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Abstract 

Cultures of the marine microalga Isochrysis galbana were grown under 56 different nutrient 

concentration-salinity conditions, ranging from 1 to 64 mM NaNO3 and from 0 to 35‰ salinity. 

Salinity and nutrient concentration were found to be closely related to I. galbana growth and 

to the biochemical composition. Optimal growth conditions were between 15 and 35‰ 

salinity and nutrient concentrations of 2, 4 and 8 mM NaNO3, resulting in one doubling/day 

and a maximum cellular density of 20 × 106cells/ml. Variations in salinity and in nutrient 

concentration had a greater effect on the final biomass than on the growth velocity. Maximum 

values of chlorophyll α ml were found with 2, 4 and 8 mM NaNO3 and between 15 and 35‰ 

salinity. Chlorophyll α cell values were more homogeneously distributed between 15 and 

35‰ salinity and 1 to 8 mM NaNO3, although maximum concentrations (37 pg chlorophyll α 

cell) were reached at 10-15‰ with all the nutrient concentrations. Protein per ml of culture 

and protein per cell were closely related to salinity and nutrient concentration. Maximum 

values of 387 μg/ml and 18.6 pg/cell were obtained at 15-35‰ salinity and 4-8 mM NaNO3. 



The nitrate-protein transformation rate was related to nutrient concentration. Maximum rate 

was 84% at 15‰ salinity and 1 mM NaNO3. Nutrient concentrations higher than 16 mM 

NaNO3 produced a strong decrease in the efficiency at all salinities.  

Introduction 

Microorganisms are potentially useful as food for human consumption, in the production of 

chemicals and in the bioconversion of solar energy (Kharatyan, 1978; Goldman, 1979). The 

marine microalga Isochrysis galbana (Haptophyceae) is at present widely used in 

aquaculture (Walne, 1974; Bayne, 1976; Epifanio, 1979). Knowing its growth response in a 

wide range of nutrient concentrations and salinity conditions in batch culture, we can 

establish some of the parameters for mass production that enable us to obtain maximum 

cellular density and better efficiency in the nitrate-N / protein-N transformation rate, and 

ascertain its biochemical variability in response to environmental action. 

Several studies have revealed significant differences in the ability of various species or 

classes of microalgae to utilize nutrients at low concentrations. Such studies have provided 

much useful information on the adaptabilities of marine microalgae and have significant 

implications regarding competition between species under various conditions of limiting 

nutrients (Laws and Bannister, 1980). In contrast, micro algal cultures at high nutrient 

concentrations are usually made to obtain maximum production of total biomass in 

aquaculture, or of a given product for particular industrial applications, utilizing as small a 

culture volume as possible. Optimum conditions for subsequent mass culture of marine 

microalgae at high nutrient concentrations (Fabregas et aI., 1985) can be established, in part 

or completely, using batch cultures (Fabregas et al., 1984a). 

Salinity, nutrient concentration, light, temperature and carbon source can be considered as 

the most important parameters for culturing marine microalgae. In the present work we 

analyzed the response of the marine microalga Isochrysis galbana to 7 X 8 nutrient 

concentration-salinity conditions, maintaining constant pH, temperature and carbon source, 

and light saturation. 

Materials and methods 

The marine microalga Isochrysis galbana was obtained from The Culture Centre for Algae 

and Protozoa, Cambridge, England. It was cultured in seawater filtered through a 0.45 J1 

Millipore filter, autoclaved at 120°C for 60 min and enriched with NaNO3 , 2mM; NaH2PO4, 

100 µM; ZnCl2 , 1 µM; MnC12 , 1 µM; Na2MoO4, 1 µM; CoCl3 , 0.1 µM; CuSO4 , 0.1 µM; ferric 



citrate, 20 µM; thiamine, 35 µg/l; biotin, 5 µg/l; B12 , 3 µg /l; EDTA, 26.4 mM; Tris-HCl, 15 

mM; pH 7.6. 

We used eight salinities: 35, 30, 25, 20, 15, 10, 5 and 0‰. The salinityof the seawater (35‰) 

was reduced by the addition of appropriate volumes of fresh distilled water prior to medium 

preparation. The first nutrient concentration utilized was the one whose composition was the 

half of that given above and which corresponds to NaNO3, 1 mM. From this we followed a 

geometrical progression, using concentrations corresponding to 2, 4, 8, 16, 32 and 64 mM of 

NaNO3. Nutrient concentrations are expressed as NaNO3 concentrations, but refer to the 

whole medium.  

Cultures were carried out in Kimax screw-capped test tubes (15 X 2.5 cm) with 40 ml of 

medium. All cultures were maintained in a controlled environment incubator (New Brunswick) 

at 15°C and 3900 lux light from fluorescent lamps (Phillips TL 20W/55). A 12:12 light-dark 

regime was maintained in order to obtain synchronous cultures. An inoculum of 1 X 105 

logarithmic phase cells/ml was used. The present conditions are based on the light saturation 

recommended by Kain and Fogg (1958) and temperature optimum of 16 ± 1°C (Ukeles, 

1961); pH remained below 8.9 (Fig. 1), since the rate of growth was inhibited in Isochrysis 

galbana at pH 8.75 and above (Kain and Fogg, 1958). 

Transmittance of the cultures was determined by using a Coleman II 6/20 spectrophotometer 

reading at 530 nm and values were expressed as (100 - T). Cellular density was determined 

by counting culture aliquots in a Thoma chamber. 

Chlorophylls were extracted from the cells in acetone-methanol 2:1 at 4°C for 48 h. The 

extracts were filtered through a Fluoropore Millipore filter for clarification (Fabregas et al., 

1984b), and absorbances of the pigment extract at specific wavelengths were recorded. The 

concentration of chlorophyll α was determined by the formula of Parsons and Strickland 

(1965). 

Protein was measured in the stationary phase by the dye-binding method (Bradford, 1976). 

Stationary phases, corresponding to maximum biomass production, were compared by an 

overall multivariate one-way analysis of variance (ANOV A), and logarithmic phases, that 

indicate the growth velocity of the cultures, were compared by a one-way analysis of 

covariance (ANCOVA). 

Results and discussion 



We plotted transmittance against time and against salinity for each nutrient concentration, 

obtaining three-dimensional figures (Fig. 2). Statistical treatment of these figures is presented 

in Table l. 

We can establish the kinetics of the cultures in the logarithmic and in the stationary phases 

from transmittance (100 - T) measurements. In the stationary phases, transmittance 

measurements can be transformed into cellular densities. It is generally accepted that a 

relation exists between optical density and cellular density (Lyon and Woo, 1980; Fabregas 

et al., 1984a). It is more accurate to quantify the biomass of a micro algal culture by 

transmittance than by cellular densities obtained by counting in a chamber, although the 

reverse may be true for micro algae with a high associated bacterial flora or in culture 

conditions that enhance bacterial growth. In our culture conditions, bacterial growth is 

enhanced at salinities of 0 and 5‰ for all nutrient concentrations. At these salinities 

therefore, a relationship between transmittance and cellular density cannot be established. 

 

In our experiments, the relation between (100 - T) measured at 530 nm in screw-capped test 

tubes (2.5 cm light run) and cellular density in the stationary phase was established only for 

the optimum growth interval and fitted to a linear curve y = 1.90 x + 42.74 where y = 

transmittance expressed as (100 - T) and x == cellular density, with a correlation coefficient 

of 0.95. This relation was only calculated for the stationary phase. 

There was a strong relationship between salinity-nutrient concentration conditions and the 

final biomass production in the stationary phase. Optimal growth conditions for obtaining 

maximum cellular density in the stationary phase were 15-35‰  salinity and 2 to 8 mM of 

NaNO3 (Fig. 3), with cellular densities of 17 X 106 to 20X 106 cells/ml (Table 2). Salinities of 

15 to 25‰  (Laing and Utting, 1980) and of 15 to 40‰  (Kain and Fogg, 1958) were found to 

be optimal for I. galbana growth. 



With the remaining salinity-nutrient concentration conditions, cellular density decreased 

significanctly, and an interaction between salinity and nutrient concentration can be 

observed. At optimal salinities of 15-35‰, the limiting growth factor in the cultures with 1 mM 

of NaNO3 is probably nutrient depletion in the culture media. At salinities between 0 and 10‰ 

and for all nutrient concentrations, the growth limitation is possibly due to the lack of certain 

compounds present in the seawater that are indispensable for micro algal growth but that are 

not included in the culture medium. Growth decrease is proportional to salinity decrease. At 

high nutrient concentrations another limiting factor is introduced, the toxicity produced by 

high TRIS concentrations (Kain and Fogg, 1958; Guillard and Ryther,1962), since the culture 

medium used was buffered with TRIS (Pintner and Provasoli, 1958; Guillard and Ryther, 

1962; McLachlan and Gorham, 1962; Sorge and McLaughlin, 1970). 

 

Salinity and nutrient concentrations have no effect on the growth velocity of I. galbana in 

synchronous cultures. Growth velocity in the logarithmic phase was one doubling/day under 

all conditions except for 0‰ salinity. Values higher than one doubling/day were not obtained 

because we worked with synchronous cultures due to the light-dark 12: 12 regime 

maintained. Because of this synchronization, the microalgal population can be considered 

theoretically as a single cell whose biomass is equivalent to the biomass of the population; in 

this way, we obtained more homogeneous information about the cellular kinetics. 

Maximum values of chlorophyll α ranged between 2.6 and 4.43 µg/ml at 15-35‰ salinity and 

2-8 mM of NaNO3 (Table 2). Chlorophyll α quickly decreased with the remaining salinity-

nutrient concentration conditions. When the salinity increased, the chlorophyll α tended to 

increase, as it did also in function of the nutrient concentration (Fig. 4). The chlorophyll 

content in the cultures was closely related to cellular density.  



 

Maximum concentrations of chlorophyll α per cell were obtained at 2, 4 and 8 mM NaNO3 

(Table 2). Chlorophyll a/cell decreased at higher nutrient concentrations. Maximum 

concentrations of chlorophyll α /cell were found at 10 and 15‰ salinity for any nutrient 

concentration. 

 

Samples for protein measurement were always collected at the same time because protein 

concentration varies depending on the moment in the light period at which the sample is 

taken (Van Liere et al., 1979). Nutrient concentration affected the protein content of I. 



galbana cultures (Fig. 5). Maximum protein concentrations per ml were 209 and 387 µg/ml, 

found with 15 and 35‰  salinity and 4 to 8 mM of NaNO3. Maximum protein concentrations 

per cell were found under the same conditions, with values between 10 and 18.4 pg/cell 

(Table 2). 

 



 

 

When the nutrient concentration increased, the total protein content of the cultures increased 

proportionally up to a nutrient concentration of 8 mM NaNO3, but with higher nutrient 

concentrations the total protein content of the cultures diminished drastically. Protein/cell 

ratio varied with the nutrient concentration in the same way as protein/ml.  



Salinity had more effect on the total protein content of the cultures than on the protein per 

cell, and this effect was more marked at low than at high nutrient concentrations. These 

results are different from those found for the marine microalga Tetraselmis suecica under the 

same culture conditions (Fabregas et al., 1984a). 

 

Changes in the protein content are not necessarily related to cellular density in the cultures 

because the biochemical composition of I. galbana may change within more or less narrow 

limits depending on environmental action. 

I. galbana showed considerable variability in its protein and chlorophyll α content related to 

salinity and nutrient concentrations. These data are in general agreement with those of other 

authors, indicating that the nutrient supply influences the chlorophyll α and protein content of 

unialgal cultures (Myklestad, 1974; Fabregas et al., 1984a). 



 

We established the efficiency of nitrate-N/protein-N transformation as the ratio between 

nitrogen added in nitrate form to the culture medium and the protein nitrogen produced per 

culture. Conversion was most efficient between 10 and 35‰  salinity and between 1 and 8 

mM NaNO3 (Fig. 6), with maximum values of 83 and 84% obtained at 15-20‰  salinity and 1 

mM NaNO3 (Table 2). Similar values, with a maximum of 64%, were obtained for the marine 

micro alga Tetraselmis suecica in batch culture (Fabregas et al., 1984a). Maximum 

efficiencies were found with 1 mM NaNO3, at which concentration a maximum transformation 

of nutrient into micro algal biomass occurred. With higher concentrations the most important 

growth-limiting factor is the carbon source, since in seawater the inorganic carbon 

concentration is about 2 mM (Burris, 1977). An increase in the nutrient concentration did not 

produce an increase in biomass production, but CO2 added to the cultures increased the final 

biomass production, so that carbon limitation is evident. Due to this carbon limitation the 

growth conditions were not the most suitable for micro algal cells to utilize all the nitrate 

available in the culture media and, therefore, efficiencies decreased. 
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