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Abstract 

A laboratory study of the use of recycled concrete aggregates (RCA) from construction and 

demolition waste (CDW) in hot-mix asphalt (HMA) for base courses in pavements was 

conducted. HMA mixes containing 0%, 5%, 10%, 20% and 30% RCA in place of natural 

aggregate were evaluated. The Marshall mix design procedure was used to develop the mixes. 

To improve the moisture sensitivity of the mixes, they were cured in an oven for 4 hours. The 

results indicated that the mixes comply with Spanish moisture damage specifications. The 

mechanical properties (stiffness, permanent deformation and fatigue) of the mixtures were 

studied. The mixtures exhibited good engineering properties. Although HMA with RCA 

requires further investigation, the results from this study were very promising. 
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1. Introduction 

Concerns in recent decades about achieving sustainable growth has resulted in attempts to 

recycle or reuse a large portion of construction waste materials. This is the case for recycled 

concrete aggregate (RCA) from construction and demolition waste (CDW). Its use has been 

growing in recent years, particularly as aggregate for concrete [1-2] and unbound pavement 

layers [3-5]. However, further research is needed to diversify RCA applications and make its 

use a habitual practice. 

Although RCA is most likely suitable for use as aggregate in hot-mix asphalt (HMA) for 

pavements in road building, to date only a few studies have been carried out dealing with the 

use of this type of waste material in HMA [6-23]. 



Many researchers have noted that the attached mortar (figure 1a), which is more porous and less 

dense than crushed stone, seems to be the principal reason for RCA being of unsatisfactory 

quality [6, 10-12, 14, 22-24], but it is not the only reason. In fact, some studies have 

recommended removing impurities such as wood, rubber, gypsum, etc. with the aim of making 

RCA more homogeneous [6, 10, 11, 21, 23]. The tiny fissures that appear during the crushing 

process [12] and the weak contact between the mortar and aggregate [22] are other factors to 

take into account. All of these reasons make RCA from CDW a poorer-quality aggregate than 

natural aggregate [22, 24]. Obviously, differences between the properties of RCA and those of 

natural aggregates are going to influence the performance of HMA made with RCA. It is also 

expected that the RCA content (between 0% and 100%) will affect HMA performance. 

It is particularly interesting to note that some studies have indicated that HMA mixes made with 

RCA have higher moisture sensitivity than those made with natural aggregates only [10, 11, 15, 

21, 23]. Moisture sensitivity or moisture damage is a deterioration process that affects HMA 

and is defined as the degradation of mechanical properties of the mixture due to the presence of 

water [25]. There are many ways to improve the moisture sensitivity of conventional HMA, 

including the use of antistripping additives, the addition of selected fillers, avoidance of 

hydrophilic aggregates, etc. [26]. Previous research conducted with the same RCA used in this 

investigation [18, 21, 23] recommended allowing the HMA sufficient time at high temperature 

to complete the binder absorption by the aggregates. This could be a way to improve the 

moisture sensitivity of HMA made with RCA, since the bitumen absorbed by RCA makes the 

whole aggregate surface be coated by the binder, leaving no fissures through which water could 

penetrate. Furthermore, it reduces the porosity decreasing at the same time water accessible 

voids. 

Moisture sensitivity is not the only HMA property that could be affected by the use of CDW as 

recycled aggregate. Some researchers have stated that the use of RCA in HMA production leads 

to mixes with less stiffness than conventional mixes [10, 15], while others suggest the opposite 

[8, 11]. The literature on the permanent deformation of HMA made with RCA yields varied 



conclusions. Most researchers consider mixtures made with RCA to comply with specifications 

related to permanent deformation [9, 11, 15, 18, 21, 23] and exhibit permanent deformation 

behaviour similar to conventional mixes [10] or better [7, 8, 13, 20]. However, other researchers 

indicate that despite meeting the specifications, permanent deformation performance worsens as 

the percentage of RCA in the mix increases [15]. Others indicate that permanent deformation 

performance is also influenced by the mixture gradation [14]. The fatigue life of HMA 

containing RCA has been studied less. The studies to date indicate that HMA with RCA are 

similar in fatigue life to conventional mixtures [11, 17]. There is one exception: when RCA is 

used as filler, fatigue life improves [20]. 

This paper presents an investigation of the mechanical properties of HMA made with RCA from 

CDW for base courses. The aim of the investigation is to design HMA with RCA and achieve 

good mechanical properties and good moisture sensitivity performance. Following the example 

of previous studies [18, 21, 23], to improve the moisture sensitivity of the asphalt mixes used, 

they were cured in an oven at the mixing temperature for 4 hours after mixing and before 

compaction. This made it possible for, the aggregate, particularly the RCA, to absorb a greater 

amount of bitumen. Not only improved mortar resistance but also less water absorption, and 

thus better moisture damage performance, is expected as a result. The moisture sensitivity, 

stiffness, permanent deformation and fatigue life of HMA mixes containing RCA were studied. 

2. Materials and methods 

2.1. Basic materials 

2.1.1. Aggregates 

Two types of aggregates were used: RCA and natural aggregate. RCA was obtained from 

demolition waste from residential buildings of different origins and qualities in Madrid (Spain) 

and was supplied by a CDW recycling plant. Aggregate, concrete, and similar materials 

constituted 89.3% of the mass of the RCA obtained for use in this study, and bituminous 

materials constituted 6.5%. The remainder of the constituents were impurities (ceramics, wood, 

rubber, gypsums, etc.) that could introduce variation in the test results. Gypsum (figure 1b) is an 



impurity that is polishable and has a poor affinity with bitumen, so it would be wise to remove it 

before using RCA in HMA production. The natural aggregate used was a hornfels that was 

supplied by a local contractor and is typically used in HMA production in Spain. The 

compositions of the natural and recycled aggregates were determined using X-ray fluorescence 

tests. The results indicated that the RCA (61.46% SiO2) and hornfels (62.30% SiO2) are 

siliceous aggregates. Consequently, both of them were expected to exhibit poor stripping 

performance. 

The RCA and natural aggregate properties were evaluated according to the Spanish General 

Technical Specifications for Roads, also known as PG-3 [27]. The results (shown in table 1) 

indicate that the RCA had a lower bulk specific gravity (a) than the natural aggregate as well 

as a higher water absorption (W24). This is due to the mortar on the RCA surface. The sand 

equivalent (SE) values of the RCA and the natural aggregate complied with the PG-3 for HMA 

as a base course material. The RCA’s Los Angeles (LA) abrasion coefficient only complied 

with the PG-3 for HMA as a base course material in low-volume roads in heavy traffic category 

T4. The LA abrasion coefficient of the hornfels aggregate complied with the PG-3 for HMA as 

a base course material in roads in heavy traffic category T00. The LA abrasion coefficient of a 

mix of RCA and natural aggregate was also determined. The results showed that for mixes of 

0%, 5%, 10%, 20% and 30% replacement of natural aggregate by RCA, the combined (RCA + 

natural) LA abrasion coefficient complied with the PG-3 (LA<25%) for HMA as a base course 

material in roads in heavy traffic category T00.  

2.1.2. Binder and filler 

A B50/70 binder from Venezuela was chosen for use in this study. Its engineering properties are 

presented in table 2. Grey Portland cement (CEM II/B-M (V-L) 32.5 N) was obtained from a 

commercial source for use as mineral filler. Its Blaine surface area was equal to 3,134 cm2/g and 

its specific gravity was equal to 3.10 g/cm3. 

2.2. Testing program 

2.2.1. Marshall mix design 



The Marshall mix design procedure, as specified in NLT-159/86 [28], was used in this 

investigation. The laboratory mixing temperature was 170ºC and the compaction temperature 

was 165ºC. Percentages of 0%, 5%, 10%, 20% and 30% of RCA by weight of total aggregate 

were studied. The aggregate gradation, an AC 22 base G (figure 2), was chosen in accordance 

with the PG-3. The aggregate gradation had a maximum aggregate size of 22 mm and a 4% 

mineral filler content. It is important to take into account that RCA fine fraction is more 

sensitive to adhesion phenomena and exhibits greater water absorption. Furthermore, the 

smaller the size of RCA particles is, the higher the content of mortar cement is, which 

negatively affects the properties of RCA [24]. Also, it is more difficult to remove impurities in 

the fine fraction. For these reasons, to manufacture HMA, it was considered more suitable to 

make the replacement of RCA in the coarse fractions 8/16 mm (RCA replacement of 5%, 10%, 

20% and 30%) and 4/8 mm (RCA replacement of 30%). Substitution at larger fractions could 

introduce greater dispersions in the results due to the heterogeneity of the material.  

After mixing, the loose mixtures were cured in an oven at 170ºC for 4 hours. Cylindrical 

specimens 101.6 mm in diameter and 63.5 mm in height were formed using the Marshall 

compactor (with 75 blows on each side). In order to determine the optimum asphalt content 

(Bo), the bitumen percentage was selected, inside limits, that allow to achieve the maximum 

Marshall stability and thus, the highest traffic category possible. Also, flow (F), air voids (Va) 

and voids in the mineral aggregate (VMA) were selected in accordance with the PG-3 

specifications. RCA is a porous aggregate, so it is interesting to determine not only the optimum 

asphalt content but the effective binder content (Pbe) and the absorbed bitumen content (Pba) 

[29]. 

2.2.2. Moisture damage 

UNE-EN 12697-12 [30] was used to evaluate the moisture sensitivity (stripping potential) of 

HMA made with RCA by measuring the loss of indirect tensile strength, expressed in terms of 

the tensile strength ratio (TSR). In this test, a set of cylindrical samples is subdivided into two 

subsets with the same number of specimens in each subset. One subset was kept dry at room 

temperature, while the other subset was saturated and was held in a water bath for 3 days at 



40°C. After that time, the two subsets were left a minimum of 2 hours at 15°C, the dry 

specimens in air and the wet specimens in water. The tensile strength of the specimens in each 

subset was then determined.  

Five sets (0%, 5%, 10%, 20% and 30% RCA) of ten samples each were evaluated. The samples 

were produced at the optimum bitumen content for each RCA percentage. The specimens were 

left in an oven at 170ºC for 4 hours after mixing. Marshall specimens were formed (with 50 

blows on each side). Moisture sensitivity was evaluated as follows: 
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where TSR = the tensile strength ratio (%), ITSW = the average tensile strength of five 

conditioned (wet) specimens (MPa) and ITSD = the average tensile strength of five 

unconditioned (dry) specimens (MPa). TSR≥80% is required by PG-3 specifications [27] for 

HMA for use in base courses. 

2.2.3. Stiffness 

The indirect tensile stiffness modulus test (ITSM) was used to determine the resilient modulus 

of the HMA mixes in accordance with UNE-EN 12697-26 Annex C [31], using a Cooper NU 14 

tester. In each test, ten conditioning haversine pulses were applied along the vertical diameter of 

a cylindrical specimen. Afterward, five haversine test pulses were applied. The repetition period 

of the impulse was 3±0.1 seconds. The maximum load was selected to achieve a maximum 

horizontal strain of 0.005% of the specimen diameter. The rise time was 124±4 ms. The average 

stiffness modulus of a specimen was determined from the five test pulses. After rotating the 

specimen 90º, the test sequence was repeated. The average stiffness from the two tested 

diameters was recorded as the stiffness modulus of the HMA specimen. 

The specimens were cured in an oven at 170ºC for 4 hours before compaction. Marshall 

specimens were formed (at 75 blows on each side) at the optimum binder content for each RCA 

percentage. The indirect tensile modulus of the specimens was tested in a controlled-

temperature cabinet at temperatures of 0ºC, 10ºC and 20ºC.  



The resilient modulus was determined using the following equation: 
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where MR = the resilient modulus (MPa), F = the maximum applied load (N), z = the horizontal 

deformation (mm), h = the sample thickness (mm) and = Poisson’s ratio (a Poisson’s ratio of 

0.35 was assumed for the HMA mixes for all of the test temperatures). 

Spanish specifications [27] require a minimum resilient modulus of 11,000 MPa at 20ºC in the 

case of high-modulus HMA. However, there are no requirements for conventional mixtures. 

2.3.3. Permanent deformation 

To evaluate the resistance of the mixes to permanent deformation, repeated-load axial testing 

(RLAT) without confinement was conducted, in accordance with DD 226:1996 [32], using a 

Cooper NU 14 tester. In the test, axial square pulses are applied to cylindrical samples. The 

same Marshall specimens used in the resilient modulus tests were used in the repeated-load 

axial tests. Each specimen was held at a test temperature of 30ºC in a controlled-temperature 

cabinet overnight and then was placed between two load platens. A preload of 10kPa of axial 

stress was applied for 600±6 s. The sample was then subjected to 1,800 load applications. These 

tests were performed under the following load conditions: an axial stress of 100±2 kPa, a load 

application period of 1 s and a rest period of 1 s. The following equation was used to calculate 

the axial permanent strain: 
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where d(n, T) = the axial permanent strain (in ) after n load applications at temperature T in ºC, 

h0 = the initial distance between the two load platens (mm) and h = the axial deformation (mm). 

2.3.4. Fatigue 



Fatigue life was evaluated using the repeated indirect tensile fatigue test (ITFT), in accordance 

with UNE-EN 12697-24 Annex E [33], using a Cooper NU 14 tester. This is a controlled-stress 

fatigue test in which cylindrical specimens are subjected to repeated haversine loads along a 

vertical diameter. Controlled-stress tests are adequate to evaluate the fatigue life of thick 

bituminous pavement layers with high stiffnesses [34]. Marshall specimens at the optimum 

bitumen content were compacted at 75 blows per side after 4 hours in an oven. For every RCA 

content, a minimum of three specimens were tested at each of three constant tension levels (350 

kPa, 450kPa and 550 kPa were chosen). The tests were conducted at a reference temperature of 

20ºC in a controlled-temperature cabinet. The Whöler equation was used to obtain regression 

equations for fatigue life: 

nNfk  .0  (4)

where Nf = the number of load cycles to fatigue failure, k and n = material constants obtained 

from the ITFT and 0 = the initial tensile horizontal strain at the centre of the specimen in . 

A combination of permanent deformation and fatigue mechanisms occur during the ITFT [35]. 

Thus, two failure criteria were used to determine the fatigue life of a specimen: the total number 

of load cycles to complete splitting of the specimen along the vertical plane or the total number 

of cycles to 10% vertical deformation of the specimen along the vertical plane, whichever came 

first. 

3. Test results and discussion 

3.1. Marshall mix design 

The optimum asphalt content (Bo), effective binder content (Pbe) and bitumen absorption 

content (Pba) of the HMA mixes are shown in table 3, along with other mix properties, such as 

the unit weight (UW), air voids (Va), voids in the mineral aggregate with and without 

consideration of binder absorption (VMAabs and VMA, respectively), voids filled with asphalt 

with and without considering binder absorption (VFAabs and VFA, respectively), stability (S) 

and flow (F).  



As table 3 shows, a general pattern exists among the Bo, Pba, Pbe and RCA contents: Bo and 

Pba increase with increasing RCA content, while Pbe decreases. On the one hand, this indicates 

that the porosity of the mortar attached to the RCA makes the RCA absorb binder in proportion 

to the percentage of RCA in the HMA. Thus, HMA containing RCA requires more binder as the 

RCA content increases. On the other hand, the decreasing trend in Pbe with increasing RCA 

indicates that the bitumen film thickness decreases with increasing RCA content, which could 

affect HMA performance, especially for high RCA contents. However, there are exceptions to 

this general pattern. For example, 20% RCA is an exception to this trend. It could be explained 

by the heterogeneity of RCA used in this investigation. As said before, the RCA used in this 

investigation was obtained from the demolition of residential buildings, hence, it has particles of 

other materials such as gypsum, wood, asphalt, etc. Moreover, it has concrete from different 

origins and thus, with different qualities. 

As was expected and table 3 shows, UW decreases as RCA increases. This is because RCA is 

less dense than natural aggregate. Furthermore, the results show that Va exhibits a slight 

increase as the RCA content increases. Va is determined as a function of unit weight, so a 

decrease in UW leads to an increase in Va. However, an increase in Va can be explained by the 

difficulty of compacting HMA containing RCA, due to the roughness of the attached mortar.  

The results in table 3 also show that when asphalt absorption is not considered, VMA increases 

slightly as the RCA percentage increases. This result is obvious because Bo increases as well, 

and not considering asphalt absorption implies that all of the bitumen is part of VMA. In 

contrast, if asphalt absorption is considered, VMAabs decreases slightly as the RCA percentage 

increases. This means that an increase in RCA content produces greater asphalt absorption. The 

values obtained for VMA indicate that not considering asphalt absorption overestimates this 

parameter. When using RCA in HMA, this consideration could be of great importance, 

particularly if a high percentage of RCA is used. 

As shown in Table 3, according to PG-3, all the samples tested contain air voids and voids in 

mineral aggregate suited to meet a heavy traffic category T00 [27, 36]. 



Table 3 shows that the same occurs with VFA: not considering asphalt absorption overestimates 

VFA. If absorbed bitumen is taken into account, VFAabs decreases as the RCA content 

increases, reflecting the absorptivity of RCA.  

The stability (S) values are very high: greater than 15 kN in all cases. This means that HMA 

made with RCA in percentages ranging from 0% to 30% comply with PG-3 specifications for 

traffic category T00 [36].  

Most of the results indicate an increasing trend in flow (F) as the RCA percentage increases. 

Thus, it can be concluded that an increase in RCA content produces mixtures that are more 

susceptible to deformation. However, it should be noticed that F values are inside the range 

specified for traffic category T00 by the PG-3 [36]. 

The Marshall S/F ratio may be used as an indicator of stiffness: mixtures with high S/F ratios 

are more resistant to permanent deformation. Although it can be observed that the S/F ratios 

obtained do not follow a clearly defined pattern, it seems that increasing the RCA content 

decreases the S/F ratio, so a general conclusion can be drawn that mixtures with higher RCA 

content will perform worse in terms of permanent deformation. 

3.2. Moisture damage 

The results of the moisture sensitivity tests for samples made with optimum binder content are 

shown in figure 3. On the one hand, as the results show, a certain pattern exists: in general, ITS 

decreases as RCA increases. This is true in both the dry and wet states. There is only one 

exception: the samples with 5% of RCA did not follow this trend. This exception could be 

explained by the heterogeneity characteristics of the RCA used. On the other hand, all of the 

TSR values obtained were greater than 80%, which is the requirement established in the Spanish 

specifications for HMA in base courses. However, it is surprising that the worst TSR value was 

measured for an RCA percentage of 0%. This suggests that although the moisture sensitivity of 

RCA is not good, it is better than the moisture sensitivity of the natural aggregate used. This is 

consistent with the results obtained from the X-ray fluorescence tests: as the SiO2 percentage 

increases, the stripping performance worsens. As mentioned previously, the literature review 

indicates different results for the stripping performance of HMA made with RCA. This 



discrepancy can be explained by the fact that the stripping performance of HMA made with 

RCA depends not only on the type of RCA used (origin, impurities, crushing process, etc.) but 

also on the affinity of the natural aggregate used with bitumen. 

A two-way analysis of variance (ANOVA) was conducted to determine the effect of RCA 

percentage (0%, 5%, 10%, 20% and 30%) and state (dry or wet) on indirect tensile strength 

(ITS). The model explains 89.88% of the total variance. The RCA percentage is statistically 

significant at the 95% confidence level (p = 0.039 < 0.05). The other main effect, i.e., dry or wet 

state, is not significant (p = 0.221). On the basis of the ANOVA, it can be deduced that the most 

influential factor in ITS is the RCA percentage. That the wet or dry state is not statistically 

significant means that the applied treatment reduces the effect of water on the indirect tensile 

strength. It should be noted that at 5% RCA, the wet strength is higher than the dry strength. 

A one-way ANOVA was conducted to determine the effect of RCA percentage (0%, 5%, 10%, 

20% and 30%) on the tensile strength ratio (TSR). The ANOVA results indicate that the RCA 

percentage has a significant effect on TSR (p=0.000). Thus, a variation in the RCA content will 

influence the stripping performance of HMA. 

3.3. Stiffness 

As stated previously, there are no Spanish specifications for the acceptance of conventional 

mixtures in terms of resilient modulus (MR), so it is useful to compare the resilient modulus 

results obtained for the different mixtures tested in this investigation. The only PG-3 

specification concerning resilient modulus is that high-modulus HMA must have a minimum 

resilient modulus of 11,000 MPa at 20ºC. As figure 4 shows, the HMA mixtures produced with 

optimum binder content and with 10% to 30% RCA almost satisfy the 11,000 MPa requirement 

that would classify them as high-modulus HMA mixtures.  

Thus, despite HMA mixtures made with RCA not meeting the requirement to be classified as 

high-modulus HMA mixtures, they are nonetheless very stiff mixtures. High-resilient-modulus 

mixtures are stiffer and have longer fatigue lives when they are used in thick layers [33]. 

However, at low temperatures, high-resilient-modulus mixtures are more susceptible to thermal 

and fatigue cracking [36]. Thus, mixtures used in surface courses with elastic moduli above 



3,100 MPa at 20ºC must be used with caution in cold regions [36]. As figure 4 shows, all the 

mixtures tested in this investigation had resilient modulus values much higher than 3,100 MPa 

at 20ºC. Although the mixes studied are intended for use in base courses and not surface 

courses, the results indicate that HMA with RCA is suitable for surface course use in temperate 

regions. However, the high stiffness values obtained confirm that the mixtures can be used in 

thinner layers while maintaining their structural integrity [15] if they are used in temperate 

regions. HMA used in Spain has a typical mean resilient modulus of 5,000 MPa at 20ºC [37]. 

The resilient modulus values of the mixes studied were higher than 5,000 MPa, which indicates 

that the studied mixtures are stiffer than conventional mixtures. Figure 4 shows that the resilient 

modulus of HMA made with RCA is strongly dependent on the test temperature. As expected, 

the mixtures were stiffer at lower temperatures. In Spain, a winter resilient modulus 1.5 times 

higher than the mean value is often adopted [37]. The resilient modulus of HMA with RCA 0ºC 

is 2.1 to 4.9 times higher than that at 20ºC, while at 10ºC, the resilient modulus is 1.5 to 3.7 

times higher. Therefore, the resilient modulus of HMA made with RCA exhibits much more 

dependence on in-service temperatures than conventional mixtures. Moreover, there is no clear 

pattern between RCA content and resilient modulus, due to the heterogeneity of the RCA used. 

Only at 20ºC does the resilient modulus seem to increase with increasing RCA content. 

However, this is only true for RCA contents up to 20%. 

A two-way ANOVA was conducted to determine the effect of RCA percentage (0%, 5%, 10%, 

20% and 30%) and test temperature (0ºC, 10ºC and 20ºC) on stiffness (MR). The model explains 

97.85% of the total variance. The test temperature is statistically significant at the 95% 

confidence level (p = 0.000 < 0.05). As expected in view of the test results obtained, the 

ANOVA confirms that the other main effect, RCA percentage, is not significant (p = 0.0759). 

On the basis of the ANOVA, it can be deduced that the dominant factor in specimen stiffness is 

test temperature. 

3.4. Permanent deformation 

Results of the permanent deformation tests indicate the rutting potential of the mixtures. Figure 

5 shows the accumulated permanent deformation values versus the number of loading cycles. 



As expected, permanent deformation increases with the number of cycles for mixtures made 

with the optimum binder content. There is no clear pattern between the final permanent 

deformation at cycle 1,800 and the RCA percentage. It could be explained by the heterogeneity 

of the RCA used in this investigation. It is well known that HMA permanent deformation occurs 

mainly due to densification (a decrease in the air void content causing a volume change) and 

plastic flow (aggregates and binder being gradually moved without a volume change) [38]. The 

test results indicate that permanent deformation of HMA made with RCA occurs mainly due to 

densification. Plastic flow did not occur, so the specimens did not fail during the tests. Figure 5 

also shows that after a given number of load applications, a linear relationship exists between 

the axial permanent strain and the number of load cycles. The slope of the line reflects the trend 

of axial deformation, such that larger slopes indicate less resistance to permanent deformation 

[39]. As table 4 shows, the slopes of the lines between cycles 600 and 1,800 are very similar, 

but indicate a certain pattern between RCA content and permanent deformation: in general, 

when RCA content increases, so does permanent deformation. However, the 30% RCA mix did 

not follow this pattern. At the beginning of the load cycling, the mixtures exhibit rapid 

densification. Although the slopes are very similar for all the tested percentages of RCA, the 

different amounts of this rapid initial densification in the different mixes are largely responsible 

for the differences in the final permanent deformation at 1,800 load cycles. It is expected that 

higher bitumen contents produce mixtures with greater susceptibility to plastic deformation [7]. 

In the case of HMA made with RCA, as the RCA content increases, the effective bitumen 

content decreases, so the increase in the permanent deformation slope is mainly due to the 

increase in RCA content. These results are consistent with the Marshall S/F ratio results. For all 

of the RCA percentages tested, the HMA mixtures exhibited ultimate permanent deformation 

levels lower than those that conventional mixtures exhibit. For example, Santagata et al. [40] 

obtained values of the final strain between 4,000 and 11,000  at 1,800 load cycles for HMA 

made with various binders, while Aschuri et al. [41] obtained values of approximately 13,000 

for conventional mixtures. As figure 5 shows, all of the studied mixtures had final axial 



permanent strain values lower than 11,000 at 1 cycles. Thus, mixtures with RCA that 

have been oven-cured for 4 hours will perform well against rutting.  

A one-way ANOVA was conducted to determine the effect of RCA content on permanent 

deformation at 1,800 load cycles. The ANOVA results show that the RCA content has a 

significant effect on permanent deformation (p=0.000). 

3.5. Fatigue 

As stated previously, the ITFT is suitable for high-stiffness mixtures used in thick layers. Thus, 

it is a suitable test for simulating the fatigue performance of the high-resilient-modulus mixtures 

examined in this investigation. 

A fatigue test ends when a sample is fractured by a diametral plane and split into two parts. 

None of the tested specimens failed in terms of the alternate criterion, a vertical deformation of 

10% of the specimen diameter. Therefore, it can be concluded that fatigue mechanisms were 

predominant in the failure of all the HMA samples tested (figure 6).  

Figure 7 shows the initial horizontal strain versus the number of cycles to failure at 20ºC on a 

logarithmic scale for the mixtures made with the optimum asphalt content. The same figure 

shows the fatigue equations of the tested mixtures. It is interesting to note that mixtures with 

low RCA percentages (up to 20%) perform similarly to each other in fatigue, especially at high 

deformation levels, while the fatigue performance of HMA with 30% RCA is a little poorer. 

This is highlighted by the fact that the fatigue equation for this mixture has a much more 

pronounced slope than the other fatigue equations. However, the coefficients of determination 

(R2) vary a great deal for the different fatigue equations, which might be due to the 

heterogeneity of the RCA. 

A fatigue equation for the control mixture (0% RCA and without curing oven time) has been 

plotted for comparison with the fatigue equations obtained for the mixes tested in this study. In 

general, HMA made with RCA that has been left in the oven for 4 hours exhibits similar fatigue 

life to control mixture, except the mixture made with 30% RCA that has a fatigue resistance 

slightly slower than conventional. Moreover, the slopes of the equations for the mixes with 

RCA percentages between 0% and 20% are flatter than the slopes of the equations for the 



control mixture, indicating that HMA containing up to 20% RCA has a greater fatigue life than 

conventional mixtures at higher number of cycles. For HMA containing 30% RCA, the slope of 

the fatigue equation is similar to that of the conventional mixture. 

4. Final remarks 

The results of the tests conducted in this investigation are encouraging. Bituminous mixtures 

made with RCA from CDW were shown to exhibit good moisture sensitivity and more than 

acceptable mechanical properties. With adequate pretreatment and with a limited RCA content, 

HMA made with RCA can be used in warm regions. The mixtures should be oven-cured for 4 

hours before compaction, and a maximum of 30% of RCA appears to be adequate. 

The use of HMA made with RCA promotes sustainable construction by providing numerous 

environmental benefits, such as reduced extraction of natural aggregates from quarries, 

avoidance of the visual impact of landfills, avoidance of rejection of raw materials, etc. 

However, there are some disadvantages to the use of RCA in HMA. The cost of removal of 

impurities (e.g., gypsum) is one disadvantage. There are also environmental disadvantages, such 

as an increase in bitumen consumption with increasing RCA content and the associated increase 

in energy consumption. Limiting the RCA content to 30% produces a maximum increase of 

0.5% in the bitumen content, which is an acceptable value. Further investigation is needed to 

implement a storage system in asphalt plants that maintains the temperature of such mixtures 

without increased consumption of fossil fuels.  

5. Conclusions 

HMA made with 0%, 5%, 10%, 20% and 30% RCA in the 4/8 mm and/or 8/16 mm coarse 

fractions of the aggregate gradation have been studied. To improve their moisture sensitivity, 

the mixtures were oven-cured for 4 hours after mixing and before compaction at 170ºC. The 

following conclusions are drawn from this research:  

 RCA has a high LA abrasion coefficient, which is a weakness of HMA made with 

RCA. However, combined with suitable natural aggregate in suitable proportions, RCA 

can be used to produce an HMA mix with acceptable abrasion resistance. 



 Asphalt absorption is another property of RCA that must be taken into account. In 

general, the optimum asphalt content and bitumen absorption of HMA made with RCA 

increases with increasing RCA content, while the effective binder content decreases 

slightly. This is due to the absorptivity of the attached mortar on the surface of RCA. As 

a consequence, as the RCA content increases, more binder is needed. In addition, as the 

effective binder content decreases, so does the thickness of the binder film, so it is 

particularly important to limit the RCA content in HMA production. 

 Asphalt absorption is an important parameter influencing the volumetric properties of 

HMA made with RCA. Not considering asphalt absorption leads to overestimating VFA 

and VMA. The differences between the volumetric properties determined considering 

asphalt absorption versus not considering it become more pronounced as the RCA 

content increases, which is another reason to limit the RCA content. 

 HMA made with RCA exhibits high Marshall stability values, but the indirect tensile 

strength decreases with RCA content, so the RCA content must be limited. 

 Moisture damage is a key concern. The RCA content has been demonstrated to be an 

important factor in the stripping performance of HMA made with RCA. The moisture 

susceptibility of HMA made with RCA may be better or worse than conventional 

HMA, depending on the natural aggregate with which the RCA is combined. 

 The tested mixtures exhibited very good stripping performance. HMA mixes made with 

RCA and oven-cured for 4 hours before compaction comply with Spanish specifications 

for use in pavement base courses in road construction. 

 The tested HMA mixtures containing RCA exhibited very high stiffness and a strong 

dependence on temperature. Such mixtures should not be used in cold regions. 

 Although the RCA content seems to have no influence on the stiffness of the mixture, at 

20ºC, the results indicate that an increase in the recycled aggregate content slightly 

stiffens the mixture, although these particular results were not statistically significant. 



 Although the permanent deformation test results indicate that HMA with up to 30% 

RCA exhibit good rutting performance, permanent deformation increases with 

increasing RCA content, so mixtures with higher RCA percentages should be expected 

to be more susceptible to deformation.  

 The fatigue life of HMA made with RCA is satisfactory. In particular, mixes with up to 

20% RCA exhibit similar fatigue life to conventional mixture. For mixture made with 

30% RCA fatigue life is slightly slower than for conventional mixture. 

 Although the results of this investigation are encouraging, HMA made with RCA 

requires further investigation, particularly to assess its performance in the field. It is 

also necessary to determine the maximum percentage of RCA that can be used in HMA. 
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Figure 2 
Gradation curve 
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Figure 3 
Moisture sensitivity test results 
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Figure 4 
Resilient modulus 
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Figure 5 
Accumulated permanent deformation through 1,800 cycles 
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Figure 7 
Fatigue life 
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Table 1 
Characterisation of aggregates 
Aggregate Standard RCA Hornfels PG-3 Specifications (*) 

T00-T1 T3-T2  T4  
a (g/cm3) EN-1097-6 2.63 2.79 - - - 
WA24 (%) EN 1097-6 5.08 1.08 - - - 
SE (%) EN 933-8 67 61 ≥ 50 ≥ 50 ≥ 50
LA abrasion (%) EN 1097-2 32 14.1 ≤ 25 ≤ 30 - 

(*) Traffic category T00 refers to AADHT (Annual Average Daily Heavy Traffic)≥4,000 
Traffic category T0 refers to 4,000>AADHT ≥2,000 
Traffic category T1 refers to 2,000>AADHT ≥800 
Traffic category T2 refers to 800> AADHT ≥200 
Traffic category T3 refers to 200>AADHT ≥50 
Traffic category T4 refers to AADHT<50 
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Table 2 
Properties of asphalt cement 
Test Standard B50/70 PG-3 

specification 
Original  
Penetration (100 g, 5 s, 25ºC), 0.1 mm NLT-124 52 50-70 
Softening point, ºC UNE-EN 1427 54.9 48-57 
Flash point, ºC ISO 2592 >290 >235 
Density (25ºC), g/cm3 NLT-122 1.009 >1.0 
After rolling thin-film oven test  
Penetration (100 g, 5 s, 25ºC), 0.1 mm NLT-124 68 >50 
 Softening point, ºC NLT-125 6.5 ≤9 
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Table 3 
HMA properties at optimum asphalt contents 

HMA oven-cured for 4 hours at 170ºC before 
compaction 

PG-3 specifications 

 
0% 

RCA 
5% 

RCA 
10% 
RCA 

20% 
RCA 

30% 
RCA 

T00-T0 T1-T2  T3  T4 

Bo (%) 4.00 3.80 3.90 4.40 4.30 >3.5 
Pbe (%) 3.05 2.67 2.66 2.77 2.33 - 
Pba (%) 0.99 1.17 1.29 1.71 2.06 - 
Va (%) 7.25 7.57 7.27 7.87 7.71 5-8 6-9 5-9 - 

VMA (%) 16.84 16.66 16.54 18.14 17.71 ≥14 
VMAabs (%) 14.53 14.00 13.51 14.31 13.17 - 

VFA (%) 56.82 53.96 55.85 56.59 56.44 - 
VFAabs (%) 49.89 45.20 46.00 44.97 41.31 - 

S (kN) 17.31 19.41 16.83 16.78 17.66 >15 >12.5 >10 8-12 
F (mm) 2.02 2.22 2.51 2.14 2.54 2-3 2-3.5 2.5-3.5 

UW (t/m3) 2.41 2.40 2.40 2.35 2.34 - 
S/F (kN/mm) 8.57 8.75 6.71 7.85 6.96 - 
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Table 4 
Slopes between cycles 600 and 1,800 in permanent deformation curves 

RCA (%) slope 
0 0.29 
5 0.44 
10 0.46 
20 0.52 
30 0.37 

 


