Geometry Shader stage are individual lines, two adjacent triangles forming a quad

are outputted for each line that passed the simplification process – thus, the number

of individual lines is obtained by simply halving the values shown in the table. The

Original column shows the number of generated triangles when the threshold value is

0 and thus, no simplification is performed. The Simplified column exhibits the number

of primitives after simplification using the maximum threshold value available in the

applications. This value was chosen to account for a few kilometers for all the datasets,

so that the simplification results would be noticeable in the visualization. A value of

60 was empirically selected; when this maximum value is set, many polylines appear

straightened after getting most or all of their segments removed.

As expected, the percentage of simplified primitives is correlated with the lengths

distribution of the polylines forming a dataset: the higher the number of long polylines,

the more segments that are simplified. This can be noticed by contrasting the # of

different lengths – counting the number of different polyline lengths present in each

dataset – and the Simplified triangles columns of Table 8.1.
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Dataset
# of different
lengths

Triangles generated
Simplified triangles

Original Simplified

Galicia 82 418,318 184,808 55.8 %

Panama 60 354,000 170,696 51.8 %

Nicaragua 48 298,730 191,660 35.8 %

Guatemala 41 406,276 285,274 29.8 %

Moldova 165 233,896 89,780 61.6 %

Table 8.1: Number of triangle primitives outputted by the Geometry Shader stage for
each dataset.

8.1.1 Frame rate comparison

A performance comparison of all the implementations for the different datasets is shown

in Figure 8.1. Each implementation performing simplification has been executed twice

per dataset: with no threshold (0) and with the maximum threshold value (60). The

maximum number of shaders available were used in the geometry shader and tessellation

implementations. This accounts for dedicated shaders for all polyline lengths between

2 and 32 inclusive, and then 3 shaders covering the length ranges 33-64, 65-96, and

97-128.
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Figure 8.1: Performance comparison of all the implementations for the different
datasets.
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Results show that only the compute implementation gets a performance similar to

that of the bulk implementation, sometimes exceeding it. The geometry shader using

the maximum threshold value for simplification gets a similar performance for only two

of the five datasets. Tessellation with or without simplification, and geometry shader

without simplification attain approximately half the performance yielded by the bulk

and compute implementations.

Notice that the geometry shader and tessellation implementations perform notice-

ably better for the Nicaragua and Guatemala datasets, being the ones with a smaller

number of different polyline lengths. This suggests that the longer the polylines, the

worst is the performance, which can be attributed to the GPU having to perform longer

iterations, thus removing parallelism.

8.1.2 Optimum number of tessellation and geometry shaders

Geometry and tessellation implementations provide a high number of possible config-

urations based on the number of shaders of each type employed. In order to compare

the different configurations, the same kind of executions with minimum and maximum

threshold values presented in the previous section were carried.

Configuration

1st 2nd 3rd

2 - 32

2 (single lines) 2 (single lines)

3 - 32
3-5

6-32

33 - 64 (2 instances)

65 - 96 (3 instances)

97 - 128 (4 instances)

Table 8.2: Range of points covered by each geometry shader for each possible configu-
ration.

Two applications were developed implementing the geometry shader simplification.

Their graphical user interfaces were presented in Section 7.4.3.2 and they differ in how

they organize the geometry shaders to perform the simplification. Table 8.2 – copied

from the aforesaid section – shows the 3 possible shader configurations for the first

application. These configurations respectively use 4, 5 and 6 geometry shaders to cover

different polyline length ranges. The second application allows the use of a geometry
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shader per polyline length between 3 and 32 inclusive. For single lines, and polyline

lengths greater than 32, the same shaders of the first applications are used.

The performance of the first application is shown in Figure 8.2a. It exhibits a

similar performance to that obtained in the global comparison. More interesting is the

experimentation for the second application, exhibited in Figure 8.2b. It shows that

initially, the performance increases with the number of geometry shaders employed.

Between 15 and 20, the performance curve stabilizes and, in most cases, after 25 it

degrades. Thus, the optimum number of geometry shaders is located between 15 and

25, depending on the dataset. Observation of the left side of the figure reflects that

using few shaders, with a single generic shader simplifying lines with up to 32 points

yields the worse performance. This is consistent with the fact that polyline lengths

distributions are biased towards the left for all the datasets – i.e. most of the polylines

have small lengths, as Figure 8.3a shows. On the other hand, the right side of the

figure exhibits how the performance slightly reduces when most of the possible shaders

are employed. The volume of polylines with more than 25 points is low compared

with those having less points, as exhibited in Figure 8.3b. As a result, the overhead

of introducing extra shaders which makes the rendering less batched, is not overcame

by the resulting simplification. Overall, the second application – adjusting more finely

to the polyline lengths – performs better than the first application using a few shaders

grouping ranges of polyline lengths.

The tessellation implementation was tested varying the number of tessellators used,

in a similar fashion of the second geometry shader implementation application. The

term tessellator refers to the combination of hull and domain shaders controlling the

tessellation stages of the pipeline. Each tessellator is in charge of processing an input

patch size, each size corresponding to the same polyline length. Results exhibited

in Figure 8.4 show that frame rate performance degrades with the number of hull

and domain shaders used. Geometry shaders are used to simplify all the polylines not

covered by tessellation shaders and thus, the results evidence than the geometry shader

is always superior.
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Figure 8.2: Performance of both applications implementing geometry shader simplifi-
cation.
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Figure 8.4: Frames per second rendered for each dataset with different tessellation
configurations.

8.2 Memory consumption

There are essentially four types of resources consuming video memory in all the devel-

oped applications: state and shader objects, buffers, and a render target texture. A

bi-dimensional texture is used as render target, accounting for 1.88 MBs in the case of a

800x600 render area - i.e. four bytes per pixel corresponding to 32-bit red, green, blue,

and alpha components. State objects are used to configure the fixed-function parts of

the pipeline, saving a particular configuration so that it can be reused later in order to

minimize state changes since they impose performance penalties. These objects only

account for a few bytes of video memory.

The other two types of resources using significant amounts of video memory are

the buffers and shader objects. These can be quite demanding from the video memory

perspective, although their concrete requirements vary both with the implementation

used and the dataset processed, as presented in the following sections.
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8.2.1 Buffers

Buffer resources used by the different implementations are shown in Table 8.3. All the

implementations store the vertices using the same arrangement and thus, have identical

vertex buffers. The constant buffer used for rendering is also the same for all, storing

the transformation matrix, a width and a threshold value. All the implementations

performing simplification have a buffer storing the strips information, which is identical

for all of them. Although the bulk and compute implementations both use index buffers,

their contents differ. Finally, the compute implementation has two extra buffers used

for the execution of the compute pipeline: a constant buffer passing the threshold

value and the total number of strips, and a structured buffer where the results are

stored before being copied to the index buffer. Note that the structured and index

buffer contain the same information. It is duplicated because an structured buffer with

unordered access can not be bound as index buffer to the Input Assembler and thus,

its contents must be copied into a bindable buffer.

Implementation
Constant Buffers

Index Buffer1 Vertex Buffer Strips Buffer
Structured
BufferCompute Render

Bulk ✓ ✓ ✓

Compute ✓ ✓ ✓2 ✓ ✓ ✓2

Geometry ✓ ✓ ✓

Tessellation ✓ ✓ ✓

1 Unlike the other buffers, index buffers store different contents in Bulk and Compute.

2 Same content, copied from the structured buffer into the index buffer.

Table 8.3: Buffer resources used by the different implementations.

Some conclusions can be drawn by merely looking at the number of buffers involved

in each implementation. The compute implementation is the more demanding one,

since it requires the sum of all the buffers used by other implementations plus an extra

one; even more, the index buffer is actually larger than the one used by the bulk

implementation. The bulk differs from the geometry and tessellation implementations

in that it uses an index buffer instead of a strips buffer. This index buffer occupies

more space than the strips buffer, since 2 indices (pointing to the vertices forming the

line) must be stored for each individual line, whereas in the strips buffer 2 numbers

(an index to the starting vertex and the vertex count) are stored for each strip – and

there is no need to store any information regarding individual lines. Thus, both the

geometry and tessellation implementations must be the less memory intensive ones.
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Dataset
Index Buffer

Vertex Buffer Strips Buffer
Structured
BufferBulk Compute

Galicia 1.60 2.30 9.19 0.70 2.30

Panama 1.35 2.00 8.01 0.65 2.00

Nicaragua 1.14 1.87 7.48 0.73 1.87

Guatemala 1.55 2.64 10.55 1.09 2.64

Moldova 0.89 1.23 4.90 0.33 1.23

Table 8.4: Buffer sizes for each dataset (in megabytes).

Table 8.4 shows the memory occupied by the buffers for the different datasets. The

memory required to store the constant buffers has been omitted since it is negligible

as they account for 80 bytes, 16 bytes in the case of the constant buffer used in the

compute shader. As it has been stated, the structured buffer is used by the compute

shader to store its results and its contents are then copied to the index buffer; this is

the reason why the have they same size: they contain duplicated information.

Implementation
Dataset

Galicia Panama Nicaragua Guatemala Moldova

Bulk 10.79 9.36 8.62 12.10 5.80

Compute 14.49 12.66 11.95 16.91 7.69

Geometry 9.89 8.66 8.21 11.64 5.24

Tessellation 9.89 8.66 8.21 11.64 5.24

Table 8.5: Video memory required to store buffers by the implementations for each
dataset (in megabytes).

The total amount of video memory required by each implementation to store buffer

resources for the different datasets is exhibited in Table 8.5. As expected, the compute

implementation is the most memory intensive. Geometry and tessellation implementa-

tions, which share the same vertex and strip buffers, are the less expensive ones.

8.2.2 Shaders

Shaders are compiled from the HLSL source code upon application initialization – or

they may be loaded from disk in the case of tessellation. The compiled bytecode is kept

in video memory through the proper Direct3D 11 COM objects. For small shaders these

objects may occupy few kilobytes. Geometry shaders performing polyline simplification

are compiled for all the polyline lengths between 3 and 32, inclusive. Each one of these
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shaders occupies 5 KBs. Geometry shaders simplifying up to 32 points and instanced 2,

3 and 4 times occupy 9, 12, and 16 KBs respectively. More complex shaders compiled

with unrolled loops may take up to hundreds of kilobytes. This is the case of the hull

shaders in the tessellation implementation, which implement for loops in the patch-

constant function. These loops iterate over the input patch and thus, their size grows

gradually from the 3 KBs used by the hull shader operating over a 3-point patch up to

the 160 KBs for 32-point patches. Having no loops, the domain shader grows just from

16 up to 29 KBs. The amount of video memory required to store the involved shader

objects for the different implementations is shown in Table 8.6. As it can be seen, the

geometry implementation requires over 183 KBs of video memory to store the shaders.

Even more, the tessellation includes those shaders plus the hull and domain shaders,

elevating the video memory requirements up to 1.69 MBs.

Loop unrolling improves speed performance at the expense of space and compilation

time by simply converting the loop into the succession of its iterations. This can only

be applied when the number of iterations is static – i.e. known at compile time. This

is the case of the hull shaders but does not apply to geometry shaders which use the

length stored in the strips buffer to iterate.

Implementation Compute
Shaders

Vertex
Shaders

Geometry
Shaders

Domain
Shaders

Hull
Shaders

Pixel
Shaders

Total

Bulk
- 1.1 1.4 - - 1 3.5

(1) (1) (2) (3)

Compute
3.9 1.1 1.4 - - 1 7.4

(2) (1) (1) (2) (4)

Geometry
- 0.6 181.4 - - 1 183

(1) (35) (2) (38)

Tessellation
- 1.8 182.8 1,497.6 43.4 1 1,726.6

(2) (35) (30) (30) (2) (99)

Table 8.6: Video memory required to store shaders for each implementation (in kilo-
bytes, number of shaders in parenthesis).

All the implementations use two pixel shaders: one for normal solid fill rendering

and other for wireframe rendering. They are switched along with the Rasterizer stage

state when the user clicks the corresponding toggle button in the GUI.

The geometry shader implementation requires a total of 35 geometry shaders: one

to generate quads for single lines, 30 to cover the polyline lengths between 3 and 32
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inclusive, 3 using instancing to cover lengths up to 64, 96, and 128, and an extra

one in charge of doing the simplification without maintaining topological connectivity

if the user chooses so. Since the tessellation implementation includes the geometry

one, it requires all these shaders plus those used when the simplification is performed

by the tessellation stages. In that case, an extra vertex shader is also required –

thus, the tessellation implementation is the only one using two vertex shaders. The

compute shader implementation also allows to ignore topological connectivity upon

simplification. Thus, it has two compute shaders.

Implementation
Dataset

Galicia Panama Nicaragua Guatemala Moldova

Bulk 10.79 9.36 8.62 12.10 5.80

Compute 14.50 12.67 11.96 16.92 7.70

Geometry 10.07 8.84 8.39 11.82 5.42

Tessellation 11.58 10.35 9.90 13.33 6.93

Table 8.7: Total video memory required to store buffer and shader resources by the
implementations for each dataset (in megabytes).

Unlike buffers, the video memory requirements of shaders are independent of the

dataset. Nevertheless, it is useful to sum the memory required to store both buffers and

shaders for each dataset to get an idea of the video storage required by the different

techniques. This is shown in Table 8.7, which can be compared to Table 8.5 were only

buffers are taken into account.

As it can be seen, shaders have virtually no impact in the video memory required

by the bulk implementation, while the requirements of the compute one is increased

in only 10 KBs. This can be observed in Figure 8.5, since the size required by the

shaders does not even get reflected in their graphic bars. Shaders used in the geometry

implementation increase the video memory by 183 KBs. This has more to do with the

fact of using a considerable number of shaders than with the shaders themselves having

a considerable size; it accounts for just a 3.3% of the video memory required to store

shaders and buffers in the case of the Moldova power grid – which is the one for which

the impact is bigger since it requires the smallest buffer sizes. The tessellation shaders

in contrast, require 1.69 MBs which accounts for between a 12.7% and a 24.4% total

memory for the datasets.
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Figure 8.5: Video memory required to store buffer and shader resources by the imple-
mentations for each dataset.
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8.2.2.1 Compilation times

Shader compilation times are significant. In the case of the geometry shaders imple-

mentation, it takes about four seconds to compile all the shaders – 144 milliseconds

each on average – but in the case of the domain and hull shaders of the tessellation

implementation times are much longer, growing exponentially from a few milliseconds

to several minutes as shown in Figure 8.6. This is mainly caused by the loop unrolling

performing during the compilation. In order to overcome this issue, the tessellation

implementation saves the compiled bytecode to avoid repeating the compilation in sub-

sequent executions of the application, as described in Section 7.4.4.3.
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Figure 8.6: Domain and hull shaders compilation times.

8.3 Visual impact

So far, the time and memory impact of the different implementations have been exam-

ined. In this section, the third consequence of polyline simplification is studied: the

changes in the visualization of the power grids. Since a considerable number – up to a

60% as shown in Table 8.1 – of power lines are removed from the power grid datasets

through simplification, there must be an impact in the visualization. Topological con-

nectivity was the main restriction imposed to the simplification algorithm and thus, it

is preserved among the power lines. The noticeable changes happen within polylines,

whose intermediate points might be removed in order to create longer segments. In

the most extreme case, a polyline will become a single line. This has the effect of

transforming complex twisted polylines into straightened ones.
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Although topological connectivity among polylines is preserved, the geographic ac-

curacy is lost within polylines. Once inner points of the polyline are removed, the

polyline no longer exactly represents the layout of the power grid over the terrain in

the real world. However, the begin and end points of the polyline are always left un-

touched and thus, their coordiantes are accurate. This is specially relevant as in many

cases, these points correspond to substations in the power grids.

(a) No simplification (threshold 0). (b) Threshold 0.8.

(c) Threshold 1.6. (d) Threshold 4.8.

Figure 8.7: Polyline simplification for different threshold values.

Figure 8.7 illustrates how the shape of a polyline changes as the threshold value is

increased. Close-up captures of wire-frame rendering are displayed, so that individual

segments formed by quads can be easily discerned. Figure 8.7a shows the original
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polyline with no simplification being applied. As the threshold value is increased,

more and more segments are gradually removed, and new longer segments are formed.

Eventually, the whole polyline becomes a single straight line.

This example is an extreme case since it shows a close-up of a polyline when using

threshold values for a whole power grid dataset. The threshold value must be adjusted

according to the scale being used. This way, most simplification results will not be no-

ticeable in the visualization. Since power grids cover kilometers, usually the threshold

is assigned based on a meters per pixel (mpx) value that represents how many meters

each pixel accounts for in the current scale. As the user zooms in or out the visual-

ization, the scale and thus the mpx change. As a result, the threshold value must be

changed accordingly. The great benefit of performing the simplification on the GPU is

that this nearly continuous adaptation is dynamic.

8.4 Conclusions

The number of primitives involved for the different datasets – less than half a million

triangles in the largest case – can be easily handled by modern graphics cards such as

the NVIDIA GeForce GTX 560 Ti used in these tests. Since the datasets do not push

the GPU to full utilization, there is no performance gain in reducing the number of

primitives through simplification. More load must be added to the GPU from other

applications running at the same time in order to take advance of the reduced number

of primitives produced by the simplification. This may also be the case when using

more advanced power grid visualizations – e.g., using varying widths as a function of

the power load carried by the line, flow animations, integration of satellite imaging,

etc.

More significantly, the simplification algorithm implementations reduce the paral-

lelism attained by the GPU when performed in the graphics pipeline. At some point

or another, the algorithm iterates over a polyline, thus stalling the pipeline. When

no simplification is performed, all the individual lines can flow independently through

the pipeline, regardless of the adjacent lines when they are part of a polyline. This is

the most favorable parallelism scenario. When simplification is introduced, the parallel

work units are polylines instead of lines, thus vastly reducing the granularity. Moreover,
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while the line strip topology is analogous to a polyline and thus, the implementations

could perform the proper data adaptation, the closer primitive to polylines are patches

which are limited to a maximum of 32 points. This fact requires shaders to perform

actions that are natural enemies of parallelism: access memory buffers to retrieve the

vertices forming a polyline and then iterate over them. The shader stage at which this

happens, the memory access, and the looping involved, depend on the exact implemen-

tation and the concrete values of its parameters.

The implementation using the compute pipeline does not incur in this pitfall. Being

performed only when required – i.e. when the threshold value is changed – it can be seen

as a kind of off-line simplification. However, it happens entirely on the GPU and the

results stay in video memory, with no information needing to be transferred from the

GPU back to the CPU. Upon a threshold value change, the next render is preceded by

a compute shader execution performing the simplification, followed by a video memory

copy that transfers the results of the compute shader to an index buffer that can be

consumed by the subsequent renders. This introduces a small overhead for those cases,

which is comparable to the performance loss due to the reduction of parallelism from

the other implementations performing the simplification in every render on the graphics

pipeline. However, since the number of threshold value changes are marginal compared

to the number of renders performed (hundreds per second), the performance impact is

negligible.

Regarding video memory consumption, using strips instead of an index buffer at-

tains some reduction in the buffers size. The compute implementation, has elevated

requirements to store buffers since it requires the index buffer to be duplicated, taking

almost 17 MBs of video memory for one of the given datasets. The memory required to

store shader objects are negligible except for the tessellation implementation for which

they require 1.69 MBs. Furthermore, the tessellation implementation suffers another

penalty compared to the other implementations: domain and hull shaders compilation

takes up to several minutes, whereas the rest of the shaders only require a few millisec-

onds. This is partially overcome by storing the byte-code of the compiled shaders on

disk.

Overall, although the compute implementation has increased memory requirements,

it is the best option when simplification needs to be performed, given the poor perfor-

mance offered by the geometry shader and tessellation implementations due to the loss
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of parallelism they introduce into the rendering of every frame.

Finally, polyline simplification has an impact in power grid visualization. The more

aggressive the simplification, the more noticeable this impact is. Given the algorithm

employed in the different implementations, the result for those polyline composed of

small segments is a straightened polyline composed of less segments; the most extreme

case is a polyline becoming a single line. This is important not only because the change

might be evident to the user, but also because the positions of the polyline points

normally correspond to geographic coordinates. As a result, the visualization is not

completely accurate to the power grid layout over the terrain. However, by adapting the

performed simplification based on the level of detail required in each precise moment,

the visual impact can be minimized.
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CHAPTER9
Conclusions

9.1 Work summary

Chronologically, the work started by improving – i.e. decreasing – the rendering times

of power grid networks visualization by replacing an existing GDI+ renderer by a

new implementation using Managed DirectX – which is a .NET wrapper library for

DirectX version 9.0c. This resulted in a tenfold performance increase in the render-

ing times. However, due to application requirements regarding the hardware and the

operative system, the renderer had to be off-screen, which imposes a considerable per-

formance penalty. In order to overcome it, the data involved in the visualization was

pre-processed using spatial databases, reducing its volume by generating different scales.

The result led the visualization to be rendered in just a 15% of the time required be-

fore, enabling real-time rendering even while using an off-screen renderer. This was an

important milestone, as real-time rendering allows for animations. Thus, new visual-

izations such as animated power flows could be supported.

As some of the initial constraints on the available hardware and software were

lifted, the renderer was re-implemented using DirectX 10, this time directly through its

C++ API. New features present in DirectX 10 such as geometry shaders, allowed to

quickly improve the performance. Furthermore, such new capabilities opened the door

to moving the data volume reduction carried by spatial databases to the GPU, and even

perform it dynamically for every render; more so upon the release of DirectX 11 and its

tessellation stages. This was the main focus of this work: to study how to take advance

of the different features and programming capabilities of modern versions of DirectX to

reduce the data volume involved in power grid visualization – more specifically, power

branches simplification to speed up the visualization of power grid networks.

The following list summarizes the solutions presented in this thesis:
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Multi-scale architecture using spatial databases: the original data is pre-processed

generating different versions optimized for certain visualization scales. The pre-

processing includes not only polyline simplification, but also polyline merging and

filtering of imperceptible data.

Quad generation using vertex shaders: two adjacent triangles forming a quad are

created for each line of a given branch. Four predefined vertices are properly

positioned by the vertex shader by processing the corresponding two points and

either one or two width parameters.

Quad generation using geometry shaders: quads are generated dynamically from

two points and either one or two widths. No predefined vertices are required since

they are created by the geometry shader.

Polyline simplification using compute shaders: each power branch – formed by

several segments and stored in video memory – is processed every time a parame-

ter setting the minimum segment length changes. A general purpose computation

pipeline is employed instead of the typical graphical pipeline.

Polyline simplification using geometry shaders: the Geometry Shader stage of the

graphical pipeline is programmed to alter power branches stored in video memory

based on a threshold parameter. This processing is performed with every render.

Polyline simplification using tessellation: the Tessellation stages of the graphical

pipeline are configured to alter power branches stored in video memory based on

a threshold parameter. This processing is performed with every render.

Mixed polyline simplification using geometry shaders and tessellation: both poly-

line simplification implementations using tessellation and geometry shaders are

combined, each covering a range of power branch lengths. Just like in the indi-

vidual implementations, the processing is performed with every render.
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9.2 Future work

9.2.1 Coordinate system translation on the GPU

During either bi-dimensional or three-dimensional rendering, all the primitives – no

matter whenever points, lines, or triangles – must be processed in several ways. They

might be transformed – e.g. translated, rotated, or scaled –, converted from one co-

ordinate system to another, projected from three-dimensional to bi-dimensional space,

etc.

This processing falls into what in three-dimensional pipelines is commonly known

as world-view-projection matrix multiplication, and on modern graphics hardware it is

usually performed by the vertex shader, as explained in Section 6.2.2. In its simplest

version, the vertex shader takes a vertex position defined in a local space, translates it

to a world – or scene – space, applies some kind of perspective – thus translating it to

view space –, and finally projects it to a bi-dimensional space. However, as it has been

seen all along this work, on modern graphics hardware – or even on emulating software

–, the vertex shader is a custom program which can do that and much more.

As seen in Chapter 2, power grids are composed by power lines which have a position

on the Earth’s surface. This position, can be expressed using many coordinate systems

in which coordinates take different values and, in some cases, even different number of

components. When integrating different sources of information, it is not uncommon to

find coordinates expressed in different systems.

One example is the visualization of a power grid network on top of satellite imaging.

The datasets used in this work contained coordinates defined in the Universal Trans-

verse Mercator coordinate system, which is a planar geographic coordinate system.

Google Maps images are defined using the WGS84 ellipsoid and then projected using a

Mercator projection. In order to properly render the power grid network on top of the

corresponding satellite images, there are two options: either transform the images or

translate the power grid network coordinates to the same system the images use, and

then perform the rendering. The former modifies the images, introducing distortions

and visual artifacts as a result. Thus, coordinate translation is more desirable.
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Since the vertex shader will transform the position of each vertex, the coordinate

translation can be added to that processing. Indeed, some parts of the operations

required to translate a coordinate from one system to another, are likely to be integrable

with the world-view-projection matrix multiplication. Note that depending on how the

graphics pipeline is configured, the job might be subsumed by some other stage, such

as a geometry shader.

Although not included in this thesis, as one of the several side projects that took

place during the development of the presented work, the unitary-width power grid net-

work visualization was successfully rendered on top of Google Maps imaging. However,

the proper coordinate translation was not performed by the vertex shader as described

here and it could constitute an interesting experimentation point.

9.2.2 Adoption of other visualization patterns

Commonly in engineering, time constraints forbid being as detailed in the design phase

as desirable. As this work is the result of the assignments of a power utility company,

some compromises had to be made in terms of design in order to comply with budget

and time requirements. One such example is the adoption of visualization patterns

which was kept to the ones providing more immediate results while sacrificing some

that would provide more long-term gains. The visualization patterns employed in this

work are outlined in Appendix I along with others that would be perfectly eligible for

their adoption, were the required time to become available.

9.2.3 Introduction of more complex visualizations

This work was concerned with improving the performance of any kind of visualization

and not with which particular visualization might be more suitable for a given context.

Therefore, the dominant visualization used in this work consists on representing the

power grid network using either unitary or fixed-width lines to represent each segment

of the branches.

However, as outlined in Section 2.2, there are many possible power grids visualiza-

tion techniques. For instance, power loads can be taken into account to give varying
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widths to the rendered power lines. Also, colors could be used to remark problematic

areas – for instance, reaching maximum capabilities. Furthermore, given the perfor-

mance gains presented in this work, animations showing the current flow could be

introduced in the developed CAD application.

9.2.4 Revision of the polyline simplification algorithm

The multi-scale architecture using spatial databases presented in Chapter 3 employs

the Ramer-Douglas-Pecker line simplification algorithm [26]. This algorithm recursively

discards segments having an orthogonal distance to the line connecting the beginning

and end point shorter than a given threshold. However, dynamic polyline simplification

on the GPU implementations presented in Chapter 7 employs a simpler algorithm dis-

carding segments having lengths smaller than the threshold, as exhibited in Algorithm

13.

The rationale behind this difference lies in the fact that the focus was on explor-

ing the graphics hardware capabilities and not in the simplification algorithm itself.

An attempt could be made to implement the Ramer-Douglas-Pecker algorithm in the

shaders although complications might arise – for instance, due to limited recursion sup-

port. Furthermore, another simplification algorithm could be adopted, not only by the

GPU implementations but also by the multi-scale architecture approach.

9.2.5 Migration to DirectX 12

This work has presented the attempts to exploit the features offered by DirectX from

version 9.0c up to version 11. Although neither a new whole pipeline, nor new pipeline

stages were introduced with DirectX 12, a number of improvements focusing on effi-

ciency were introduced.

These changes are the consequence of the relatively high degree of standardization of

the graphics hardware in the last few years; earlier versions of DirectX had to cope with

a broader spectrum of hardware architectures and capabilities. A thick intermediate

layer was created between the hardware and the software in order to abstract hardware

variability. Nowadays, most graphics hardware is either architecturally similar, or able
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to offer the same capabilities – at least up to a great extent and although performance

may vary significantly. As a consequence, the middleware layer can now be thinner,

allowing the API to be closer to the hardware and thus, enabling more optimized code

to be developed.

The management of pipeline configurations, resources, and commands has been

redesigned aiming to provide more flexibility:

Pipeline state management

In prior versions, each pipeline stage is configured individually creating the need

to translate – from driver to GPU commands – and merge state changes each

time one stage is reconfigured. Although the pipeline state management had been

greatly improved with each DirectX version, there was still room to improvement

since during a single rendering, many individual stage changes may occur, creating

a small overhead each time that would add up to an important performance hit.

Pipeline state objects store the configuration of the whole pipeline at a certain

point, thus allowing to configure all the stages at once. This saves the overhead

of translating and merging each individual stage state change.

Resource management

More control is given to the developer over when and how certain resources must

be bound to the pipeline. The developer has an insight into the resource usage

that the system can not reach. Thus, by enabling him to explicitly specify it, the

resource management can be improved.

Furthermore, the view and slot resource binding system has been replaced through

a whole new set of entities – namely descriptors, heaps, and tables. This allows

to better organize resources into different tables – for instance, according to their

update frequency.

Memory buffers flexibility was also enhanced through dynamic heaps, which allow

to allocate a chunk of memory and use parts of it for different purposes. For

instance, in DirectX 12 is possible to sub-allocate a part of a buffer for usage as

vertex buffer while using another part of the very same buffer as an index buffer.

This flexibility results in a better data locality which in turn benefits parallelism.

Command management
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Just like resources, GPU commands can also be grouped: command sequences

can be recorded to a bundle that can later be reused.

Multi-threading was also improved. Previously, there was an immediate context

which acted as a main thread and then deferred contexts taking much less GPU

time compared to the immediate context. In a DirectX 12 application, each

thread may create its own command list in parallel and then submit it to a

common command queue. Each list will be executed sequentially. Bundles can

be reused, even by different command lists.

Given that the pipeline stages remained unchanged, migrating the existing imple-

mentations to DirectX 12 should be a reasonable effort. Even if not special emphasis

were put on taking advance of these more finely-grained and lower level features, some

performance should be gained by upgrading to the new version of the library.

9.3 Publications

Part of the work presented in this thesis has been presented as the following papers in

several conferences, having been published in their corresponding proceedings:

Electrical Distribution Grid Visualization using Programmable GPUs

[51]

Abstract: Modern graphic cards enable applications to process big amounts of

graphical data faster than CPUs, allowing high-volume parallelizable data to be

visualized in real-time. In this paper, we present an approach to enable a power

grid planning Computer-Aided-Design application to use this processing power

to visualize electrical distribution grids in the fastest possible way. As a result,

the aforesaid application became able to offer highly responsive interactions with

them.

A revised version of this paper has also been published in a journal [52].

Digital Cartographic Generalization in Spatial Databases: application

issues in Power Grids CAD tools [54]
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Abstract: This work presents the results of applying several digital cartographic

generalization techniques to improve the performance of an Electrical Power Grids

Computer-Aided-Design application. The performance increase is attained by ad-

justing the level of detail of the grid topology being visualized in the CAD ap-

plication. This adjustment takes place at the database level using a multi-scale

architecture and the available spatial extensions of Geographic Information Sys-

tems databases. The data volume is minimized to fit the exact requirements of

the scale being used in the visualization so that no processing time is wasted on

representing irrelevant elements. Results show that up to a 90% of the data can

be skipped and thus, a 84% of the time required to render the visualization can be

saved on average.

Improving Electrical Power Grid Visualization using Geometry Shaders

[53]

Abstract: The graphics engine of a Power Grids Computer-Aided-Design appli-

cation was upgraded from Direct3D 9 to Direct3D 11, allowing the use of new

features such as the Geometry Shader and Stream Output stages of the graph-

ics pipeline to improve the performance of power grids visualization. Geometry

shaders have been used to generate two triangles forming a quadrangle (quad) for

each power line, giving it a width as a function of the power load carried by the

line. Two implementations were tested: one generating the quads in every draw

and other which only generates them once, saving the results to video memory

for subsequent draws. Both have been compared with the previous implementation

which used vertex shaders. The possibility of using the mentioned pipeline stages

to generate levels of detail for the power grids was also studied.

Furthermore, a brief version of this thesis is currently under review for publishing

in a journal.
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APPENDIX I
Patterns For Information Visualization

Many common software design patterns have been used both in this work and in the

developed power grid CAD application that employs the presented techniques. This

appendix outlines a subset of software design patterns for information visualization,

following the classification introduced in [30]. The original definition of each pattern is

quoted here before describing its usage in this work.

Figure I.1, extracted from [30], shows the different patterns for information visual-

ization along with other non-visualization patterns employed by them, as well as their

relationships.

Figure I.1: Software design patterns and their interactions.

The most relevant patterns for this work have been the reference model, renderer,

camera, proxy tuple, operator, and dynamic query binding – highlighted in Figure I.1.
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The scheduler and cascaded tabled patterns have not been employed, but they could

be of use. A brief description of each one of them follows; each section begins with a

quote of the pattern description in the original work [30].

I.1 Reference model

Separate data and visual models to enable multiple visualizations of a data

source, separate visual models from displays to enable multiple views of a

visualization, and use modular controllers to handle user input in a flexible

and reusable fashion.

Arguably the most implemented version of this pattern is theModel-View-Controller

(MVC) in which a controller orchestrates the manipulation of a set of data represented

through a model and exposed to the user through a view. Each one of these three con-

cerns are isolated as much as possible, favoring cohesion and minimizing coupling among

them.

Although this thesis has focused on the actual researched techniques and not on the

CAD application taking advance of them, this pattern is specially relevant in the context

of the developed CAD application. It enables an easy transition from one rendering

engine to another without having to concern the rest of the CAD application with which

one is employed. More specifically the application uses a variation of the MVC pattern

which is commonly used in the Windows desktop applications development. Its name

is Model-View-ViewModel (MVVM) and it replaces the concept of the Controller

with that of the ViewModel which is an Adapter that eases the consumption of data

by the Windows graphical user interface APIs and their data bindings.

I.2 Renderer

Separate visual components from their rendering methods, allowing dynamic

determination of visual appearances.

Different concerns of the application should be as isolated from one another as much
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as possible. Thus, the renderer should be a module controlled through an interface,

whose details are hidden to other areas of the application. This way, once the data has

been abstracted into a reference model that can be consumed by visualizations, different

renderers in charge of generating that visualization can be employed and seamlessly

swapped.

This pattern has been employed in the developed power grid CAD application

to evolve the implementation of the visualization with new hardware and software

capabilities, as they became available, without affecting other areas.

Two different types of renderers have been used, which we label as online and off-

line renderers. The distinction lies on whenever they are constantly rendering (online)

or they only render a visualization upon request (off-line).

Online renderer: a loop constantly repeats the render process, performing any

required data or rendering parameters updates. This loop is usually referred to as

the main loop and may also be in charge of processing input – such as keyboard –

events. This kind of renderer is suited for animations or when navigation through

the visualization is required.

Off-line renderer: the render process is performed on demand instead of con-

stantly. This is usually employed on scenarios where the rendering takes a signif-

icant time or when neither animations nor navigation is required.

In both cases, the renderer can be outputting the visualization to a visible area of

the screen or to an off-screen area. The former is the most common case4, being faster

but requiring a good integration with the graphical user interface layer. Rendering to

an off-screen may be required when there are graphics integration problems – as can be

the case with Windows Presentation Foundation (WPF) applications and DirectX in

Microsoft Windows XP and Vista, further analyzed in Appendix II. The main drawback

of this approach is that there is a costly extra step: the off-screen area must be copied

onto the proper on-screen area.

Usually online renderers output directly to a on-screen area and the off-line renders

4Actually, in order to avoid visual artifacts such as flickering, two or more video buffers are normally
used, forming what is known as a swap chain. Although this has been simplified in this discussion, one
of the buffers of the chain still corresponds to the area visualized in the screen, as stated.
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employ off-screen areas. Section 3.4 presented an application using an off-line off-

screen renderer since it was required to be integrated into an WPF application running

in Windows XP. On the other hand, the implementations introduced in Chapter 7 use

on-line on-screen renderers since they are ad-hoc Win32 applications using DXUT –

instead of WPF applications – created for experimentation purposes.

I.3 Camera

Provide a transformable camera view onto a visualization, supporting mul-

tiple views and spatial navigation of data displays.

Allows navigation through the visualization of the power grid to zoom, pan, etc.

This is implemented through the vector-matrix multiplication as explained in Section

5.2. The appropriate parameters of the matrix are set as a result of the interaction

from the user – through mouse or keyboard actions over the visualization.

I.4 Proxy tuple

Use an object-relational mapping for accessing table and network data sets,

improving usability and data interoperability.

The memory buffers described in this work constitute a very similar concept: the

data storage is re-shaped in order to accommodate it for its consumption by the graphics

hardware.

I.5 Operator

Decompose visual data processing into a series of composable operators, en-

abling flexible and reconfigurable visual mappings.

Parameterizable properties such as the width and the color of power lines can be

set through operators bound to user interface controls. The role of these operators
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corresponds to the mapping of the values from the user interface to the corresponding

properties.

I.6 Dynamic query binding

Allow data selection and filtering criteria to be specified dynamically using

direct manipulation interface components.

User interface components such as sliders and toggle buttons have been employed

by the different implementations to allow the user to control different parameters of the

visualization. One central example is the use of a slider to set the threshold parameter

required by the simplification process, as described in Section 7.3.1.

I.7 Scheduler

Provide schedulable activities for implementing time-sensitive, potentially

recurring operations.

This pattern is useful to manage animations smoothly – for instance, animated

representations of the power transported along the power grid. Also in the off-line

renderer implementation it takes care of outdated rendering requests.

I.8 Cascaded table

Allow relational data tables to inherit data from parent tables, efficiently

supporting derived tables.

This pattern can be useful to provide default values such as those of the width and

color properties of the polylines present in this work.

181



Appendix I. Patterns For Information Visualization

I.9 Other patterns

Other patterns not considered for this work are:

Data column

Organize relational data into typed data columns, providing flexible data

representations and extensible data schemas.

Relational graph

Use relational data tables to represent network structures, facilitating

data reuse and efficient data processing.

Expression

Provide an expression language for data processing tasks such as spec-

ifying queries and computing derived values.

Production rule

Use a chain of if-then-else rules to dynamically determine visual prop-

erties using rule-based assignment or delegation.

182



APPENDIX II
DirectX Integration Into Windowed Applications

II.1 Introduction

Windows Vista was released in 2007 to replace Windows XP, which had a great re-

ception by the consumers since its release in 2001. Vista supposed a significant break-

through in the graphics field for the Windows series: the Windows graphics architec-

ture was redesigned in order to bring hardware acceleration as a first-class citizen to

the desktop.

This was accomplished by replacing GDI (Graphics Device Interface) in favor of

Direct3D as the main rendering technology for the desktop and the windows therein

contained, as exhibited in Figure II.1. A new graphics driver layer was engineered -

the Windows Display Driver Model (WDDM) - along with DXGI (DirectX Graphics

Infrastructure, a mapping layer between it and graphics API such as Direct3D). On top

of these, the Media Integration Library (MIL) was implemented to provide both a new

window manager called Desktop Window Manager (DWM) and Windows Presentation

Foundation (WPF), a managed graphical user interface framework taking full advance

of all the new Direct3D hardware acceleration capabilities for user interfaces [56].

Early parts of the work presented in this thesis were developed for Windows XP

while latter parts targeted Windows Vista. Thus, this work has been greatly affected

by the features available in each of those Windows versions. This appendix provides

insight into the graphics architecture redesign introduced by Windows Vista, how a

rendering engine using Direct3D can be fitted into windowed applications, and how the

targeted version of Windows affected this work.
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(a) Windows XP. (b) Windows Vista.

Figure II.1: Windows XP and Vista graphics subsystems.

II.2 Windows applications development

Win32 applications is the name given to native applications developed for the Mi-

crosoft Windows operating system since its release for 32-bit architectures. These ap-

plications make use of the Graphics Device Interface (GDI) in order to render graphical

objects to output devices (e.g. screens, printers). With the introduction of Windows

XP, GDI was enhanced through the GDI+ library, available both for native and man-

aged applications. Although Win32 applications are normally graphical user interfaces

composed of controls or components such as buttons and combo boxes, GDI/GDI+

can be used to render custom graphical objects (eg. lines, polygons).

As explained in Chapter 4, DirectX was initially released as a set of libraries for

game development which evolved until becoming the underlying graphics technology

of Windows. The latest version of DirectX supported by Windows XP was 9.0c, while

Vista supported versions 10, 10.1 and 11. Given the high number of applications making

use of DirectX 9.0c at the time, an improved version was released under the name 9Ex,

which would take advance of the new Vista capabilities.

Just like the Win32 API, Direct3D is a C++ library. As a result, it is easy to use

a Win32 window to show Direct3D content. However, Direct3D is a graphics library

much closer to the hardware than GDI/GDI+ and since it uses a completely different

graphics subsystem, they can not be mixed. This means that graphical user interface

controls can not be used along with Direct3D graphics. This is why the DirectX Utility

Library (DXUT) was originally shipped with DirectX.
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A consequence of the different architectures underlying GDI and DirectX is how

the graphic commands are sent to the hardware for rendering. While GDI sends them

immediately as soon as they are issued, DirectX works in what is called retained mode:

commands can be organized in lists, allowing for optimizations not possible in the

immediate approach of GDI.

Native windows applications are developed in C++ through the Win32 API or

the Microsoft Foundation Class (MFC) library – which provides a higher level API.

However, both C++ and the Win32 API are quite complex to deal with and as a

result, Microsoft launched the .NET Framework along with several languages targeting

it - most notably C# - in order to ease Windows development. Applications developed

for the .NET Framework are dubbed as managed applications since resources such

as memory are automatically managed by an execution runtime called the Common

Language Runtime (CLR).

A managed version of DirectX 9.0c targeting .NET Frameworks 1.1 and 2.0 was

launched: Managed DirectX (MDX). However, just like the native version of Direct3D,

it does not mix well with graphical user interfaces. Furthermore, it was discontinued

in favor of the XNA Framework.

Two main managed graphical user interface libraries are available in Windows Vista:

Windows Forms: available since the first version of the .NET Framework, it

provides a high-level library based on the Win32 API - in the same way the MFC

library provides a Win32 API wrapper library for C++. Internally, Windows

Forms uses GDI+.

Windows Presentation Framework: introduced with .NET Framework 3.0, it

builds on the new graphics architecture developed for Windows Vista, thus ren-

dering the user interface through Direct3D instead of GDI/GDI+. Its implemen-

tation goes hand by hand with that of the Desktop Window Manager (DWM),

being part of the Media Integration Library.

Summing up, Win32 applications can be developed in C++ directly through its

API or through the MFC library; or using managed code through either Windows

Forms or WPF. Graphics can be rendered in Win32 applications in C++ using GDI,
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GDI+, or any version of Direct3D; or from managed code using GDI+, MDX, or using

higher-level graphics abstractions provided by WPF5.

The next sections present the architectural changes from Windows Vista compared

to its predecessor Windows XP and their effects on Windows applications development.

II.3 Windows Vista graphics architecture

As stated in the introduction of this appendix, Vista introduced a major redesign of

the graphics architecture of the Windows operative system, replacing the old GDI

by DirectX. Two key components of the new architecture are presented here: the

Windows Display Driver Model and the Desktop Window Manager that exploits its

new capabilities.

II.3.1 The Windows Display Driver Model

TheWindows Display Driver Model (WDDM) shipped with Windows Vista, introduced

three key new features [58]:

1. Video memory virtualization

It allows many applications to be running simultaneously without having to recre-

ate graphics resources. Previously, the developer would work directly against ei-

ther system or video memory, creating resources in both memories in some cases,

and moving data between them in others. A typical burden was the manage-

ment of lost surfaces that happened whenever a surface got kicked out from video

memory – normally because the space it occupied was required.

Video memory virtualization not only gets rid of this burden, it also improves the

performance by optimizing memory management. Resources such as surfaces, are

paged into and out of true video memory as required.

2. GPU interruptibility

5Please note that there are other technologies such as Direct2D or OpenGL, but have been omitted
here for simplicity.
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WDDM introduced GPU commands scheduling in order to avoid applications

preventing others from getting their share of the GPU.

3. Surface sharing

It enables redirection and composition which are key to the interoperability of dif-

ferent graphics technologies and the new window manager introduced in Windows

Vista.

The new window manager builds on these features as presented in the following

section.

II.3.2 The Desktop Window Manager

The Desktop Window Manager (DWM) introduced in Windows Vista is a DirectX

application responsible for the presentation of other DirectX applications. In fact, it

is built on top of a layer called the Media Integration Layer (MIL) which in turn uses

DirectX [55]. This layer is usually also known as milcore, and it is also an integral

part of the WPF implementation.

In prior versions of Windows, applications were asked to paint their visible region

and to do so directly to the video memory buffer displayed in the screen. In Vista,

each application has its own dedicated video memory buffer – called surface and also

referred to sometimes as bitmap or textures – and the DWM will compose them into

the buffer displayed in the screen [59].

A key design challenge was the support of other graphics technologies such as GDI.

API call interception and redirection were used to make them transparently write to

their assigned surfaces. Although most of the functionality could be maintained, this

approach introduced a number of restrictions derived from incompatibilities between

them. Some of these incompatibilities directly affect the integration of DirectX.

The contents of a window can be rendered using either GDI, DirectX or the com-

bination of both [57]:

GDI
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Applications using GDI or GDI+ (such as Windows Forms) receive a drawing con-

text and are asked to draw their contents through it. Traditionally, the drawing

operations performed by this drawing context would output to the video memory

buffer that stores what is shown in the screen. The DWM provides a new drawing

context that writes the output to a surface dedicated to each application. This is

transparent for the application, however, given the different natures of GDI and

DirectX, there is a number of integration issues to take into account.

DirectX

WDDM introduced surface sharing, allowing different applications to have access

to a surface located in video memory. When an application is initiated, it re-

ceives a surface created by the DWM for its contents. The DWM keeps track

of changes to this surface and schedules its composition along the surfaces from

other applications.

Both GDI and DirectX

Applications can have several windows and there is no problem when each window

is rendered using either GDI or DirectX. However, problems arise when a window

has contents from different graphics technologies. Due to their different natures,

there is no guarantee of the order in which the contents will be rendered. Even

more, if both technologies would write to the same area, there would be guarantee

of the final result. Therefore, areas of a window rendered by each technology can

not be overlapped. This is the main restriction when integrating both graphics

technologies in the same window and was named the airspace rule.

II.4 Direct3D integration with Windows Forms and WPF

The airspace rule previously introduced, forbids overlapping areas of a window from

being rendered by different rendering technologies. However, as illustrated in Figure

II.2, different areas of a window can be rendered using either GDI (Win32), WPF, or

DirectX – as long as their don’t overlap.
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Figure II.2: Areas of the same window rendered by different technologies [37].

In a graphical Win32 application, a window is a rectangular area of the screen

where the application displays output and may receive input from the user [38]. This

applies not only to what we might think of as windows per-se – such as the one shown

in Figure II.2 – but also to other GUI elements such as buttons or combo boxes. When

one such window is created, a handle called HWND is returned in order to perform

operations over it.

Windows Forms controls are components with visual representation corresponding

to Win32 windows and thus have an associated HWND. As a matter of fact, it can be

retrieved through the Handle property of the Control class they all derive from.

Unlike Windows Forms, in WPF not every control is a Win32 window and thus,

not every control has its own HWND – indeed, only Window and emerging controls

such as popups or menus do. However, WPF controls are laid out hierarchically and a

control is always associated to a HWND through that hierarchy.

As shown in Algorithm 5, DirectX requires a HWND in order to show the rendering

result in the screen – i.e. it does so by painting to a Win32 window. Integrating into a

Windows Forms application is relatively easy since a control without visual content –

usually a Panel – can be employed to host the DirectX content. Although that control

paints nothing, it still has a Win32 window whose HWND can be passed to DirectX so

that it renders to it.

Integration with WPF applications is more complicated. Windows Forms content

can be hosted in WPF windows and viceversa through the use of interoperation controls,

shipped with WPF. More specifically the HwndHost control allows to embed a Win32

window as a WPF element, while HwndSource shows WPF content inside a Win32
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window.

WindowsFormsHost is a WPF control deriving HwndSource which goes one step

further, allowing to embed a Windows Forms control inside WPF. Its aim is to support

the re-use of existing Windows Forms controls in newly-developed WPF applications.

The interoperation library also provides a WPF BitmapSource called D3DImage

which allows to present a surface rendered by DirectX. In order to do so, this class

provides a SetBackBuffer method receiving a pointer to the surface. In this case, no

HWND is explicitly involved: surfaces are managed instead of Win32 windows. Indeed,

the rendering is always performed to the off-screen surface which must then be passed to

SetBackBuffer – as opposed to rendering to a Win32 window shown on-screen, through

its HWND.

II.5 Direct3D integration in this work

Regarding Direct3D integration, the developments carried out during the work pre-

sented in this thesis can be summarized in chronological order as follows:

1. A new rendering engine implemented in Managed DirectX (which uses Direct3D

9.0c) was developed to replace an existing GDI+ rendering engine used in a Win-

dows Forms Computer-Aided-Design application for Windows XP. A Windows

Forms user control complying to the drawing interface used by the existing ap-

plication was implemented. Interoperability with GDI+ was required, since the

interface provides support for graphical layers that could be rendered by both

technologies.

A significant constraint was found in the integration of the MDX rendering engine

into Windows Forms applications: in order to merge the result of the rendering

with other layers shown in the graphical user interface, the video memory where

the output was stored had to by copied into the system memory, a bitmap had

to be created using that memory and passed to a Windows Forms control dis-

playing it as an image. As it could be expected, this imposed a very significant

performance penalty that yielded the rendering engine unsuitable for real-time

power grid visualizations such as those involving animations. Thus, the rendering
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engine was implemented as an off-screen, on-demand renderer6.

2. A custom Windows Forms application was developed to carry tests over that

rendering implementation in order to measure the improvement provided by using

spatial databases to reduce the data volume.

3. A new version of the Computer-Aided-Design application targeting Windows

Vista was developed using WPF, along with a new rendering engine developed

directly in C++ for Direct3D 10. Since WPF is only available in managed lan-

guages such as C#, a partially managed language called C++/CLI was used as

a bridge between the native libraries implementing the rendering engine and the

WPF application.

Being implemented in Direct3D, WPF offers a much better integration with a

rendering engine implemented in Direct3D. However, there are still a number of

limitations. The most significant is the incompatibility of WPF inputs (eg. key

presses, mouse events) over the DirectX portion of a WPF window. Because

of this, the rendering engine was once again implemented as an off-screen, on-

demand renderer.

4. Several custom native Win32 applications were developed to test new features

of Direct3D 11 and to elaborate performance and memory consumption compar-

isons. Instead of using a managed graphical user interface library, DXUT was

used to present controls such as buttons and sliders, as well as rendering text.

The first two developments, target Windows XP while the others target Windows

Vista and its new graphics features.

6See Section I.2 of Appendix I for a description of the renderer pattern and these concepts.
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APPENDIX III
Resumen en español

Esta tesis presenta los resultados de casi 5 años de investigación, desde el año 2008

al 2013, en el contexto del desarrollo de una herramienta de planificación de redes

eléctricas para la compañ́ıa Gas Natural Fenosa. Concretamente, el trabajo se centra en

mejorar el rendimiento de la visualización de las redes eléctricas en dicha herramienta.

Para conseguir dicha mejora, se comenzó por actualizar el motor de dibujo de la

herramienta, utilizando una tecnoloǵıa gráfica capaz de aprovechar la potencia del hard-

ware gráfico disponible. Tras esto, el esfuerzo se centró en reducir el volumen de datos

involucrados en la visualización, primero mediante bases de datos espaciales y después

utilizando un enfoque menos convencional, explorando las diferentes capacidades del

hardware gráfico, no solo para realizar el dibujo de la red, sino también para llevar a

cabo la reducción del volumen de datos.

Dada la naturaleza de la colaboración con la compañ́ıa que financió este trabajo,

hubo que encontrar un equilibrio entre el trabajo de investigación y el desarrollo de las

soluciones requeridas. A esto hay que añadir los requisitos derivados de las particulari-

dades de la compañ́ıa. Por ejemplo, la versión del sistema operativo o las capacidades

del hardware gráfico deb́ıan de ajustarse a aquellos utilizados por la compañ́ıa. Esto

tuvo una influencia destacada en el proceso de investigación.

III.1 Contextualización

Las redes eléctricas son complejos sistemas que llevan la electricidad desde su generación

hasta sus consumidores. Tı́picamente se distinguen 3 fases: generación, transporte, y

distribución. La fase de transporte la forman redes eléctricas con ĺıneas de alta tensión
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que cubren grandes distancias con una topoloǵıa relativamente simple, conectando la

generación con las redes de distribución. Estas redes son mucho más complejas y se

dividen en una primera fase de media tensión y otra que lleva la electricidad a los

clientes finales mediante ĺıneas de baja tensión. Es necesario destacar la simplificación

de este resumen, puesto que los sistemas son mucho más complejos: por ejemplo, hay

tanto productores como consumidores conectados a la red de media tensión; además

con la aparición de pequeños productores en los últimos años y las tecnoloǵıas de Smart

Grids, este dibujo está cambiando paulatinamente.

La herramienta de planificación de redes eléctricas en torno a la que gira este tra-

bajo, permite realizar tareas de análisis, diseño, y simulaciones sobre redes eléctricas

de media tensión. Estas redes abarcan áreas geográficas que van desde comunidades

autónomas en el caso de España a pequeños páıses. La compañ́ıa eléctrica proporcionó

datos de las redes correspondientes a la comunidad autónoma de Galicia y a los páıses

de Nicaragua, Panamá, Moldavia, y Guatemala.

Los datos de interés de las redes son aquellos relativos a su estructura, no a medi-

ciones tales como el voltaje o la corriente en circulación. La información relativa a

dicha estructura se divide en ramas – formadas principalmente por las ĺıneas eléctricas

– y nudos – donde convergen varias de esas ramas y donde se encuentran entidades

tales como subestaciones eléctricas. En todos los casos, se dispone de las coordenadas

geográficas UTM de su localización. Esto permite visualizar las redes sobre mapas o

imágenes satélite. Si bien como parte del trabajo encargado por la compañ́ıa se han

desarrollado ese tipo de visualizaciones, este trabajo se restringe a la visualización de

las redes eléctricas representando sus ramas como ĺıneas de un ancho fijo, utilizando

sus coordenadas geográficas para determinar las posiciones relativas de los nodos que

las componen.

III.2 Objetivos y actuaciones

El objetivo principal del trabajo presentado es la mejora del tiempo requerido para

la visualización de redes eléctricas de media tensión realizada por una herramienta

de diseño asistido por ordenador para el análisis, diseño, planificación y tareas de

simulación de dicho tipo de redes.
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La herramienta está implementada utilizando la plataforma .NET de Microsoft

Windows. Para llevar a cabo la mencionada mejora, la primera actuación consistió

en reemplazar el motor de dibujo existente, basado en GDI+, por una nueva imple-

mentación utilizando la libreŕıa gráfica DirectX en su versión 9.0c. A pesar de que hubo

que adaptarse en parte a la forma de trabajar de GDI+ para poder integrar el nuevo

motor correctamente en la herramienta, la mejora de rendimiento fue más que notable,

siendo del orden de diez veces más rápido.

III.2.1 Generación de ĺıneas con grosor mediante hardware

El hardware gráfico moderno permite una gran flexibilidad al poder ser programado

mediante pequeños programas denominados shaders. La nueva versión del motor de

dibujo hace uso de esta posibilidad para generar ĺıneas con grosor. A partir de dos

puntos y un parámetro de grosor se realiza el cálculo necesario para situar cuatro

vértices formando dos triángulos adyacentes que componen la ĺınea con grosor. Esto

se ha llevado a cabo mediante vertex shaders. Además, se presenta una evolución

para la versión DirectX 10 utilizando los nuevos geometry shaders que ofrece. Dado

que este tipo de shaders permiten generar nuevas primitivas geométricas de forma

dinámica, deja de ser necesario tener definidos cuatro vértices a priori: basta con los

dos puntos formando la ĺınea y el parámetro de grosor para generar los dos triángulos

desde el geometry shader. Esto reduce la memoria de v́ıdeo necesaria para almacenar

los vértices en un 75%. Los triángulos generados por el shader pueden ser almacenados

en memoria de v́ıdeo para su posterior reutilización o se pueden volver a generar cada

vez. Aunque podŕıa pensarse que almacenarlos y reutilizarlos resultaŕıa beneficioso, en

realidad aumenta tanto los requerimientos computacionales – por tener que procesar

los vértices generados – como los de memoria – por el espacio requerido para almacenar

dichos vértices.

III.2.2 Simplificación de las redes mediante bases de datos espaciales

Una vez mejorado el rendimiento cumpliendo con los requisitos software, hardware, y

de integración de la herramienta, se optó por reducir el volumen de datos para tratar

de disminuir aún más los tiempos necesarios para llevar a cabo la visualización. Dada

la naturaleza de los datos, consistentes en coordenadas geográficas y la información
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topológica de las ramas, se estudió la viabilidad de emplear bases de datos espaciales

para dicha tarea.

Las bases de datos espaciales ofrecen tipos y operaciones espećıficas para la gestión

de datos con relaciones espaciales. En este trabajo se utilizó la extensión espacial Post-

GIS de PostgreSQL. Uno de los tipos soportados por dicha extensión es el LineString,

que corresponde a una sucesión de ĺıneas conectadas. Este tipo es por tanto idóneo

para representar las ramas de las redes eléctricas. En este trabajo, se utiliza el término

poliĺınea para referirse a una sucesión de ĺıneas conexas, equivalente tanto al tipo

LineString, como a las ramas eléctricas, u otros tipos de datos disponibles en DirectX.

Por otra parte, PostGIS ofrece multitud de funciones para el procesamiento de este tipo

de datos y su indexación. Especialmente relevantes en este trabajo son las funciones

que permiten simplificar poliĺıneas u obtener todas las poliĺıneas dentro o intersecando

con una determinada área.

Teniendo en cuenta estas funcionalidades, se desarrolló una solución para procesar

cada red eléctrica y generar varias resoluciones de los datos, almacenando cada una de

ellas en una tabla dedicada. Esto es lo que se denomina una arquitectura multi-escala.

Se desarrolló una libreŕıa formada por una serie de procedimientos almacenados en el

lenguaje PL/pgSQL de PostgreSQL y disparadores para mantener las tablas con las

diferentes escalas actualizadas respecto a los datos originales de las redes eléctricas.

Todo aquello que no sea relevante de cara a la visualización, bien porque no aporta

detalle o porque ni siquiera es visible, debeŕıa ser eliminado para disminuir la cantidad

de datos a procesar. La reducción de los datos puede ir encaminada no solo a reducir los

requerimientos computacionales, sino también a mejorar la estética de la visualización,

haciéndola más legible; por ejemplo, reduciendo la información mostrada en un área

donde hay tanta que no se puede discernir claramente – como puede suceder al mostrar

todas las ramas de una ciudad cuando la escala es pequeña. Para analizar qué poliĺıneas

pueden ser eliminadas y su potencial impacto en la visualización, se estudiaron las

condiciones y técnicas de generalización cartográfica.

Para generar las distintas escalas, se lleva a cabo un procesamiento de las ramas

consistente en la simplificación de las poliĺıneas para eliminar segmentos indiscernibles y

se fusionan poliĺıneas adyacentes o muy próximas, ya que tampoco seŕıan distinguibles

en la visualización. Los resultados presentados muestran que gracias a la reducción de
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datos conseguida, se redujo el tiempo para representar la visualización hasta un 15%

del tiempo original.

III.2.3 Simplificación de las redes en la GPU

Gracias a la disponibilidad de nuevo hardware gráfico y nuevas versiones de DirectX,

se abrió la posibilidad de mover el proceso de simplificación de las ramas de las redes

eléctricas a la GPU. Se presentan tres implementaciones que explotan diferentes partes

del pipeline gráfico de DirectX, exponiendo un análisis comparativo de su rendimiento

en términos de carga computacional y requisitos de memoria de v́ıdeo.

Uno de los objetivos a la hora de redactar esta tesis, fue tratar de dar al lector una

visión del proceso de evolución sufrido por el hardware gráfico en ordenadores persona-

les, desde sus inicios hasta la actualidad. Comenzaron siendo meros adaptadores para

poder mostrar caracteres alfanuméricos, pasando a ser influenciados por la popularidad

de los videojuegos en entornos tridimensionales, para convertirse en procesadores con

gran capacidad para computación paralela de propósito general.

También se trató de dar una visión global aunque breve del API de DirectX 11, y

más concretamente de Direct3D. Esta tecnoloǵıa no es sino un reflejo de la arquitectura

dominante en el hardware gráfico y consistente en una serie de etapas, algunas de ellas

programables mediante shaders, que conforman lo que se denomina el pipeline gráfico.

De forma muy resumida, las etapas del pipeline gráfico de DirectX 11 son las siguientes:

1. Input Assembler: obtiene los datos contenidos en buffers de memoria de v́ıdeo y

ensambla las primitivas de entrada al pipeline.

2. Vertex Shader: se invoca sobre cada vértice de las primitivas recibidas del Input

Assembler.

3. Hull Shader: requiere que las primitivas ensambladas por el Input Assembler

sean patches, siendo invocado para cada uno de ellos. Realiza las operaciones

requeridas sobre ellos y configura el Tesselator, definiendo cuántas primitivas

debe generar y de qué tipo.

4. Tessellator: una vez que el Hull Shader ha procesado el patch correspondiente,
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genera tantas coordenadas como vértices sean necesarios para crear las primitivas

especificadas por el Hull Shader.

5. Domain Shader: procesa cada coordenada recibida del Tessellator, empleando

normalmente la información del patch procesado por el Hull Shader.

6. Geometry Shader: invocado para cada primitiva ensamblada por el Input Assem-

bler o generada por el Tessellator, puede alterar la geometŕıa, tanto eliminando

como creando nuevas primitivas.

7. Stream Output: permite guardar las primitivas que salen del Vertex o Geometry

Shader a un buffer de memoria de v́ıdeo. Esto permite guardar los resultados del

procesamiento llevado a cabo para reutilizarlo más adelante.

8. Rasterizer: es el encargado de generar fragments a partir de la información vec-

torial que representan las geometŕıas. Los fragments pueden verse como ṕıxels

con información adicional.

9. Pixel Shader: procesa cada fragment generado por el Rasterizer, pudiendo generar

varios colores como resultado.

10. Output Merger: es el encargado de generar los ṕıxels que componen la imagen (o

imágenes) resultado.

Además, existe otro pipeline alternativo para computaciones de propósito general

que contiene una sola etapa programable: el Compute Shader.

Las implementaciones desarrolladas y presentadas en esta tesis son las siguientes:

Compute Shader: emplea el Compute Shader para pre-procesar las poliĺıneas,

simplificándolas en la GPU y guardando el resultado en memoria de v́ıdeo para

ser luego consumido por el pipeline gráfico para generar la visualización. Este

pre-procesamiento solo es necesario llevarlo a cabo antes del primer renderizado

o cuando cambia el valor del parámetro empleado en el proceso de simplificación

para determinar la longitud mı́nima que tienen que tener los segmentos de las

poliĺıneas. Se desarrolló una aplicación nativa en C++ que muestra la visuali-

zación y permite configurar la técnica presentada mediante una interfaz gráfica

desarrollada con la libreŕıa de utilidad DXUT.

198



III.3 Estructura

Geometry Shader: el procesamiento llevado a cabo por el Compute Shader en la

implementación anterior, se adaptó a las particularidades del Geometry Shader.

Éste impone más restricciones, debido a las cuales solo se pueden generar 31 ĺıneas

por cada ejecución del shader. No obstante, se presentan técnicas para superar

esta limitación realizado varias ejecuciones del shader para los mismos datos de

entrada. Se desarrollaron dos aplicaciones análogas a la desarrollada para el

Compute Shader para probar la implementación: una con tres configuraciones

predefinidas y otra que permite configurar el número de shaders a utilizar para

la simplificación.

Tessellation: en este caso, se utilizan patches de 32 puntos para representar las

poliĺıneas, siendo generadas por el Tessellator tantas ĺıneas como las que hayan

pasado el proceso de simplificación llevado a cabo en el Hull Shader. En caso de

poliĺıneas con menos puntos, simplemente se ignoran los puntos restantes. Esta

técnica no es aplicable para poliĺıneas de más de 32 puntos, ya que no hay op-

ciones similares a la instanciación del Geometry Shader aprovechada por la imple-

mentación anterior. Por ello, para esas poliĺıneas se utiliza dicha implementación.

La aplicación desarrollada para probar esta técnica permite seleccionar el numero

máximo de puntos para las poliĺıneas simplificadas mediante Tessellation, uti-

lizando para el resto de las poliĺıneas la implementación del Geometry Shader.

Los resultados de la experimentación llevada a cabo para las tres implementaciones

descritas permiten concluir lo siguiente. Como se esperaba a priori, la más adecuada

parece ser la implementación del Compute Shader, ya que además de resultar más

transparente, no introduce un impacto en el rendimiento cada vez que se genera la

visualización sino solo cuando cambia el criterio de simplificación – esto suele corres-

ponder a una variación del nivel de detalle requerido, por ejemplo a consecuencia de

un nivel distinto de zoom en la visualizacion. Por otra parte, dicha implementación es

la que menos restricciones establece respecto a la longitud de las poliĺıneas.

III.3 Estructura

Esta tesis consta de los siguientes caṕıtulos:
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1. Caṕıtulo 1: presenta la introducción, objetivos, y estructura del trabajo.

2. Caṕıtulo 2: introduce el dominio de la investigación, es decir, la visualización de

redes eléctricas de media tensión. Se presenta brevemente el sistema eléctrico y

se lleva a cabo un análisis de los conjuntos de datos empleados.

3. Caṕıtulo 3: describe una arquitectura multi-escala para reducir el volumen de

datos mediante bases de datos espaciales y los resultados experimentales. Además,

se introduce el campo de la generalización cartográfica y cómo la reducción del

volumen de datos no solo redunda en mejores tiempos de renderizado sino que

también puede mejorar la calidad de la visualización.

4. Caṕıtulo 4: presenta una perspectiva histórica de la evolución del hardware gráfico

desde sus inicios hasta el disponible hoy en d́ıa.

5. Caṕıtulo 5: introduce los principales conceptos de la generación de gráficos tridi-

mensionales. Este caṕıtulo permite contrastar lo expuesto en el caṕıtulo anterior

sobre cómo el hardware replicaba las fases de este proceso de generación y a la

vez, presenta conceptos fundamentales para comprender el API de Direct3D y

por extensión las técnicas implementadas con él.

6. Caṕıtulo 6: expone las partes más relevantes del API de Direct3D en su versión

11. Trata no solo de presentar las funcionalidades explotadas por las distintas

implementaciones llevadas a cabo en esta tesis, sino de dar una visión general de

Direct3D.

7. Caṕıtulo 7: describe las tres implementaciones de la simplificación de poliĺıneas

en la GPU realizadas mediante DirectX 11.

8. Caṕıtulo 8: presenta los resultados experimentales de las implementaciones des-

critas en el caṕıtulo 7. Incluye una comparativa teniendo en cuenta los costes

computacionales y de memoria, aśı como sus requisitos de hardware y software.

9. Caṕıtulo 9: expone las conclusiones de esta tesis y posibles ĺıneas de trabajo

futuro.

10. Apéndice I: introduce algunos patrones software relevantes al campo de la visua-

lización, describiendo su aplicación en este trabajo.

11. Apéndice II: realiza un análisis de la integración de las tecnoloǵıas gráficas em-

pleadas en este trabajo para las dos versiones de Microsoft Windows objetivo:

XP y Vista.
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12. Apéndices III y IV: resúmenes en español y gallego de la tesis, de acuerdo a la

normativa del programa de doctorado.

III.4 Conclusiones

Esta tesis presenta los resultados de trabajos de investigación llevados a cabo para

mejorar la visualización de una herramienta de planificación de redes eléctricas. La

primera actuación consistió en actualizar su motor de dibujo para explotar el alto

rendimiento ofrecido por DirectX.

Una forma fundamental de mejorar el rendimiento de una visualización es la re-

ducción de los datos involucrados, puesto que cuanto menor sea su volumen, menor

será el tiempo necesario para generar la visualización. Además, la reducción de datos

puede mejorar la calidad estética de la visualización, haciéndola más legible.

Se presentaron dos aproximaciones a la reducción de datos: mediante bases de datos

espaciales y mediante hardware gráfico. No son excluyentes, dado que la información

de las redes eléctricas normalmente proviene de una base de datos y, utilizando las

extensiones espaciales que proporcionan la mayoŕıa de sistemas de gestión de bases de

datos modernos, se puede procesar la información para adecuadarla a la visualización

a realizar.

El hardware gráfico moderno está equipado con potentes GPUs con gran capacidad

para la computación paralela de alto rendimiento y propósito general. Se han presen-

tado tres técnicas que no solo dibujan la visualización de las redes eléctricas, sino que

integran en el proceso la simplificación de las redes eléctricas para tratar de generar la

visualización más rápidamente.

Según sigan evolucionando las capacidades del hardware gráfico, nuevas técnicas

podrán ser implementadas y las existentes mejorarán su rendimiento de forma casi

transparente, lo que hace que este campo sea altamente dinámico y una fuente de

innovación.
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III.5 Trabajo futuro

Como ĺıneas de continuación de este trabajo se pueden destacar las siguientes:

Migración a DirectX 12: este trabajo fue evolucionando según lo permitió el

hardware y software disponible, de la versión 9 de DirectX empleada inicialmente

hasta la 11. Aunque no presenta nuevas etapas del pipeline como śı pasó en dichas

versiones, la versión 12 se centra en mejorar la eficiencia lo que debeŕıa redundar

en una mejora del rendimiento, por lo que seŕıa interesante su adopción.

Introducción de visualizaciones más complejas: la visualización utilizada en este

trabajo corresponde a la representación de las ramas de las redes eléctricas como

ĺıneas de ancho fijo. Existen multitud de visualizaciones disponibles que podŕıan

aprovechar las mejoras de rendimiento aqúı presentadas. De hecho, este trabajo

ha abierto las puertas a la introducción de animaciones en tiempo real en las

visualizaciones llevadas a cabo por la herramienta de planificación.

Adopción de otros patrones de visualización: en el Apéndice I se mencionan

algunos patrones que no se adoptaron debido a restricciones de tiempo y que

podŕıan resultar beneficiosos.

Conversión de coordenadas geográficas: en ocasiones se requiere algún tipo de

procesamiento espećıfico sobre las coordenadas geográficas en que están definidas

las ramas de las redes eléctricas. Un ejemplo es su visualización sobre mapas o

imágenes satélite. Normalmente los mapas o imágenes estarán definidos en otro

sistema de coordenadas y será necesario convertir las coordenadas de las ramas.

Esta conversión se podŕıa integrar en el procesamiento que realizan los vertex y

geometry shaders en la GPU.

Revisión del algoritmo de simplificación: al igual que en el caso de la visualización,

se optó por un algoritmo de simplificación sencillo que podŕıa ser revisado y

mejorado.
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III.6 Publicaciones

Parte del trabajo presentado en esta tesis ha sido presentado en las siguientes confe-
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Power Grids CAD tools

Rodriguez J. N., Hernandez Pereira E., y Canosa M. C. Digital cartographic

generalization in spatial databases: application issues in power grids cad tools.

”Proceedings of the V Ibero-American Symposium in Computer Graphics (SIACG

2011)”, páginas 15-22. SIACG (2011).

Improving Electrical Power Grid Visualization using Geometry Shaders

Rodriguez J. N., Canosa M. C., y Hernandez Pereira E. Improving electrical

power grid visualization using geometry shaders. ”Computer Graphics, Imaging

and Visualization (CGIV), 2011 Eighth International Conference”, páginas 177-

182. IEEE (2011).

Actualmente se encuentra bajo revisión un resumen de los trabajos presentados en

esta tesis. Además, una versión ampliada de la primera publicación se publicó también

en la siguiente revista:

Rodriguez J. N., Canosa M. C., y Hernandez Pereira E. Electrical distribution

grid visualization using programmable gpus. ”ECTI Transactions on Computer

and Information Technology”, 5(1), páginas 30-37 (2011).
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APPENDIX IV
Resumo en galego

Esta tese presenta os resultados de case 5 anos de investigación, dendo o ano 2008

ao 2013, no contexto do desenvolvemento dunha ferramenta de planificación de redes

eléctricas para a compañ́ıa Gas Natural Fenosa. Concretamente, o traballo céntrase en

mellora-lo rendemento da visualización das redes eléctricas na mencionada ferramenta.

Para acadar tal mellora, comezóuse pola actualización do motor de debuxo da ferra-

menta, empregando unha tecnolox́ıa gráfica capaz de aproveita-la potencia do hardware

gráfico dispoñible. Tras iso, o esforzo centróuse en reduci-lo volume de datos involucra-

dos na visualización, primeiro mediante bases de datos espaciais e logo empregando un

enfoque menos convencional, explorando as diferentes capacidades do hardware gráfico,

non só para levar a cabo o debuxo da rede, senón tamén para levar a cabo a reducción

do volume de datos.

Dada a natureza da colaboración coa compañ́ıa que financiou este traballo, houbo

que atopar un equilibrio entre o traballo investigador e o desenvolvemento das solucións

requeridas. A isto hai que engadi-los requisitos derivados das particularidades da

compañ́ıa. Por exemplo, a versión do sistema operativo ou as capacidades do hard-

ware gráfico deb́ıan de se axustar a aquelos empregados pola compañ́ıa. Isto tivo unha

influencia destacada no proceso investigador.

IV.1 Contextualización

As redes eléctricas son complexos sistemas que levan a electricidade dende súa xeración

ata seus consumidores. Tı́picamente diferéncianse 3 fases: xeración, transporte, e dis-

tribución. A frase de transporte está formada por redes eléctrica con liñas de alta
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tensión que cubren grandes distancias cunha topolox́ıa relativamente simple, conectando

a xeración coas redes de distribución. Estas redes son moito máis complexas e div́ıdense

nunha primeira fase de media tensión e outra que leva a electricidade aos clientes fináis

mediante liñas de baixa tensión. Cómpre destaca-la simplificación deste resumo, posto

que os sistemas son moito máis complexos: por exemplo, hai tanto productores como

consumidores conectados á rede de media tensión; ademáis coa aparición de pequenos

productores nos últimos anos e das tecnolox́ıas Smart Grids, este debuxo está a cambiar

paulatinamente.

A ferramenta de planificación de redes eléctricas en torno á que xira este traballo,

permite levar a cabo tarefas de análise, deseño, e simulacións sobre redes eléctricas

de media tensión. Estas redes abarcan áreas xeográficas que van dende comunidades

autónomas no caso de España ata pequenos páıses. A compañ́ıa eléctrica proporcionou

datos das redes correspondentes á comunidade autónoma de Galicia e aos páıses de

Nicaragua, Panamá, Moldavia, e Guatemala.

Os datos de interese das redes son aquelos relativos á súa estructura, non a medicións

tales coma a voltaxe ou a corrente en circulación. A información relativa á estructura

div́ıdese en pólas – formadas principalmente polas liñas eléctricas – e nós – onde con-

verxen varias desas pólas e onde atópanse entidades tales como subestacións eléctricas.

En tódolos casos, disponse das coordenadas xeográficas UTM da súa localización. Isto

permite visualiza-las redes sobre mapas ou imaxes satélite. Se ben como parte do tra-

ballo encargado pola compañ́ıa desenvolv́ıronse ese tipo de visualizacións, este traballo

só leva a cabo a visualización das redes eléctricas representando súas pólas como liñas

dun ancho fixo, empregando as coordenadas xeográficas para determina-las posicións

relativas dos nodos que as forman.

IV.2 Obxectivos e actuacións

O principal obxectivo do traballo presentado é a mellora do tempo requerido para

visualizar redes eléctricas de media tensión por parte dunha ferramenta de deseño

asistido por ordenador para a análise, deseño, planificación, e tarefas de simulación do

mencionado tipo de redes.
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A ferramenta está implementada empregando a plataforma .NET de Microsoft Win-

dows. Para levar a cabo a mencionada tarefa, a primeira actuación consistiu en subs-

tituir o motor de debuxo existente, baseado en GDI+, por unha nova implementación

empregando a libraŕıa gráfica DirectX na súa versión 9.0c. A pesar de que houbo que

adaptarse en parte á forma de traballar de GDI+ de cara a poder integra-lo novo motor

correctamente na ferramenta, a mellora de rendemento foi máis que notable, sendo da

orde de dez veces máis rápido.

IV.2.1 Xeración de liñas con grosor mediante hardware

O hardware gráfico moderno permite unha gran flexibilidade ao poder ser programado

mediante pequenos programas denominados shaders. A nova versión do motor de de-

buxo fai uso desta posibilidade para xerar liñas con grosor. A partir de dous puntos

e un parámetro de grosor lévase a cabo o cálculo necesario para situar catro vértices

formando dous triángulos adxacentes que compoñen a liña con grosor. Isto levóuse

a cabo mediante vertex shaders. Ademáis, preséntase unha evolución para a versión

DirectX 10 empregando os novos geometry shaders que ofrece. Dado que este tipo de

shaders permiten xerar novas primitivas xeométricas de forma dinámica, deixa de ser

preciso ter definidos catro vértices a priori: basta cós dous puntos formando a liña

máis o parámetro de grosor para xera-los dos triángulos dende o geometry shader. Isto

reduce a memoria de v́ıdeo precisa para almacena-los vértices nun 75%. Os triángulos

xerados polo shader poden ser almacenados en memoria de v́ıdeo para a súa poste-

rior reutilización ou poden volverse xerar cada vez. Aı́nda que podeŕıa pensarse que

almacenalos e reutilizalos resultaŕıa beneficioso, en realidade aumenta tanto o custo

computacional – por ter que procesa-los vértices xerados – coma o de memoria – polo

espacio preciso para almacena-los vértices.

IV.2.2 Simplificación das redes mediante bases de datos espaciais

Unha vez mellorado o rendemento cumplindo cos requisitos software, hardware, e de in-

tegración da ferramenta, optóuse por reduci-lo volume de datos para tratar de disminuir

máis áında os tempos requeridos para levar a cabo a visualización. Dada a natureza dos

datos, consistentes en coordenadas xeográficas e da información topolóxica das pólas,

estudiouse a viabilidade de empregar bases de datos espaciais para esa tarefa.
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As bases de datos espaciais ofrecen tipos e operacións espećıficas para a xestión de

datos con relacións espaciais. Neste traballo utilizóuse a extensión espacial PostGIS de

PostgreSQL. Un dos tipos soportados por esa extensión é o LineString, que corresponde

a unha sucesión de liñas conectadas. Este tipo é por tanto adecuado para representa-las

pólas das redes eléctricas. Neste traballo, utiĺızase o termo poliliña para referirse a unha

sucesión de liñas conexas, equivalente tanto ao tipo LineString, como ás pólas eléctricas,

ou a outros tipos de datos dispoñibles en DirectX. Por outra banda, PostGIS ofrece

multitude de funcións para o procesamento deste tipo de datos e a súa indexación.

Especialmente relevantes neste traballo son as funcións que permiten simplificar poli-

liñas ou obter tódalas poliliñas dentro ou intersecando cunha determinada área.

Tendo en conta estas funcionalidades, desenvolv́ıuse unha solución para procesar

cada rede eléctrica e xerar varias resolución dos datos, almacenando cada unha delas

nunha táboa dedicada. Isto é o que se denomina unha arquitectura multi-escala. De-

senvolv́ıuse unha libreŕıa formada por unha serie de procedementos almacenados na

linguaxe PL/pgSQL de PostgreSQL e disparadores para mante-las táboas coas diferen-

tes escalas actualizadas respecto aos datos orixinales das redes eléctricas.

Todo aquelo que non sexa relevante de cara á visualización, ben porque non aporta

detalle ou porque nin tan sequera é visible, debeŕıa ser eliminado para disminuir a

cantidade de datos a procesar. A reducción dos datos pode ir encamiñada non só a

reduci-los requerimentos computacionáis, senón tamén a mellora-la estética da visuali-

zación, facéndoa máis lexible; por exemplo, reducindo a información mostrada nunha

área onde hai tanta que non se pode discenir claramente – como pode suceder cando

se mostran tódalas pólas dunha ciudade cando a escala é pequena. Para analizar qué

poliliñas poden ser eliminadas e o potencial impacto na visualización, estudiáronse as

condicións e técnicas de xeneralización cartográfica.

Para xera-las distintas escalas, lévase a cabo un procesamento das ramas consistente

na simplificación das poliliñas para eliminar segmentos indiscernibles e fusiónanse poli-

liñas adxacentes ou moi próximas, xa que tampoco seŕıan distinguibles na visualiza-

ción. Os resultados presentados mostran que gracias á reducción de datos conseguida,

redućıuse o tempo para representa-la visualización ata un 15% do tempo orixinal.
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IV.2.3 Simplificación das redes na GPU

Gracias á dispoñibilidade de novo hardware gráfico e novas versións de DirectX, abŕıuse

a posibilidade de mover o proceso de simplificación das pólas das redes eléctricas á GPU.

Preséntanse tres implementacións que explotan diferentes partes do pipeline gráfico de

DirectX, expoñendo unha análise comparativa do seu rendemento en termos de carga

computacional e requisitos de memoria de v́ıdeo.

Un dos obxectivos á hora de redactar esta tese, foi tratar de darlle ao lector unha

visión do proceso de evolución sufrido polo hardware gráfico en ordenadores personáis,

dende seus inicios ata a actualidade. Comezaron sendo meros adaptadores para poder

mostrar caracteres alfanuméricos, pasando a ser influenciados pola popularidade dos

videoxogos en entornos tridimensionáis, para convertirse en procesadores con gran ca-

pacidade para computación paralela de propósito xeral.

Tamén tratóuse de dar unha visión global áında que breve do API de DirectX 11, e

máis concretamente de Direct3D. Esta tecnolox́ıa non é senón un reflexo da arquiectura

dominante no hardware gráfico e consistente nunha serie de etapas, algunhas delas

programables mediante shaders, que conforman o que denomı́nase o pipeline gráfico.

De forma moi resumida, as etapas do pipeline gráfico de DirectX 11 son as seguintes:

1. Input Assembler: obtén os datos contidos en buffers de memoria de v́ıdeo e

ensambla as primitivas de entrada ao pipeline.

2. Vertex Shader: é invocado sobre cada vértice das primitivas recibidas do Input

Assembler.

3. Hull Shader: require cas primitivas ensambladas polo Input Assembler sexan

patches, sendo invocado para cada un deles. Realiza as operacións requeridas

sobre eles e configura o Tessellator, definindo cantas primitivas debe xerar e de

qué tipo.

4. Tessellator: unha vez que o Hull Shader procesou o patch correspondente, xera

tantas coordenadas coma vértices sexan necesarios para crea-las primitivas es-

pecificadas polo Hull Shader.

5. Domain Shader: procesa cada coordenada recibida do Tessellator, empregando

normalmente a información do patch procesado polo Hull Shader.
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6. Geometry Shader: invocado para cada primitiva ensamblada polo Input Assem-

bler ou xerada polo Tessellator, pode altera-la xeometŕıa, tanto eliminando como

creando novas primitivas.

7. Stream Output: permite garda-las primitivas que salen do Vertex ou Geometry

Shader a un buffer de memoria de v́ıdeo. Isto permite garda-los resultados do

procesamento levado a cabo para reutilizalo máis adiante.

8. Rasterizer: é o encargado de xerar fragments a partir da información vectorial que

representan as xeometŕıas. Os fragments poden verse como ṕıxels con información

adicional.

9. Pixel Shader: procesa cada fragment xerado polo Rasterizer, pudindo xerar varias

cores como resultado.

10. Output Merger: é o encargado de xera-los ṕıxels que compoñen a image (ou

imaxes) resultado.

Ademáis, existe outro pipeline alternativo para computacións de propósito xeral

que contén unha sola etapa programable: o Compute Shader.

As implementación desenvolvidas e presentadas nesta tese son as seguintes:

Compute Shader: emprega o Compute Shader para pre-procesa-las poliliñas, sim-

plificándoas na GPU e gardando o resultado en memoria de v́ıdeo para ser logo

consumido polo pipeline gráfico para xera-la visualización. Este pre-procesamento

só e preciso levalo a cabo antes do primeiro renderizado ou cando cambia o valor

do parámetro empregado no proceso de simplificación para determina-la lonxitude

mı́nima que teñen que ter os segmentos das poliliñas. Desenvolv́ıuse unha apli-

cación nativa en C++ que mostra a visualización e permite configura-la técnica

presentada mediante unha interfaz gráfica desenvolvida coa libreŕıa de utilidade

DXUT.

Geometry Shader: o procesamento levado a cabo polo Compute Shader na im-

plementación anterior, adaptóuse ás particularidades do Geometry Shader. Éste

impón máis restriccións, debido ás cales só se poden xerar 31 liñas por cada exe-

cución do shader. Preséntanse técnicas para superar esta limitación realizando

varias execucións do shader para os mesmos datos de entrada. Desenvolv́ıronse
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dous aplicacións análogas á desenvolvida para o Compute Shader para proba-la

implementación: unha con tres configuracións predefinidas e outra que permite

configura-lo número de shaders a empregar para a simplificación.

Tessellation: neste caso, utiĺızanse patches de 32 puntos para representa-las poli-

liñas, sendo xeradas polo Tessellator tantas liñas como as que pasaran o proceso

de simplificación levado a cabo no Hull Shader. No caso de poliliñas con menos

puntos, simplemente ignóranse os puntos restantes. Esta técnica non é aplicable

para poliliñas de máis de 32 puntos, xa que non hai opcións similares á instan-

ciación do Geometry Shader aproveitada pola implementación anterior. Por iso,

para esas poliliñas utiĺızase esa implementación. A aplicación desenvolvida para

probar esta técnica permite selecciona-lo número máximo de puntos para as poli-

liñas simplificadas mediante Tessellation, utilizando para o resto das poliliñas a

implementación do Geometry Shader.

Os resultados da experimentación levada a cabo para as tres implementacións descri-

tas permiten concluir o seguinte. Como esperábase a priori, a máis adecuada semella ser

a implementación do Compute Shader, xa que ademáis de resultar máis transparente,

non introduce un impacto no rendimiento cada vez que se xera a visualización senón

só cando cambia o criterio de simplifación – isto corresponde normalmente a unha

variación do nivel de detalle requerido, por exemplo a consecuencia dun nivel distinto

de zoom na visualización. Por outra parte, é a implementación que menos restriccións

establece respecto á lonxitude das poliliñas.

IV.3 Estructura

Esta tese consta dos seguintes caṕıtulos:

1. Caṕıtulo 1: presenta a introducción, obxectivos, e estructura do traballo.

2. Caṕıtulo 2: introduce o dominio da investigación, é dicir, a visualización de redes

eléctricas de media tensión. Preséntase brevemente o sistema eléctrico e lévase a

cabo unha análise dos conxuntos de datos empregados.
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3. Caṕıtulo 3: describe unha arquitectura multi-escala para reduci-lo volume dos

datos mediante bases de datos espaciais e os resultados experimentáis. Ademáis,

introdúcese o campo da xeneralización cartográfica e cómo a reducción do volume

de datos non só redunda en mellores tempos de renderizado senón que tamén pode

mellora-la calidade da visualización.

4. Caṕıtulo 4: presenta unha perspectiva histórica da evolución do hardware gráfico

dende os seus inicios ata o dispoñible hoxe en d́ıa.

5. Caṕıtulo 5: introduce os principais conceptos da xeración de gráficos tridimen-

sionáis. Este caṕıtulo permite contrasta-lo exposto no caṕıtulo anterior sobre

cómo o hardware replicaba as fases deste proceso de xeración e á vez, presenta

conceptos fundamentáis para comprende-lo API de Direct3D e por extensión as

técnicas implementadas con él.

6. Caṕıtulo 6: expón as partes máis relevantes do API de Direct3D na súa versión

11. Trata non só de presenta-las funcionalidades explotadas polas distintas imple-

mentacións levadas a cabo nesta tese, senón de dar unha visión xeral de Direct3D.

7. Caṕıtulo 7: describe as tres implementacións da simplificación de poliliñas na

GPU realizadas mediante DirectX 11.

8. Caṕıtulo 8: presenta os resultados experimentáis das implementacións descritas

no caṕıtulo 7. Inclúe unha comparativea tendo en conta os costes computacionáis

e de memoria, aśı como seus requisitos de hardware e software.

9. Caṕıtulo 9: expón as conclusións desta tese e posibles liñas de traballo futuro.

10. Apéndice I: introduce algúns patróns software relevantes ao campo da visualiza-

ción, describindo a súa aplicación neste traballo.

11. Apéndice II: realiza unha análise da integración das tecnolox́ıas gráficas empre-

gadas neste traballo para as dos versións de Microsoft Windows obxectivo: XP e

Vista.

12. Apéndices III e IV: resúmenes en español e galego da tese, de acordo coa normativa

do programa de doutoramento.
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IV.4 Conclusións

Esta tese presenta os resultados de traballos de investigación levados a cabo para

mellora-la visualización dunha ferramenta de planificación de redes eléctricas. A primeira

actuación consistiu en actualiza-lo seu motor de debuxo para explota-lo alto rendemento

ofrecido por DirectX.

Unha forma fundamental de mellora-lo rendemento dunha visualización é a re-

ducción dos datos involucrados, posto que canto menor sexa seu volume, menor será

o tempo necesario para xera-la visualización. Ademáis, a reducción de datos pode

mellora-la calidade estética da visualización, facéndoa máis lexible.

Presentáronse dous aproximacións á reducción de datos: mediante bases de datos

espaciais e mediante hardware gráfico. Non son exclúıntes, dado que a información das

redes eléctricas normalmente provén dunha base de datos e, empregando as extensións

espaciais que proporcionan a maioŕıa dos sistemas de xestión de bases de datos moder-

nos, pódese procesa-la información para adecuala á visualización a realizar.

O hardware gráfico moderno está equipado con potentes GPUs con gran capacidade

para a computación paralela de alto rendemento e propósito xeral. Presentáronse tres

técnicas que non só debuxan a visualización das redes eléctricas, senón que integran o

proceso a simplificación das redes eléctricas para tratar de xera-la visualización máis

rápidamente.

Según sigan a evoluciona-las capacidades do hardware gráfico, novas técnicas poderán

ser implementadas e as existentes mellorarán o seu rendemento de forma casi transpa-

rente, o que fai que este campo sexa altamente dinámico e unha fonte de innovación.

IV.5 Traballo futuro

Como liñas de continuación deste traballo pódense destacar as seguintes:

Migración a DirectX 12: este traballo foi evolucionando según o permitiu o hard-

ware e software dispoñible, da versión 9 de DirectX empregada inicialmente ata
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a 11. Aı́nda que non presenta novas etapas do pipeline coma śı pasou nas men-

cionadas versións, a versión 12 céntrase en mellora-la eficiencia o que debeŕıa re-

dundar nunha mellora do rendemento, polo que seŕıa interesante a súa adopción.

Introducción de visualizacións máis complexas: a visualización empregada neste

traballo corresponde á representación das ramas das redes eléctricas como liñas

de ancho fixo. Existen multitude de visualizacións dispoñibles que podeŕıan

aproveita-las melloras de rendemento aqúı presentadas. De feito, este traballo

abriu as portas á introducción de animacións en tempo real nas visualizacións

levadas a cabo pola ferramenta de planifación.

Adopción doutros patróns de visualización: no Apéndice I menciónanse algúns

patróns que non se adoptaron debido a restriccións de tempo e que podeŕıan

resultar beneficiosos.

Conversión de coordenadas xeográficas: en ocasións reqúırese algún tipo de proce-

samento espećıfico sobre as coordenadas xeográficas na que están definidas as

pólas das redes eléctricas. Un exemplo é a súa visualización sobre mapas ou

imaxes satélite. Normalmente os mapas ou imaxes estarán definidos noutro sis-

tema de coordenadas e será preciso convertir as coordenadas das pólas. Esta

conversión podeŕıase integrar no procesamento que realizan os vertex e geometry

shaders na GPU.

Revisión do algoritmo de simplificación: igual que no caso da visualización,

optóuse por un algoritmo de simplificación sinxelo que podeŕıa ser revisado e

mellorado.

IV.6 Publicacións

Parte do traballo presentado nesta tese foi presentado nas seguintes conferencias e

publicado nas súas respectivas actas:

Electrical Distribution Grid Visualization using Programmable GPUs

Rodriguez J. N., Canosa M. C., e Hernandez Pereira E. Electrical distribution

grid visualization using programmable gpus. ”7th International Conference on
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Electrical Engineering/Electronics Computer Telecommunications and Informa-

tion Technology (ECTI-CON 2010)”, páxinas 1231-1235. ECTI (2010).

Digital Cartographic Generalization in Spatial Databases: application issues in

Power Grids CAD tools

Rodriguez J. N., Hernandez Pereira E., e Canosa M. C. Digital cartographic

generalization in spatial databases: application issues in power grids cad tools.

”Proceedings of the V Ibero-American Symposium in Computer Graphics (SIACG

2011)”, páxinas 15-22. SIACG (2011).

Improving Electrical Power Grid Visualization using Geometry Shaders

Rodriguez J. N., Canosa M. C., e Hernandez Pereira E. Improving electrical

power grid visualization using geometry shaders. ”Computer Graphics, Imaging

and Visualization (CGIV), 2011 Eighth International Conference”, páxinas 177-

182. IEEE (2011).

Actualmente atópase baixo revisión un resumo dos traballos presentados nesta

tese. Ademáis, unha versión ampliada da primeria publicación foi publicada tamén

na seguinte revista:

Rodriguez J. N., Canosa M. C., e Hernandez Pereira E. Electrical distribution

grid visualization using programmable gpus. ”ECTI Transactions on Computer

and Information Technology”, 5(1), páxinas 30-37 (2011).
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