Nuevo Corredor entre Vilagarcía de Arousa y Catoira
(Anteproyecto)

Memoria
Planos
Presupuesto

MIGUEL BURÉS MUÑIZ
Trabajo Fin de Grado
Grado en Tecnología de la Ingeniería Civil.
E.T.S.I. Caminos, Canales y Puertos
Julio 2015
INDICE:

DOCUMENTO N°1: MEMORIA.

1. MEMORIA DESCRIPTIVA.

2. MEMORIA JUSTIFICATIVA.

DOCUMENTO N°2: PLANOS.

DOCUMENTO N°3: PRESUPUESTO.
1. MEMORIA DESCRIPTIVA

ÍNDICE:

1. ANTECEDENTES.
2. ANÁLISIS DEL PROBLEMA.
3. ESTUDIO DE ALTERNATIVAS.

APÉNDICE I: DISPONIBILIDAD DE TERRENOS.
1. ANTECEDENTES.

1.1. OBJETO DEL ANTEPROYECTO:

El objeto fundamental de la realización de este anteproyecto es la obtención del título de Grado en Tecnología de la Ingeniería Civil, de acuerdo con el Procedimiento para la realización del Proyecto Fin de Grado, curso 2014-2015, de la Escuela Técnica Superior de Ingenieros de Caminos Canales y Puertos de A Coruña.

Cabe destacar, que a pesar de la precisión requerida en todo el anteproyecto, debido a su uso académico, se han realizado simplificaciones u omisiones en ciertas partes de este que, de ser un anteproyecto real, no serían admisibles, como pueden ser estudios geotécnicos y geológicos, o sondeos. Por lo tanto la finalidad del anteproyecto es analizar perfectamente todos los aspectos que permitan la elección de la mejor alternativa entre varias propuestas.

1.2. ANTECEDENTES:

La finalidad de este anteproyecto es la elección y diseño de la mejor alternativa para la construcción de un corredor que conecte la ciudad de Vilagarcía de Arousa con Catoira.

La construcción del corredor entre los núcleos de Catoira y Vilagarcía de Arousa ve justificada su actuación debido a los problemas de tráfico existentes en la PO-548, única carretera que une los dos núcleos urbanos. Con esta actuación se solucionaría este problema y se eliminaría la necesidad de utilizar una vía (la PO-548) que presenta unas condiciones de circulación problemáticas y que no se adapta correctamente a las necesidades de tráfico actuales. La PO-548, con un IMD de entre 5000 y 10000 vehículos diarios, y con un porcentaje de pesados de aproximadamente el 7%, ve desbordada su capacidad en ciertas horas del día.
1.3. SITUACIÓN ACTUAL:

El municipio de Catoira está situado en el Norte de la provincia de Pontevedra, en la Ría de Arousa, limita con Valga, Rianxo, Caldas de Reis y Vilagarcía. Está dividido en 4 parroquias y tiene una población aproximada de unos 3400 habitantes. El núcleo urbano es una importante zona de paso, conectando directamente la zona Sur con la Norte de la Ría de Arousa mediante el puente que une Catoira y Rianxo.

A su vez, el municipio de Vilagarcía de Arousa, limita con Vilanova, Caldas y Catoira. Tiene aproximadamente 37700 habitantes y es el municipio más importante de la Comarca do Salnés. Posee un puerto de interés nacional, que es el más importante de la comarca y puerto natural de Santiago de Compostela, siendo un importantísimo punto de importación y exportación y principal motor económico del municipio y de la comarca.

Conectar estos dos municipios mediante un corredor implica, conectar el puerto de Vilagarcía con la comarca de Barbanza, en la zona norte de la Ría de Arousa y principalmente con Santiago de Compostela, lo que favorecería notablemente el comercio y ayudaría a la prosperidad del puerto y de la ciudad.

Actualmente, la única carretera que une directamente Catoira con Vilagarcía es la PO-548, carretera de titularidad provincial. Esta carretera tiene graves problemas de tráfico debido al aumento del flujo de vehículos, y en especial vehículos pesados, al ser esta la salida natural del puerto de Vilagarcía hacia Santiago de Compostela, por lo que es empleada por vehículos para el transporte de mercancías entre las localidades.

La conexión se realiza entre Vilagarcía con Santiago mediante la PO-548, la AG-11 y la AP-9 en Padrón. Las alternativas a la salida de Vilagarcía hacia el norte son, la AP-9 desde Caldas de Reis o continuar por la PO-548 hasta Pontecesures y la N-550 hasta Padrón.

La opción más ventajosa, el uso de la AG-11 (Autovía do Barbanza) sería la elección más probable y que mejor solucionaría los problemas de tráfico para realizar el trayecto Vilagarcía-Santiago. La construcción de un corredor que una Catoira-Vilagarcía , evitaría el uso de la PO-548 por parte de la mayoría de vehículos pesados y de todos los vehículos en general que realizan la conexión Vilagarcía-Santiago, lo cual corregiría el problema de tráfico y seguridad existente en esta vía.
2. ANÁLISIS DEL PROBLEMA.

2.1. OBJETIVOS DE LAS OBRAS:

La construcción de un corredor que une Catoira con Vilagarcía debe satisfacer una serie de objetivos que justifiquen la inversión:

- Dar una solución aceptable al problema de tráfico existente en la PO-548.
- Reducir el tiempo de viaje entre los dos municipios.
- Proporcionar unas condiciones de seguridad a los usuarios de la vía que mejoren las que ofrece la PO-548.
- Ser la alternativa más favorable para salir de Vilagarcía por la zona Norte.
- Evitar los riesgos para los peatones en las zonas urbanas que atraviesa la PO-548.

2.2. CARTOGRAFÍA:

La cartografía utilizada para la elaboración del presente proyecto han sido las hojas 120-84, 152-13, 152-14, 152-23, 152-33 y 152-34 de la Cartografía a escala 1:5000 que ofrece la Xunta de Galicia.

Debido a la recientes construcciones en el área de estudio, fue necesario actualizar la cartografía para ubicar nuevas edificaciones o caminos, así como el tramo del AVE entre Catoira y Vilagarcía, o la Variante de Vilagarcía, la VG 4.7. Estas dos últimas son de vital importancia a la hora de decidir el trazado del corredor. En primer lugar, el tramo del AVE, que tiene un trazado similar al que, a priori, debería tener el corredor, es un elemento a evitar. A pesar de esto, pasa, en su mayoría en tramos de túnel por la difícil orografía de la zona. En segundo lugar, la VG-4.7 es también de gran importancia, ya que varias de las alternativas propuestas, y la seleccionada finalmente, terminan en un enlace con esta vía. Por último, hay algunas nuevas edificaciones en el área de estudio, pero ninguna que afecte significativamente a alguna de las alternativas planteadas, es más, algunas que aparecen en la cartografía ya no existen al ser objeto de expropiaciones para la construcción del AVE o de la variante de Vilagarcía.
2.3. ÁREA DE ESTUDIO:

El área de estudio comprende la Zona Norte de Vilagarcía, desde la VG 4.7 hasta el Municipio de Catoira, desde la zona costera hasta el interior coincidiendo con el Encoro do Con y la EP-8001 más hacia el norte.

2.4. CONDICIONANTES:

2.4.1. Disponibilidad de Terrenos.

Se evitará siempre que sea posible el paso por los núcleos y el uso de suelo urbanizable. Las expropiaciones que sean requeridas se realizarán, aunque preferiblemente estas serán de terrenos de poco valor. En el apéndice I de esta memoria se muestra la disponibilidad de los terrenos.

Suelo Urbano de Vilagarcía.
2.4.2. Construcciones históricas:

Existen, en la parroquia de Abalo, dentro del Municipio de Catoira, unos molinos de viento históricos, a tener en cuenta a la hora de elegir el trazado para evitar pasar por esa zona. Además, cerca de estos molinos están, a la altura del núcleo de O Busto, los Petroglifos de As Tixolas, también a evitar.
2.4.3. Ríos.

Es importante analizar los cauces fluviales existentes en el área de estudio para evitar dentro de lo posible, perturbar su correcto transcurso, ya que forman un ecosistema propio y se ven muy afectados por obras de este tipo.

Por la zona trascurren varios ríos, siendo el más importante el Río do Con, de gran caudal y que desemboca en un embalse. Además hay otros riachuelos como Rego do Freixeiro o Rego da Amproa, que, pese a ser de menor envergadura, será necesario realizar obras especiales a su paso por ellos.

El río do Con, que es el más caudaloso, no afecta a ninguna de las alternativas propuestas. Sin embargo, los otros riachuelos sí afectan al trazado propuesto para las alternativas. Por ello se propone la construcción de viaductos o canalizarlos por debajo del tronco de la vía de forma adecuada, siempre que el caudal del río sea pequeño.

En todas las alternativas, el Rego do Freixeiro es salvado mediante un viaducto, al ser el más caudaloso. También en las alternativas 1 y 2, el Rego do Souto da Vila implica la ejecución de un viaducto. En estos casos, las grandes diferencias de cota, requieren de la construcción de una obra de este tipo para disminuir el impacto ambiental que provoca la ejecución de grandes cantidades de terraplén. El resto de caudales son reconducidos por debajo de la vía mediante obras de drenaje transversal. Se realiza un estudio más detallado de los distintos cauces fluviales en el Anejo ‘Hidrología y Drenaje’.
2.4.4. Cruces con otras vías.

Se intentará evitar, en la medida de lo posible, a la hora de plantear el trazado, el cruce con otros viales, en especial los que tengan mayor volumen de tráfico. De todas formas, y debido a la cantidad de caminos agrícolas (no asfaltados) que existen en la zona de estudio, es muy probable que se crucen varios. Además es inevitable que, a lo largo del trazado, se produzca algún cruce con las carreteras que hay en la zona. De todos modos, las carreteras presentes en el área de estudio, excepto la PO-548 y la EP-8001, son secundarias.

Dentro de lo posible se restablecerán los caminos agrícolas que se vean alterados por la traza del Corredor, de modo que sea posible el acceso a todas las parcelas y zonas afectadas.

2.4.5. Línea de alta velocidad.

La existencia de un tramo del AVE en el área de estudio, condiciona mucho el trazado del corredor. Se evita dentro de lo posible el cruce con la línea, y se valora la separación entre esta y el trazado de la vía.

Todas las alternativas evitan, dentro de lo posible afectar al trazado del AVE. De todos modos, en ciertos casos, debido a que el trazado de ambas vías es muy similar, es necesario pasar cerca o cruzarlo. Si se requiere, se dispondrá de viaductos, túneles o los medios que sean necesarios y en todo caso se respetará el gálibo exigido.

2.4.6. Canteras y vertederos.

Es importante la presencia de canteras y vertederos cerca de la obra, para ahorrar los costes del transporte, bien de material de desecho o material de aporte para el terraplenado. Existe un vertedero situado al norte de la VG 4.7. Además, y a pesar de que no es necesario material de aportación procedente de canteras, hay una situada entre Catoira y Caldas de Reis, aproximadamente a 4Km del inicio del Corredor por la EP-8001.
2.4.7. Orografía.

Es un factor muy importante a tener en cuenta debido al carácter de la obra. En una obra de movilidad como la que planteamos, lo principal es que se mantenga una velocidad adecuada durante todo el trazado, por lo que debemos evitar pendientes elevadas durante largos recorridos, y si fuese necesario disponer de carriles adicionales en zonas de elevada pendiente.

El relieve que tenemos en la zona de estudio es en general bastante complicado, con zonas montañosas muy cerca de la costa, por lo que la solución adoptará un trazado sinuoso en algunos tramos para salvar esta orografía. De todas formas, se intenta en todo momento mantener un equilibrio entre el coste de la obra y la calidad del trazado, de modo que se mantenga un nivel de servicio adecuado.

Dentro de la orografía del área de estudio, hay varios montes que debemos evitar, como por ejemplo el monte Xiabre, que supera los 400 metros. Además de este, hay otros picos que, pese a ser de menor altura, supondría un sobrecoste que la obra pasase por estas zonas, debido a la necesidad de ejecutar estructuras de elevado coste como túneles o viaductos. Otro factor importante a tener en cuenta a la hora de escoger el trazado, es el hecho de que cuanto más complicada sea la orografía, mayores serán las pendientes, y peor será el flujo de tráfico en la vía.
3. ESTUDIO DE ALTERNATIVAS.

De entre las varias soluciones estudiadas, se plantean en este estudio, tres alternativas para solucionar el problema propuesto. Se evaluarán individualmente las tres alternativas y finalmente se compararán para elegir la que ofrece una mejor solución. Los criterios a evaluar serán, principalmente:

- Trazado en planta y alzado.
- Funcionalidad de la alternativa.
- Impacto ambiental.
- Coste económico.

La alternativa elegida será aquella que, tras ser evaluadas las tres, presente unas mejores características conjuntas en los aspectos mencionados anteriormente.

3.1. CRITERIOS DE DISEÑO:

Para establecer los criterios a tener en cuenta a la hora de diseñar la nueva vía, se han seguido las directrices de trazado que recoge la normativa española en la norma 3.1 – IC. Según esta normativa, el vial a proyectar se encuentra dentro del apartado vía rápida (R), con velocidad de proyecto 80 km/h. La norma 3.1 – IC, establece una serie de valores mínimos y máximos a la hora de diseñar el trazado para este tipo de vías. En Galicia, aquellas vías diseñadas como vía para automóviles que están diseñadas de forma que sea posible un futuro desdoble, son denominadas Corredor. A pesar de que no está estudiado el desdoble futuro en el presente proyecto, si que se plantea esta opción y por lo tanto se decide denominarla corredor. Un estudio más exhaustivo de los criterios de diseño, se encuentra en el anejo ‘Trazado’.

3.1.1. Trazado en planta:

Para el trazado en planta se establecen unos radios mínimos de curvatura según la velocidad de proyecto, a la vez que unas distancias mínimas entre dos alineaciones curvas, según estas sean en forma de S o no.

Para una vía tipo R-80 son:

- Radio mínimo: 250 m
- Longitud mínima en recta, S: 111 m
- Longitud mínima recta resto de casos: 222 m
- Longitud máxima en recta: 1336 m

3.1.2. Trazado en alzado:

Las pendientes máximas y mínimas que se adoptan son:

- Pendiente máxima: Del 5%, excepcionalmente el 6%, pudiendo incrementarse en un 1% en casos debidamente justificados. Por causa de terreno muy accidentado, o baja intensidad de tráfico (IMD<3000). Salvo justificación, no se proyectarán pendientes de inclinación máxima por longitudes superiores a 3000m.
-Pendiente mínima: Del 0,5%, pudiendo tomar, excepcionalmente valores mínimos de hasta 0,2%.

-Acuerdos verticales:
- Kv mínimo cóncavo: 2636m
- Kv mínimo convexo: 3050m
- Kv deseable cóncavo: 4348m
- Kv deseable convexo: 7125m

3.1.2. Sección tipo:

Según lo establecido por la norma 3.1 – IC, la sección tipo en el tronco de una vía rápida será la siguiente:

- 2 carriles de anchura 3,5 m cada uno.
- 2 Arcenes de 2,5 m a cada lado.
- 2 Bermas de 0,75 m a cada lado.

El bombeo en rectas de la plataforma será del 2%, y en curva se implantarán peraltes de hasta el 8 %.

3.1.3. Tipología de accesos.

3.1.3.1. Accesos al mismo nivel:

La tipología adoptada para estos accesos es la de la glorieta. Las características de esta son las siguientes:

- Diámetro exterior de 44m.
- Isleta central de 24m.
- Dos carriles de 4m.
- Arcenes interiores y exteriores de 1m.

El bombeo en las glorietas es del 2%. El resto de detalles constructivos de estas están indicados en los planos.
3.1.3.2. Accesos a distinto nivel:

Tras analizar las diferentes tipologías de enlace posibles, se realizó un estudio para determinar cuál es la más adecuada en los lugares en los que es necesario implantar un enlace (acceso a distinto nivel). El enlace tipo diamante no es adecuado para el problema ya que enlaza una carretera principal con una secundaria, y nuestro problema requiere enlazar dos carreteras de mismo orden. Así mismo, el enlace tipo trébol, tampoco es adecuado debido a la cantidad de área que ocupa su implantación. Debido al IMD de nuestra carretera y las características que presenta el área de actuación, la tipología escogida es la de diamante con pesas.

3.2. SITUACIÓN DE LOS ACCESOS.

Se plantea una sola posibilidad a la hora de situar el acceso inicial para la vía y otros dos posibles puntos como diferentes opciones para el acceso al final de esta. Estos puntos se han seleccionado de forma que optimicen o bien el trazado, o bien ofrezcan un punto adecuado para el comienzo o fin de la vía.

Para el comienzo de nuestro vial se ha determinado que el punto óptimo se sitúa en el PK 7+300 de la EP-8001. Esta es una carretera con un buen trazado y se considera bastante adecuada. Se seleccionó este punto porque coincide con un camino de una carretera secundaria. Las tres alternativas comienzan en este punto.

Por otra parte, para el fin del corredor se seleccionó para las dos primeras alternativas un enlace con la VG-4.7 y para la tercera, directamente la glorieta de enlace de la VG-4.7 con la PO-548. Este es el punto que se considera más favorable para el acceso a Vilagarcía por el Norte, ya que se sitúa al inicio del núcleo urbano de Carril, de paso obligatorio para el acceso al centro de Vilagarcía por esta ruta.

A su vez, las alternativas 1 y 2 tienen su fin aproximadamente en el PK 3+600 de la VG 4.7. Se seleccionó este punto por los condicionantes orográficos del terreno, que inducían a este punto como el mejor para situar un acceso a la VG 4.7.

A pesar de que la alternativa 3 acaba en el punto que se considera óptimo para el acceso a Vilagarcía, las alternativas 1 y 2 presentan la ventaja de facilitar el acceso a Vilagarcía por el este al conectar directamente con su variante de población. El principal
inconveniente de estas dos soluciones es la necesidad de
implantar un enlace en esta vía, y a pesar de ser trazados de
menor longitud, a esta hay que sumarle aproximadamente un Km
que es lo que separa el punto de enlace de la glorieta de acceso a
Carril, punto donde finaliza la alternativa 3.

Para los accesos, se plantean dos tipos, el enlace a distinto
nivel, y un acceso tipo nudo.

Para las alternativas 1 y 2, que comienzan y finalizan en el
mismo punto, se establecerá, al inicio, un enlace al mismo nivel
tipo glorieta con la vía existente (EP-8001) y para el punto final, un
enlace a distinto nivel, cuya tipología es la de diamante con pesas
o glorieta doble con pesas. Se decide establecer este tipo de
enlace a nivel debido a la importancia de ambas vías. La
alternativa 3, comienza en un enlace al mismo nivel tipo glorieta
en el nudo con la EP-8001, y finaliza en una glorieta en el nudo con
la PO-548.

Estos puntos han sido seleccionados tras estudiar el tráfico
en la zona y después de valorar varias opciones. Otra posible
opción que ha sido valorada para el inicio del trazado es la glorieta
de enlace existente entre la PO-548 y la EP-8001, pero debido a
que este punto está situado en zona urbana, el número de
expropiaciones de viviendas sería mucho mayor, y además se
generaría un impacto mayor en el núcleo urbano de Catoira. Otro
motivo importante para rechazar directamente esta alternativa,
son las fuertes pendientes que tiene el monte O Brigadoiro en la
ladera de Catoira, de aproximadamente el 30%, lo que encarecería
notablemente el coste y generaría un impacto ambiental mucho
mayor.
3.3. DESCRIPCIÓN DE LAS ALTERNATIVAS.

Para la definición del trazado del Corredor, se ha llevado un proceso de evaluación de múltiples alternativas, de las cuales, una será la que finalmente será proyectada. Con el fin de elaborar este proceso de selección, se han propuesto diferentes trazados. Una vez hecho esto, se ha valorado cuales de ellos son los que más se aproximan a la solución que se espera del problema, en términos económicos y funcionales. Por ello, y tras este proceso, se han descartado varias alternativas por considerar que bien económicamente, o bien funcionalmente, no representan la solución más adecuada. De este modo, varias de las alternativas propuestas quedan automáticamente descartadas, al considerar que no responden a las necesidades exigidas para este tipo de vía, o porque el coste de la obra sería excesivo.

Una vez realizado esto, lo siguiente es ver cuales son los puntos fuertes de cada alternativa, y si es posible, aunar varias con el fin de obtener la mejor solución posible.

Tras este primer proceso de selección de alternativas, el siguiente paso es perfeccionar el trazado de cada una de ellas. Para ello, realizamos ligeras modificaciones en el trazado en planta, radios, alineaciones rectas, clotoides etc. y en el trazado en alzado; pendientes y acuerdos. Este proceso de perfeccionamiento se realiza de modo que se consiga un equilibrio entre el coste económico de la obra y su funcionalidad, esto sin dejar de considerar otros aspectos como el impacto ambiental o el número de expropiaciones. Para ello, modificamos diferentes aspectos del trazado para obtener aquellos parámetros que minimicen movimientos de tierras y también la necesidad de ejecutar estructuras, pero a la vez nos proporcionen unas buenas condiciones para la vía a proyectar. Hecho esto, finalmente obtenemos tres alternativas que estudiaremos y compararemos con mayor detalle.

Cabe destacar dos de las alternativas que se han rechazado en este proceso de preselección por diferentes motivos:

La primera de ellas, con un recorrido mayor que todas las planteadas, comienza en la glorieta que enlaza la EP-8001 con la PO-548 y cruza el núcleo urbano de Catoira para seguir con un trazado similar a las alternativas 1 y 3. Esta alternativa, que presenta un menor tiempo de recorrido y una funcionalidad mucho mayor que las otras, es descartada en el proceso de preselección debido a la dificultad que supone su paso por el núcleo de Catoira y la barrera natural que forma el monte Brigadoiro. Esta alternativa, por lo tanto no sería económicamente viable.

La otra alternativa rechazada tiene un trazado totalmente diferente a cualquiera de las otras, al discursar más cerca de la costa. A pesar de generar menor impacto ambiental y tener un coste menor, su principal inconveniente es su funcionalidad, ya que no evita el núcleo urbano de Catoira, por lo que los vehículos se vería forzados a pasar por él.

Al no cumplir estas alternativas con los objetivos de las obras, se decide no incluirlas en el estudio de alternativas. De este modo, son tres las alternativas que analizaremos de forma minuciosa a continuación.
Primero describiremos brevemente las tres alternativas planteadas en el estudio, mencionando las distintas estructuras requeridas en el planteamiento de cada una de ellas, y las principales ventajas e inconvenientes de cada una.

Más adelante, en el anejo nº4 de Estudio de Alternativas, se muestran planos detallados de la planta y el perfil longitudinal de cada una de las alternativas propuestas. Así como el listado de las alineaciones, con información más detallada del trazado en planta y del perfil longitudinal.

A continuación, se muestra un mapa en planta con las tres alternativas, empezando al norte las tres en el mismo punto, y acabando al sur, la 1 y 2 en el enlace con la VG-4.7 y la 3 en una glorieta con la PO-548. Se muestran también, por separado, las plantas de cada una de las alternativas con sus correspondientes movimientos de tierra.
3.3.2. Alternativa 1.

Es la alternativa de menor longitud, 6900 m, ya que finaliza en un enlace a nivel con la VG-4.7 y no evita los núcleos de O Condado y O Freixeiro. Comienza, al igual que las otras alternativas, en el PK 7+300 de la EP-8001. Al inicio de esta, el trazado es más sinuoso pero mantiene radios grandes. Continúa, tras sortear el monte O Brigadoiro con un trazado más recto hasta el final, siempre con curvas tipo S y rectas al principio, final y en el medio del recorrido que permiten realizar adelantamientos. Deja por la izquierda de la vía los poblados de O Busto, Freixeiro y Condado, en una zona de orografía complicada y que es la que requiere más estructuras y movimientos de tierras por las fuertes pendientes del terreno. Finaliza a la altura del PK 3+600 de la VG-4-7 donde se implanta un acceso a distinto nivel a esta.

Comienza con pendientes moderadas de menos del 3% durante el primer kilómetro, para subir a partir de ahí con fuertes pendientes del 5% hasta el PK 1+700, en este tramo es necesario un carril para vehículos lentos por la derecha de la vía. A continuación baja con una pendiente del 3,5% y luego sube con un 5,8% para salvar el monte de Abalo. Continúa bajando con pendiente mínima del 0,5% hasta el PK 4+100 donde baja con mayor fuerza con el 4,5% aproximadamente, y donde se sitúa un carril adicional por la izquierda. Finalmente desde el PK 4+700 hasta el 5+800 la pendiente es del 2,8% y el último tramo baja con un 5,6% hasta el final, donde se ubica de nuevo un carril adicional por la izquierda de la vía.

Los dos viaductos necesarios se sitúan Para salvar el río Freixeiro el primero y el segundo a su paso por el Monte do Ceo por las fuertes pendientes. La principal ventaja es la menor longitud, movimientos de tierras y estructuras necesarias, pero por ello es necesario un enlace a nivel y el impacto sobre los núcleos de O Condado y O Busto es mayor. Es la alternativa que ofrece un trazado más suave, con radios mayores y pendientes menores.
3.3.2. Alternativa 2.

Tiene una longitud de 7365 m. Comienza con un trazado más sinuoso para evitar la fuertes pendientes del monte O Brigadoiro, y para continuar dejando el poblado de O Condado a la derecha y pasar entre este y O Busto, evitando así las fuertes pendientes que se producen por las vaguadas existentes entre estos dos poblados. Continúa ya con un trazado menos serpenteado y con radios mayores pasando por las laderas de Monte do Ceo y Monte Guillán hasta llegar a Os Ánxeles, donde se sitúa el enlace con la VG-4.7.

Al principio, las pendientes son mayores, del 4,7% durante los primeros 700 m para seguir con pendiente moderada del 1,7% y subir hasta el PK 1+60 con un 5,7%. Es necesario ubicar un carril para vehículos lentos por la derecha en todo este tramo. Sigue con pendientes más moderadas del 1,7% para, a continuación, bajar con un 2,5 % aproximadamente. En el PK 3+70 sube con una pendiente fuerte durante 400 metros para salvar el Monte do Ceo y baja con un 6,3%, la pendiente más desfavorable del trazado, donde es necesario un carril lento esta vez por la derecha desde el PK 4+30 hasta el 5+10. Continúa bajando ahora con una pendiente mínima del 0,5% hasta el tramo final que aumenta al 4,5% para descender el Monte Guillán y donde es necesario disponer de otro carril lento por la derecha de la vía desde el PK 6+60 hasta prácticamente el final del trazado.

Esta alternativa necesita unas estructuras mayores lo que encarece su ejecución, con 3 viaductos, para salvar el Rio Freixeiro y otros dos para salvar los valles situados alrededor del Monte do Ceo. Las estructuras y su mayor longitud por el trazado sinuoso son sus principales inconvenientes. Presenta la ventaja de evitar los principales núcleos, con un menor impacto sobre ellos.
3.3.3. Alternativa 3.

Con una longitud de 7802 m, esta alternativa comienza con un trazado similar a la primera pero con unos radios menores al principio para rodear el monte O Brigadoiro. Pasa por los poblados de Freixeiro, O Busto y O Condado, dejando todos ellos por la izquierda y atravesando el monte de Abalo. A partir de aquí, ya con radios mayores, pasa por la ladera de Monte do Ceo y de Guillán hasta llegar a Os Ánxeles. Allí disminuye el radio de nuevo a 450 m y 300 m para adaptarse al poblado de esta zona y así finalmente acabar en la glorieta de enlace con la PO-548.

Comienza con una leve pendiente del 1,8% el primer kilometro para después subir con el 5,8% durante 600 metros en los cuales se dispone de un carril para vehículos lentos por la izquierda. Baja después con pendiente moderada del 1,2% para volver a subir en el PK 2+700 con el 2,7% hasta el PK 3+600 donde vuelve a bajar con el 1,1%. En el PK 4+800 vuelve a subir con la pendiente mínima del 0,5% hasta el PK 6+200 donde comienza a bajar para salvar el monte Campelo con una pendiente máxima del 7% hasta llegar al punto de enlace con la PO-548, este tramo requiere, también, un carril adicional por la izquierda.

Tiene 3 viaductos, el primero para salvar el río Freixeiro y una carretera secundaria, el segundo entre los poblados de O Busto y Condado por el fuerte desnivel y el último entre los montes Do Ceo y Guillán. A pesar de tener una longitud mayor que las anteriores, el punto final de esta es el lugar optimo para el acceso a Vilagarcía, no siendo necesario el uso de la VG-4.7. Los principales inconvenientes de esta alternativa son las fuertes pendientes que se producen en el tramo final, y la elevada cantidad de desmonte necesaria, llegando a los 2.000.000 de m³ de tierra a desmontar. Este elevado movimiento de tierras hace que, a pesar de presentar la ventaja de no necesitar un enlace y que el punto final sea el mejor, sea a priori, la alternativa más desfavorable de las tres.
3.4. CRITERIOS DE EVALUACIÓN.

Para la evaluación individual de cada alternativa, se han elegido una serie de criterios que se agrupan en cuatro subcriterios principales:

- **Impacto ambiental**: Valora el impacto ambiental que genera cada alternativa. Se valora:
 - La cantidad de movimiento de tierras.
 - Afección a ríos.
 - Creación de efecto barrera.
 - Contaminación acústica.

- **Geometría del trazado**: Valora la idoneidad de la geometría del trazado tanto en planta como en perfil.
 - Radios mínimos.
 - Pendientes máximas.
 - Tiempo de recorrido.

- **Criterios sociales y funcionales**: Valoran la afección a los núcleos urbanos y la funcionalidad futura.
 - Afección a suelo urbano y viviendas.
 - Protección del patrimonio histórico.
 - Funcionalidad de la obra.
 - Afección a caminos.

- **Criterios económicos**: Coste de cada alternativa y valor del Km.

3.4.1. Impacto ambiental.

Dentro de este subcriterio. Los principales aspectos a valorar son:

1. Minimizar la cantidad de movimiento de tierras, menores cantidades de desmonte y terraplén.
2. Una mínima afección a cauces fluviales.
3. Minimice el efecto barrera y no evite la movilidad de los seres vivos presentes en el medio.
4. Evite núcleos urbanos donde la contaminación acústica genera mayores problemas.

<table>
<thead>
<tr>
<th>IMPACTO AMBIENTAL</th>
<th>Alt 1</th>
<th>Alt 2</th>
<th>Alt 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desmonte (m3)</td>
<td>974449,00</td>
<td>1245034,00</td>
<td>2183022,00</td>
</tr>
<tr>
<td>Terraplén (m3)</td>
<td>625656,00</td>
<td>665426,00</td>
<td>627036,00</td>
</tr>
<tr>
<td>Afección a cauces fluviales</td>
<td>Baja</td>
<td>Media</td>
<td>Baja</td>
</tr>
<tr>
<td>Efecto barrera</td>
<td>Bajo</td>
<td>Media</td>
<td>Media</td>
</tr>
<tr>
<td>Contaminación acústica</td>
<td>Media</td>
<td>Baja</td>
<td>Alta</td>
</tr>
</tbody>
</table>

La tercera alternativa es la que presenta un impacto ambiental más significativo al tener una elevada cantidad de desmonte. El efecto barrera es mayor en las alternativas 2 y 3 al aislar varios núcleos, por lo que son necesarios pasos superiores en varios puntos. Se considera que generan contaminación acústica las alternativas 1 y 3 ya que el trazado es próximo a varios núcleos de viviendas, especialmente la 3. El impacto sobre cauces fluviales es mayor en la alternativa 2 al ser necesario un viaducto especialmente para salvar el río.
3.4.2. Geometría del trazado.

Se valorará lo siguiente:

1. Radios mínimos de cada alternativa.
2. Pendientes máximas empleadas.
3. Longitud de cada alternativa.
4. Tiempo de recorrido.

Para valorar el tiempo de recorrido de cada una de las alternativas, elegimos como punto inicial la glorieta de entrada a Catoira, donde se enlaza la EP-8001 con la PO-548, y como punto final la glorieta de acceso a Carril, que coincide con el punto final de la alternativa 3.

Consideraremos, diferentes tramos que unen los puntos indicados en el siguiente mapa, y que la velocidad en el corredor es de 80 Km/h en las tres alternativas. Esta velocidad, a pesar de ser la velocidad de proyecto, es menor a la velocidad real del corredor, ya que en gran parte de la vía, las características de esta cumplen los criterios de diseño de una vía con velocidad de 100 Km/h.

El recorrido estudiado es el siguiente:
Las tres alternativas van del punto A al punto B, a partir de ahí, las alternativas 1 y 2 van del punto B al C, y después del C al D. Por su parte, la alternativa 3 va del punto B al D directamente, ya que no enlaza con la VG-4.7.
La alternativa que presenta un tiempo de recorrido menor es la 3, al ser la que enlaza directamente los dos puntos. La diferencia de tiempo no es muy grande, pero en las alternativas 1 y 2 sería recomendable añadir medio minuto en estas por el enlace entre el corredor y la VG-4.7. También es importante considerar, como hemos mencionado antes, que la velocidad real en el corredor es mayor de 80Km/h, alcanzando los 100Km/h en una gran parte del trazoado, aunque realmente la alternativa que tiene un porcentaje mayor de tramos con velocidad de 100Km/h es la primera, que es la que presenta unas mejores condiciones de trazado.

Aunque la diferencia de tiempo entre las diferentes alternativas y la PO-548 no sea muy grande, hay que tener en cuenta que no se ha tenido en consideración la demora que produce el tráfico en esta vía a la hora de valorar el tiempo de recorrido, que en el caso de la PO-548 puede aumentar entre 10 y 15 minutos el tiempo total, llegando en horas de gran volumen de tráfico hasta los 20 o 25 minutos.

Tras realizar este estudio, siendo conocidos los radios y pendientes máximas de cada alternativa, podemos elaborar el siguiente cuadro de valoración:

Sin duda es, la primera alternativa la que tiene el mejor trazado de las 3. Con radios mayores y pendientes menos fuertes, presenta en este aspecto las mejores características. La longitud, además, es mucho menor a las otras, aunque como ya se ha explicado, esto se debe a que esta alternativa no enlaza directamente con la entrada de Vilagarcía, cosa que sí hace la alternativa 3.
3.4.3. Criterios sociales y funcionales.

Valoraremos los siguientes aspectos:

1. Menores expropiaciones de viviendas.
2. Menor afección al suelo urbano.
3. Menor afección a patrimonio histórico.
4. Distancia a núcleos urbanos.
5. Funcionalidad de la obra.
6. Caminos y carreteras afectadas.

<table>
<thead>
<tr>
<th>SOCIALES Y FUNCIONALES</th>
<th>Alt 1</th>
<th>Alt 2</th>
<th>Alt 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nº Expropiaciones</td>
<td>1,00</td>
<td>0,00</td>
<td>2,00</td>
</tr>
<tr>
<td>Afección Suelo urbano</td>
<td>Baja</td>
<td>Nula</td>
<td>Media</td>
</tr>
<tr>
<td>Afección Patr. Histórico</td>
<td>Media</td>
<td>Baja</td>
<td>Media</td>
</tr>
<tr>
<td>Cercanía núcleos</td>
<td>Baja</td>
<td>Baja</td>
<td>Media</td>
</tr>
<tr>
<td>Funcionalidad</td>
<td>Media</td>
<td>Baja</td>
<td>Alta</td>
</tr>
<tr>
<td>Nº caminos afectados</td>
<td>9,00</td>
<td>9,00</td>
<td>10,00</td>
</tr>
<tr>
<td>Nº carreteras afectadas</td>
<td>2,00</td>
<td>3,00</td>
<td>4,00</td>
</tr>
</tbody>
</table>

Es, en este caso, la alternativa 2 la que tiene un mejor aspecto social y funcional. El hecho de que esta alternativa modifique su trazado para evitar pasar demasiado cerca de los núcleos de Freixeiro O Busto y O Condado. Además, las alternativas 1 y 3 pasan cerca de los molinos de viento, considerados patrimonio histórico, y aunque no llegan a afectarles, se valora negativamente este hecho. En cuanto a la funcionalidad, se valora muy positivamente el hecho de que la alternativa 3 enlace directamente la EP-8001 con la PO-548 sin tener que hacer uso de la VG-4.7. Las otras alternativas utilizan un enlace con esta para llegar a la PO-548, aunque este hecho no es del todo malo ya que presenta la ventaja de enlazar con la variante de Vilagarcía.

A su paso por el núcleo de O Freixeiro, en las alternativas 1 y 3, es inevitable la expropiación de una vivienda, ya que no se puede modificar el trazado para evitarlo por la presencia en la zona de los molinos de viento.

Finalmente, todas las carreteras que se ven afectadas por el corredor, serán repuestas y se harán pasos superiores o inferiores. Todas las carreteras afectadas son secundarias y de una importancia menor. En cuanto a los caminos, no todos los afectados por la traza del corredor serán repuestos, ya que son caminos agrícolas no asfaltados para el acceso a las parcelas. Aunque no todos sean repuestos, se ofrecerá siempre una alternativa para el acceso a todas las parcelas existentes en la zona.
3.4.4. Criterios económicos.

Se valorará principalmente el precio total de la obra, pero también el precio relativo. El coste por Km de obra. Hay que tener en cuenta, que los presupuestos de cada alternativa son estimativos, evaluando el coste de cada uno de los ocho capítulos que forman el presupuesto. Los presupuestos detallados se encuentran en el apéndice 4 del anejo de alternativas presente en esta memoria. A continuación mostramos un cuadro resumen con el presupuesto de ejecución material de cada alternativa y el coste por Km.

<table>
<thead>
<tr>
<th>ECONÓMICOS</th>
<th>Alt 1</th>
<th>Alt 2</th>
<th>Alt 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>P.E.M (€)</td>
<td>14.955.294,77</td>
<td>17.201.939,90</td>
<td>19.847.058,77</td>
</tr>
<tr>
<td>Ratio (€/Km P.E.M)</td>
<td>2.151.840,97</td>
<td>2.337.220,10</td>
<td>2.544.494,71</td>
</tr>
</tbody>
</table>

Como podemos observar, la alternativa más económica es la primera, seguida por la segunda y por último la tercera. Lo mismo sucede con el ratio €/Km. El Km más barato de corredor corresponde a la primera alternativa y el más caro a la última.

3.5. SELECCIÓN DE LA ALTERNATIVA.

3.5.1. Introducción.

A continuación, asignaremos una puntuación a cada una de las distintas alternativas para cada criterio de los mencionados anteriormente, basándonos en el estudio hecho previamente. Finalmente, teniendo en cuenta las puntuaciones obtenidas por las alternativas, escogeremos aquella que obtenga una mejor puntuación conjunta, teniendo en cuenta los cuatro criterios de selección. Para realizar esta elección se emplearán tres métodos diferentes, el método de las medias ponderadas, el método Press, y el método Electre. La alternativa seleccionada será aquella que proyectaremos y debe ser la que responda mejor a las necesidades que debe satisfacer el presente anteproyecto.

3.5.2. Puntuación de las alternativas.

Primero, elaboraremos una matriz decisional que contenga la puntuación de cada alternativa en cada uno de los cuatro criterios. Esta puntuación será un valor entre 0 y 1. Para el cálculo de la puntuación en cada uno de los criterios, valoraremos por separado los subcriterios de los que dependen, y le otorgaremos a cada alternativa, una nota entre 0 y 1 en ese subcriterio, obteniendo la alternativa que presente la mejor valoración en ese subcriterio un 1, la que presente la peor un 0. La intermedia recibe un valor ponderado entre 0 y 1. Finalmente, para calcular la nota
de la alternativa en el criterio, haremos la media de todos los subcriterios que definen el criterio.
Para conocer la puntuación de la alternativa con valoración intermedia se emplea la siguiente fórmula:

\[h_{ij} = \frac{v_{ij} - \min(v_{1j}, v_{2j}, v_{3j})}{\max(v_{1j}, v_{2j}, v_{3j}) - \min(v_{1j}, v_{2j}, v_{3j})} \]

Siendo:
- \(h_{ij} \): puntuación homogeneizada de la alternativa i en el subcriterio j.
- \(v_{ij} \): Valoración de la alternativa i en el subcriterio j.

Por ejemplo, dentro del criterio económico, el segundo subcriterio es el ratio €/Km y la alternativa que presenta una mejor valoración es la 1. Por lo tanto la puntuación de este subcriterio será un 1. La que presenta una peor valoración es la 3, y su puntuación será un 0. La puntuación de la alternativa 2 será:

\[h_{22} = \frac{2.337.220,10 - 2.151.840,97}{2.544.494,71 - 2.151.840,97} = 0,47 \]

En este caso, lo que valoramos positivamente que sea menor cantidad, por lo tanto el resultado será 1-0,47=0,53. En el caso de que sea mejor obtener una medición mayor, no realizaremos esta operación.
Aquellos subcriterios que tengan una valoración no numérica, como por ejemplo alta, media o baja, le daremos valores de 1, 0 y 0,5 correspondientemente. Finalmente, si varias alternativas obtienen la misma valoración, obtendrán también la misma puntuación.

Estas son las puntuaciones de cada criterio y para cada alternativa desglosadas en los diferentes subcriterios:

-IMPACTO AMBIENTAL:

<table>
<thead>
<tr>
<th>IMPACTO AMBIENTAL</th>
<th>Alt 1</th>
<th>Alt 2</th>
<th>Alt 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desmonte (m3)</td>
<td>1,00</td>
<td>0,78</td>
<td>0,00</td>
</tr>
<tr>
<td>Terraplén (m3)</td>
<td>1,00</td>
<td>0,00</td>
<td>0,96</td>
</tr>
<tr>
<td>Afección a cauces fluviales</td>
<td>1,00</td>
<td>0,00</td>
<td>1,00</td>
</tr>
<tr>
<td>Efecto barrera</td>
<td>1,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>Contaminación acústica</td>
<td>0,50</td>
<td>1,00</td>
<td>0,00</td>
</tr>
<tr>
<td>TOTAL</td>
<td>0,90</td>
<td>0,36</td>
<td>0,39</td>
</tr>
</tbody>
</table>

-GEOMETRÍA DEL TRAZADO:

<table>
<thead>
<tr>
<th>GEOMETRÍA DEL TRAZADO</th>
<th>Alt 1</th>
<th>Alt 2</th>
<th>Alt 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>R min (m)</td>
<td>1,00</td>
<td>0,38</td>
<td>0,00</td>
</tr>
<tr>
<td>Pendiente máx. (%)</td>
<td>1,00</td>
<td>0,62</td>
<td>0,00</td>
</tr>
<tr>
<td>Longitud (Km)</td>
<td>1,00</td>
<td>0,48</td>
<td>0,00</td>
</tr>
<tr>
<td>Tiempo de recorrido(min.)</td>
<td>0,30</td>
<td>0,00</td>
<td>1,00</td>
</tr>
<tr>
<td>TOTAL</td>
<td>0,83</td>
<td>0,37</td>
<td>0,25</td>
</tr>
</tbody>
</table>
Obtenemos así la matriz homogeneizada:

<table>
<thead>
<tr>
<th></th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>C4</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALT 1</td>
<td>0,90</td>
<td>0,83</td>
<td>0,64</td>
<td>1,00</td>
</tr>
<tr>
<td>ALT 2</td>
<td>0,36</td>
<td>0,37</td>
<td>0,79</td>
<td>0,54</td>
</tr>
<tr>
<td>ALT 3</td>
<td>0,39</td>
<td>0,25</td>
<td>0,14</td>
<td>0,00</td>
</tr>
<tr>
<td>PESO</td>
<td>0,30</td>
<td>0,20</td>
<td>0,30</td>
<td>0,20</td>
</tr>
</tbody>
</table>

Siendo:
- C1: Impacto ambiental.
- C2: Geometría del Trazado.
- C3: Criterios Sociales y funcionales.
- C4: Criterios económicos.

3.5.2.1. Método de las medias ponderadas:

A cada uno de los criterios se le asigna un peso y se obtiene la matriz de valores ponderados multiplicando la matriz homogeneizada por el peso de cada criterio:
Matriz de valores ponderados:

<table>
<thead>
<tr>
<th></th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>C4</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALT 1</td>
<td>0,27</td>
<td>0,17</td>
<td>0,19</td>
<td>0,20</td>
</tr>
<tr>
<td>ALT 2</td>
<td>0,11</td>
<td>0,07</td>
<td>0,24</td>
<td>0,11</td>
</tr>
<tr>
<td>ALT 3</td>
<td>0,12</td>
<td>0,05</td>
<td>0,04</td>
<td>0,00</td>
</tr>
</tbody>
</table>

Finalmente se obtiene la valoración global de cada alternativa sumando las filas de la matriz de valores ponderados. La alternativa elegida es aquella que obtiene una mayor puntuación:

<table>
<thead>
<tr>
<th></th>
<th>Puntuación</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALT 1</td>
<td>0,83</td>
</tr>
<tr>
<td>ALT 2</td>
<td>0,53</td>
</tr>
<tr>
<td>ALT 3</td>
<td>0,21</td>
</tr>
</tbody>
</table>

3.5.2.2. Método Press.

Este método fue desarrollado por el profesor Gómez Senent de la Universidad Politécnica de Valencia. El método trata de determinar la alternativa más favorable desde el punto de vista del análisis comparativo con el resto de alternativas. Esto se consigue estableciendo relaciones entre las alternativas para todos los criterios establecidos, de esta forma, el método escoge la alternativa que es mejor que las demás en el mayor número de criterios y la que tiene menos debilidades.

El método utiliza unos pasos similares al anterior, obteniendo una matriz decisional homogeneizada, y luego, según el peso de cada criterio, se obtiene una matriz de valores ponderados. Esta matriz coincide con la del método anterior y es la siguiente:

<table>
<thead>
<tr>
<th></th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>C4</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALT 1</td>
<td>0,27</td>
<td>0,17</td>
<td>0,19</td>
<td>0,20</td>
</tr>
<tr>
<td>ALT 2</td>
<td>0,11</td>
<td>0,07</td>
<td>0,24</td>
<td>0,11</td>
</tr>
<tr>
<td>ALT 3</td>
<td>0,12</td>
<td>0,05</td>
<td>0,04</td>
<td>0,00</td>
</tr>
</tbody>
</table>

A partir de la matriz de valores ponderados, se obtiene la matriz de dominación, cuyos valores vienen dados por la suma de las diferencias de los valores para cada criterio y alternativas. Es una matriz cuadrada de tamaño \(n \times n \) y que responde a la siguiente expresión:

\[
d_{ij} = \sum_{k=1}^{m} (vp_{ik} - vp_{jk}), \forall \ vp_{ik} > vp_{jk}, \quad i, j = 1, 2, ..., n
\]

<table>
<thead>
<tr>
<th></th>
<th>ALT 1</th>
<th>ALT 2</th>
<th>ALT 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALT 1</td>
<td>0,35</td>
<td>0,62</td>
<td></td>
</tr>
<tr>
<td>ALT 2</td>
<td>0,05</td>
<td>0</td>
<td>0,33</td>
</tr>
<tr>
<td>ALT 3</td>
<td>0</td>
<td>0,01</td>
<td>0</td>
</tr>
</tbody>
</table>

Realizando los cálculos se obtiene la matriz de dominación:
A partir de esta matriz de dominación se obtienen los valores D_i como suma de las filas de la matriz de dominación (determina la prelación de la alternativa i respecto al resto), y los valores d_i como suma de las columnas (determina las ventajas del resto de alternativas respecto a la alternativa i).

<table>
<thead>
<tr>
<th></th>
<th>D</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALT 1</td>
<td>0,97</td>
<td>0,05</td>
</tr>
<tr>
<td>ALT 2</td>
<td>0,38</td>
<td>0,36</td>
</tr>
<tr>
<td>ALT 3</td>
<td>0,01</td>
<td>0,95</td>
</tr>
</tbody>
</table>

El método concluye determinando la relación D_i/d_i para todas las alternativas, siendo la que obtenga un valor mayor en esta relación, la alternativa a escoger.

<table>
<thead>
<tr>
<th>D/d</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALT 1</td>
</tr>
<tr>
<td>ALT 2</td>
</tr>
<tr>
<td>ALT 3</td>
</tr>
</tbody>
</table>

Es, de nuevo, y con mucha diferencia, la alternativa 1 la que predomina sobre las otras dos.

3.5.2.3. Método Electre.

Este es el método multicriterio discreto mas conocido y utilizado en la practica desde finales de los 60. El método consiste en comparar las alternativas de dos en dos. Entre cada par de alternativas, una se considera preferentemente superior a la otra si cumple la condición de concordancia (el peso de los criterios para los cuales es igual o superior es suficientemente grande) y la de discordancia (no existe ningún criterio para el que sea todavía peor).

Este método parte, como los dos anteriores, de la matriz de valores ponderados:

<table>
<thead>
<tr>
<th></th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>C4</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALT 1</td>
<td>0,27</td>
<td>0,17</td>
<td>0,19</td>
<td>0,20</td>
</tr>
<tr>
<td>ALT 2</td>
<td>0,11</td>
<td>0,07</td>
<td>0,24</td>
<td>0,11</td>
</tr>
<tr>
<td>ALT 3</td>
<td>0,12</td>
<td>0,05</td>
<td>0,04</td>
<td>0,00</td>
</tr>
</tbody>
</table>

A partir de ella, y con el vector de pesos, se calcula la matriz de índices de concordancia, para ello se sigue este procedimiento:

La matriz de índices de concordancia entre dos alternativas a_i y a_k se obtiene como la suma de los pesos de aquellos criterios para los cuales la alternativa a_i es igual o superior a la a_k. Si hay empate se asigna la mitad del peso a cada alternativa. Para ello se emplea la siguiente fórmula:
La matriz de índices de concordancia es una matriz cuadrada de tamaño \(nxn \) y cuyos valores están comprendidos entre 0 y 1. En la diagonal principal no hay valores.

Haciendo los cálculos obtenemos la siguiente matriz de índices de concordancia:

\[
\begin{align*}
\text{ALT 1} & & \text{ALT 2} & & \text{ALT 3} \\
\text{ALT 1} & - & 0.7 & 1 \\
\text{ALT 2} & 0.3 & - & 0.7 \\
\text{ALT 3} & 0 & 0.3 & -
\end{align*}
\]

El siguiente paso es calcular la matriz de índices de discordancia. El índice de discordancia entre dos alternativas se obtiene como el cociente entre la diferencia mayor de los criterios para las que la alternativa ai está dominada por la ak, dividido por la diferencia mayor, en valor absoluto, entre los resultados de la alternativa ai y ak:

\[
i_{ik} = \max_{j=1,m} \frac{vp_{kj} - vp_{ij}}{vp_{kj} - vp_{ij}}, i, k = 1, ..., n
\]

Los valores de la matriz de índices de discordancia, son números entre 0 y 1 y en la diagonal principal no hay valores.

Realizando los cálculos oportunos, obtenemos la siguiente matriz de índices de discordancia:

\[
\begin{align*}
\text{ALT 1} & & \text{ALT 2} & & \text{ALT 3} \\
\text{ALT 1} & - & 0.3125 & 0.05 \\
\text{ALT 2} & 1 & - & 0.05 \\
\text{ALT 3} & 1 & 1 & -
\end{align*}
\]

Se determina el umbral mínimo de concordancia, \(c \), a partir de los valores medios de la matriz de índices de concordancia. Una vez conocido este valor, se calcula la matriz de dominancia concordante, de tal modo que, se asigna el valor 1 a aquellos elementos de la matriz de índices de concordancia cuyo valor sea mayor que \(c \). Realizando los cálculos obtenemos:

\[C=0.5 \]

Matriz de dominancia concordante:

\[
\begin{align*}
\text{ALT 1} & & \text{ALT 2} & & \text{ALT 3} \\
\text{ALT 1} & - & 1 & 1 \\
\text{ALT 2} & 0 & - & 1 \\
\text{ALT 3} & 0 & 0 & -
\end{align*}
\]
Homólogamente, calculamos el umbral máximo de discordancia, \(d\), a partir de los valores medios de la matriz de índices de discordancia. Una vez obtenido este valor, se genera la matriz de dominancia discordante de forma que, los valores de la matriz de índices de discordancia que sean menores que \(d\) toman el valor 1, y los que sean mayores el valor 0. Obtenemos de esta forma la siguiente matriz:

\[d=0,56 \]

Y la matriz de dominancia discordante:

<table>
<thead>
<tr>
<th></th>
<th>ALT 1</th>
<th>ALT 2</th>
<th>ALT 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALT 1</td>
<td>-</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>ALT 2</td>
<td>0</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>ALT 3</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>

Finalmente, determinamos el grafo ELECTRE. Cada alternativa es un vértice del grafo. Del vértice i al j se trazara una flecha si y solo si el correspondiente elemento de la matriz de dominancia agregada es 1. Esto representa una ordenación gráfica de las preferencias entre las distintas alternativas. El núcleo del grafo está formado por aquellas alternativas que no se dominan entre sí, y la alternativa a proyectar debe ser escogida entre esta. El grafo es el siguiente:
Es la alternativa 1 la que se encuentra en el núcleo del grafo al no ser dominada por ninguna otra, por lo tanto debe ser la alternativa a escoger.

3.6. CONCLUSIÓN.

Tras lo visto en este estudio, y siendo la alternativa 1 la mejor valorada por los tres métodos expuestos, se considera suficientemente justificado que esta sea la alternativa elegida.
INTRODUCCIÓN

En este apéndice se muestran imágenes del área de Estudio con el planteamiento urbano de los dos municipios.

El Planteamiento Urbano de Catoira es el más antiguo, realizado en el año 1993, y con ligeras modificaciones en años posteriores pero que no afectan al área de estudio.

El Planteamiento Urbano de Vilagarcía está más actualizado, es del año 2000 y del mismo modo se han hecho revisiones posteriores. El área de estudio se muestra en la fotos a continuación, siendo la primera la correspondiente al término Municipal de Catoira y la siguiente al de Vilagarcía. Cabe destacar que en los mapas no se muestra la totalidad del Municipio, solo la parte de interés para el presente anteproyecto.

Como se puede observar en los mapas, prácticamente la totalidad del área de estudio contiene terrenos forestales, a excepción de algunos núcleos urbanos y tierras de cultivo. El trazado del corredor discurre, a excepción de una pequeña parcela de suelo urbano y otras parcelas un poco mayores de terrenos de cultivo, situados en el poblado de O Freixeiro, por terrenos forestales.
Nuevo Corredor entre Vilagarcía de Arousa y Catoira.

Documento nº1: Memoria.

Miguel Burés Muñiz
Nuevo Corredor entre Vilagarcía de Arousa y Catoira.

Documento nº1: Memoria.
2. MEMORIA JUSTIFICATIVA

ÍNDICE:

1. ANEJO Nº1: ESTUDIO DE ALTERNATIVAS.
2. ANEJO Nº2: TRAZADO.
3. ANEJO Nº3: MOVIMIENTO DE TIERRAS.
4. ANEJO Nº4: HIDROLOGÍA Y DRENAJE.
5. ANEJO Nº5: ESTUDIO DE TRÁFICO.
6. ANEJO Nº6: FIRMES.
7. ANEJO Nº7: IMPACTO AMBIENTAL.
8. ANEJO Nº8: EXPROIACIONES.
9. ANEJO Nº9: PRESUPUESTO PARA CONOCIMIENTO DE LA ADMINISTRACIÓN.
10. ANEJO Nº10: REPORTAJE FOTOGRÁFICO.
Documento nº1: Memoria.

ANEJO Nº1: ESTUDIO DE ALTERNATIVAS

APÉNDICE I: ESTADO DE ALINEACIONES.

APÉNDICE II: ESTADO DE RASANTES.

APÉNDICE III: PRESUPUESTOS ESTIMADOS.

APÉNDICE IV: PLANOS DE LAS ALTERNATIVAS.

Miguel Burés Muñiz
APÉNDICE I: ESTADO DE ALINEACIONES.
DATO TIPO **LONGITUD** **P.K.** **X TANGENCIA** **Y TANGENCIA** **RADIO** **PARAMETRO** **AZIMUT** **Cos/Xc/Xinf** **Sen/Yc/Yinf**

<p>| | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 RECTA</td>
<td>423.174</td>
<td>0.000</td>
<td>524396.887</td>
<td>4723230.167</td>
<td>4723035.049</td>
<td>405.000</td>
<td>269.4922</td>
<td>-0.8873569</td>
</tr>
<tr>
<td>CLOT.</td>
<td>164.025</td>
<td>423.174</td>
<td>524021.380</td>
<td>4723230.167</td>
<td>269.4922</td>
<td>524021.360</td>
<td>4723035.049</td>
<td></td>
</tr>
<tr>
<td>2 CIRC.</td>
<td>307.908</td>
<td>587.199</td>
<td>523873.862</td>
<td>4722963.447</td>
<td>1000.000</td>
<td>274.7133</td>
<td>523487.022</td>
<td>4723885.594</td>
</tr>
<tr>
<td>CLOT.</td>
<td>164.025</td>
<td>895.107</td>
<td>523373.292</td>
<td>4722883.618</td>
<td>1000.000</td>
<td>999.9973</td>
<td>523373.292</td>
<td>472288.3618</td>
</tr>
<tr>
<td>3 RECTA</td>
<td>39.030</td>
<td>1059.132</td>
<td>523412.321</td>
<td>4722883.903</td>
<td>1000.000</td>
<td>294.3153</td>
<td>523308.368</td>
<td>4722132.024</td>
</tr>
<tr>
<td>CLOT.</td>
<td>140.833</td>
<td>164.025</td>
<td>523576.199</td>
<td>4722883.903</td>
<td>1000.000</td>
<td>294.3153</td>
<td>523308.368</td>
<td>4722132.024</td>
</tr>
<tr>
<td>4 CIRC.</td>
<td>841.924</td>
<td>1238.995</td>
<td>523232.619</td>
<td>4722883.903</td>
<td>1000.000</td>
<td>294.3153</td>
<td>523308.368</td>
<td>4722132.024</td>
</tr>
<tr>
<td>CLOT.</td>
<td>140.833</td>
<td>164.025</td>
<td>523576.199</td>
<td>4722883.903</td>
<td>1000.000</td>
<td>294.3153</td>
<td>523308.368</td>
<td>4722132.024</td>
</tr>
<tr>
<td>5 RECTA</td>
<td>504.364</td>
<td>2221.753</td>
<td>522563.577</td>
<td>4722525.003</td>
<td>1000.000</td>
<td>294.3153</td>
<td>522563.577</td>
<td>4722132.024</td>
</tr>
<tr>
<td>CLOT.</td>
<td>137.286</td>
<td>2726.117</td>
<td>522437.247</td>
<td>4721763.717</td>
<td>1000.000</td>
<td>294.3153</td>
<td>522563.577</td>
<td>4722132.024</td>
</tr>
<tr>
<td>6 CIRC.</td>
<td>332.065</td>
<td>2863.403</td>
<td>522398.552</td>
<td>4721632.058</td>
<td>1000.000</td>
<td>294.3153</td>
<td>522563.577</td>
<td>4722132.024</td>
</tr>
<tr>
<td>CLOT.</td>
<td>137.286</td>
<td>3195.468</td>
<td>522215.963</td>
<td>4721358.422</td>
<td>1000.000</td>
<td>294.3153</td>
<td>522563.577</td>
<td>4722132.024</td>
</tr>
<tr>
<td>7 RECTA</td>
<td>40.654</td>
<td>3332.753</td>
<td>522109.243</td>
<td>4721257.156</td>
<td>1000.000</td>
<td>294.3153</td>
<td>522563.577</td>
<td>4722132.024</td>
</tr>
<tr>
<td>CLOT.</td>
<td>164.025</td>
<td>3373.408</td>
<td>522076.808</td>
<td>4721247.646</td>
<td>1000.000</td>
<td>294.3153</td>
<td>522563.577</td>
<td>4722132.024</td>
</tr>
<tr>
<td>8 CIRC.</td>
<td>366.911</td>
<td>3537.433</td>
<td>521948.736</td>
<td>4721145.246</td>
<td>1000.000</td>
<td>294.3153</td>
<td>522563.577</td>
<td>4722132.024</td>
</tr>
<tr>
<td>CLOT.</td>
<td>164.025</td>
<td>3904.344</td>
<td>521725.554</td>
<td>4720856.611</td>
<td>1000.000</td>
<td>294.3153</td>
<td>522563.577</td>
<td>4722132.024</td>
</tr>
<tr>
<td>9 RECTA</td>
<td>321.299</td>
<td>4068.369</td>
<td>521568.681</td>
<td>4720706.891</td>
<td>1000.000</td>
<td>294.3153</td>
<td>522563.577</td>
<td>4722132.024</td>
</tr>
<tr>
<td>CLOT.</td>
<td>137.286</td>
<td>4389.668</td>
<td>521353.715</td>
<td>4720410.054</td>
<td>1000.000</td>
<td>294.3153</td>
<td>522563.577</td>
<td>4722132.024</td>
</tr>
<tr>
<td>10 CIRC.</td>
<td>280.985</td>
<td>4526.954</td>
<td>521479.081</td>
<td>4720285.058</td>
<td>1000.000</td>
<td>294.3153</td>
<td>522563.577</td>
<td>4722132.024</td>
</tr>
<tr>
<td>CLOT.</td>
<td>137.286</td>
<td>4807.938</td>
<td>521301.099</td>
<td>4720070.069</td>
<td>1000.000</td>
<td>294.3153</td>
<td>522563.577</td>
<td>4722132.024</td>
</tr>
<tr>
<td>11 RECTA</td>
<td>6.600</td>
<td>4945.224</td>
<td>521188.875</td>
<td>4719991.094</td>
<td>1000.000</td>
<td>294.3153</td>
<td>522563.577</td>
<td>4722132.024</td>
</tr>
<tr>
<td>CLOT.</td>
<td>144.500</td>
<td>4951.825</td>
<td>521183.356</td>
<td>4719887.474</td>
<td>1000.000</td>
<td>294.3153</td>
<td>522563.577</td>
<td>4722132.024</td>
</tr>
<tr>
<td>12 CIRC.</td>
<td>300.579</td>
<td>5096.325</td>
<td>521065.012</td>
<td>4719904.650</td>
<td>1000.000</td>
<td>294.3153</td>
<td>522563.577</td>
<td>4722132.024</td>
</tr>
<tr>
<td>CLOT.</td>
<td>144.500</td>
<td>5396.904</td>
<td>520869.762</td>
<td>4719678.448</td>
<td>1000.000</td>
<td>294.3153</td>
<td>522563.577</td>
<td>4722132.024</td>
</tr>
<tr>
<td>DATO</td>
<td>TIPO</td>
<td>LONGITUD</td>
<td>P.K.</td>
<td>X TANGENCIA</td>
<td>Y TANGENCIA</td>
<td>RADIO</td>
<td>PARAMETRO</td>
<td>AZIMUT</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>----------</td>
<td>-----</td>
<td>-------------</td>
<td>-------------</td>
<td>-------</td>
<td>-----------</td>
<td>--------</td>
</tr>
<tr>
<td>13</td>
<td>RECTA</td>
<td>34.651</td>
<td>5541.404</td>
<td>520805.116</td>
<td>4719549.274</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLOT.</td>
<td></td>
<td>137.286</td>
<td>5576.055</td>
<td>520790.547</td>
<td>4719517.834</td>
<td>310.000</td>
<td>-0.7961622</td>
<td>-0.6050833</td>
</tr>
<tr>
<td>14</td>
<td>CIRC.</td>
<td>203.622</td>
<td>5713.340</td>
<td>520728.815</td>
<td>4719395.276</td>
<td>700.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLOT.</td>
<td></td>
<td>137.286</td>
<td>5916.962</td>
<td>520601.638</td>
<td>4719237.174</td>
<td>310.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>RECTA</td>
<td>13.333</td>
<td>6054.248</td>
<td>520495.155</td>
<td>4719150.614</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLOT.</td>
<td></td>
<td>144.500</td>
<td>6067.581</td>
<td>520484.539</td>
<td>4719142.547</td>
<td>340.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>CIRC.</td>
<td>98.686</td>
<td>6212.081</td>
<td>520372.218</td>
<td>4719051.722</td>
<td>-800.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLOT.</td>
<td></td>
<td>144.500</td>
<td>6310.767</td>
<td>520303.639</td>
<td>4718980.847</td>
<td>340.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>RECTA</td>
<td>443.818</td>
<td>6455.267</td>
<td>520216.561</td>
<td>4718865.597</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6899.085</td>
<td></td>
<td>519959.792</td>
<td>4718503.596</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Documento n°1: Memoria.
Anejo n°1: Estudio de Alternativas.
Miguel Burés Muñiz
LISTADO DE LAS ALINEACIONES

<table>
<thead>
<tr>
<th>DATO TIPO</th>
<th>LONGITUD</th>
<th>P.K.</th>
<th>X TANGENCIA</th>
<th>Y TANGENCIA</th>
<th>RADIO</th>
<th>PARAMETRO</th>
<th>AZIMUT</th>
<th>Cos/Xc/Xinf</th>
<th>Sen/Yc/Yinf</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 RECTA</td>
<td>350.326</td>
<td>0.000</td>
<td>524395.267</td>
<td>472323.462</td>
<td></td>
<td>252.8210</td>
<td>-0.7377361</td>
<td>-0.6750892</td>
<td></td>
</tr>
<tr>
<td>CLOT.</td>
<td>115.200</td>
<td>350.326</td>
<td>524136.819</td>
<td>4722995.961</td>
<td>240.000</td>
<td>252.8210</td>
<td>524136.819</td>
<td>4722995.961</td>
<td></td>
</tr>
<tr>
<td>2 RECTA</td>
<td>289.411</td>
<td>465.526</td>
<td>524048.961</td>
<td>4722921.554</td>
<td>500.000</td>
<td>260.1549</td>
<td>523756.053</td>
<td>4723326.777</td>
<td></td>
</tr>
<tr>
<td>CLOT.</td>
<td>115.200</td>
<td>754.936</td>
<td>523779.577</td>
<td>4722827.330</td>
<td>240.000</td>
<td>297.0038</td>
<td>523664.496</td>
<td>4722830.754</td>
<td></td>
</tr>
<tr>
<td>3 RECTA</td>
<td>359.152</td>
<td>870.136</td>
<td>523664.496</td>
<td>4722830.754</td>
<td></td>
<td>304.3377</td>
<td>-0.9976797</td>
<td>0.0680381</td>
<td></td>
</tr>
<tr>
<td>CLOT.</td>
<td>103.143</td>
<td>1229.298</td>
<td>523306.167</td>
<td>4722855.207</td>
<td>190.000</td>
<td>304.3377</td>
<td>523306.167</td>
<td>4722855.207</td>
<td></td>
</tr>
<tr>
<td>4 CIRC.</td>
<td>619.863</td>
<td>1332.441</td>
<td>523203.142</td>
<td>4722857.167</td>
<td>-350.000</td>
<td>294.9573</td>
<td>523230.837</td>
<td>4722508.265</td>
<td></td>
</tr>
<tr>
<td>CLOT.</td>
<td>103.143</td>
<td>1952.305</td>
<td>522894.415</td>
<td>4722411.724</td>
<td>190.000</td>
<td>182.2094</td>
<td>522932.415</td>
<td>4722315.944</td>
<td></td>
</tr>
<tr>
<td>5 RECTA</td>
<td>378.290</td>
<td>2059.448</td>
<td>522932.415</td>
<td>4722315.944</td>
<td></td>
<td>172.8291</td>
<td>0.4139602</td>
<td>-0.9102950</td>
<td></td>
</tr>
<tr>
<td>CLOT.</td>
<td>115.200</td>
<td>2433.737</td>
<td>523089.012</td>
<td>4721971.588</td>
<td>240.000</td>
<td>172.8291</td>
<td>523089.012</td>
<td>4721971.588</td>
<td></td>
</tr>
<tr>
<td>6 CIRC.</td>
<td>687.662</td>
<td>2548.937</td>
<td>523132.614</td>
<td>4721865.032</td>
<td>500.000</td>
<td>180.1629</td>
<td>522656.692</td>
<td>4721711.741</td>
<td></td>
</tr>
<tr>
<td>7 RECTA</td>
<td>382.188</td>
<td>3351.800</td>
<td>522794.863</td>
<td>4721226.633</td>
<td>240.000</td>
<td>267.7188</td>
<td>522794.863</td>
<td>4721226.633</td>
<td></td>
</tr>
<tr>
<td>8 CIRC.</td>
<td>325.660</td>
<td>3878.488</td>
<td>522309.870</td>
<td>4721021.507</td>
<td>-800.000</td>
<td>275.0526</td>
<td>-0.9241957</td>
<td>-0.3819193</td>
<td></td>
</tr>
<tr>
<td>9 RECTA</td>
<td>408.152</td>
<td>4348.648</td>
<td>521975.474</td>
<td>4720699.258</td>
<td></td>
<td>269.3032</td>
<td>522680.842</td>
<td>4720312.720</td>
<td></td>
</tr>
<tr>
<td>10 CIRC.</td>
<td>254.958</td>
<td>4854.800</td>
<td>521691.715</td>
<td>4720280.167</td>
<td>800.000</td>
<td>243.3880</td>
<td>521975.474</td>
<td>4720699.258</td>
<td></td>
</tr>
<tr>
<td>11 RECTA</td>
<td>224.655</td>
<td>5207.758</td>
<td>521422.434</td>
<td>4720053.505</td>
<td></td>
<td>237.6385</td>
<td>-0.5573779</td>
<td>-0.8302589</td>
<td></td>
</tr>
<tr>
<td>12 CIRC.</td>
<td>214.995</td>
<td>5530.413</td>
<td>521148.478</td>
<td>4719886.368</td>
<td>-800.000</td>
<td>261.8267</td>
<td>521599.944</td>
<td>4719225.930</td>
<td></td>
</tr>
<tr>
<td>13 RECTA</td>
<td>129.591</td>
<td>5843.407</td>
<td>520929.125</td>
<td>471965.478</td>
<td></td>
<td>265.7260</td>
<td>-0.8595431</td>
<td>-0.5127414</td>
<td></td>
</tr>
<tr>
<td>CLOT.</td>
<td>112.225</td>
<td>5972.998</td>
<td>520851.611</td>
<td>4719561.625</td>
<td>335.000</td>
<td>240.8187</td>
<td>-0.5961401</td>
<td>-0.8013916</td>
<td></td>
</tr>
</tbody>
</table>

Novedoso Corredor entre Villagarcía de Arousa y Catoira.
<table>
<thead>
<tr>
<th>DATO</th>
<th>TIPO</th>
<th>LONGITUD</th>
<th>P.K.</th>
<th>X TANGENCIA</th>
<th>Y TANGENCIA</th>
<th>RADIO</th>
<th>PARÁMETRO</th>
<th>AZIMUT</th>
<th>Cos/Xc/Xinf</th>
<th>Sen/Yc/Yinf</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 CIRC.</td>
<td>140.874</td>
<td>6085.223</td>
<td>520782.824</td>
<td>4719472.972</td>
<td>1000.000</td>
<td>244.3909</td>
<td>520016.239</td>
<td>4720115.115</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLOT.</td>
<td>112.225</td>
<td>6226.098</td>
<td>520685.067</td>
<td>4719371.698</td>
<td>335.000</td>
<td>253.3592</td>
<td>520598.901</td>
<td>4719299.822</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 RECTA</td>
<td>113.414</td>
<td>6338.323</td>
<td>520598.901</td>
<td>4719299.822</td>
<td>340.000</td>
<td>256.9315</td>
<td>-0.7797570</td>
<td>-0.6260823</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLOT.</td>
<td>144.500</td>
<td>6451.737</td>
<td>520510.465</td>
<td>4719228.815</td>
<td>340.000</td>
<td>253.3592</td>
<td>520510.465</td>
<td>4719228.815</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16 CIRC.</td>
<td>175.007</td>
<td>6596.237</td>
<td>520420.604</td>
<td>4719135.030</td>
<td>-800.000</td>
<td>251.1820</td>
<td>520955.690</td>
<td>4718558.940</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLOT.</td>
<td>144.500</td>
<td>6771.244</td>
<td>520288.811</td>
<td>4719000.837</td>
<td>340.000</td>
<td>237.2554</td>
<td>520216.412</td>
<td>4718875.842</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17 RECTA</td>
<td>448.839</td>
<td>6915.744</td>
<td>520216.412</td>
<td>4718875.842</td>
<td>18.0000</td>
<td>231.5059</td>
<td>-0.4749380</td>
<td>-0.8800193</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Documento nº1: Memoria.

Anejo nº1: Estudio de Alternativas.
Listado de las Alineaciones

<table>
<thead>
<tr>
<th>DATO TIPO</th>
<th>LONGITUD</th>
<th>P.K.</th>
<th>X TANGENCIA</th>
<th>Y TANGENCIA</th>
<th>RADIO</th>
<th>PARAMETRO</th>
<th>AZIMUT</th>
<th>Cos/Xc/Xinf</th>
<th>Sen/Yc/Yinf</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 RECTA</td>
<td>406.505</td>
<td>0.000</td>
<td>524387.403</td>
<td>4723227.468</td>
<td>4723207.145</td>
<td>240.000</td>
<td>-0.8563415</td>
<td>-0.5164099</td>
<td></td>
</tr>
<tr>
<td>CLOT.</td>
<td>115.200</td>
<td>406.505</td>
<td>524387.403</td>
<td>4723227.468</td>
<td>524039.295</td>
<td>4723017.545</td>
<td>272.7875</td>
<td>523731.216</td>
<td>4723416.930</td>
</tr>
<tr>
<td>2 CIRC.</td>
<td>232.602</td>
<td>521.705</td>
<td>523938.493</td>
<td>4722961.918</td>
<td>500.000</td>
<td>302.4033</td>
<td>523597.968</td>
<td>4722930.447</td>
<td></td>
</tr>
<tr>
<td>CLOT.</td>
<td>115.200</td>
<td>754.307</td>
<td>523189.483</td>
<td>4722930.447</td>
<td>309.7372</td>
<td>0.9883258</td>
<td>-0.1523554</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 RECTA</td>
<td>413.309</td>
<td>869.507</td>
<td>523189.483</td>
<td>4722930.447</td>
<td>309.7372</td>
<td>0.9883258</td>
<td>-0.1523554</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLOT.</td>
<td>413.309</td>
<td>869.507</td>
<td>523189.483</td>
<td>4722930.447</td>
<td>309.7372</td>
<td>0.9883258</td>
<td>-0.1523554</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 CIRC.</td>
<td>654.212</td>
<td>1558.872</td>
<td>523712.345</td>
<td>4722930.447</td>
<td>309.7372</td>
<td>0.9883258</td>
<td>-0.1523554</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLOT.</td>
<td>654.212</td>
<td>1558.872</td>
<td>523712.345</td>
<td>4722930.447</td>
<td>309.7372</td>
<td>0.9883258</td>
<td>-0.1523554</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 RECTA</td>
<td>264.960</td>
<td>2089.140</td>
<td>522640.982</td>
<td>4722930.447</td>
<td>309.7372</td>
<td>0.9883258</td>
<td>-0.1523554</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLOT.</td>
<td>264.960</td>
<td>2089.140</td>
<td>522640.982</td>
<td>4722930.447</td>
<td>309.7372</td>
<td>0.9883258</td>
<td>-0.1523554</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 CIRC.</td>
<td>113.458</td>
<td>2446.992</td>
<td>522593.097</td>
<td>4722930.447</td>
<td>309.7372</td>
<td>0.9883258</td>
<td>-0.1523554</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLOT.</td>
<td>113.458</td>
<td>2446.992</td>
<td>522593.097</td>
<td>4722930.447</td>
<td>309.7372</td>
<td>0.9883258</td>
<td>-0.1523554</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 RECTA</td>
<td>500.250</td>
<td>2653.343</td>
<td>522531.346</td>
<td>4722930.447</td>
<td>309.7372</td>
<td>0.9883258</td>
<td>-0.1523554</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLOT.</td>
<td>500.250</td>
<td>2653.343</td>
<td>522531.346</td>
<td>4722930.447</td>
<td>309.7372</td>
<td>0.9883258</td>
<td>-0.1523554</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 CIRC.</td>
<td>165.535</td>
<td>3557.285</td>
<td>521627.258</td>
<td>4722930.447</td>
<td>309.7372</td>
<td>0.9883258</td>
<td>-0.1523554</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLOT.</td>
<td>165.535</td>
<td>3557.285</td>
<td>521627.258</td>
<td>4722930.447</td>
<td>309.7372</td>
<td>0.9883258</td>
<td>-0.1523554</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 RECTA</td>
<td>243.980</td>
<td>4292.336</td>
<td>522338.514</td>
<td>4722930.447</td>
<td>309.7372</td>
<td>0.9883258</td>
<td>-0.1523554</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLOT.</td>
<td>243.980</td>
<td>4292.336</td>
<td>522338.514</td>
<td>4722930.447</td>
<td>309.7372</td>
<td>0.9883258</td>
<td>-0.1523554</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 CIRC.</td>
<td>355.961</td>
<td>4634.317</td>
<td>521343.437</td>
<td>4721994.016</td>
<td>4721988.461</td>
<td>261.6507</td>
<td>-0.8239837</td>
<td>-0.5661352</td>
<td></td>
</tr>
<tr>
<td>CLOT.</td>
<td>355.961</td>
<td>4634.317</td>
<td>521343.437</td>
<td>4721994.016</td>
<td>4721988.461</td>
<td>261.6507</td>
<td>-0.8239837</td>
<td>-0.5661352</td>
<td></td>
</tr>
</tbody>
</table>

Documento nº1: Memoria.
Miguel Burés Muñiz
Anejo nº1: Estudio de Alternativas.
7
<table>
<thead>
<tr>
<th>DATO TIPO</th>
<th>LONGITUD</th>
<th>P. K.</th>
<th>X TANGENCIA Y TANGENCIA</th>
<th>RADIO</th>
<th>PARAMETRO</th>
<th>AZIMUT</th>
<th>Cos/Xc/Xinf</th>
<th>Sen/Yc/Yinf</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLOT.</td>
<td>92.893</td>
<td>5477.449</td>
<td>521016.176 4719714.547</td>
<td></td>
<td>255.000</td>
<td>256.6507</td>
<td>521016.176 4719714.547</td>
<td></td>
</tr>
<tr>
<td>14 CIRC.</td>
<td>149.455</td>
<td>5570.342</td>
<td>520940.831 4719660.243</td>
<td>-700.000</td>
<td>257.4266</td>
<td>521374.831</td>
<td>4719111.022</td>
<td></td>
</tr>
<tr>
<td>CLOT.</td>
<td>92.893</td>
<td>5719.797</td>
<td>520834.312 4719555.813</td>
<td></td>
<td>255.000</td>
<td>243.8342</td>
<td>520778.527 4719481.558</td>
<td></td>
</tr>
<tr>
<td>15 RECTA</td>
<td>637.325</td>
<td>5812.690</td>
<td>520778.527 4719481.558</td>
<td></td>
<td>185.000</td>
<td>239.6101</td>
<td>-0.5928199 -0.8126013</td>
<td></td>
</tr>
<tr>
<td>CLOT.</td>
<td>76.056</td>
<td>6450.014</td>
<td>520407.081 4718963.667</td>
<td></td>
<td>185.000</td>
<td>244.9900</td>
<td>520018.817 4719195.354</td>
<td></td>
</tr>
<tr>
<td>16 CIRC.</td>
<td>569.979</td>
<td>6526.070</td>
<td>520361.046 4718903.157</td>
<td>450.000</td>
<td>185.000</td>
<td>325.6255</td>
<td>519774.367 4718814.997</td>
<td></td>
</tr>
<tr>
<td>CLOT.</td>
<td>76.056</td>
<td>7096.049</td>
<td>519842.533 4718781.320</td>
<td></td>
<td>185.000</td>
<td>331.0053</td>
<td>-0.8837266 0.4680035</td>
<td></td>
</tr>
<tr>
<td>17 RECTA</td>
<td>260.175</td>
<td>7172.104</td>
<td>519774.367 4718814.997</td>
<td></td>
<td>145.000</td>
<td>331.0053</td>
<td>519544.443 4718936.760</td>
<td></td>
</tr>
<tr>
<td>CLOT.</td>
<td>70.083</td>
<td>7432.279</td>
<td>519544.443 4718936.760</td>
<td></td>
<td>145.000</td>
<td>323.5692</td>
<td>519372.770 4718687.431</td>
<td></td>
</tr>
<tr>
<td>18 CIRC.</td>
<td>119.734</td>
<td>7502.363</td>
<td>519481.318 4718967.105</td>
<td>-300.000</td>
<td>145.000</td>
<td>298.1610</td>
<td>519294.463 4718979.843</td>
<td></td>
</tr>
<tr>
<td>CLOT.</td>
<td>70.083</td>
<td>7622.096</td>
<td>519364.105 4718987.306</td>
<td></td>
<td>145.000</td>
<td>290.7249</td>
<td>-0.9894055 -0.1451760</td>
<td></td>
</tr>
<tr>
<td>19 RECTA</td>
<td>110.129</td>
<td>7692.180</td>
<td>519294.463 4718979.843</td>
<td></td>
<td>290.7249</td>
<td>290.7249</td>
<td>290.7249</td>
<td></td>
</tr>
</tbody>
</table>
APÉNDICE II: ESTADO DE RASANTES.
<table>
<thead>
<tr>
<th>PENDIENTE (%)</th>
<th>LONGITUD (m.)</th>
<th>PARÁMETRO (kv)</th>
<th>VÉRTICE PK Z</th>
<th>ENTRADA AL ACUERDO PK Z</th>
<th>SALIDA DEL ACUERDO PK Z</th>
<th>BISECT. DIF. PEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.852531</td>
<td>174.450</td>
<td>7126.000</td>
<td>1053.254 113.090</td>
<td>966.029 110.602</td>
<td>1140.479 117.713</td>
<td>0.534 2.448</td>
</tr>
<tr>
<td>5.300609</td>
<td>441.526</td>
<td>5000.000</td>
<td>1626.539 143.477</td>
<td>1405.775 131.776</td>
<td>1847.302 135.685</td>
<td>4.874 -8.831</td>
</tr>
<tr>
<td>-3.529918</td>
<td>248.055</td>
<td>2637.000</td>
<td>2336.819 118.405</td>
<td>2212.791 122.783</td>
<td>2460.846 125.694</td>
<td>2.917 9.407</td>
</tr>
<tr>
<td>5.876801</td>
<td>195.164</td>
<td>3051.000</td>
<td>2734.363 141.768</td>
<td>2636.781 136.033</td>
<td>2831.946 141.261</td>
<td>1.561 -6.397</td>
</tr>
<tr>
<td>-0.519928</td>
<td>279.039</td>
<td>7126.000</td>
<td>4256.453 133.854</td>
<td>4116.933 134.580</td>
<td>4395.972 127.666</td>
<td>1.366 -3.916</td>
</tr>
<tr>
<td>-4.435717</td>
<td>175.607</td>
<td>2637.000</td>
<td>4686.034 114.799</td>
<td>4598.231 118.694</td>
<td>4773.838 116.752</td>
<td>1.462 6.659</td>
</tr>
<tr>
<td>2.223643</td>
<td>556.788</td>
<td>7126.000</td>
<td>6042.376 144.960</td>
<td>5763.982 138.769</td>
<td>6320.770 129.398</td>
<td>5.438 -7.813</td>
</tr>
<tr>
<td>-5.589833</td>
<td>900.316</td>
<td>97.002</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Estado de Rasantes

<table>
<thead>
<tr>
<th>Pendiente (%)</th>
<th>Longitud (m.)</th>
<th>Parámetro (kv)</th>
<th>Vértice PK Z</th>
<th>Entrada al Acuerdo PK Z</th>
<th>Salida del Acuerdo PK Z</th>
<th>Bisección Dif. Pen</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.780791</td>
<td>371.060</td>
<td>10321.000</td>
<td>753.411 118.060</td>
<td>567.881 109.190</td>
<td>938.941 120.260</td>
<td>1.668 -3.595</td>
</tr>
<tr>
<td>1.185598</td>
<td>138.369</td>
<td>3051.000</td>
<td>1167.061 122.965</td>
<td>1097.877 122.144</td>
<td>1236.245 126.922</td>
<td>0.784 4.535</td>
</tr>
<tr>
<td>5.720798</td>
<td>122.652</td>
<td>3051.000</td>
<td>1530.345 143.747</td>
<td>1469.019 140.239</td>
<td>1591.671 144.790</td>
<td>0.616 -4.020</td>
</tr>
<tr>
<td>1.700744</td>
<td>126.309</td>
<td>3051.000</td>
<td>2939.740 167.717</td>
<td>2876.585 166.643</td>
<td>3002.894 166.177</td>
<td>0.654 -4.140</td>
</tr>
<tr>
<td>-2.439162</td>
<td>298.690</td>
<td>4349.000</td>
<td>3540.568 153.062</td>
<td>3391.223 156.705</td>
<td>3689.913 159.677</td>
<td>2.564 6.868</td>
</tr>
<tr>
<td>4.428860</td>
<td>327.727</td>
<td>3051.000</td>
<td>4334.462 188.223</td>
<td>4170.599 180.965</td>
<td>4498.326 177.878</td>
<td>4.400 -10.742</td>
</tr>
<tr>
<td>-6.312777</td>
<td>252.382</td>
<td>4349.000</td>
<td>5081.116 141.088</td>
<td>4954.925 149.054</td>
<td>5207.307 140.445</td>
<td>1.831 5.803</td>
</tr>
<tr>
<td>-0.509554</td>
<td>300.801</td>
<td>7126.000</td>
<td>6595.687 133.371</td>
<td>6445.286 134.137</td>
<td>6746.088 126.256</td>
<td>1.587 -4.221</td>
</tr>
<tr>
<td>-4.730736</td>
<td></td>
<td></td>
<td></td>
<td>7364.442 97.003</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Estado de Rasantes

<table>
<thead>
<tr>
<th>PENDIENTE (%)</th>
<th>LONGITUD (m.)</th>
<th>PARAMETRO (kv)</th>
<th>VÉRTICE PK</th>
<th>ENTRADA AL ACUERDO PK</th>
<th>VÉRTICE Z</th>
<th>SALIDA DEL ACUERDO PK</th>
<th>VÉRTICE Z</th>
<th>BISECT. DIF. PEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.188351</td>
<td>201.483</td>
<td>4349.000</td>
<td>1023.779</td>
<td>20.000</td>
<td>82.353</td>
<td>1124.520</td>
<td>100.146</td>
<td>1.167</td>
</tr>
<tr>
<td>5.821201</td>
<td>216.316</td>
<td>3051.000</td>
<td>1720.237</td>
<td>1612.079</td>
<td>128.528</td>
<td>1828.395</td>
<td>133.452</td>
<td>1.917</td>
</tr>
<tr>
<td>-1.268795</td>
<td>172.338</td>
<td>4349.000</td>
<td>2513.193</td>
<td>2427.024</td>
<td>125.856</td>
<td>2599.362</td>
<td>127.084</td>
<td>0.854</td>
</tr>
<tr>
<td>2.693901</td>
<td>116.063</td>
<td>3051.000</td>
<td>3603.924</td>
<td>3545.893</td>
<td>152.583</td>
<td>3661.956</td>
<td>153.502</td>
<td>0.552</td>
</tr>
<tr>
<td>-1.110195</td>
<td>71.730</td>
<td>4349.000</td>
<td>4843.322</td>
<td>4807.457</td>
<td>140.785</td>
<td>4879.187</td>
<td>140.580</td>
<td>0.148</td>
</tr>
<tr>
<td>0.539155</td>
<td>537.482</td>
<td>7126.000</td>
<td>6324.235</td>
<td>6055.494</td>
<td>146.922</td>
<td>6592.976</td>
<td>129.550</td>
<td>5.067</td>
</tr>
<tr>
<td>-7.003390</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
APÉNDICE III: PRESUPUESTOS ESTIMADOS.
ALTERNATIVA 1:

<table>
<thead>
<tr>
<th>DESCRIPCIÓN</th>
<th>TOTAL (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAPÍTULO I: EXPLANACIÓN</td>
<td>5.355.291,31</td>
</tr>
<tr>
<td>CAPÍTULO II: FIRMES</td>
<td>1.152.612,50</td>
</tr>
<tr>
<td>CAPÍTULO III: DRENAJE</td>
<td>1.390.000,00</td>
</tr>
<tr>
<td>CAPÍTULO IV: ESTRUCTURAS</td>
<td>3.821.700,00</td>
</tr>
<tr>
<td>CAPÍTULO V: SEÑALIZACIÓN, BALIZAMIENTO Y DEFENSAS</td>
<td>528.200,00</td>
</tr>
<tr>
<td>CAPÍTULO VI: VARIOS</td>
<td>800.350,00</td>
</tr>
<tr>
<td>CAPÍTULO VII: IMPACTO AMBIENTAL</td>
<td>625.500,00</td>
</tr>
<tr>
<td>CAPÍTULO VIII: ENLACES E INTERSECCIONES</td>
<td>500.000,00</td>
</tr>
<tr>
<td>Imprevistos (4% P.E.M. Inicial)</td>
<td>566.946,15</td>
</tr>
<tr>
<td>Seguridad y salud (1.5% del P.E.M. inicial)</td>
<td>212.604,81</td>
</tr>
<tr>
<td>TOTAL (P.E.M.)</td>
<td>14.953.204,77</td>
</tr>
</tbody>
</table>
ALTERTATIVA 2:

<table>
<thead>
<tr>
<th>DESCRIPCIÓN</th>
<th>TOTAL (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAPÍTULO II: FIRMES</td>
<td>1.199.324,20</td>
</tr>
<tr>
<td>CAPÍTULO III: DRENAJE</td>
<td>1.472.000,00</td>
</tr>
<tr>
<td>CAPÍTULO IV: ESTRUCTURAS</td>
<td>4.558.225,00</td>
</tr>
<tr>
<td>CAPÍTULO V: SEÑALIZACIÓN,BALIZAMIENTO Y DEFENSAS</td>
<td>559.360,00</td>
</tr>
<tr>
<td>CAPÍTULO VI: VARIOS</td>
<td>902.480,00</td>
</tr>
<tr>
<td>CAPÍTULO VII: IMPACTO AMBIENTAL</td>
<td>662.400,00</td>
</tr>
<tr>
<td>CAPÍTULO VIII: ENLACES E INTERSECCIONES</td>
<td>500.000,00</td>
</tr>
<tr>
<td>Imprevistos (4% P.E.M. Inicial)</td>
<td>652.206,25</td>
</tr>
<tr>
<td>Seguridad y salud (1.5% del P.E.M. inicial)</td>
<td>244.577,34</td>
</tr>
<tr>
<td>TOTAL (P.E.M.)</td>
<td>17.201.939,90</td>
</tr>
</tbody>
</table>
ALTERNATIVA 3:

<table>
<thead>
<tr>
<th>DESCRIPCIÓN</th>
<th>TOTAL (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAPÍTULO I: EXPLANACIÓN</td>
<td>9.789.533,01</td>
</tr>
<tr>
<td>CAPÍTULO II: FIRMES</td>
<td>1.070.709,10</td>
</tr>
<tr>
<td>CAPÍTULO III: DRENAJE</td>
<td>1.560.000,00</td>
</tr>
<tr>
<td>CAPÍTULO IV: ESTRUCTURAS</td>
<td>4.369.050,00</td>
</tr>
<tr>
<td>CAPÍTULO V: SEÑALIZACIÓN,BALIZAMIENTO Y DEFENSAS</td>
<td>592.800,00</td>
</tr>
<tr>
<td>CAPÍTULO VI: VARIOS</td>
<td>913.500,00</td>
</tr>
<tr>
<td>CAPÍTULO VII: IMPACTO AMBIENTAL</td>
<td>702.000,00</td>
</tr>
<tr>
<td>CAPÍTULO VIII: ENLACES E INTERSECCIONES</td>
<td>100.000,00</td>
</tr>
<tr>
<td>Imprevistos (4% P.E.M. Inicial)</td>
<td>763.903,68</td>
</tr>
<tr>
<td>Seguridad y salud (1.5% del P.E.M. inicial)</td>
<td>286.463,88</td>
</tr>
<tr>
<td>TOTAL (P.E.M.)</td>
<td>20.147.959,67</td>
</tr>
</tbody>
</table>
APÉNDICE IV: PLANOS DE LAS ALTERNATIVAS.
Escuela Técnica Superior de Ingeniería de Caminos, Canales y Puertos.

Autor del Proyecto: Miguel Burés Muñiz

Título del Proyecto: Nuevo Corredor entre Villogarcía de Arousa y Catalloa

Fecha: Julio de 2015

Escala: 1:10,000

Título de plano: Alternativa 1 Trazado en planta

Plano 10 A-1 Hoja 2

Firma: [Signatura]
ÍNDICE:

1. INTRODUCCIÓN.
2. SOLUCIÓN ADOPTADA.
3. TRAZADO EN PLANTA DEL TRONCO.
4. TRAZADO EN ALZADO DEL TRONCO.
5. COORDINACIÓN DE LOS TRAZADOS EN PLANTA Y ALZADO.
6. SECCIÓN TIPO.
7. VISIBILIDAD.
8. GLORIETAS Y ENLACES.
9. CÁLCULO.

ANEJO Nº2: TRAZADO.
1. INTRODUCCIÓN.

El objetivo del presente anejo es justificar el diseño del trazado geométrico del corredor. Se recogen las características relativas a la planta, el alzado, la coordinación planta–alzado y la sección transversal del eje principal así como de enlaces, ramales y glorietas.

2. SOLUCIÓN ADOPTADA.

2.1. Normativa empleada.

La normativa de trazado que se ha seguido para elaborar el presente anteproyecto es la Instrucción de Carreteras 3.1-IC de Trazado. Además de esta, se han seguido otras recomendaciones sobre el trazado:

- Recomendaciones sobre glorietas (MOPU).
- Recomendaciones para el proyecto de enlaces (MOPU).
- Orden de Accesos en Carreteras Convencionales de la Comunidad Autónoma de Galicia.
- Ley 8/2013 de Carreteras de Galicia.

2.2. Clase de carretera a proyectar.

La carretera a proyectar tiene características de vía para automóviles, según lo que dice la Ley 8/2013 de Carreteras de Galicia. Esta vía para automóviles, es denominada vía rápida en la normativa 3.1-IC. En Galicia se denomina a este tipo de vías Corredores cuando está previsto su futuro desdoblamiento. El presente anteproyecto no está diseñado específicamente para este posible desdoble. De todos modos, para, facilitar esta futura actuación, se requiere estudiar aquellos tramos que presentarían mayores problemas a la hora de ejecutar movimientos de tierras, esto es, principalmente en los desmontes de mayor volumen. En este anteproyecto, el tramo más problemático se sitúa entre los dos viaductos donde la altura de desmonte es muy alta. Facilitaría mucho las posibles futuras obras la ejecución de un desmonte diseñado para una autovía.

Se entiende por vía para automóviles a aquella carretera de una sola calzada, con limitación total de accesos a las propiedades colindantes, y que carece de pasos y cruces al mismo nivel.

La norma de trazado tipifica las carreteras según el relieve que atraviesan, en función de la máxima inclinación media de la línea de máxima pendiente de la franja original de dicho terreno interceptada por la carretera. Por lo tanto nos la zona de proyecto tiene un terreno accidentado con pendientes de entre el 15% y el 25% en gran parte del área de estudio. Se puede denominar también, debido a que no pasa por núcleos urbanos, como una carretera interurbana.

El corredor, pertenece según lo que indica la normativa al Grupo 1 de carreteras, junto con autopistas y autovías.
2.3. Parámetros.

La velocidad de proyecto (Vp) es la velocidad que permite definir las características geométricas mínimas de los elementos de trazado, en condiciones de seguridad y comodidad.

La velocidad de proyecto se establece en 80 Km/h teniendo en cuenta los condicionantes orográficos y la funcionalidad de la carretera.

Será denominada por lo tanto R-80 debido a que es una vía rápida y su velocidad de proyecto es de 80 Km/h.

Con la velocidad de proyecto definida en 80Km/h, los parámetros que regirán el trazado son los siguientes:

- Radio mínimo: 250 m.
- Inclinación de la rasante: Máxima: 5% Excepcional: 6% Mínima: 0,5 %

3. TRAZADO EN PLANTA DEL TRONCO.

3.1. Alineaciones rectas.

Con el fin de obtener suficientes oportunidades de adelantamiento, las alineaciones rectas están indicadas en carreteras de calzada única con dos carriles y en cualquier tipo de carretera para adaptarse a condicionamientos externos obligados (infraestructuras preexistentes, condiciones urbanísticas, terrenos llanos, etc.).

Es deseable limitar las longitudes máximas de las rectas para evitar problemas relacionados con el cansancio, deslumbramientos, excesos de velocidad, etc. Para que se produzca una acomodación y adaptación a la conducción es deseable establecer también unas longitudes mínimas.

Siguiendo la Norma 3.1-IC de “Trazado”, en los casos en los que se disponga de una alineación recta, las longitudes máxima deseable y mínima admisible, en función de la velocidad de proyecto (Vp = 80 km/h), serán las siguientes:

Lmáx = 16.70 * vp = 1336 m
Lmín,S = 1.39 * vp = 111,2 m
Lmín,o = 2.78 * vp = 222,4 m

Las alineaciones rectas son evitadas en el trazado del corredor y en todo caso, longitudes muy grandes, siendo la mayor de 504,36m. y optando en muchos casos, por reducir al mínimo tramos rectos o directamente suprimirlos entre alineaciones curvas., de este modo se evita el uso de alineaciones rectas en
3.2. Alineaciones curvas.

Según la Instrucción 3.1-IC, el radio mínimo a adoptar en las curvas circulares, para una vía rápida con velocidad de proyecto de 80 Km/h, será de 250 metros. En el este caso, se han utilizado en todo momento valores muy superiores a este, siendo el radio mínimo empleado de 700 m.

Por otro lado, también se establecen unos valores para el peralte de la carretera según el radio que son los siguientes:

-Grupo 1) Autopistas, autovías, vías rápidas y carreteras C-100:

 \[
 250 \leq R \leq 700 \Rightarrow p = 8 \\
 700 \leq R \leq 5000 \Rightarrow p = 8 - 7.3 \cdot (1 - 700/R)^{1/3} \\
 5000 \leq R < 7500 \Rightarrow p = 2 \\
 7500 \leq R \Rightarrow \text{Bombeo}
 \]

En el apartado 4.3.3 “Características”, de la Instrucción de Carreteras 3.1-IC, se nos indica que la velocidad, el radio y el coeficiente de rozamiento transversal movilizado se relacionan mediante la fórmula:

\[
V^*^2 = 127 \cdot R \cdot (ft + p/100)
\]

-Siendo:

 \[
 V^* = \text{velocidad (km/h)} \\
 R = \text{radio de la circunferencia (m)} \\
 ft = \text{coeficiente de rozamiento transversal movilizado} \\
 p = \text{peralte (%)}
 \]

Para toda curva circular en el tronco de la calzada, con el peralte que le corresponde según se indica en el apartado 4.3.2, se cumplirá que, recorrida la curva circular a velocidad igual a la especifica, no se sobrepasarán los valores de ft de la tabla 4.2.

En general, el desarrollo mínimo de la curva se corresponderá con una variación de acimut entre sus extremos mayor o igual que veinte gonios (20 gon), pudiendo aceptarse valores entre veinte gonios (20 gon) y nueve gonios (9 gon) y sólo excepcionalmente valores inferiores a nueve gonios (9 gon).
3.3. Curvas de transición.

Las curvas de transición tienen por objeto evitar las discontinuidades en la curvatura de la traza, por lo que, en su diseño deberán ofrecer las mismas condiciones de seguridad, comodidad y estética que el resto de los elementos del trazado.

Se adoptará en todos los casos como curva de transición la clotoide, cuya ecuación intrínseca es:

\[R \cdot L = A^2 \]

Siendo:
- \(R \) = radio de curvatura en un punto cualquiera.
- \(L \) = longitud de la curva entre su punto de inflexión (\(R = \infty \)) y el punto de radio \(R \).
- \(A \) = parámetro de la clotoide, característico de la misma.

La longitud de la curva de transición deberá superar la necesaria para cumplir las limitaciones que se indican a continuación.

-Limitación de la variación de la aceleración centrífruga en el plano horizontal:

La variación de la aceleración centrífruga no compensada por el peralte deberá limitarse a un valor \(J \) aceptable desde el punto de vista de la comodidad. Suponiendo a efectos de cálculo que la clotoide se recorre a velocidad constante igual a la velocidad específica de la curva circular asociada de radio menor, el parámetro \(A \) en metros, deberá cumplir la condición siguiente:

\[
A_{\text{min}} =
\frac{V_e \cdot R_0}{46,656 \cdot J} \left(\frac{V_e^2}{R_0} - 1,27 \cdot \frac{(p_0 - p_1)}{1 - \frac{R_0}{R_1}} \right)
\]

-Siendo:
- \(V_e \) = velocidad específica de la curva circular asociada de radio menor (km/h).
- \(J \) = variación de la aceleración centrífruga (m/s³).
- \(R_1 \) = radio de la curva circular asociada de radio mayor (m).
- \(R_0 \) = radio de la curva circular asociada de radio menor (m).
- \(p_1 \) = peralte de la curva circular asociada de radio mayor (%).
- \(p_0 \) = peralte de la curva circular asociada de radio menor (%).

Lo que supone una longitud mínima dada por la siguiente expresión:

\[
L_{\text{min}} = \frac{V_e}{46,656 \cdot J} \left(\frac{V_e^2}{R_0} - 1,27 \cdot \frac{(p_0 - p_1)}{1 - \frac{R_0}{R_1}} \right)
\]
Se adoptarán para J los valores indicados en la tabla siguiente, debiendo sólo utilizarse los valores de Jmáx cuando suponga una economía tal que justifique suficientemente esta restricción en el trazado, en detrimento de la comodidad:

<table>
<thead>
<tr>
<th>Vc (km/h)</th>
<th>0 ≤ Vc < 80</th>
<th>80 ≤ Vc < 100</th>
<th>100 ≤ Vc < 120</th>
<th>120 ≤ Vc</th>
</tr>
</thead>
<tbody>
<tr>
<td>J (m/s²)</td>
<td>0.5</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>Jmáx (m/s²)</td>
<td>0.7</td>
<td>0.5</td>
<td>0.6</td>
<td>0.4</td>
</tr>
</tbody>
</table>

-Limitación de la variación de la pendiente transversal:

La normativa indica que la variación de la pendiente transversal se limitará a un máximo del cuatro por ciento (4%) por segundo para la velocidad específica de la curva circular asociada de radio menor.

-Condicion es de percepción visual:

Para que la curva de transición sea visible para el conductor se deben cumplir las siguientes condiciones:

-La variación de acimut entre los extremos de la clotoide sea mayor o igual a 1/18 radianes.

-El retranqueo de la curva circular sea ≥ 50 cm.

\[L_{min} = \frac{R_0}{9} \quad y \quad L_{min} = 2\sqrt{3} \times R_0 \]

Siendo Ro el valor del radio de la curva circular en m.

-Valores máximos:

Se recomienda no aumentar significativamente las longitudes y parámetros mínimos obtenidos con las fórmulas anteriormente empleadas salvo justificación de lo contrario. En cualquier caso, el valor máximo no deberá exceder 1,5 veces el valor mínimo.

3.4. Coordinación de los elementos del trazado.

Para todo tipo de carretera, cuando se unan curvas circulares consecutivas sin recta intermedia, o con recta de longitud menor o igual que cuatrocientos metros (400 m), la relación de radios de las curvas circulares no sobrepasará los valores obtenidos a partir de las expresiones que se muestran a continuación:

<table>
<thead>
<tr>
<th>CLASE DE CARRETERA</th>
<th>R0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grupo 1</td>
<td>AP, AV, R y C-100</td>
</tr>
<tr>
<td></td>
<td>1.5 \times R + 1.05 \times 10^8 \times (R - 250)^{3/2} \times R</td>
</tr>
<tr>
<td></td>
<td>250 ≤ R ≤ 700</td>
</tr>
<tr>
<td>Grupo 2</td>
<td>C-80, C-80 y C-40</td>
</tr>
<tr>
<td></td>
<td>1.5 \times R + 4.693 \times 10^4 \times (R - 50)^{3/2} \times R</td>
</tr>
<tr>
<td></td>
<td>50 ≤ R ≤ 300</td>
</tr>
</tbody>
</table>

En autopistas, autovías, vías rápidas y carreteras C-100, cuando se enlacen curvas circulares consecutivas con una recta intermedia de longitud superior a cuatrocientos metros (400 m), el radio de la curva circular de salida, en el sentido de la marcha, será igual o mayor que setecientos metros (700 m). En todo caso, las clotoídes de entrada y salida serán simétricas. La norma también establece que no podrán unirse clotoídes entre excepto que esto sea por sus puntos de inflexión en curvas con trazado en 'S'.

Documento nº1: Memoria. Anejo nº2: Trazado. Miguel Burés Muñiz
3.5. Transición del peralte.

La transición del peralte debe ofrecer características dinámicas agradables para el vehículo, evacuar el agua de la carretera y tener una sensación estética agradable.

La variación del peralte requiere una longitud mínima, de forma que no se supere un determinado valor máximo de la inclinación que cualquier borde de la calzada tenga con relación a la del eje de giro del peralte.

La norma 3.1- IC limita esta inclinación al siguiente valor:

\[I_{p \text{máx}} = 1.8 - 0.01 \cdot V_p \]

Siendo:
- \(I_{p \text{máx}} = \) máxima inclinación de cualquier borde de la calzada respecto al eje de la misma (%).
- \(V_p = \) velocidad de proyecto (km/h).

La longitud del tramo de transición del peralte tendrá por tanto un valor mínimo definido por la ecuación siguiente:

\[l_{\text{min}} = \frac{pf - pi}{ip_{\text{max}}} \cdot B \]

Siendo:
- \(l_{\text{min}} = \) longitud mínima del tramo de transición del peralte (m).
- \(pf = \) peralte final con su signo (%).
- \(pi = \) peralte inicial con su signo (%).
- \(B = \) distancia del borde de la calzada al eje de giro del peralte.

En general la transición del peralte se desarrollará a lo largo de la curva de transición en planta (clotoide), en dos tramos, habiéndose desvanecido previamente el bombeo que exista en sentido contrario al del peralte definitivo. El desvanecimiento del bombeo se hará en la alineación recta e inmediatamente antes de la tangente de entrada, en una longitud máxima de cuarenta metros (40 m) en carreteras del grupo 1 y de la siguiente forma:

- Calzada con pendiente única del mismo sentido que el peralte posterior. Se mantendrá el bombeo hasta el inicio de la clotoide.
- Calzada con pendiente única de sentido contrario al peralte posterior. Se desvanecerá el bombeo de toda la plataforma.

La transición del peralte se desarrollará linealmente desde el punto de inflexión de la clotoide (peralte nulo) hasta el peralte correspondiente a la curva circular (punto de tangencia), siempre que se alcance el dos por ciento (2%) en una longitud máxima de cuarenta metros (40 m), para carreteras del grupo 1. Si no fuese posible se procederá de la siguiente forma:

- Desde el punto de inflexión de la clotoide (peralte nulo) al dos por ciento (2%) en una longitud máxima de cuarenta metros.
- Desde el punto de peralte dos por ciento (2%), hasta el peralte correspondiente a la curva circular (punto de tangencia), el peralte aumentará linealmente.

En el caso del corredor se ha planteado que la variación del peralte con la longitud sea constante para todo el tramo de transición del peralte siempre que esto sea posible.
4. TRAZADO EN ALZADO DEL TRONCO.

4.1. Introducción.

A efectos de definir el trazado en alzado se considerarán prioritarias las características funcionales de seguridad y comodidad, que se deriven de la visibilidad disponible, de la deseable ausencia de pérdidas de trazado y de una variación continua y gradual de parámetros. Para definir correctamente el alzado, se adoptará el siguiente criterio para carreteras de calzada única:

-El eje que define el alzado, coincidirá con el eje físico de la calzada (marca vial de separación de sentidos de circulación).

4.2. Inclinación de la rasante.

La normativa establece unos valores máximos de inclinación de la rasante a adoptar en función del tipo de vía y de la velocidad de proyecto. En el caso de nuestra vía son las siguientes:

<table>
<thead>
<tr>
<th>(V_p) (km/h)</th>
<th>INCLINACIÓN MÁXIMA (%)</th>
<th>INCLINACIÓN EXCEPCIONAL (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>80</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

Los valores definidos como excepcionales, podrán incrementarse en un uno por ciento (1%) en casos suficientemente justificados, por razón del terreno (muy accidentado) o de baja intensidad de tráfico (IMD < 3000).

El valor mínimo de la inclinación de la rasante no será inferior a cinco décimas por ciento (0,5%). Excepcionalmente, la rasante podrá alcanzar un valor menor, no inferior a dos décimas por ciento (0,2%). La inclinación de la línea de máxima pendiente en cualquier punto de la plataforma no será menor que cinco décimas por ciento (0,5%).

Además, no se proyectarán rampas ni pendientes con la inclinación máxima y longitudes mayores a tres mil metros (3000m). Salvo justificación en contrario, no se proyectarán rampas ni pendientes cuyo recorrido sea menos a 10 segundos (longitud medida entre vértices sucesivos).

El presente proyecto cumple con la normativa en cuanto a la inclinación máxima (5,88%) y mínima (0,52%). No así con la longitud mínima de las rampas, esta se debe a la necesidad de ejecutar rampas de menor longitud que se adapten mejor a un terreno complicado y el coste económico justifica esta medida.

El estudio de la necesidad de carriles adicionales está realizado en el anejo Estudio de Tráfico.
4.3. Acuerdos verticales.

Los acuerdos verticales se resuelven con una parábola de ecuación:

\[y = \frac{x^2}{2 * K_v} \]

Siendo \(K_v \) el radio de la circunferencia osculatriz en el vértice de dicha parábola. Se denomina parámetro.

La normativa establece unos valores mínimos del parámetro \(K_v \) que para la velocidad de proyecto \(V_p=80 \) km/h son los siguientes:

<table>
<thead>
<tr>
<th>(V_p) (km/h)</th>
<th>(K_v) MINIMO</th>
<th>(K_v) CONCAVO</th>
<th>(K_v) DESEABLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>120</td>
<td>15276</td>
<td>6685</td>
<td>30780</td>
</tr>
<tr>
<td>100</td>
<td>7125</td>
<td>4348</td>
<td>15276</td>
</tr>
<tr>
<td>80</td>
<td>3050</td>
<td>2636</td>
<td>7125</td>
</tr>
</tbody>
</table>

En general se intenta utilizar el \(K_v \) deseable pero no en todos los acuerdos es posible debido a la orografía. De todos modos, siempre se respeta el valor mínimo de \(K_v \).

5. COORDINACIÓN DE LOS TRAZADOS EN PLANTA Y ALZADO.

Los trazados en planta y alzado de una carretera deberán estar coordinados de forma que el usuario pueda circular por ellas de manera cómoda y segura. Concretamente, se evitará que se produzcan pérdidas de trazado, definida ésta como el efecto que sucede cuando el conductor puede ver, en un determinado instante, dos tramos de carretera, pero no puede ver otro situado entre los dos anteriores. Para ello se evitarán las siguientes situaciones:

- Alineación única en planta (recta o curva) que contenga un acuerdo vertical cóncavo o un acuerdo vertical convexo cortos
- Acuerdo convexo en coincidencia con un punto de inflexión en planta.
- Alineación recta en planta con acuerdos convexo y cóncavo consecutivos.
- Alineación recta seguida de curva en planta en correspondencia con acuerdos convexo y cóncavo.
- Alineación curva, de desarrollo corto, que contenga un acuerdo vertical cóncavo corto.
- Conjunto de alineaciones en planta en que se puedan percibir dos acuerdos verticales cóncavos o dos acuerdos verticales convexos simultáneamente.
6. SECCIÓN TIPO.

La sección tipo de la calzada se corresponde a la de una vía rápida. Esto es, una calzada única con un carril por sentido de circulación.

El resto de parámetros de la sección tipo son los que indica la norma 3.1-1C:
- Carriles: 3,5 m. de ancho.
- Arcenes: 2,5 m. de ancho.
- Bermas: 0,75m. de ancho.

Esta sección debe mantener un nivel de servicio D en la hora de proyecto del año horizonte. El cumplimiento de este requisito es estudiado en el anejo Estudio de Tráfico.

El bombeo de la plataforma en recta se proyectará de modo que se evacúen con facilidad las aguas superficiales, y que su recorrido sobre la calzada sea mínimo. Para carreteras de calzada única:

La calzada y los arcenes se dispondrán con una misma inclinación transversal mínima del 2% hacia cada lado a partir del eje de la calzada. En zonas en que la pluviometría lo aconseje, por la frecuencia o intensidad de las precipitaciones, podrá justificarse aumentar la inclinación transversal mínima al 2,5%. Las bermas, se dispondrán con una inclinación transversal del 4% hacia el exterior de la plataforma.

6.2. Pendientes transversales en Curva.

En curvas circulares y de transición la pendiente transversal de la calzada y arcenes coincidirá con el peralte. Las bermas tendrán una pendiente transversal del cuatro por ciento (4%) hacia el exterior de la plataforma. Cuando dicho peralte supere el cuatro por ciento (4%), la berma en el lado interior de la curva, tendrá una pendiente transversal igual al peralte, manteniéndose el cuatro por ciento (4%) hacia el exterior de la plataforma en el lado exterior de la curva.

Debido a que las características del trazado de la vía impiden el uso de radios menores a 250 m. no es necesario aplicar sobreanchos.

6.4. Altura libre.

La altura libre mínima bajo pasos superiores sobre cualquier punto de la plataforma no será inferior a 5,30 m en carreteras interurbanas.

6.5. Secciones Transversales Especiales.

En el presente anteproyecto figuran secciones transversales especiales como son obras de paso y carriles adicionales.
En las obras de paso se decide mantener la sección transversal en el anteproyecto a pesar de que su longitud sea mayor que 250 m.

Los carriles adicionales son objeto de estudio del anejo Estudio de Trafico. La ampliación en estos casos, se realiza por la derecha según lo que describe la normativa para carriles de circulación lenta. Los carriles adicionales tienen una anchura de 3,5 m. y el arcén se mantiene. Además son precedidos por una cuña de transición de 120 m. y a su fin se proyecta otra cuña de transición de igual longitud. Los carriles lentos se prolongan hasta que el vehículo pesado alcance el 85% de la velocidad de proyecto (siendo esta velocidad inferior a 80 Km/h).

7. VISIBILIDAD.

7.1. Introducción.

En cualquier punto de la carretera el usuario tiene una visibilidad que depende, de la forma, dimensiones y disposición de los elementos del trazado. Para que las distintas maniobras puedan efectuarse de forma segura, se precisa una visibilidad mínima que depende de la velocidad de los vehículos y del tipo de maniobra. Estudiaremos la visibilidad de parada y de adelantamiento, que son las que influyen en el presente anteproyecto.

7.2. Visibilidad y distancia de Parada.

La distancia de parada (Dp) es la distancia total recorrida por un vehículo obligado a detenerse tan rápidamente como le sea posible, medida desde su situación en el momento de aparecer el objeto que motiva la detención. Comprende la distancia recorrida durante los tiempos de percepción, reacción y frenado. Se calculará mediante la fórmula:

\[
D_p = \frac{V \cdot t_p}{3,6} + \frac{V^2}{254 \cdot (f_i + i)}
\]

Siendo:
Dp = distancia de parada (m).
V = velocidad (km/h).
fI = coeficiente de rozamiento longitudinal rueda-pavimento.
Para Vp fI=0,348
i = inclinación de la rasante (en tanto por uno).
tp = tiempo de percepción y reacción (s).

La visibilidad de parada la distancia a lo largo de un carril que existe entre un obstáculo situado sobre la calzada y la posición de un vehículo que circula hacia dicho obstáculo, en ausencia de vehículos intermedios, en el momento en que puede divisarlo sin que luego desaparezca de su vista hasta llegar al mismo. Para la aplicación de la normativa, las alturas del obstáculo y del punto de vista del conductor sobre la calzada se fijan en 20 cm y 1,1 m, respectivamente.

La distancia del punto de vista al obstáculo se medirá a lo largo de una línea paralela al eje de la calzada y trazada 1,5m del borde derecho de cada carril, por el interior del mismo y en el sentido de la marcha. La visibilidad de parada se calculará siempre para condiciones óptimas de iluminación, excepto en el dimensionamiento de acuerdos verticales cóncavos, en cuyo caso se considerarán las condiciones de conducción.

La visibilidad de parada será igual o superior a la distancia de parada mínima, siendo deseable que supere la distancia de parada calculada con la velocidad de proyecto incrementada en 20 km/h. En cualquiera de estos casos se dice que existe visibilidad de parada.

7.3. Visibilidad y distancia de adelantamiento.

La distancia de adelantamiento (Da), es la distancia necesaria para que un vehículo pueda adelantar a otro que circula a menor velocidad, en presencia de un tercero que circula en sentido opuesto. Para la velocidad de proyecto de 80 Km/h la distancia de adelantamiento necesaria es de 500m.

Se considerará como visibilidad de adelantamiento la distancia que existe a lo largo del carril por el que se realiza el mismo entre el vehículo que efectúa la maniobra de adelantamiento y la posición del vehículo que circula en sentido opuesto, en el momento en que puede divisarlo, sin que luego desaparezca de su vista hasta finalizar el adelantamiento. La distancia entre el vehículo que adelanta y el que circula en sentido opuesto, se medirá a lo largo del eje de la carretera. Se procurará obtener la máxima longitud posible en que la visibilidad de adelantamiento sea superior a la distancia de adelantamiento (Da) en carreteras de dos sentidos en una calzada. Donde se obtenga, se dice que existe visibilidad de adelantamiento y su proporción deseable será del cuarenta por ciento (40%) por cada sentido de circulación y lo más uniformemente repartido posible.

7.4. Conclusión.

El presente anteproyecto cumple con la distancia de parada requerida para la velocidad de proyecto (Vp=80 Km/h). Asimismo, se obtienen unos porcentajes de adelantamiento de aproximadamente el 40% en un sentido y el 35% en el contrario, ambos uniformemente repartidos a lo largo del trazado.
8. GLORIETAS Y ENLACES.

8.1. Introducción.

En el presente anteproyecto se han planteado tres glorietas. Dos de ellas situadas al final del corredor en el enlace con la VG-4.7 y otra al inicio de este, en el enlace con la vía EP-8001. Para el diseño de las glorietas se han seguido las indicaciones de ‘Recomendaciones para el Diseño de Glorietas’ (MOPU).

Las tres glorietas planteadas tienen el mismo diseño y secciones tipo.

8.2. Características de las Glorietas.

Las glorietas planteadas tienen un radio total de 23m. Correspondiendo de estos 23m. 13 al islote central, y 10m. a los carriles y arcenes.

Se han seguido las recomendaciones en cuanto al ancho de carril, que se establece en 4 m., con una sección de dos carriles en la glorieta.

Otra recomendación que se ha seguido en la medida de lo posible es la de situar los ejes que confluyen en la glorieta de modo que pasen por el centro de esta.

Se recomienda también que el ángulo de entrada del eje esté comprendido entre 20 y 60º.

En las glorietas no se dispone de ningún tipo de peralte, debido a las bajas velocidades de los vehículos en ellas, pero si bombeo, del 2% hacia el exterior para facilitar el drenaje.

El trazado en alzado tiene pendiente nula en todo el recorrido de la glorieta.

El ancho de los carriles en los ejes es ligeramente mayor en las salidas de las glorietas (de 5 m.) y también en la entrada (4 m.). Estos anchos se aumentan para aumentar la fluidez y garantizar la visibilidad en la glorieta. Del mismo modo, se sitúan en los ejes isletas para canalizar el tráfico. Estas tienen una longitud en general de 25 m. formadas por una barrera física y marcas viales hasta los 40 m. También se establecen unos radios a la a la entrada y salida de las glorietas.

Todos los detalles y la geometría de las glorietas están perfectamente definidos en los planos, su planta alzado y sección tipo.

8.2. Características del enlace.

En el final del corredor se proyecta un enlace. Este es de tipo diamante con pesas y posee cuatro ramales. La velocidad en los ramales es de 60 Km/h y la longitud de los entronques respeta las normas de diseño indicadas en la normativa 3.1-IC.

9. CÁLCULO.

Para la elaboración del presente proyecto se ha utilizado el programa ISPOL ISTRAM que calcula la mayor parte de los elementos que componen este anteproyecto.

En el anejo Estudio de Alternativas, se recogen listados de los detalles del trazado en planta (puntos cada 20 m.) y en alzado.
ANEJO Nº3: MOVIMIENTO DE TIERRAS.
<table>
<thead>
<tr>
<th>PERÍF.</th>
<th>MAT.</th>
<th>ÁREA</th>
<th>VOL. PAR.</th>
<th>VOL. AC.</th>
<th>MAT.</th>
<th>ÁREA</th>
<th>VOL. PAR.</th>
<th>VOL. AC.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>FIRME</td>
<td>5.214</td>
<td>0.00</td>
<td>0.0</td>
<td>SUELO SEL 1</td>
<td>6.042</td>
<td>0.00</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>TERRAPLEN</td>
<td>3.648</td>
<td>0.00</td>
<td>0.0</td>
<td>VEGETAL</td>
<td>7.156</td>
<td>0.00</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>TERRAPLEN</td>
<td>2.212</td>
<td>0.00</td>
<td>0.0</td>
<td>VEGETAL</td>
<td>5.890</td>
<td>0.00</td>
<td>0.0</td>
</tr>
<tr>
<td>20.000</td>
<td>FIRME</td>
<td>5.580</td>
<td>107.94</td>
<td>107.9</td>
<td>SUELO SEL 1</td>
<td>7.454</td>
<td>134.96</td>
<td>135.0</td>
</tr>
<tr>
<td></td>
<td>TERRAPLEN</td>
<td>11.074</td>
<td>147.23</td>
<td>147.2</td>
<td>VEGETAL</td>
<td>8.248</td>
<td>154.04</td>
<td>154.0</td>
</tr>
<tr>
<td></td>
<td>TERRAPLEN</td>
<td>49.253</td>
<td>603.27</td>
<td>750.5</td>
<td>VEGETAL</td>
<td>10.903</td>
<td>191.51</td>
<td>345.6</td>
</tr>
<tr>
<td>40.000</td>
<td>FIRME</td>
<td>5.579</td>
<td>111.59</td>
<td>219.5</td>
<td>SUELO SEL 1</td>
<td>7.701</td>
<td>151.35</td>
<td>286.5</td>
</tr>
<tr>
<td></td>
<td>TERRAPLEN</td>
<td>49.253</td>
<td>603.27</td>
<td>750.5</td>
<td>VEGETAL</td>
<td>10.903</td>
<td>191.51</td>
<td>345.6</td>
</tr>
<tr>
<td>60.000</td>
<td>FIRME</td>
<td>5.579</td>
<td>111.58</td>
<td>331.1</td>
<td>SUELO SEL 1</td>
<td>7.701</td>
<td>154.02</td>
<td>440.5</td>
</tr>
<tr>
<td></td>
<td>TERRAPLEN</td>
<td>109.926</td>
<td>1591.78</td>
<td>2342.3</td>
<td>VEGETAL</td>
<td>14.380</td>
<td>252.83</td>
<td>598.4</td>
</tr>
<tr>
<td>80.000</td>
<td>FIRME</td>
<td>2.790</td>
<td>52.56</td>
<td>52.6</td>
<td>SUELO SEL 1</td>
<td>3.050</td>
<td>57.45</td>
<td>57.5</td>
</tr>
<tr>
<td></td>
<td>TERRAPLEN</td>
<td>72.455</td>
<td>1170.01</td>
<td>1170.0</td>
<td>VEGETAL</td>
<td>7.645</td>
<td>135.49</td>
<td>135.5</td>
</tr>
<tr>
<td>100.000</td>
<td>FIRME</td>
<td>2.790</td>
<td>55.80</td>
<td>108.4</td>
<td>SUELO SEL 1</td>
<td>3.050</td>
<td>60.99</td>
<td>118.4</td>
</tr>
<tr>
<td></td>
<td>TERRAPLEN</td>
<td>80.379</td>
<td>1528.33</td>
<td>2698.3</td>
<td>VEGETAL</td>
<td>7.947</td>
<td>155.92</td>
<td>291.4</td>
</tr>
<tr>
<td></td>
<td>TERRAPLEN</td>
<td>80.379</td>
<td>1528.33</td>
<td>2698.3</td>
<td>VEGETAL</td>
<td>7.947</td>
<td>155.92</td>
<td>291.4</td>
</tr>
<tr>
<td>120.000</td>
<td>FIRME</td>
<td>5.580</td>
<td>111.38</td>
<td>218.7</td>
<td>SUELO SEL 1</td>
<td>6.099</td>
<td>120.66</td>
<td>189.1</td>
</tr>
<tr>
<td></td>
<td>TERRAPLEN</td>
<td>134.749</td>
<td>3136.11</td>
<td>5834.5</td>
<td>VEGETAL</td>
<td>15.563</td>
<td>328.19</td>
<td>619.6</td>
</tr>
<tr>
<td>140.000</td>
<td>FIRME</td>
<td>5.580</td>
<td>111.60</td>
<td>330.3</td>
<td>SUELO SEL 1</td>
<td>6.099</td>
<td>121.98</td>
<td>361.1</td>
</tr>
<tr>
<td></td>
<td>TERRAPLEN</td>
<td>99.299</td>
<td>2340.49</td>
<td>8174.9</td>
<td>VEGETAL</td>
<td>14.025</td>
<td>295.88</td>
<td>915.5</td>
</tr>
<tr>
<td>160.000</td>
<td>FIRME</td>
<td>5.580</td>
<td>111.60</td>
<td>441.9</td>
<td>SUELO SEL 1</td>
<td>6.099</td>
<td>121.98</td>
<td>483.1</td>
</tr>
<tr>
<td></td>
<td>TERRAPLEN</td>
<td>89.301</td>
<td>1886.00</td>
<td>10060.9</td>
<td>VEGETAL</td>
<td>13.520</td>
<td>275.45</td>
<td>1190.9</td>
</tr>
<tr>
<td>180.000</td>
<td>FIRME</td>
<td>5.580</td>
<td>111.60</td>
<td>553.5</td>
<td>SUELO SEL 1</td>
<td>6.099</td>
<td>121.99</td>
<td>605.1</td>
</tr>
<tr>
<td></td>
<td>TERRAPLEN</td>
<td>44.076</td>
<td>1333.77</td>
<td>11394.7</td>
<td>VEGETAL</td>
<td>10.882</td>
<td>244.02</td>
<td>1435.0</td>
</tr>
<tr>
<td>200.000</td>
<td>FIRME</td>
<td>5.580</td>
<td>111.60</td>
<td>665.1</td>
<td>SUELO SEL 1</td>
<td>6.099</td>
<td>121.99</td>
<td>727.0</td>
</tr>
<tr>
<td></td>
<td>TERRAPLEN</td>
<td>26.271</td>
<td>703.47</td>
<td>12098.2</td>
<td>VEGETAL</td>
<td>9.300</td>
<td>201.82</td>
<td>1636.8</td>
</tr>
<tr>
<td>220.000</td>
<td>FIRME</td>
<td>5.580</td>
<td>111.60</td>
<td>776.7</td>
<td>SUELO SEL 1</td>
<td>6.099</td>
<td>121.98</td>
<td>849.0</td>
</tr>
<tr>
<td></td>
<td>TERRAPLEN</td>
<td>29.885</td>
<td>561.55</td>
<td>12659.7</td>
<td>VEGETAL</td>
<td>9.658</td>
<td>189.58</td>
<td>1826.4</td>
</tr>
<tr>
<td>240.000</td>
<td>FIRME</td>
<td>5.580</td>
<td>111.60</td>
<td>888.3</td>
<td>SUELO SEL 1</td>
<td>6.099</td>
<td>121.98</td>
<td>971.0</td>
</tr>
<tr>
<td></td>
<td>TERRAPLEN</td>
<td>118.777</td>
<td>2837.45</td>
<td>10683.0</td>
<td>VEGETAL</td>
<td>11.818</td>
<td>214.76</td>
<td>2041.1</td>
</tr>
<tr>
<td>260.000</td>
<td>FIRME</td>
<td>5.697</td>
<td>112.76</td>
<td>1001.1</td>
<td>SUELO SEL 1</td>
<td>6.216</td>
<td>121.15</td>
<td>1094.2</td>
</tr>
<tr>
<td></td>
<td>TERRAPLEN</td>
<td>126.908</td>
<td>1894.94</td>
<td>15479.4</td>
<td>VEGETAL</td>
<td>15.274</td>
<td>270.92</td>
<td>2312.0</td>
</tr>
<tr>
<td>280.000</td>
<td>FIRME</td>
<td>5.930</td>
<td>116.26</td>
<td>1117.3</td>
<td>SUELO SEL 1</td>
<td>6.449</td>
<td>126.65</td>
<td>1220.8</td>
</tr>
<tr>
<td></td>
<td>TERRAPLEN</td>
<td>216.161</td>
<td>3410.69</td>
<td>18910.1</td>
<td>VEGETAL</td>
<td>19.298</td>
<td>345.72</td>
<td>2657.8</td>
</tr>
<tr>
<td>300.000</td>
<td>FIRME</td>
<td>6.163</td>
<td>120.93</td>
<td>1238.3</td>
<td>SUELO SEL 1</td>
<td>6.682</td>
<td>131.32</td>
<td>1532.1</td>
</tr>
<tr>
<td></td>
<td>TERRAPLEN</td>
<td>292.728</td>
<td>5088.90</td>
<td>23999.0</td>
<td>VEGETAL</td>
<td>21.941</td>
<td>412.39</td>
<td>3070.2</td>
</tr>
<tr>
<td>320.000</td>
<td>FIRME</td>
<td>6.397</td>
<td>125.60</td>
<td>1358.4</td>
<td>SUELO SEL 1</td>
<td>6.916</td>
<td>135.98</td>
<td>1488.1</td>
</tr>
<tr>
<td></td>
<td>TERRAPLEN</td>
<td>369.060</td>
<td>6617.89</td>
<td>30616.9</td>
<td>VEGETAL</td>
<td>24.834</td>
<td>467.75</td>
<td>3537.9</td>
</tr>
<tr>
<td>340.000</td>
<td>FIRME</td>
<td>6.630</td>
<td>130.26</td>
<td>1494.1</td>
<td>SUELO SEL 1</td>
<td>7.148</td>
<td>140.64</td>
<td>1628.8</td>
</tr>
<tr>
<td></td>
<td>TERRAPLEN</td>
<td>423.388</td>
<td>7924.49</td>
<td>38541.4</td>
<td>VEGETAL</td>
<td>25.359</td>
<td>501.93</td>
<td>4039.8</td>
</tr>
<tr>
<td>360.000</td>
<td>FIRME</td>
<td>6.863</td>
<td>134.91</td>
<td>1629.1</td>
<td>SUELO SEL 1</td>
<td>7.382</td>
<td>145.31</td>
<td>1774.1</td>
</tr>
<tr>
<td></td>
<td>TERRAPLEN</td>
<td>549.264</td>
<td>9726.52</td>
<td>48267.9</td>
<td>VEGETAL</td>
<td>29.123</td>
<td>544.82</td>
<td>4584.6</td>
</tr>
</tbody>
</table>

Eje Principal:

| SUPERIOR DE INGENIERÍA DE CAMINOS, CANALES Y PUERTOS |

Nuevo Corredor entre Vilagarcía de Arousa y Catoira.
<p>| 800.000 | FIRME | 7.333 | 146.66 | 4796.4 | D TIERRA | 76.318 | 2104.35 | 69589.9 |
| 811.000 | FIRME | 7.343 | 146.26 | 7303.4 | D TIERRA | 74.947 | 534.09 | 26987.7 |
| 814.000 | FIRME | 7.349 | 146.96 | 7173.6 | D TIERRA | 74.947 | 1848.65 | 48108.8 |
| 8115.000 | FIRME | 7.394 | 138.96 | 7173.6 | D TIERRA | 74.947 | 1848.65 | 48108.8 |
| 810.000 | FIRME | 7.395 | 138.96 | 7173.6 | D TIERRA | 74.947 | 1848.65 | 48108.8 |
| 8111.000 | SUELO SEL 1 | 7.392 | 139.09 | 7451.3 | D TIERRA | 74.947 | 1848.65 | 48108.8 |
| 8115.000 | SUELO SEL 1 | 7.395 | 138.96 | 7173.6 | D TIERRA | 74.947 | 1848.65 | 48108.8 |
| 810.000 | SUELO SEL 1 | 7.395 | 138.96 | 7173.6 | D TIERRA | 74.947 | 1848.65 | 48108.8 |
| 8111.000 | SUELO SEL 1 | 7.392 | 139.09 | 7451.3 | D TIERRA | 74.947 | 1848.65 | 48108.8 |
| 8115.000 | SUELO SEL 1 | 7.395 | 138.96 | 7173.6 | D TIERRA | 74.947 | 1848.65 | 48108.8 |
| 810.000 | SUELO SEL 1 | 7.395 | 138.96 | 7173.6 | D TIERRA | 74.947 | 1848.65 | 48108.8 |
| 8111.000 | SUELO SEL 1 | 7.392 | 139.09 | 7451.3 | D TIERRA | 74.947 | 1848.65 | 48108.8 |
| 8115.000 | SUELO SEL 1 | 7.395 | 138.96 | 7173.6 | D TIERRA | 74.947 | 1848.65 | 48108.8 |
| 810.000 | SUELO SEL 1 | 7.395 | 138.96 | 7173.6 | D TIERRA | 74.947 | 1848.65 | 48108.8 |
| 8111.000 | SUELO SEL 1 | 7.392 | 139.09 | 7451.3 | D TIERRA | 74.947 | 1848.65 | 48108.8 |
| 8115.000 | SUELO SEL 1 | 7.395 | 138.96 | 7173.6 | D TIERRA | 74.947 | 1848.65 | 48108.8 |
| 810.000 | SUELO SEL 1 | 7.395 | 138.96 | 7173.6 | D TIERRA | 74.947 | 1848.65 | 48108.8 |
| 8111.000 | SUELO SEL 1 | 7.392 | 139.09 | 7451.3 | D TIERRA | 74.947 | 1848.65 | 48108.8 |
| 8115.000 | SUELO SEL 1 | 7.395 | 138.96 | 7173.6 | D TIERRA | 74.947 | 1848.65 | 48108.8 |
| 810.000 | SUELO SEL 1 | 7.395 | 138.96 | 7173.6 | D TIERRA | 74.947 | 1848.65 | 48108.8 |
| 8111.000 | SUELO SEL 1 | 7.392 | 139.09 | 7451.3 | D TIERRA | 74.947 | 1848.65 | 48108.8 |
| 8115.000 | SUELO SEL 1 | 7.395 | 138.96 | 7173.6 | D TIERRA | 74.947 | 1848.65 | 48108.8 |
| 810.000 | SUELO SEL 1 | 7.395 | 138.96 | 7173.6 | D TIERRA | 74.947 | 1848.65 | 48108.8 |
| 8111.000 | SUELO SEL 1 | 7.392 | 139.09 | 7451.3 | D TIERRA | 74.947 | 1848.65 | 48108.8 |
| 8115.000 | SUELO SEL 1 | 7.395 | 138.96 | 7173.6 | D TIERRA | 74.947 | 1848.65 | 48108.8 |
| 810.000 | SUELO SEL 1 | 7.395 | 138.96 | 7173.6 | D TIERRA | 74.947 | 1848.65 | 48108.8 |
| 8111.000 | SUELO SEL 1 | 7.392 | 139.09 | 7451.3 | D TIERRA | 74.947 | 1848.65 | 48108.8 |
| 8115.000 | SUELO SEL 1 | 7.395 | 138.96 | 7173.6 | D TIERRA | 74.947 | 1848.65 | 48108.8 |
| 810.000 | SUELO SEL 1 | 7.395 | 138.96 | 7173.6 | D TIERRA | 74.947 | 1848.65 | 48108.8 |
| 8111.000 | SUELO SEL 1 | 7.392 | 139.09 | 7451.3 | D TIERRA | 74.947 | 1848.65 | 48108.8 |
| 8115.000 | SUELO SEL 1 | 7.395 | 138.96 | 7173.6 | D TIERRA | 74.947 | 1848.65 | 48108.8 |</p>
<table>
<thead>
<tr>
<th>Código</th>
<th>Suelo Sel.</th>
<th>N.º de Firmes</th>
<th>Valor</th>
<th>Superficie</th>
<th>Altura</th>
<th>Ancho</th>
<th>Comunidad</th>
<th>Distrito</th>
<th>Provincia</th>
</tr>
</thead>
<tbody>
<tr>
<td>1900.00</td>
<td>5.944</td>
<td>118.89</td>
<td>12440.2</td>
<td>23.561</td>
<td>490.98</td>
<td>320930.4</td>
<td>VEGETAL</td>
<td>10.520</td>
<td>213.48</td>
</tr>
<tr>
<td>1920.00</td>
<td>5.871</td>
<td>118.15</td>
<td>12558.3</td>
<td>11.391</td>
<td>349.52</td>
<td>321279.9</td>
<td>Suelo Sel. 2</td>
<td>2.418</td>
<td>24.18</td>
</tr>
<tr>
<td>2000.00</td>
<td>5.917</td>
<td>117.44</td>
<td>12675.8</td>
<td>3.648</td>
<td>150.39</td>
<td>321430.3</td>
<td>Suelo Sel. 1</td>
<td>3.350</td>
<td>67.68</td>
</tr>
<tr>
<td>2060.00</td>
<td>5.872</td>
<td>117.44</td>
<td>12793.2</td>
<td>14.116</td>
<td>177.64</td>
<td>321608.0</td>
<td>Suelo Sel. 1</td>
<td>3.469</td>
<td>78.19</td>
</tr>
<tr>
<td>2080.00</td>
<td>5.872</td>
<td>117.44</td>
<td>12910.6</td>
<td>35.750</td>
<td>498.66</td>
<td>322106.0</td>
<td>Suelo Sel. 1</td>
<td>1.688</td>
<td>51.57</td>
</tr>
<tr>
<td>2140.00</td>
<td>5.549</td>
<td>114.21</td>
<td>13259.7</td>
<td>0.000</td>
<td>112.66</td>
<td>323376.3</td>
<td>Suelo Sel. 1</td>
<td>5.809</td>
<td>94.88</td>
</tr>
<tr>
<td>2160.00</td>
<td>5.552</td>
<td>111.02</td>
<td>13370.7</td>
<td>Suelo Sel. 1</td>
<td>6.072</td>
<td>118.81</td>
<td>6425.2</td>
<td>TERRAPLEN</td>
<td>117.986</td>
</tr>
<tr>
<td>2200.00</td>
<td>5.552</td>
<td>111.05</td>
<td>13481.8</td>
<td>Suelo Sel. 1</td>
<td>6.072</td>
<td>121.44</td>
<td>6546.6</td>
<td>TERRAPLEN</td>
<td>131.070</td>
</tr>
<tr>
<td>2260.00</td>
<td>5.547</td>
<td>110.09</td>
<td>13592.9</td>
<td>Suelo Sel. 1</td>
<td>6.073</td>
<td>121.45</td>
<td>6686.1</td>
<td>TERRAPLEN</td>
<td>142.714</td>
</tr>
<tr>
<td>2300.00</td>
<td>5.554</td>
<td>111.11</td>
<td>13704.0</td>
<td>Suelo Sel. 1</td>
<td>6.069</td>
<td>121.42</td>
<td>6789.5</td>
<td>TERRAPLEN</td>
<td>158.975</td>
</tr>
<tr>
<td>2340.00</td>
<td>5.552</td>
<td>111.06</td>
<td>13815.0</td>
<td>Suelo Sel. 1</td>
<td>6.066</td>
<td>121.36</td>
<td>6910.9</td>
<td>TERRAPLEN</td>
<td>187.375</td>
</tr>
<tr>
<td>2380.00</td>
<td>5.550</td>
<td>111.02</td>
<td>13926.1</td>
<td>Suelo Sel. 1</td>
<td>6.063</td>
<td>121.29</td>
<td>7032.1</td>
<td>TERRAPLEN</td>
<td>206.386</td>
</tr>
<tr>
<td>2400.00</td>
<td>5.547</td>
<td>110.97</td>
<td>14037.0</td>
<td>Suelo Sel. 1</td>
<td>6.061</td>
<td>121.24</td>
<td>7153.4</td>
<td>TERRAPLEN</td>
<td>198.438</td>
</tr>
<tr>
<td>2420.00</td>
<td>5.553</td>
<td>111.01</td>
<td>14148.0</td>
<td>Suelo Sel. 1</td>
<td>6.068</td>
<td>121.29</td>
<td>7274.7</td>
<td>TERRAPLEN</td>
<td>201.526</td>
</tr>
<tr>
<td>2440.00</td>
<td>5.563</td>
<td>111.16</td>
<td>14259.2</td>
<td>Suelo Sel. 1</td>
<td>6.078</td>
<td>121.47</td>
<td>7396.8</td>
<td>TERRAPLEN</td>
<td>225.327</td>
</tr>
<tr>
<td>2460.00</td>
<td>5.571</td>
<td>111.34</td>
<td>14385.5</td>
<td>Suelo Sel. 1</td>
<td>6.089</td>
<td>121.68</td>
<td>7517.8</td>
<td>TERRAPLEN</td>
<td>227.154</td>
</tr>
</tbody>
</table>

Documentación nº1: Memoria
Documentación nº3: Movimiento de Tierras
DOCUMENTO Nº1: Memoria

INGENIERÍA DE CAMINOS, CANALES Y PUERTOS

Vilagarcía de Arousa y Catoira.

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA DE CAMINOS, CANALES Y PUERTOS

4060.000 FIRME 6,593 129.32 24654.5 D TIERRA 426.385 7225.68 632723.5
VEGETAL 24.138 452.03 70727.8

4080.000 FIRME 6,850 134.43 24788.9 D TIERRA 498.812 9251.96 641975.4
VEGETAL 25.669 498.07 71225.8

4100.000 FIRME 7,109 139.58 24928.5 D TIERRA 506.848 10056.60 652032.0
VEGETAL 25.832 515.01 71740.8

4120.000 FIRME 7,353 144.62 25073.1 D TIERRA 468.247 9750.95 661783.0
VEGETAL 25.047 508.79 72249.6

4140.000 FIRME 7,353 147.06 25220.2 D TIERRA 384.978 8532.25 670315.2
VEGETAL 23.220 482.67 72732.3

4200.000 FIRME 7,353 147.06 25367.2 D TIERRA 262.568 6475.46 676970.9
VEGETAL 20.621 438.42 73170.7

4180.000 FIRME 7,353 147.06 25514.3 D TIERRA 141.569 4041.37 680832.1
VEGETAL 16.694 375.15 73546.9

4200.000 FIRME 7,166 145.20 25659.5 D TIERRA 42.611 1841.80 682673.9
SUELO SEL 1 1.259 12.59 1209.21 TERRAPLEN 0.870 8.70 389324.1
VEGETAL 13.274 302.68 73849.5

4220.000 FIRME 7,166 143.32 25802.8 D TIERRA 2.424 450.35 683124.2
SUELO SEL 1 6.256 75.15 12167.2 TERRAPLEN 41.411 422.81 389746.9
VEGETAL 14.751 280.26 74129.8

4240.000 FIRME 6,980 141.46 25944.3 D TIERRA 0.000 24.24 683148.5
SUELO SEL 1 7.499 135.77 12304.8 TERRAPLEN 98.293 1397.04 391143.9
VEGETAL 15.633 303.84 74433.6

4260.000 FIRME 6,979 139.58 26038.3 SUELO SEL 1 7.499 149.98 12454.8
VEGETAL 113.356 2116.49 393260.4 VEGETAL 16.099 317.32 74751.0

4280.000 FIRME 6,880 139.58 26223.4 SUELO SEL 1 7.499 149.98 12604.8
VEGETAL 15.633 254.71 74738.0

4300.000 FIRME 6,980 139.59 26357.9 D TIERRA 15.705 318.04 75069.0
SUELO SEL 1 7.499 149.99 12754.7
VEGETAL 13.080 2191.95 397559.9 VEGETAL 15.489 311.94 75380.9

4320.000 FIRME 6,800 139.59 26502.6 SUELO SEL 1 7.350 148.49 12903.2
SUELO SEL 1 8.531 1891.31 399415.2 VEGETAL 14.548 300.37 75681.3

4340.000 FIRME 7,166 141.46 26644.1 D TIERRA 2.435 24.35 683172.8
SUELO SEL 1 6.499 138.49 13041.7 TERRAPLEN 53.643 1389.74 400840.9
VEGETAL 15.081 296.29 75977.6

4360.000 FIRME 7,160 143.26 26787.3 D TIERRA 20.393 228.28 683401.1
SUELO SEL 1 3.509 100.08 13141.8 TERRAPLEN 9.403 630.47 401471.4
VEGETAL 13.678 287.59 76265.2

4380.000 FIRME 7,316 144.76 26932.1 D TIERRA 82.833 1032.26 684433.4
SUELO SEL 1 0.000 35.09 13176.9 TERRAPLEN 0.000 94.03 401565.4

4400.000 FIRME 7,289 146.06 27078.2 D TIERRA 188.086 2709.20 687142.5
VEGETAL 18.316 332.96 76864.8

Enejo nº3: Movimiento de Tierras.

Miguel Burés Muñiz
Nudo Corredor entre Villagarcía de Arousa y Catoira.

Universidade da Coruña

Documento nº1: Memoria
Miguel Burés Muñiz

Anejo nº3: Movimiento de Tierras.

7
<table>
<thead>
<tr>
<th>Documento nº1: Memoria</th>
<th>Anejo nº3: Movimiento de Tierras.</th>
</tr>
</thead>
</table>

Escuela Técnica Superior de Ingeniería de Caminos, Canales y Puertos

<table>
<thead>
<tr>
<th>Nº</th>
<th>FIRME</th>
<th>MM</th>
<th>KM</th>
<th>TIERRA</th>
<th>SUELO</th>
<th>VEGETAL</th>
<th>TERRAPLEN</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>5180.000</td>
<td>5.553</td>
<td>114.21</td>
<td>3179.0</td>
<td>D</td>
<td>0.000</td>
<td>88.66</td>
<td>78077.4</td>
<td></td>
</tr>
<tr>
<td>5200.000</td>
<td>5.553</td>
<td>111.07</td>
<td>3179.0</td>
<td>D</td>
<td>0.000</td>
<td>88.66</td>
<td>78077.4</td>
<td></td>
</tr>
<tr>
<td>5520.000</td>
<td>5.553</td>
<td>111.07</td>
<td>3203.2</td>
<td>V</td>
<td>0.000</td>
<td>82.54</td>
<td>52600.5</td>
<td></td>
</tr>
<tr>
<td>5540.000</td>
<td>5.854</td>
<td>117.13</td>
<td>3381.5</td>
<td>D</td>
<td>0.000</td>
<td>82.54</td>
<td>52600.5</td>
<td></td>
</tr>
</tbody>
</table>

Universidad de Coruña

Nuevo Corredor entre Vilagarcía de Arousa y Catoira.

<table>
<thead>
<tr>
<th>Nº</th>
<th>FIRME</th>
<th>MM</th>
<th>KM</th>
<th>TIERRA</th>
<th>SUELO</th>
<th>VEGETAL</th>
<th>TERRAPLEN</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>5200.000</td>
<td>5.553</td>
<td>111.07</td>
<td>3190.2</td>
<td>D</td>
<td>0.000</td>
<td>82.54</td>
<td>52600.5</td>
<td></td>
</tr>
<tr>
<td>5520.000</td>
<td>5.553</td>
<td>111.07</td>
<td>3212.4</td>
<td>V</td>
<td>0.000</td>
<td>82.54</td>
<td>52600.5</td>
<td></td>
</tr>
<tr>
<td>5540.000</td>
<td>5.854</td>
<td>117.13</td>
<td>3409.6</td>
<td>D</td>
<td>0.000</td>
<td>82.54</td>
<td>52600.5</td>
<td></td>
</tr>
<tr>
<td>5600.000</td>
<td>5.856</td>
<td>117.08</td>
<td>3409.6</td>
<td>D</td>
<td>0.000</td>
<td>82.54</td>
<td>52600.5</td>
<td></td>
</tr>
<tr>
<td>5640.000</td>
<td>5.856</td>
<td>117.08</td>
<td>3409.6</td>
<td>D</td>
<td>0.000</td>
<td>82.54</td>
<td>52600.5</td>
<td></td>
</tr>
<tr>
<td>5660.000</td>
<td>5.856</td>
<td>117.08</td>
<td>3409.6</td>
<td>D</td>
<td>0.000</td>
<td>82.54</td>
<td>52600.5</td>
<td></td>
</tr>
<tr>
<td>5700.000</td>
<td>5.856</td>
<td>117.08</td>
<td>3409.6</td>
<td>D</td>
<td>0.000</td>
<td>82.54</td>
<td>52600.5</td>
<td></td>
</tr>
<tr>
<td>5720.000</td>
<td>5.946</td>
<td>118.92</td>
<td>3499.4</td>
<td>D</td>
<td>0.000</td>
<td>82.54</td>
<td>52600.5</td>
<td></td>
</tr>
<tr>
<td>5740.000</td>
<td>5.946</td>
<td>118.92</td>
<td>3499.4</td>
<td>D</td>
<td>0.000</td>
<td>82.54</td>
<td>52600.5</td>
<td></td>
</tr>
<tr>
<td>5760.000</td>
<td>5.946</td>
<td>118.92</td>
<td>3499.4</td>
<td>D</td>
<td>0.000</td>
<td>82.54</td>
<td>52600.5</td>
<td></td>
</tr>
<tr>
<td>5800.000</td>
<td>5.946</td>
<td>118.92</td>
<td>3499.4</td>
<td>D</td>
<td>0.000</td>
<td>82.54</td>
<td>52600.5</td>
<td></td>
</tr>
<tr>
<td>5820.000</td>
<td>5.946</td>
<td>118.92</td>
<td>3499.4</td>
<td>D</td>
<td>0.000</td>
<td>82.54</td>
<td>52600.5</td>
<td></td>
</tr>
<tr>
<td>5840.000</td>
<td>5.946</td>
<td>118.92</td>
<td>3499.4</td>
<td>D</td>
<td>0.000</td>
<td>82.54</td>
<td>52600.5</td>
<td></td>
</tr>
<tr>
<td>5860.000</td>
<td>5.946</td>
<td>118.92</td>
<td>3499.4</td>
<td>D</td>
<td>0.000</td>
<td>82.54</td>
<td>52600.5</td>
<td></td>
</tr>
<tr>
<td>5900.000</td>
<td>5.946</td>
<td>118.92</td>
<td>3499.4</td>
<td>D</td>
<td>0.000</td>
<td>82.54</td>
<td>52600.5</td>
<td></td>
</tr>
</tbody>
</table>

Miguel Burés Muñiz
<table>
<thead>
<tr>
<th>Area de Ocupación</th>
<th>Núm. de Firmas</th>
<th>Núm. de Firmes</th>
<th>TERRAPLEN</th>
<th>SUELO SEL 1</th>
<th>VEGETAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>5940.000 Firmes</td>
<td>6.957</td>
<td>3279.221</td>
<td>21.551</td>
<td>545.96</td>
<td>103881.9</td>
</tr>
<tr>
<td>5960.000 Firmes</td>
<td>6.954</td>
<td>3256.12</td>
<td>7.472</td>
<td>149.44</td>
<td>17596.2</td>
</tr>
<tr>
<td>5980.000 Firmes</td>
<td>7.051</td>
<td>3650.12</td>
<td>7.351</td>
<td>148.23</td>
<td>17744.5</td>
</tr>
<tr>
<td>6000.000 Firmes</td>
<td>7.274</td>
<td>3664.45</td>
<td>5.886</td>
<td>203.02</td>
<td>830302.1</td>
</tr>
<tr>
<td>6020.000 Firmes</td>
<td>7.261</td>
<td>3679.88</td>
<td>293.077</td>
<td>451.63</td>
<td>834821.7</td>
</tr>
<tr>
<td>6040.000 Firmes</td>
<td>7.255</td>
<td>3693.50</td>
<td>426.311</td>
<td>719.87</td>
<td>842015.6</td>
</tr>
<tr>
<td>6060.000 Firmes</td>
<td>7.252</td>
<td>3708.01</td>
<td>522.875</td>
<td>949.86</td>
<td>85107.5</td>
</tr>
<tr>
<td>6080.000 Firmes</td>
<td>7.254</td>
<td>3722.51</td>
<td>579.666</td>
<td>11025.41</td>
<td>843032.9</td>
</tr>
<tr>
<td>6100.000 Firmes</td>
<td>7.260</td>
<td>3737.03</td>
<td>652.246</td>
<td>12319.13</td>
<td>874852.0</td>
</tr>
<tr>
<td>6120.000 Firmes</td>
<td>7.269</td>
<td>3751.55</td>
<td>689.640</td>
<td>13418.86</td>
<td>888270.9</td>
</tr>
<tr>
<td>6140.000 Firmes</td>
<td>7.282</td>
<td>3766.11</td>
<td>639.226</td>
<td>13886.66</td>
<td>905955.9</td>
</tr>
<tr>
<td>6160.000 Firmes</td>
<td>7.299</td>
<td>3780.69</td>
<td>516.455</td>
<td>11556.81</td>
<td>913114.6</td>
</tr>
<tr>
<td>6180.000 Firmes</td>
<td>7.302</td>
<td>3793.89</td>
<td>534.170</td>
<td>11886.06</td>
<td>921657.5</td>
</tr>
<tr>
<td>6200.000 Firmes</td>
<td>7.339</td>
<td>3809.97</td>
<td>725.723</td>
<td>663.72</td>
<td>928792.2</td>
</tr>
<tr>
<td>6220.000 Firmes</td>
<td>7.342</td>
<td>3824.65</td>
<td>169.380</td>
<td>4451.03</td>
<td>933240.3</td>
</tr>
<tr>
<td>6240.000 Firmes</td>
<td>7.346</td>
<td>3842.65</td>
<td>544.845</td>
<td>11025.1</td>
<td>943366.8</td>
</tr>
<tr>
<td>6300.000 Firmes</td>
<td>6.675</td>
<td>3882.27</td>
<td>6.685</td>
<td>119.20</td>
<td>18009.9</td>
</tr>
<tr>
<td>6320.000 Firmes</td>
<td>6.844</td>
<td>3895.79</td>
<td>7.401</td>
<td>147.56</td>
<td>563338.1</td>
</tr>
<tr>
<td>6340.000 Firmes</td>
<td>6.546</td>
<td>3909.18</td>
<td>6.567</td>
<td>134.47</td>
<td>18370.1</td>
</tr>
<tr>
<td>6360.000 Firmes</td>
<td>7.205</td>
<td>3922.93</td>
<td>6.857</td>
<td>68.57</td>
<td>937828.7</td>
</tr>
</tbody>
</table>

Documento nº1: Memoria

Nuevo Corredor entre Vilagarcía de Arousa y Catoira.

Universidade da Coruña
<table>
<thead>
<tr>
<th>Material</th>
<th>Volumen</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIRME</td>
<td>42511.4</td>
</tr>
<tr>
<td>D TIERRA</td>
<td>1066354.3</td>
</tr>
<tr>
<td>SUELO SEL 1</td>
<td>18696.9</td>
</tr>
<tr>
<td>TERRAPLEN</td>
<td>567163.8</td>
</tr>
<tr>
<td>VEGETAL</td>
<td>122175.6</td>
</tr>
</tbody>
</table>

- **Glorieta Norte:**

<table>
<thead>
<tr>
<th>PERFIL</th>
<th>MAT.</th>
<th>AREA</th>
<th>VOL. PAR.</th>
<th>VOL. AC.</th>
<th>MAT.</th>
<th>AREA</th>
<th>VOL. PAR.</th>
<th>VOL. AC.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>FIRME</td>
<td>4.934</td>
<td>0.00</td>
<td>0.00</td>
<td>SUELO SEL 1</td>
<td>4.050</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>20.000</td>
<td>FIRME</td>
<td>4.934</td>
<td>98.68</td>
<td>98.7</td>
<td>SUELO SEL 1</td>
<td>4.043</td>
<td>80.98</td>
<td>81.0</td>
</tr>
<tr>
<td>40.000</td>
<td>FIRME</td>
<td>4.934</td>
<td>98.68</td>
<td>197.4</td>
<td>VEGETAL</td>
<td>7.842</td>
<td>176.10</td>
<td>176.1</td>
</tr>
<tr>
<td>60.000</td>
<td>FIRME</td>
<td>4.934</td>
<td>98.68</td>
<td>296.0</td>
<td>SUELO SEL 1</td>
<td>4.050</td>
<td>81.00</td>
<td>242.6</td>
</tr>
<tr>
<td>80.000</td>
<td>FIRME</td>
<td>4.934</td>
<td>98.68</td>
<td>424.81</td>
<td>TERRAPLEN</td>
<td>8.000</td>
<td>165.28</td>
<td>491.0</td>
</tr>
<tr>
<td>100.000</td>
<td>FIRME</td>
<td>5.150</td>
<td>90.92</td>
<td>472.9</td>
<td>D TIERRA</td>
<td>6.540</td>
<td>62.18</td>
<td>62.2</td>
</tr>
<tr>
<td>120.000</td>
<td>FIRME</td>
<td>5.150</td>
<td>90.92</td>
<td>1397.5</td>
<td>VEGETAL</td>
<td>5.716</td>
<td>118.52</td>
<td>609.5</td>
</tr>
<tr>
<td>140.000</td>
<td>SUELO SEL 1</td>
<td>0.000</td>
<td>17.51</td>
<td>328.0</td>
<td>TERRAPLEN</td>
<td>0.000</td>
<td>3.92</td>
<td>1401.4</td>
</tr>
<tr>
<td>160.000</td>
<td>SUELO SEL 1</td>
<td>0.000</td>
<td>9.21</td>
<td>387.2</td>
<td>TERRAPLEN</td>
<td>14.759</td>
<td>98.76</td>
<td>1500.1</td>
</tr>
<tr>
<td>180.000</td>
<td>SUELO SEL 1</td>
<td>0.000</td>
<td>81.00</td>
<td>387.2</td>
<td>TERRAPLEN</td>
<td>14.759</td>
<td>98.76</td>
<td>1500.1</td>
</tr>
<tr>
<td>200.000</td>
<td>SUELO SEL 1</td>
<td>0.000</td>
<td>73.83</td>
<td>1936.3</td>
<td>VEGETAL</td>
<td>9.050</td>
<td>154.80</td>
<td>1039.5</td>
</tr>
</tbody>
</table>

===

RESUMEN DE VOLUMENES EJE PRINCIPAL

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>VOLUMEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIRME</td>
<td>662.3</td>
</tr>
<tr>
<td>D TIERRA</td>
<td>75.1</td>
</tr>
<tr>
<td>SUELO SEL 1</td>
<td>461.1</td>
</tr>
<tr>
<td>TERRAPLEN</td>
<td>1936.3</td>
</tr>
<tr>
<td>VEGETAL</td>
<td>1039.5</td>
</tr>
</tbody>
</table>

===

RESUMEN DE VOLUMENES GLORIETA NORTE

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>VOLUMEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIRME</td>
<td>662.3</td>
</tr>
<tr>
<td>D TIERRA</td>
<td>75.1</td>
</tr>
<tr>
<td>SUELO SEL 1</td>
<td>461.1</td>
</tr>
<tr>
<td>TERRAPLEN</td>
<td>1936.3</td>
</tr>
<tr>
<td>VEGETAL</td>
<td>1039.5</td>
</tr>
</tbody>
</table>
-Glorieta Enlace Norte:

<table>
<thead>
<tr>
<th>PROFIL</th>
<th>MAT.</th>
<th>AREA</th>
<th>VOL. PAR. VOL. AC.</th>
<th>MAT.</th>
<th>AREA</th>
<th>VOL. PAR. VOL. AC.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>FIRME</td>
<td>4.934</td>
<td>0.00</td>
<td>0.0</td>
<td>SUELO SEL</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>TERRAPLEN</td>
<td>39.693</td>
<td>0.00</td>
<td>0.0</td>
<td>VEGETAL</td>
<td>9.537</td>
</tr>
<tr>
<td>20.000</td>
<td>FIRME</td>
<td>4.957</td>
<td>98.53</td>
<td>98.5</td>
<td>D TIERRA</td>
<td>0.189</td>
</tr>
<tr>
<td>SUELO SEL</td>
<td>1</td>
<td>1.175</td>
<td>76.84</td>
<td>76.8</td>
<td>TERRAPLEN</td>
<td>0.128</td>
</tr>
<tr>
<td></td>
<td>VEGETAL</td>
<td>7.019</td>
<td>163.06</td>
<td>163.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40.000</td>
<td>FIRME</td>
<td>5.150</td>
<td>102.89</td>
<td>201.4</td>
<td>D TIERRA</td>
<td>60.327</td>
</tr>
<tr>
<td>SUELO SEL</td>
<td>1</td>
<td>0.000</td>
<td>0.63</td>
<td>77.5</td>
<td>TERRAPLEN</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>VEGETAL</td>
<td>11.238</td>
<td>194.56</td>
<td>357.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60.000</td>
<td>FIRME</td>
<td>5.150</td>
<td>102.99</td>
<td>304.4</td>
<td>D TIERRA</td>
<td>80.042</td>
</tr>
<tr>
<td></td>
<td>VEGETAL</td>
<td>11.924</td>
<td>235.99</td>
<td>593.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80.000</td>
<td>FIRME</td>
<td>5.150</td>
<td>102.99</td>
<td>407.4</td>
<td>D TIERRA</td>
<td>54.771</td>
</tr>
<tr>
<td></td>
<td>VEGETAL</td>
<td>10.653</td>
<td>226.54</td>
<td>820.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100.000</td>
<td>FIRME</td>
<td>4.933</td>
<td>101.84</td>
<td>509.2</td>
<td>D TIERRA</td>
<td>0.000</td>
</tr>
<tr>
<td>SUELO SEL</td>
<td>1</td>
<td>3.918</td>
<td>13.80</td>
<td>91.3</td>
<td>TERRAPLEN</td>
<td>11.987</td>
</tr>
<tr>
<td></td>
<td>VEGETAL</td>
<td>7.395</td>
<td>180.39</td>
<td>1000.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>120.000</td>
<td>FIRME</td>
<td>4.934</td>
<td>98.67</td>
<td>607.9</td>
<td>SUELO SEL</td>
<td>1</td>
</tr>
<tr>
<td>TERRAPLEN</td>
<td>46.494</td>
<td>694.12</td>
<td>1155.3</td>
<td>VEGETAL</td>
<td>10.182</td>
<td>183.61</td>
</tr>
<tr>
<td>138.230</td>
<td>FIRME</td>
<td>4.934</td>
<td>89.94</td>
<td>697.9</td>
<td>SUELO SEL</td>
<td>1</td>
</tr>
<tr>
<td>TERRAPLEN</td>
<td>39.693</td>
<td>824.98</td>
<td>1980.3</td>
<td>VEGETAL</td>
<td>9.537</td>
<td>183.31</td>
</tr>
</tbody>
</table>

-Glorieta Enlace Sur:

<table>
<thead>
<tr>
<th>PROFIL</th>
<th>MAT.</th>
<th>AREA</th>
<th>VOL. PAR. VOL. AC.</th>
<th>MAT.</th>
<th>AREA</th>
<th>VOL. PAR. VOL. AC.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>FIRME</td>
<td>4.067</td>
<td>0.00</td>
<td>0.0</td>
<td>SUELO SEL</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>TERRAPLEN</td>
<td>258.507</td>
<td>0.00</td>
<td>0.0</td>
<td>VEGETAL</td>
<td>13.016</td>
</tr>
<tr>
<td>20.000</td>
<td>FIRME</td>
<td>4.067</td>
<td>94.33</td>
<td>94.3</td>
<td>SUELO SEL</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>TERRAPLEN</td>
<td>220.876</td>
<td>6324.24</td>
<td>6324.2</td>
<td>VEGETAL</td>
<td>13.296</td>
</tr>
<tr>
<td>40.000</td>
<td>FIRME</td>
<td>4.067</td>
<td>84.33</td>
<td>178.7</td>
<td>SUELO SEL</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>TERRAPLEN</td>
<td>178.291</td>
<td>4002.91</td>
<td>10327.1</td>
<td>VEGETAL</td>
<td>13.978</td>
</tr>
<tr>
<td>60.000</td>
<td>FIRME</td>
<td>4.888</td>
<td>92.55</td>
<td>271.2</td>
<td>SUELO SEL</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>TERRAPLEN</td>
<td>189.247</td>
<td>3974.02</td>
<td>14301.2</td>
<td>VEGETAL</td>
<td>15.731</td>
</tr>
<tr>
<td>80.000</td>
<td>FIRME</td>
<td>4.934</td>
<td>89.16</td>
<td>360.4</td>
<td>SUELO SEL</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>TERRAPLEN</td>
<td>300.532</td>
<td>4380.23</td>
<td>18681.4</td>
<td>VEGETAL</td>
<td>22.622</td>
</tr>
<tr>
<td>100.000</td>
<td>FIRME</td>
<td>4.934</td>
<td>98.67</td>
<td>459.0</td>
<td>SUELO SEL</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>TERRAPLEN</td>
<td>405.438</td>
<td>7109.96</td>
<td>25791.4</td>
<td>VEGETAL</td>
<td>25.991</td>
</tr>
<tr>
<td>120.000</td>
<td>FIRME</td>
<td>4.934</td>
<td>98.67</td>
<td>557.7</td>
<td>SUELO SEL</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>TERRAPLEN</td>
<td>503.482</td>
<td>9092.21</td>
<td>34883.6</td>
<td>VEGETAL</td>
<td>27.317</td>
</tr>
<tr>
<td>138.230</td>
<td>FIRME</td>
<td>4.067</td>
<td>81.65</td>
<td>639.4</td>
<td>SUELO SEL</td>
<td>1</td>
</tr>
<tr>
<td>TERRAPLEN</td>
<td>258.506</td>
<td>6854.49</td>
<td>41738.1</td>
<td>VEGETAL</td>
<td>13.016</td>
<td>355.79</td>
</tr>
</tbody>
</table>

==
RESUMEN DE VOLUMENES TOTALES

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>VOLUMEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIRME</td>
<td>639.4</td>
</tr>
<tr>
<td>SUELO SEL</td>
<td>518.0</td>
</tr>
<tr>
<td>TERRAPLEN</td>
<td>41738.1</td>
</tr>
<tr>
<td>VEGETAL</td>
<td>2685.9</td>
</tr>
</tbody>
</table>

RESUMEN DE VOLUMENES GLORIETA ENLACE NORTE

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>VOLUMEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIRME</td>
<td>697.9</td>
</tr>
<tr>
<td>D TIERRA</td>
<td>3973.6</td>
</tr>
<tr>
<td>SUELO SEL</td>
<td>246.0</td>
</tr>
<tr>
<td>TERRAPLEN</td>
<td>1980.3</td>
</tr>
<tr>
<td>VEGETAL</td>
<td>1367.5</td>
</tr>
</tbody>
</table>
-Ramales Norte Enlace:

<table>
<thead>
<tr>
<th>PERFIL</th>
<th>MAT.</th>
<th>AREA</th>
<th>VOL. PAR.</th>
<th>VOL. AC.</th>
<th>MAT.</th>
<th>AREA</th>
<th>VOL. PAR.</th>
<th>VOL. AC.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>FIRME</td>
<td>3.175</td>
<td>0.00</td>
<td>0.0</td>
<td>D TIERRA</td>
<td>97.364</td>
<td>0.00</td>
<td>0.0</td>
</tr>
<tr>
<td>VEGEITAL</td>
<td></td>
<td>9.021</td>
<td>0.00</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.000</td>
<td>FIRME</td>
<td>3.683</td>
<td>68.47</td>
<td>68.5</td>
<td>D TIERRA</td>
<td>83.682</td>
<td>1892.05</td>
<td>1892.0</td>
</tr>
<tr>
<td>VEGEITAL</td>
<td></td>
<td>9.015</td>
<td>181.84</td>
<td>181.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40.000</td>
<td>FIRME</td>
<td>4.332</td>
<td>80.75</td>
<td>149.2</td>
<td>D TIERRA</td>
<td>60.984</td>
<td>1439.46</td>
<td>3331.5</td>
</tr>
<tr>
<td>VEGEITAL</td>
<td></td>
<td>9.661</td>
<td>182.68</td>
<td>364.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60.000</td>
<td>FIRME</td>
<td>4.346</td>
<td>86.78</td>
<td>236.0</td>
<td>D TIERRA</td>
<td>34.662</td>
<td>940.58</td>
<td>4272.1</td>
</tr>
<tr>
<td>VEGEITAL</td>
<td></td>
<td>9.253</td>
<td>195.44</td>
<td>560.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80.000</td>
<td>FIRME</td>
<td>4.280</td>
<td>86.66</td>
<td>322.7</td>
<td>D TIERRA</td>
<td>8.110</td>
<td>407.77</td>
<td>4679.9</td>
</tr>
<tr>
<td>SUELO SEL 1</td>
<td></td>
<td>1.102</td>
<td>6.08</td>
<td>6.1</td>
<td>TERRAPLEN</td>
<td>1.325</td>
<td>6.69</td>
<td>6.7</td>
</tr>
<tr>
<td>VEGEITAL</td>
<td></td>
<td>7.549</td>
<td>165.53</td>
<td>725.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100.000</td>
<td>FIRME</td>
<td>4.137</td>
<td>84.83</td>
<td>407.5</td>
<td>D TIERRA</td>
<td>0.000</td>
<td>48.43</td>
<td>4728.3</td>
</tr>
<tr>
<td>SUELO SEL 1</td>
<td></td>
<td>3.425</td>
<td>47.90</td>
<td>54.0</td>
<td>TERRAPLEN</td>
<td>21.132</td>
<td>193.43</td>
<td>200.1</td>
</tr>
<tr>
<td>VEGEITAL</td>
<td></td>
<td>7.810</td>
<td>154.27</td>
<td>879.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120.000</td>
<td>FIRME</td>
<td>4.135</td>
<td>82.72</td>
<td>490.2</td>
<td>SUELO SEL 1</td>
<td>3.450</td>
<td>68.89</td>
<td>122.9</td>
</tr>
<tr>
<td>TERRAPLEN</td>
<td></td>
<td>53.535</td>
<td>737.51</td>
<td>937.6</td>
<td>VEGEITAL</td>
<td>9.717</td>
<td>176.66</td>
<td>1056.4</td>
</tr>
<tr>
<td>140.000</td>
<td>FIRME</td>
<td>0.000</td>
<td>16.70</td>
<td>506.9</td>
<td>SUELO SEL 1</td>
<td>0.000</td>
<td>13.93</td>
<td>136.8</td>
</tr>
<tr>
<td>TERRAPLEN</td>
<td></td>
<td>0.000</td>
<td>217.65</td>
<td>1155.3</td>
<td>VEGEITAL</td>
<td>0.000</td>
<td>39.45</td>
<td>1095.9</td>
</tr>
<tr>
<td>260.000</td>
<td>FIRME</td>
<td>4.339</td>
<td>36.14</td>
<td>543.1</td>
<td>D TIERRA</td>
<td>145.590</td>
<td>1203.55</td>
<td>5931.8</td>
</tr>
<tr>
<td>VEGEITAL</td>
<td></td>
<td>13.980</td>
<td>116.40</td>
<td>1212.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>280.000</td>
<td>FIRME</td>
<td>4.320</td>
<td>86.52</td>
<td>629.6</td>
<td>D TIERRA</td>
<td>158.452</td>
<td>2997.94</td>
<td>8929.8</td>
</tr>
<tr>
<td>VEGEITAL</td>
<td></td>
<td>14.572</td>
<td>283.74</td>
<td>1496.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>300.000</td>
<td>FIRME</td>
<td>4.320</td>
<td>86.40</td>
<td>716.0</td>
<td>D TIERRA</td>
<td>182.200</td>
<td>3450.64</td>
<td>12380.4</td>
</tr>
<tr>
<td>VEGEITAL</td>
<td></td>
<td>14.717</td>
<td>298.99</td>
<td>1795.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>320.000</td>
<td>FIRME</td>
<td>4.320</td>
<td>86.40</td>
<td>802.4</td>
<td>D TIERRA</td>
<td>141.671</td>
<td>3326.81</td>
<td>15707.2</td>
</tr>
<tr>
<td>VEGEITAL</td>
<td></td>
<td>11.344</td>
<td>257.75</td>
<td>2052.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>340.000</td>
<td>FIRME</td>
<td>3.533</td>
<td>78.86</td>
<td>881.2</td>
<td>D TIERRA</td>
<td>80.704</td>
<td>2176.28</td>
<td>17883.5</td>
</tr>
<tr>
<td>VEGEITAL</td>
<td></td>
<td>8.596</td>
<td>197.70</td>
<td>2250.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>357.986</td>
<td>FIRME</td>
<td>4.320</td>
<td>61.92</td>
<td>943.2</td>
<td>D TIERRA</td>
<td>70.911</td>
<td>1199.05</td>
<td>19082.6</td>
</tr>
<tr>
<td>VEGEITAL</td>
<td></td>
<td>11.038</td>
<td>146.15</td>
<td>2396.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MAT.

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>VOLUMEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIRME</td>
<td>943.2</td>
</tr>
<tr>
<td>D TIERRA</td>
<td>19082.6</td>
</tr>
<tr>
<td>SUELO SEL 1</td>
<td>136.8</td>
</tr>
<tr>
<td>TERRAPLEN</td>
<td>1155.3</td>
</tr>
<tr>
<td>VEGEITAL</td>
<td>2396.6</td>
</tr>
</tbody>
</table>

*** RESUMEN DE VOLUMENES RAMALES NORTE ENLACE ***

 рискую у вас отнять кровь, потому что вы, как мне кажется, очень мне понравились.
-Ramales Sur Enlace:

<table>
<thead>
<tr>
<th>PERFIL</th>
<th>MAT.</th>
<th>AREA</th>
<th>VOL. PAR.</th>
<th>VOL. AC.</th>
<th>D TIERRA</th>
<th>AREA</th>
<th>VOL. PAR.</th>
<th>VOL. AC.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>FIRME</td>
<td>4.320</td>
<td>0.00</td>
<td>0.00</td>
<td>D TIERRA</td>
<td>40.608</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>VEGETAL</td>
<td>9.492</td>
<td>0.00</td>
<td>0.0</td>
<td>D TIERRA</td>
<td>47.480</td>
<td>753.43</td>
<td>753.4</td>
</tr>
<tr>
<td>0.000</td>
<td>VEGETAL</td>
<td>6.789</td>
<td>131.32</td>
<td>313.3</td>
<td>D TIERRA</td>
<td>69.516</td>
<td>1161.02</td>
<td>1914.4</td>
</tr>
<tr>
<td>20.000</td>
<td>FIRME</td>
<td>4.321</td>
<td>79.07</td>
<td>148.6</td>
<td>D TIERRA</td>
<td>8.264</td>
<td>148.69</td>
<td>280.0</td>
</tr>
<tr>
<td></td>
<td>VEGETAL</td>
<td>11.071</td>
<td>192.93</td>
<td>472.9</td>
<td>D TIERRA</td>
<td>18.393</td>
<td>192.93</td>
<td>472.9</td>
</tr>
<tr>
<td>80.000</td>
<td>FIRME</td>
<td>4.348</td>
<td>86.72</td>
<td>321.7</td>
<td>D TIERRA</td>
<td>19.954</td>
<td>672.5</td>
<td>672.5</td>
</tr>
<tr>
<td></td>
<td>VEGETAL</td>
<td>8.995</td>
<td>199.54</td>
<td>672.5</td>
<td>D TIERRA</td>
<td>30.796</td>
<td>995.25</td>
<td>4327.7</td>
</tr>
<tr>
<td>100.000</td>
<td>FIRME</td>
<td>4.350</td>
<td>87.00</td>
<td>408.8</td>
<td>D TIERRA</td>
<td>4.512</td>
<td>361.28</td>
<td>4794.0</td>
</tr>
<tr>
<td></td>
<td>SUELO SEL 1</td>
<td>0.162</td>
<td>0.81</td>
<td>0.8</td>
<td>TERRAPLEN</td>
<td>0.041</td>
<td>0.20</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>VEGETAL</td>
<td>6.951</td>
<td>162.13</td>
<td>834.6</td>
<td>D TIERRA</td>
<td>14.000</td>
<td>45.12</td>
<td>4839.1</td>
</tr>
<tr>
<td>120.000</td>
<td>SUELO SEL 1</td>
<td>3.451</td>
<td>36.13</td>
<td>36.9</td>
<td>TERRAPLEN</td>
<td>30.491</td>
<td>305.32</td>
<td>305.5</td>
</tr>
<tr>
<td></td>
<td>VEGETAL</td>
<td>8.571</td>
<td>155.22</td>
<td>989.8</td>
<td>D TIERRA</td>
<td>30.675</td>
<td>1009.6</td>
<td>1009.6</td>
</tr>
<tr>
<td>140.000</td>
<td>TERRAPLEN</td>
<td>0.000</td>
<td>76.57</td>
<td>382.1</td>
<td>VEGETAL</td>
<td>0.000</td>
<td>19.75</td>
<td>1009.6</td>
</tr>
<tr>
<td>260.000</td>
<td>FIRME</td>
<td>4.120</td>
<td>66.71</td>
<td>569.5</td>
<td>SUELO SEL 1</td>
<td>3.450</td>
<td>55.81</td>
<td>100.4</td>
</tr>
<tr>
<td></td>
<td>TERRAPLEN</td>
<td>23.835</td>
<td>1063.00</td>
<td>1445.1</td>
<td>VEGETAL</td>
<td>7.643</td>
<td>171.43</td>
<td>1181.0</td>
</tr>
<tr>
<td>280.000</td>
<td>FIRME</td>
<td>4.320</td>
<td>85.40</td>
<td>654.9</td>
<td>D TIERRA</td>
<td>30.414</td>
<td>191.11</td>
<td>5030.2</td>
</tr>
<tr>
<td></td>
<td>SUELO SEL 1</td>
<td>0.000</td>
<td>17.34</td>
<td>117.8</td>
<td>TERRAPLEN</td>
<td>0.000</td>
<td>119.17</td>
<td>1564.3</td>
</tr>
<tr>
<td></td>
<td>VEGETAL</td>
<td>8.946</td>
<td>154.91</td>
<td>1335.9</td>
<td>D TIERRA</td>
<td>79.779</td>
<td>1149.96</td>
<td>6180.2</td>
</tr>
<tr>
<td>300.000</td>
<td>FIRME</td>
<td>4.320</td>
<td>86.40</td>
<td>741.3</td>
<td>D TIERRA</td>
<td>9.825</td>
<td>199.59</td>
<td>1535.5</td>
</tr>
<tr>
<td></td>
<td>VEGETAL</td>
<td>8.479</td>
<td>179.54</td>
<td>1715.1</td>
<td>D TIERRA</td>
<td>88.852</td>
<td>1677.56</td>
<td>7857.8</td>
</tr>
<tr>
<td>320.000</td>
<td>FIRME</td>
<td>4.082</td>
<td>85.21</td>
<td>826.5</td>
<td>D TIERRA</td>
<td>8.138</td>
<td>166.18</td>
<td>1881.2</td>
</tr>
<tr>
<td></td>
<td>VEGETAL</td>
<td>3.504</td>
<td>75.35</td>
<td>901.8</td>
<td>D TIERRA</td>
<td>100.117</td>
<td>1901.65</td>
<td>9759.4</td>
</tr>
<tr>
<td>340.000</td>
<td>FIRME</td>
<td>3.294</td>
<td>59.36</td>
<td>961.2</td>
<td>D TIERRA</td>
<td>8.825</td>
<td>1734.81</td>
<td>11494.2</td>
</tr>
<tr>
<td></td>
<td>VEGETAL</td>
<td>7.804</td>
<td>139.67</td>
<td>2020.9</td>
<td>D TIERRA</td>
<td>96.835</td>
<td>1734.81</td>
<td>11494.2</td>
</tr>
</tbody>
</table>

RESUMEN DE VOLUMENES TOTALES

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>VOLUMEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIRME</td>
<td>45746.8</td>
</tr>
<tr>
<td>D TIERRA</td>
<td>1097006.2</td>
</tr>
<tr>
<td>SUELO SEL 1</td>
<td>19971.7</td>
</tr>
<tr>
<td>TERRAPLEN</td>
<td>614560.5</td>
</tr>
<tr>
<td>VEGETAL</td>
<td>130451.6</td>
</tr>
</tbody>
</table>

Resumen de Volumenes Totales

MATERIAL

VOLUMEN

Miguel Burés Muñiz

Documento nº1: Memoria

Anejo nº3: Movimiento de Tierras.
ÍNDICE:

A. HIDROLOGÍA.
 1. INTRODUCCIÓN.
 2. DATOS PLUVIOMÉTRICOS.
 3. FÓRMULA DE CÁLCULO.
B. DRENAJE.
 1. DRENAJE LONGITUDINAL
 2. DRENAJE TRANSVERSAL

APÉNDICE I: CÁLCULOS HIDROLÓGICOS.
APÉNDICE II: MAPA DE CAUCES FLUVIALES.

ANEJO N°4: HIDROLOGÍA Y DRENAJE.
A. HIDROLOGÍA:
1. INTRODUCCIÓN.

En el presente anejo, estudiaremos el área desde el punto de vista hidrológico con el fin de obtener unos caudales de referencia de las distintas cuencas que se encuentran dentro del área de estudio, y hacer una primera estimación de cuáles son los mejores sistemas de drenaje para evacuar el agua en la carretera.

Para la elaboración de este anejo se siguen en todo momento las directrices de la instrucción de carreteras en su apartado 5.2-IC ‘Drenaje Superficial’.

2. DATOS PLUVIOMÉTRICOS.

Para la aplicación del método hidrometeorológico descrito en la Instrucción 5.2-IC de Drenaje, es necesario estimar la precipitación, como una variable aleatoria, para los distintos periodos de retorno a emplear en la aplicación del método.

Para ello, calcularemos las precipitaciones máximas en 24 horas para los distintos periodos de retorno, a partir de los datos obtenidos de la estación meteorológica de Caldas de Reis. Para ello se recurre a la web de Meteogalicia, para obtener estos datos. Esta estación está operativa desde Septiembre del año 2006, por lo que contamos con 9 años de datos. A partir de las lluvias máximas diarias obtenidas, calculamos las precipitaciones máximas para los distintos periodos de retorno a partir de la distribución estadística de extremos Gumbel tipo I.

\[F(x) = e^{-e^{-(x-a)/b}} \]

Siendo:
- \(x \): Datos de precipitación.
- \(A, b \): Parámetros de la distribución.

Conociendo la fórmula del periodo de retorno, y con los datos de precipitaciones para el periodo de retorno para los 2 y 5 últimos años:

\[T = \frac{1}{1 - F(x)} \]

Siendo \(T \) el periodo de retorno en años.

Precipitación máxima en 2 años: 68,3 mm/día
Precipitación máxima en 5 años: 72,1 mm/día

Con estos datos, resolviendo el siguiente sistema, obtenemos los parámetros \(a \) y \(b \).

- \(F(68,3) = 0,5 \)
- \(F(72,1) = 0,8 \)

Obtenemos:
- \(a = 67,671 \)
- \(b = 3,353 \)
Por lo tanto la distribución de Gumbel es:

\[F(x) = e^{-e^{-\frac{(x-67,671)}{3,353}}} \]

Y los datos de precipitaciones máximas:

<table>
<thead>
<tr>
<th>T(años)</th>
<th>F(x)</th>
<th>Pd(mm/día)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0,5</td>
<td>68,90</td>
</tr>
<tr>
<td>5</td>
<td>0,8</td>
<td>72,70</td>
</tr>
<tr>
<td>10</td>
<td>0,9</td>
<td>75,22</td>
</tr>
<tr>
<td>25</td>
<td>0,96</td>
<td>78,40</td>
</tr>
<tr>
<td>50</td>
<td>0,98</td>
<td>80,75</td>
</tr>
<tr>
<td>100</td>
<td>0,99</td>
<td>83,10</td>
</tr>
<tr>
<td>200</td>
<td>0,995</td>
<td>85,43</td>
</tr>
<tr>
<td>500</td>
<td>0,998</td>
<td>88,51</td>
</tr>
<tr>
<td>1000</td>
<td>0,999</td>
<td>90,83</td>
</tr>
</tbody>
</table>

Otro método es el indicado por la DGC en ‘Máximas lluvias diarias en la España Peninsular’. Este es el llamado método de las isolíneas.

Primero obtenemos el coeficiente Cv según la región del mapa peninsular:
En el caso que nos ocupa, CV=0,35.
A continuación obtenemos Pd a partir de la hoja 1.2 de los mapas de precipitación máxima diaria:

<table>
<thead>
<tr>
<th>T(años)</th>
<th>Coef.</th>
<th>Pd(mm/día)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0,921</td>
<td>73,68</td>
</tr>
<tr>
<td>5</td>
<td>1,217</td>
<td>97,36</td>
</tr>
<tr>
<td>10</td>
<td>1,438</td>
<td>115,04</td>
</tr>
<tr>
<td>25</td>
<td>1,732</td>
<td>138,56</td>
</tr>
<tr>
<td>50</td>
<td>1,961</td>
<td>156,88</td>
</tr>
<tr>
<td>100</td>
<td>2,22</td>
<td>177,6</td>
</tr>
<tr>
<td>200</td>
<td>2,48</td>
<td>198,4</td>
</tr>
<tr>
<td>500</td>
<td>2,831</td>
<td>226,48</td>
</tr>
</tbody>
</table>

En este caso, la zona de actuación se encuentra aproximadamente en la isolínea de 80mm.
Con el valor de CV (0,35) y los distintos coeficientes para cada periodo de retorno expresados en la siguiente tabla, obtenemos las precipitaciones máximas para cada periodo de retorno.
Como podemos observar, los datos de precipitación máxima diaria obtenidos por este método son mucho mayores que por el anterior. Por lo tanto y para quedar del lado de la seguridad, emplearemos los datos obtenidos por el método de las isolíneas.

3. FÓRMULA DE CÁLCULO.

Son varias las cuencas que afectan a la traza de la carretera. En mayor o menor medida, hay cinco ríos que son atravesados por la traza del corredor, son el Rego de San Cibrán, Rego do Freixeiro, Rego do Souto da Vila, Rego da Amproa y por último el Rego dos Fornos.

Para el cálculo de los caudales de los ríos se emplearán, a falta de aforos en ellos, métodos empíricos para hacer una estimación de estos caudales.

El método para estimación de caudales de una cuenca es el llamado método hidrometeorológico, que será el que emplearemos.

Este método es adecuado en cuencas pequeñas, se basa en la aplicación de una intensidad de precipitación media a la superficie de la cuenca a través de una estimación de la escorrentía. Esto equivale a admitir que la escorrentía superficial es la única componente de la precipitación que influye en el caudal. Este método es válido para cuencas pequeñas y pierde eficacia cuando las cuencas son mayores. En estos casos, suele ser más habitual disponer de aforos. Puede decirse que el método es válido para tiempos de concentración inferiores a las 6 horas.

Para el cálculo es necesario establecer unos mínimos periodos de retorno, que según la norma son los que se expresan en la siguiente tabla:

![Tabla de Mínimos Periodos de Retorno](image)
En nuestro caso, y teniendo en cuenta una IMD en la vía alta (ver anejo de tráfico), consideraremos el periodo de retorno de 50 años para pasos inferiores con dificultades para drenar por gravedad, de 25 años para elementos de drenaje superficial de la plataforma y márgenes, y de 100 años para las obras de drenaje transversal.

El caudal de referencia en el punto de desagüe de una cuenca o superficie se obtendrá mediante la siguiente fórmula:

\[Q = \frac{C \times I \times A}{K} \]

Siendo:

- C: Coeficiente medio de escorrentía de la superficie o cuenca drenada
- I: Intensidad media de precipitación correspondiente al período de retorno seleccionado y relativa al tiempo de concentración.
- A: Área de la cuenca.
- K: Un coeficiente que depende de las unidades en que se expresen Q y A, y que incluye un aumento del 20% en Q para tener en cuenta el efecto de las puntas de precipitación. Si Q se da en m³/s, I en mm/h y A en Ha, K=300.

3.1. COEFICIENTE DE ESCORRENTÍA.

El coeficiente de escorrentía define la proporción de la componente superficial de la precipitación de intensidad I, y depende de la razón entre la precipitación diaria P\(_d\) correspondiente al período de retorno y el umbral de escorrentía P\(_o\), a partir del cual se inicia ésta.

Si la razón P\(_d\)/P\(_o\) fuera inferior a la unidad, el coeficiente C de escorrentía podrá considerarse nulo. En caso contrario, el valor de C podrá obtenerse de la fórmula:

\[C = \frac{(P_d/P_o - 1) \times (P_d/P_o + 23)}{(P_d/P_o + 11)^2} \]
Para el cálculo del umbral de escorrientía se siguen los pasos que indica la norma. Para ello utilizaremos las siguientes tablas extraídas de la norma, que determinan el umbral de escorrientía según la pendiente, tipo de suelo, uso del suelo y las características hidrológicas:

TABLA 2.1
ESTIMACIÓN INICIAL DEL UMBRAL DE ESCORRENTIA Po (mm)

<table>
<thead>
<tr>
<th>Uso de la tierra</th>
<th>Pendiente (%)</th>
<th>Características hidrológicas</th>
<th>Grupo de suelo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>Cereales de invierno</td>
<td>≥3</td>
<td>R</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td><3</td>
<td>N</td>
<td>17</td>
</tr>
<tr>
<td>Barbaco</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cereales de invierno</td>
<td>≥3</td>
<td>R</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td><3</td>
<td>R/N</td>
<td>20</td>
</tr>
<tr>
<td>Cultivos en hiler</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>≥3</td>
<td>R</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td><3</td>
<td>R/N</td>
<td>28</td>
</tr>
<tr>
<td>Cereales de invierno</td>
<td>≥3</td>
<td>R</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td><3</td>
<td>R/N</td>
<td>34</td>
</tr>
</tbody>
</table>

Notas:
- N: denota cultivo según las curvas de nivel.
- R: denota cultivo según la línea de máxima pendiente.
- R/N: denota cultivo según signo de pendiente.

Fig. 2.8 DIAGRAMA TRIANGULAR PARA DETERMINACIÓN DE LA TEXTURA

Documentos:
- **Documento nº1**: Memoria.
- **Anejo nº4**: Hidrología y Drenaje.

Miguel Burés Muñiz
Con estos datos, considerando el uso principal de la tierra como masas forestales medias (70%) y uso secundario cultivos en hileras dispuestas según línea de máxima pendiente (30%), con pendientes en general mayores el 3% y con un suelo del tipo B, se estima un umbral de escorrentía inicial de 30,2mm.

Este umbral de escorrentía es afectado por un coeficiente corrector según la región, con los valores de cada región expresados en el siguiente mapa:

<table>
<thead>
<tr>
<th>Uso de la tierra</th>
<th>Pendiente (%)</th>
<th>Características hidrológicas</th>
<th>Grupo de suelo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>Rotación de cultivos</td>
<td>≥3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pobre</td>
<td>N</td>
<td>28</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td><3</td>
<td>30</td>
<td>19</td>
</tr>
<tr>
<td>Rotación de cultivos</td>
<td>≥3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>densos</td>
<td>R/N</td>
<td>37</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td><3</td>
<td>42</td>
<td>23</td>
</tr>
<tr>
<td>Praderas</td>
<td>≥3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pobre</td>
<td>24</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Media</td>
<td>53</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>Buena</td>
<td>*</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>Muy buena</td>
<td>*</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td><3</td>
<td>58</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Pobre</td>
<td>24</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Media</td>
<td>53</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>Buena</td>
<td>*</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>Muy buena</td>
<td>*</td>
<td>41</td>
</tr>
<tr>
<td>Plantaciones regulares</td>
<td>≥3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>de aprovechamiento</td>
<td>Pobre</td>
<td>62</td>
<td>26</td>
</tr>
<tr>
<td>forestal</td>
<td>Media</td>
<td>*</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>Buena</td>
<td>*</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>Pobre</td>
<td>62</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>Media</td>
<td>*</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>Buena</td>
<td>*</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td><3</td>
<td>40</td>
<td>17</td>
</tr>
<tr>
<td>Masas forestales</td>
<td>Muy clara</td>
<td>40</td>
<td>17</td>
</tr>
<tr>
<td>(bosques, Monte</td>
<td>Clara</td>
<td>60</td>
<td>24</td>
</tr>
<tr>
<td>bajo, etc.)</td>
<td>Media</td>
<td>*</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>Espesa</td>
<td>*</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>Muy espesa</td>
<td>*</td>
<td>65</td>
</tr>
</tbody>
</table>
Con el coeficiente corrector de valor 2, estimamos, finalmente, el umbral de escorrentía en 60,4mm.

3.2. INTENSIDAD MEDIA DE PRECIPITACIÓN.

La intensidad media se obtiene por medio de la siguiente fórmula:

\[
I = I_d \times \left(\frac{I_1}{I_d} \right)^{28^{0.1} - T_c^{0.1}}
\]

Siendo:

- \(I_d \) (mm/h): la intensidad media diaria de precipitación, correspondiente al período de retorno considerado. Es igual a \(P_d / 24 \).
- \(P_d \) (mm): Precipitación diaria correspondiente a dicho período de retorno.
- \(I_1 \) (mm/h): la intensidad horaria de precipitación correspondiente a dicho período de retorno. El valor de la razón \(I_1 / I_d \) se podrá tomar del mapa de isolíneas.
- \(T_c \) (h): Tiempo de concentración.

En este caso, el mapa de isolíneas indica que el valor de \(I_1 / I_d \) es igual a 8.
3.3. TIEMPO DE CONCENTRACIÓN.

En el caso normal de cuencas en las que predomine el tiempo de recorrido del flujo canalizado por una red de cauces definidos, el tiempo de concentración T_c (h) relacionado con la intensidad media de la precipitación se podrá deducir de la fórmula:

$$ T_c = 0,3 \times \left(\frac{L}{j_{0,25}} \right)^{0,8} $$

Siendo:
- L (Km): Longitud del cauce principal.
- J (m/m): Pendiente media, estimada con la expresión Z/L siendo Z la diferencia de cotas máxima y L la longitud.

En el apéndice al final de este anejo están realizados los cálculos hidrológicos para las cuencas de la zona de estudio y un mapa de esta.

B. DRENAJE

1. DRENAJE LONGITUDINAL.

1.1. Introducción.

La función del drenaje longitudinal es recoger la escorrentía superficial procedente de la plataforma de la carretera sus márgenes conduciendo estos caudales hasta un punto de desagüe.

El dimensionamiento de los elementos del drenaje longitudinal se realizará de acuerdo con lo indicado en la normativa 5.2-IC de Drenaje Superficial, para un periodo de retorno de 25 años.

La pendiente de la plataforma debe asegurar el drenaje superficial del agua que caiga sobre la calzada y arcenes, por lo que la normativa impide que la línea de máxima pendiente en cualquier punto de la plataforma sea inferior al 0.5%, condición que se cumple en este proyecto.

Los elementos a proyectar en el drenaje longitudinal son:

- **Cunetas de pie de desmonte**: Recogen la escorrentía procedente de la plataforma y de las cuencas cercanas a la carretera.
- **Cunetas de guarda en desmonte**: Se sitúan en la coronación de los desmontes, e impiden que la escorrentía procedente de las cuencas de desmonte no baje directamente por el talud.
-Cunetas de pie de terraplén: Se sitúan en el pie del terraplén y recogen el agua que baja por estos
-Caces de coronación de terraplén: Recogen las aguas de escorrentía procedentes.
-Bajantes de desmonte y terraplén: Desaguan el agua procedente de las cunetas de guarda desmonte o de los caces de coronación de terraplén a las cunetas de pie de desmonte o terraplén.
-Colectores: Son tubos que recogen las aguas procedentes de las cunetas de pie de desmonte. Forman una red subterránea que tendrá como fin evacuar las aguas de las zonas de desmonte.
-Arquetas de registro: Aseguran la inspección y conservación de los colectores.

1.2. Dimensionamiento:

En el presente anteproyecto solo realizaremos un predimensionamiento aproximado de algunos elementos de drenaje longitudinal como las cunetas de pie de desmonte y terraplén y las de guarda de desmonte y terraplén.

-Cunetas de pie de desmonte:

Para las cunetas de pie de desmonte, tendremos en cuenta que se deben diseñar con un talud pequeño, para obtener condiciones de franqueamiento seguro del perfil transversal de la cuneta por los vehículos que salgan de la plataforma, que se debe desaguar el caudal de cálculo para la pendiente mínima (0,5%) y que la velocidad del agua estará comprendida entre 0,25 y 4,5 m/s.

La cuneta escogida es de 3 metros de ancho, con pendiente 4H:1V en el lado contiguo a la carretera y 2H:1V en el lado contrario, y con una profundidad de 0,5m.

-Cunetas de guarda desmonte:

Estas se situarán en taludes que reciban escorrentías importantes de las cuencas, de modo que eviten la escorrentía y erosión de los taludes de desmonte. Se sitúan bajantes de desmonte aproximadamente cada 150m.

La cuneta guarda desmonte tiene una sección de 0,5 metros de calado, 1m de ancho de fondo y taludes 1:1.
-Cunetas de guarda terraplén:

Por simplicidad constructiva, estas cunetas tienen una sección similar a las de guarda desmonte. Con ancho de fondo de 1m. profundidad 0,5m. y taludes 1:1 a ambos lados.

-Cunetas de coronación de terraplén:

En las zonas en las que la escorrentía de la plataforma hacia los taludes de terraplén sea grande, se situarán caces de coronación de terraplén con el fin de canalizar la escorrentía. Además, se colocarán bajantes, separadas entre si 50m. como máximo.

Las dimensiones del caz son 0,5m. de ancho, talud exterior 1V:0H e interior 1V:6H, con una profundidad de 0,15m.

2. DRENAJE TRANSVERSAL.

2.1. Introducción:

El objetivo principal del drenaje transversal es restituir la continuidad de la red de drenaje natural del terreno, permitiendo su paso bajo la carretera. También se aprovechan las obras de drenaje transversal para desaguar el drenaje de la plataforma y sus márgenes.

Las obras de drenaje transversal deben perturbar lo menos posible la circulación del agua por el cauce natural. Para la proyección y calculo de estas se tendrán en cuenta, principalmente, el caudal a desaguar, la velocidad máxima de este y la cota máxima de la lámina de agua.

Para el diseño de las obras de drenaje transversal, siguiendo lo que indica la normativa de carreteras en su apartado 5.2-IC de drenaje superficial, se considerará un período de retorno de 100 años.
2.2. Dimensionamiento de las ODT.

Para el predimensionamiento de las ODT calcularemos el diámetro necesario para el correcto desagüe. Para ello recurrimos a la fórmula de Manning:

\[Q = S \cdot R^{2/3} \cdot J^{1/2} \cdot K \]

Siendo:
- \(S \): sección de desagüe (m²)
- \(R_H \): radio hidráulico = \(S/p \) (m)
- \(p \): perímetro mojado (m)
- \(J \): pendiente (m/m)
- \(K \): coeficiente de rugosidad de Manning-Strickler que para el hormigón toma un valor de 60.

Como la normativa establece que no se ejecutarán ODT de menos de 1,8 metros de diámetro cuando la longitud de esta supere los 15 metros, el diámetro adoptado será de 1,8m. en ambos casos, ya que las longitudes son de 65 y 70m.

Haciendo los cálculos para las cuencas de San Cibrán y Amproa, ya que cruzan el trazado del Corredor y no se resuelven con viaductos, obtenemos la siguiente tabla de diámetros mínimos:

<table>
<thead>
<tr>
<th>Cuenca</th>
<th>Q100 (m³/s)</th>
<th>Pendiente (m/m)</th>
<th>Diámetro Mín (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>San Cibrán</td>
<td>5,462</td>
<td>0,044</td>
<td>1,13</td>
</tr>
<tr>
<td>Amproa</td>
<td>10,62</td>
<td>0,136</td>
<td>1,18</td>
</tr>
</tbody>
</table>
APÉNDICE I: CÁLCULOS HIDROLÓGICOS.
-Datos de la cuenca:

<table>
<thead>
<tr>
<th>Cuenca</th>
<th>Superficie (Km²)</th>
<th>Cota máxima (m)</th>
<th>Cota mínima (m)</th>
<th>Longitud (m)</th>
<th>Pendiente</th>
<th>Tiempo de Concentración (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>San Cibrán</td>
<td>1,507</td>
<td>200,000</td>
<td>0,000</td>
<td>4550,000</td>
<td>0,044</td>
<td>1,883</td>
</tr>
<tr>
<td>Freixeiro</td>
<td>3,039</td>
<td>355,000</td>
<td>0,000</td>
<td>4220,000</td>
<td>0,084</td>
<td>1,557</td>
</tr>
<tr>
<td>Souto Da Vila</td>
<td>2,146</td>
<td>340,000</td>
<td>0,000</td>
<td>3200,000</td>
<td>0,106</td>
<td>1,191</td>
</tr>
<tr>
<td>Amproa</td>
<td>2,001</td>
<td>340,000</td>
<td>0,000</td>
<td>2500,000</td>
<td>0,136</td>
<td>0,931</td>
</tr>
<tr>
<td>Os Fornos</td>
<td>0,552</td>
<td>100,000</td>
<td>0,000</td>
<td>1750,000</td>
<td>0,057</td>
<td>0,832</td>
</tr>
</tbody>
</table>

-Coeficientes de escorrentía para distintos periodos de retorno:

<table>
<thead>
<tr>
<th>Cuenca</th>
<th>Po (mm/h)</th>
<th>C25</th>
<th>C50</th>
<th>C100</th>
<th>C200</th>
<th>C500</th>
</tr>
</thead>
<tbody>
<tr>
<td>San Cibrán</td>
<td>60,400</td>
<td>0,185</td>
<td>0,221</td>
<td>0,259</td>
<td>0,294</td>
<td>0,338</td>
</tr>
<tr>
<td>Freixeiro</td>
<td>60,400</td>
<td>0,185</td>
<td>0,221</td>
<td>0,259</td>
<td>0,294</td>
<td>0,338</td>
</tr>
<tr>
<td>Souto Da Vila</td>
<td>60,400</td>
<td>0,185</td>
<td>0,221</td>
<td>0,259</td>
<td>0,294</td>
<td>0,338</td>
</tr>
<tr>
<td>Amproa</td>
<td>60,400</td>
<td>0,185</td>
<td>0,221</td>
<td>0,259</td>
<td>0,294</td>
<td>0,338</td>
</tr>
<tr>
<td>Os Fornos</td>
<td>60,400</td>
<td>0,185</td>
<td>0,221</td>
<td>0,259</td>
<td>0,294</td>
<td>0,338</td>
</tr>
</tbody>
</table>

-Intensidades medias de precipitación y caudales para distintos periodos de retorno:

<table>
<thead>
<tr>
<th>Cuenca</th>
<th>I25</th>
<th>I50</th>
<th>I100</th>
<th>I200</th>
<th>I500</th>
<th>Q25</th>
<th>Q50</th>
<th>Q100</th>
<th>Q200</th>
<th>Q500</th>
</tr>
</thead>
<tbody>
<tr>
<td>San Cibrán</td>
<td>32,755</td>
<td>37,086</td>
<td>41,984</td>
<td>46,901</td>
<td>53,539</td>
<td>3,047</td>
<td>4,120</td>
<td>5,462</td>
<td>6,934</td>
<td>9,093</td>
</tr>
<tr>
<td>Freixeiro</td>
<td>36,398</td>
<td>41,210</td>
<td>46,653</td>
<td>52,117</td>
<td>59,494</td>
<td>6,829</td>
<td>9,232</td>
<td>12,241</td>
<td>15,538</td>
<td>20,376</td>
</tr>
<tr>
<td>Souto Da Vila</td>
<td>42,093</td>
<td>47,659</td>
<td>53,954</td>
<td>60,272</td>
<td>68,803</td>
<td>5,577</td>
<td>7,539</td>
<td>9,996</td>
<td>12,689</td>
<td>16,640</td>
</tr>
<tr>
<td>Amproa</td>
<td>47,960</td>
<td>54,301</td>
<td>61,473</td>
<td>68,673</td>
<td>78,392</td>
<td>5,925</td>
<td>8,010</td>
<td>10,620</td>
<td>13,481</td>
<td>17,678</td>
</tr>
<tr>
<td>Os Fornos</td>
<td>50,830</td>
<td>57,550</td>
<td>65,151</td>
<td>72,781</td>
<td>83,082</td>
<td>1,732</td>
<td>2,342</td>
<td>3,105</td>
<td>3,941</td>
<td>5,168</td>
</tr>
</tbody>
</table>

Documento nº1: Memoria

Miguel Burés Muñiz
APÉNDICE II: MAPA DE CAUCES FLUVIALES
íNDICE:

1. INTRODUCCIÓN
2. RED DE CARRETERAS
3. MAPA Y ESTACIONES DE AFORO
4. IMD ACTUAL Y FUTURA
5. NIVEL DE SERVICIO
6. CARRIL ADICIONAL LENTO

ANEJO Nº5: ESTUDIO DE TRÁFICO
1. INTRODUCCIÓN.

El objeto de este anejo es analizar el tráfico existente entre los municipios de Catoira y Vilagarcía con la finalidad de establecer una IMD para el año horizonte del presente proyecto, así como un nivel de servicio.

El estudio se realizará a partir de los datos en las estaciones de aforos presentes en la zona.

2. RED DE CARRETERAS.

Como ya se ha dicho previamente, actualmente existe una sola vía que comunique directamente Catoira con Vilagarcía, la PO-548. Además de esta, para nuestro estudio se tendrá en consideración la VG-4.7. Con la construcción de un corredor, se descongestionará la carretera actual, y además se propiciará el uso de la variante VG-4.7, que no está cumpliendo con las expectativas de tráfico previstas.

3. MAPA Y ESTACIONES DE AFOROS.

Se recurre al mapa de aforos existente para intentar estimar de forma precisa la intensidad media diaria actual. Para ello recurrimos al mapa de aforos en la provincia de Pontevedra en el año 2013.
A continuación, tenemos el mapa de aforos de tráfico de vehículos pesados en la misma zona:

Como se puede observar, la PO-548 presenta una IMD de entre 5000 y 10000 vehículos al día, y el tráfico de vehículos pesados se sitúa entre 400 y 1600 vehículos día en la zona de estudio. Aunque sería adecuado hacer un estudio de movilidad para averiguar los datos exactos de Intensidad diaria y hacia donde se dirigen los vehículos, debido al carácter académico del presente proyecto, se hará una aproximación. Para una mayor precisión en esta aproximación, se recurre a las estaciones de datos y aforos, que nos indican la IMD en un punto de la vía de forma más precisa. En este caso recurriremos a dos estaciones en la PO-548, y otra en la VG-4.7.
Se ha accedido a los datos recogidos en la ‘Memoria de Tráfico da Rede Autonómica de Estradas de Galicia’ del año 2013. Las estaciones de aforo empleadas por la Xunta son de dos tipos diferentes, según recoge la memoria:

- **Estaciones Permanentes:**
 Son estaciones en las que se aforan todas las horas de todos los días del año, por medio de un registrador de detección magnética, realizando una clasificación de los vehículos entre ligeros y pesados. Al realizar una recogida de datos de una manera continua a lo largo de todo el año, estas estaciones nos permiten un conocimiento de las variaciones típicas del tráfico (anual, mensual, semanal y diaria).

- **Estaciones Complementarias:**
 Se considerarán estaciones complementarias todas aquellas que no entran en las tipologías anteriores. Dentro de esta categoría nos vamos a encontrar con dos tipologías, aquellas que utilizan la detección magnética y por tanto son estaciones fijas, y las que utilizan la detección neumática, y por tanto no son estaciones fijas.

Las estaciones empleadas son complementarias las dos situadas en la PO-548, y permanente la estación de la variante de Vilagarcía. Los datos son los siguientes:
Nuevo Corredor entre Vilagarcía de Arousa y Catoira.

Documento nº1: Memoria.
Anejo nº5: Estudio de Tráfico.

Miguel Burés Muñiz
Los datos de la primera estación se sitúan al norte de Catoira, en la PO-548 con dirección a Pontecesures. Esta es la menos significativa de las tres, ya que una vez pasado Catoira, los vehículos se desvían hacia Rianxo, Caldas o Pontecesures. La segunda estación está situada entre el centro de Vilagarcía y Carril, punto donde finaliza el corredor. Esta sí es más representativa del tráfico en la zona de estudio, ya que los vehículos al pasar por ahí solo pueden desviarse hacia la VG-4.7 dirección Vilagarcía Sur o Caldas, o bien dirigirse al núcleo de Carril. Finalmente, la estación situada en la entrada de la VG-4.7, nos permite hacer una aproximación de los vehículos que, pasando por la PO-548, se dirigen hacia el Sur de la provincia. Consideramos, en este caso, que en porcentaje de vehículos procedentes de Carril se dirigen hacia el sur de Vilagarcía, procediendo el resto del Norte. Por lo tanto, para estimar el IMD en el corredor, utilizaremos la suma de un porcentaje aproximado de los vehículos que circulan por ambas vías. Para la PO-548, con un IMD de 9064 vehículos/día, consideraremos que el 60% utilizará el corredor para moverse entre Catoira y Vilagarcía. Escogemos este dato porque existe la posibilidad de que utilicen la variante, o se queden en cualquiera de los núcleos entre los dos municipios. Para la VG-4.7, con una IMD de 4086 vehículos/día el porcentaje es el mismo, del 60%. Estos porcentajes son escogidos según la hipótesis de que todos los vehículos que se muevan entre Catoira y Vilagarcía, lo harán utilizando preferiblemente el Corredor y no la PO-548, ya que el tiempo de viaje es menor.

4. IMD ACTUAL Y FUTURA.

Con los datos obtenidos anteriormente y según las hipótesis realizadas, considerando el crecimiento experimentado en años anteriores, establecemos de forma aproximada que el tráfico en el año 2015 es de 9310 vehículos/día en la PO-548 y de 4023 vehículos/día en la VG-4.7. Teniendo en cuenta estos datos y considerando que aproximadamente el 60% del tráfico de cada una de las vías se desviará al corredor, se deduce una IMD actual de 8000 vehículos/día. Consideramos el año de puesta en servicio el 2020 y el año horizonte el 2040.

Según lo establecido en la “Instrucción sobre las Medidas específicas para la mejora de la eficiencia en la ejecución de las obras públicas” del Ministerio de Fomento y aprobado por la Orden FOM/3317/2010 de 17 de diciembre, se considerará un incremento anual acumulativo como el que se expone en la siguiente tabla:

<table>
<thead>
<tr>
<th>Período</th>
<th>Incremento anual acumulativo</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010 – 2012</td>
<td>1,08 %</td>
</tr>
<tr>
<td>2013 – 2016</td>
<td>1,12 %</td>
</tr>
<tr>
<td>2017 en adelante</td>
<td>1,44 %</td>
</tr>
</tbody>
</table>
Teniendo en cuenta estos incrementos, según la fórmula para el cálculo de la IMD:

\[
\text{IMD}_x = \text{IMD}_y \times (1+r)^{x-y}
\]

Siendo \(r \) el incremento anual en tanto por uno.
El crecimiento es del 1,12% hasta el 2016, y del 1,44% del 2017 en adelante. Con estos datos y con la IMD en el año 2015 de 8000 vehículos/día obtenemos:

\[
\text{IMD}_{2016} = 8090 \text{ vehículos/día}. \\
\text{IMD}_{2020} = 8566 \text{ vehículos/día}. \\
\text{IMD}_{2040} = 11401 \text{ vehículos/día}.
\]

Consideramos, al no tener más datos, que el porcentaje de vehículos pesados se mantiene constante en el tiempo. El porcentaje de pesados en la PO-548 es del 5,3% y en la VG-4.7 del 10%. Haciendo una media ponderada obtenemos para nuestra vía un porcentaje de pesados del 6,71%. Por lo tanto:

\[
\text{IMD}_{2016} \text{ Pesados} = 543 \text{ vehículos/día}. \\
\text{IMD}_{2020} \text{ Pesados} = 575 \text{ vehículos/día}. \\
\text{IMD}_{2040} \text{ Pesados} = 765 \text{ vehículos/día}.
\]

5. NIVEL DE SERVICIO.

5.1. INTRODUCCIÓN:

Para el cálculo del nivel de servicio de la vía utilizaremos el ‘Manual de Capacidad de Carreteras’ basado en el HCM 2000.
El nivel de servicio es una medida de la calidad que ofrece una carretera. En vías interurbanas se definen seis niveles de servicio, cada uno de los cuales lleva asociada una letra de la A a la F. El A es el nivel más favorable y el F el más desfavorable. El nivel E es el que define la capacidad máxima de una carretera. Las condiciones de circulación que presenta cada nivel son las siguientes:

- **Nivel A**: Condiciones de circulación libre y fluida. La velocidad a la que circula es la elegida por el conductor y cuando se alcanza un vehículo más lento puede adelantararlo sin demora.
- **Nivel B**: La velocidad de los vehículos más rápidos se ve influenciada por los más lentos, existen pequeñas demoras, pero la circulación es estable a alta velocidad.
- **Nivel C**: La circulación se ve entorpecida formándose grupos. Aumenta la demora de adelantamiento y se forman colas poco consistentes pero la circulación es estable.
- **Nivel D**: La velocidad es regulada por los vehículos más lentos, hay dificultad para adelantar y se forman colas en puntos concretos. Circulación inestable.
-**Nivel E:** Velocidad reducida para todos los vehículos del orden de 40/50 Km/h. Se forman largas colas y es imposible efectuar adelantamientos.

-**Nivel F:** Se forman largas y densas colas, la circulación es forzosa, obligando a los vehículos a circular arrancando y parando constantemente.

La carretera que se desea proyectar es una vía rápida con velocidad de proyecto 80 Km/h. Para este tipo de vías, la norma 3.1 IC Trazado de la Instrucción de Carreteras, establece que, la carretera proyectada debe mantener, al menos, un nivel de servicio D para el año horizonte del proyecto.

5.2. CARACTERÍSTICAS DE LA VÍA:

Según el Manual de Capacidad de Carreteras, a la hora de calcular el nivel de servicio, clasificaremos la vía como una vía interurbana de calzada única y un carril por sentido. Dentro de estas se distinguen dos tipos:

-Clase I cuya función principal es la movilidad.
-Clase II cuya función principal es la accesibilidad.

Nuestra carretera es, por lo tanto, de Clase I, por lo que será necesario calcular dos parámetros para estimar el nivel de servicio, la velocidad media (VM) y el porcentaje de tiempo siguiendo (PTS).

El Manual de Capacidad establece unas condiciones ideales según las cuales la intensidad máxima horaria en una carretera de calzada única y un carril por sentido es de 2800 vehículos/hora en ambos sentidos. Las condiciones ideales que permiten este volumen de tráfico son:

- Carreles de 3,6 m o más de anchura.
- Arcenes de 1,8 m o más de ancho.
- Inexistencia de tramos con prohibición de adelantamiento.
- Todos los vehículos son turismos (ligeros).
- Reparto proporcional del tráfico en ambos sentidos (50/50)
- Inexistencia de accesos a la calzada.

<table>
<thead>
<tr>
<th>CLASE DE CARRETERA</th>
<th>VELOCIDAD DE PROYECTO (Km/h)</th>
<th>CARRILES (m)</th>
<th>ARCÉN (m)</th>
<th>BERMAS (m)</th>
<th>NIVEL DE SERVICIO EN LA HORA DE PROYECTO DEL AÑO HORIZONTE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>De calzadas separadas</td>
<td></td>
<td>EXTERIOR</td>
<td>INTERIOR</td>
<td>MINIMO</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2,5</td>
<td>1,0-1,5</td>
<td>0,75</td>
</tr>
<tr>
<td></td>
<td>120</td>
<td>3,5</td>
<td>2,5</td>
<td>1,0</td>
<td>0,75</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>3,5</td>
<td>2,5</td>
<td>1,0-1,5</td>
<td>0,75</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>3,5</td>
<td>2,5</td>
<td>1,0</td>
<td>0,75</td>
</tr>
<tr>
<td></td>
<td>De calzadas unidas</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2,5</td>
<td>1,0</td>
<td>0,75</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>3,5</td>
<td>2,5</td>
<td>1,0</td>
<td>0,75</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>3,5</td>
<td>2,5</td>
<td>1,0</td>
<td>0,75</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>3,5</td>
<td>1,0-1,5</td>
<td></td>
<td>0,75</td>
</tr>
<tr>
<td></td>
<td>De corredores</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>40 IMID > 2000</td>
<td>3,5</td>
<td>0,5</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>40 IMID < 2000</td>
<td>3,0</td>
<td>0,5</td>
<td></td>
<td>-</td>
</tr>
</tbody>
</table>
Sin embargo, las características del corredor son las siguientes:

- Carreles de 3,5 m de ancho.
- Arcenes de 2,5 m de ancho.
- Prohibición de adelantar entre el 60% y el 80% del recorrido.
- 6,71% de vehículos pesados.
- Reparto del 50/50 para cada sentido.
- Inexistencia de accesos.

5.3. CÁLCULO DEL NIVEL DE SERVICIO:

Primero calculamos la velocidad libre con la siguiente formula:

\[
VL = VLB - f_a - f_o - f_c
\]

VL: Velocidad libre en Km/h.

fa: factor de corrección por anchura del carril.

fo: factor de corrección por anchura del arcén.

fc: factor de corrección por el número de accesos.

Partiendo de una velocidad libre básica, VLB= 100 Km/h. Cada uno de los distintos factores de corrección lo obtenemos de la siguientes tablas:

<table>
<thead>
<tr>
<th>Anchura (m)</th>
<th>fa (km/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ 2,7 < 3,0</td>
<td>3,5</td>
</tr>
<tr>
<td>≥ 3,0 < 3,3</td>
<td>1,7</td>
</tr>
<tr>
<td>≥ 3,3 < 3,6</td>
<td>0,7</td>
</tr>
<tr>
<td>≥ 3,6</td>
<td>0,0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Anchura (m)</th>
<th>fo (km/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ 0,0 < 0,6</td>
<td>6,8</td>
</tr>
<tr>
<td>≥ 0,6 < 1,2</td>
<td>4,2</td>
</tr>
<tr>
<td>≥ 1,2 < 1,8</td>
<td>2,1</td>
</tr>
<tr>
<td>≥ 1,8</td>
<td>0,0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Accesos por km</th>
<th>fc (km/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0,0</td>
</tr>
<tr>
<td>6</td>
<td>4,0</td>
</tr>
<tr>
<td>12</td>
<td>8,0</td>
</tr>
<tr>
<td>18</td>
<td>12,0</td>
</tr>
<tr>
<td>≥ 24</td>
<td>16,0</td>
</tr>
</tbody>
</table>

fa= 0,7Km/h ; fo= 0Km/h; fc= 0Km/h y VLB=100 Km/h.
VL= 99,3 Km/h

A continuación calcularemos la velocidad media (VM) con la siguiente fórmula:

\[
VM = VL - 0,0125 \times I_{equiv} - f_{pa}
\]

\(I_{equiv}\): Intensidad equivalente (vehículos/hora).
\(f_{pa}\): Factor por prohibición de adelantar.

La intensidad equivalente se determina:

\[
I_{equiv} = \frac{I}{FHP \times f_i \times f_{vp}}
\]

\(I\): Intensidad en vehículos reales (475 v/h)
\(FHP\): Factor de hora punta. (FHP=0,92 según HCM)
\(f_i\): Factor de ajuste por efecto del trazado y el terreno.
\(f_{vp}\): Factor de ajuste por vehículos pesados y de recreo.

\[
f_{vp} = \frac{1}{1 + Pt \times (Et - 1) + Pr \times (Er - 1)}
\]

\(Et, Er\): Factores de equivalencia para camiones y autobuses o vehículos de recreo.
\(Pt, Pr\): Porcentajes de vehículos pesados o de recreo.

Utilizando las tablas y aproximando la intensidad horaria inicialmente a 600 vehículos/hora y terreno ondulado:

<table>
<thead>
<tr>
<th>Intensidad horaria (coches/h)</th>
<th>Terreno</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-600</td>
<td>Llano</td>
</tr>
<tr>
<td>600-1200</td>
<td>1,00</td>
</tr>
<tr>
<td>> 1200</td>
<td>1,00</td>
</tr>
</tbody>
</table>

\[
F_{vp} = 0,94
\]

\[
F_i = 0,93
\]

\[
I_{equiv} = 594 \text{ vehículos/hora}
\]
Aunque es un poco inferior a la hipótesis de 600 v/h, se considera aceptable debido que es prácticamente igual.

De la siguiente tabla obtenemos \(F_{pa} \):

<table>
<thead>
<tr>
<th>Intensidad coches/h</th>
<th>0</th>
<th>20</th>
<th>40</th>
<th>60</th>
<th>80</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>200</td>
<td>0.0</td>
<td>1.0</td>
<td>2.3</td>
<td>3.8</td>
<td>4.2</td>
<td>5.6</td>
</tr>
<tr>
<td>400</td>
<td>0.0</td>
<td>2.7</td>
<td>4.3</td>
<td>5.7</td>
<td>6.3</td>
<td>7.3</td>
</tr>
<tr>
<td>600</td>
<td>0.0</td>
<td>2.5</td>
<td>3.8</td>
<td>4.9</td>
<td>5.5</td>
<td>6.2</td>
</tr>
<tr>
<td>800</td>
<td>0.0</td>
<td>2.2</td>
<td>3.1</td>
<td>3.9</td>
<td>4.3</td>
<td>4.9</td>
</tr>
<tr>
<td>1000</td>
<td>0.0</td>
<td>1.8</td>
<td>2.5</td>
<td>3.2</td>
<td>3.6</td>
<td>4.2</td>
</tr>
<tr>
<td>1200</td>
<td>0.0</td>
<td>1.3</td>
<td>2.0</td>
<td>2.6</td>
<td>3.0</td>
<td>3.4</td>
</tr>
<tr>
<td>1400</td>
<td>0.0</td>
<td>0.9</td>
<td>1.4</td>
<td>1.9</td>
<td>2.3</td>
<td>2.7</td>
</tr>
<tr>
<td>1600</td>
<td>0.0</td>
<td>0.9</td>
<td>1.3</td>
<td>1.7</td>
<td>2.1</td>
<td>2.4</td>
</tr>
<tr>
<td>1800</td>
<td>0.0</td>
<td>0.8</td>
<td>1.1</td>
<td>1.6</td>
<td>1.8</td>
<td>2.1</td>
</tr>
<tr>
<td>2000</td>
<td>0.0</td>
<td>0.8</td>
<td>1.0</td>
<td>1.4</td>
<td>1.6</td>
<td>1.8</td>
</tr>
<tr>
<td>2200</td>
<td>0.0</td>
<td>0.8</td>
<td>1.0</td>
<td>1.4</td>
<td>1.5</td>
<td>1.7</td>
</tr>
<tr>
<td>2400</td>
<td>0.0</td>
<td>0.8</td>
<td>1.0</td>
<td>1.3</td>
<td>1.5</td>
<td>1.7</td>
</tr>
<tr>
<td>2600</td>
<td>0.0</td>
<td>0.8</td>
<td>1.0</td>
<td>1.3</td>
<td>1.4</td>
<td>1.6</td>
</tr>
<tr>
<td>2800</td>
<td>0.0</td>
<td>0.8</td>
<td>1.0</td>
<td>1.2</td>
<td>1.3</td>
<td>1.4</td>
</tr>
<tr>
<td>3000</td>
<td>0.0</td>
<td>0.8</td>
<td>0.9</td>
<td>1.1</td>
<td>1.1</td>
<td>1.3</td>
</tr>
<tr>
<td>3200</td>
<td>0.0</td>
<td>0.8</td>
<td>0.9</td>
<td>1.0</td>
<td>1.0</td>
<td>1.1</td>
</tr>
</tbody>
</table>

Con una intensidad de 600 v/h y prohibición de adelantar entre el 60% y el 80% obtenemos:

\[F_{pa} = 5,2 \text{ Km/h} \]

Por lo tanto la velocidad media (VM) es:

\[VM = 86,67 \text{ Km/h} \]

Una vez obtenida la velocidad media solo nos queda conocer el porcentaje de tiempo siguiendo a otro vehículo:

\[PTS = 100 \times (1 - e^{-0.000879 \times I_{eqv}}) + F_{pa} \]

I_{eqv}: Intensidad equivalente (vehículos/hora)
Fpa: Factor de corrección por prohibición de adelantar(%)

Hay que tener en cuenta que para el cálculo del PTS los valores de I_{eqv} y Fpa son diferentes a los ya calculados.

\[I_{eqv} = \frac{I}{FHP \times Ff \times Fvp} \]

I: Intensidad en vehículos reales (475 v/h)
FHP: Factor de hora punta. (FHP=0,92 según HCM)
Ff: Factor de ajuste por efecto del trazado y el terreno.
Fvp: Factor de ajuste por vehículos pesados y de recreo.
\[F_{vp} = \frac{1}{1 + Pt \times (Et - 1) + Pr \times (Er - 1)} \]

Et, Er: Factores de equivalencia para camiones y autobuses o vehículos de recreo.
Pt, Pr: Porcentajes de vehículos pesados o de recreo.

Utilizando las tablas, esta vez con los valores para el cálculo del PTS y estimando de nuevo una intensidad horaria de 600 vehículos/hora y terreno ondulado:

<table>
<thead>
<tr>
<th>Intensidad horaria (coches/h)</th>
<th>Tipo de vehículo</th>
<th>Terreno</th>
<th>Llano</th>
<th>Ondulado</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-600</td>
<td>Pesados</td>
<td>1,1</td>
<td>1,8</td>
<td></td>
</tr>
<tr>
<td>600-1200</td>
<td>Pesados</td>
<td>1,1</td>
<td>1,5</td>
<td></td>
</tr>
<tr>
<td>> 1200</td>
<td>Pesados</td>
<td>1,0</td>
<td>1,0</td>
<td></td>
</tr>
<tr>
<td>0-600</td>
<td>Vehículos de recreo</td>
<td>1,0</td>
<td>1,0</td>
<td></td>
</tr>
<tr>
<td>600-1200</td>
<td>Vehículos de recreo</td>
<td>1,0</td>
<td>1,0</td>
<td></td>
</tr>
<tr>
<td>> 1200</td>
<td>Vehículos de recreo</td>
<td>1,0</td>
<td>1,0</td>
<td></td>
</tr>
</tbody>
</table>

Obtenemos \(Et = 1,5; Er = 1; \) y nuevamente \(Pt = 6,71\% \) y \(Pr = 4\% \).

\[F_{vp} = 0,97 \]

<table>
<thead>
<tr>
<th>Intensidad horaria</th>
<th>Terreno</th>
<th>Llano</th>
<th>Ondulado</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-600</td>
<td>1,0</td>
<td>f_i</td>
<td>0,77</td>
</tr>
<tr>
<td>600-1200</td>
<td>1,0</td>
<td></td>
<td>0,94</td>
</tr>
<tr>
<td>> 1200</td>
<td>1,0</td>
<td></td>
<td>1,00</td>
</tr>
</tbody>
</table>

\(F_i = 0,94 \)

\(I_{eqv} = 566 \) vehículos/hora

En este caso, la hipótesis no es válida, considerando la intensidad horaria\(<600 \) v/h:

\[F_{vp} = 0,95 \]

\(F_i = 0,77 \)

\(I_{eqv} = 706 \) vehículos/hora

Ahora sí es mayor, por lo que consideraremos que el valor real está en el límite, por lo tanto:

\[I_{eqv} = 600 \) vehículos/hora}
Con los valores de VM= 86,67 Km/h y PTS=60,18% obtenemos el nivel de servicio en el año horizonte del proyecto de la siguiente tabla:

<table>
<thead>
<tr>
<th>Intensidad coches/h</th>
<th>Reparto por sentido (%)</th>
<th>0</th>
<th>20</th>
<th>40</th>
<th>60</th>
<th>80</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 200</td>
<td>50-50</td>
<td>0,0</td>
<td>12,4</td>
<td>19,0</td>
<td>22,7</td>
<td>23,8</td>
<td>24,8</td>
</tr>
<tr>
<td>400</td>
<td>50-50</td>
<td>0,0</td>
<td>12,4</td>
<td>19,0</td>
<td>22,7</td>
<td>23,8</td>
<td>24,8</td>
</tr>
<tr>
<td>600</td>
<td>50-50</td>
<td>0,0</td>
<td>11,2</td>
<td>16,0</td>
<td>18,7</td>
<td>19,7</td>
<td>20,5</td>
</tr>
<tr>
<td>800</td>
<td>50-50</td>
<td>0,0</td>
<td>9,0</td>
<td>12,3</td>
<td>14,1</td>
<td>14,5</td>
<td>15,4</td>
</tr>
<tr>
<td>1400</td>
<td>50-50</td>
<td>0,0</td>
<td>3,6</td>
<td>5,5</td>
<td>6,7</td>
<td>7,3</td>
<td>7,9</td>
</tr>
<tr>
<td>2000</td>
<td>50-50</td>
<td>0,0</td>
<td>1,8</td>
<td>2,9</td>
<td>3,7</td>
<td>4,1</td>
<td>4,4</td>
</tr>
<tr>
<td>2500</td>
<td>50-50</td>
<td>0,0</td>
<td>1,1</td>
<td>1,6</td>
<td>2,0</td>
<td>2,3</td>
<td>2,4</td>
</tr>
<tr>
<td>≥ 3 200</td>
<td>50-50</td>
<td>0,0</td>
<td>0,7</td>
<td>0,9</td>
<td>1,1</td>
<td>1,2</td>
<td>1,4</td>
</tr>
<tr>
<td>≤ 200</td>
<td>60-40</td>
<td>1,6</td>
<td>11,8</td>
<td>17,2</td>
<td>22,5</td>
<td>23,1</td>
<td>23,7</td>
</tr>
<tr>
<td>400</td>
<td>60-40</td>
<td>0,5</td>
<td>11,7</td>
<td>16,2</td>
<td>20,7</td>
<td>21,5</td>
<td>22,2</td>
</tr>
<tr>
<td>600</td>
<td>60-40</td>
<td>0,0</td>
<td>11,5</td>
<td>15,2</td>
<td>18,9</td>
<td>19,8</td>
<td>20,7</td>
</tr>
<tr>
<td>800</td>
<td>60-40</td>
<td>0,0</td>
<td>7,6</td>
<td>10,3</td>
<td>13,0</td>
<td>13,7</td>
<td>14,4</td>
</tr>
<tr>
<td>1400</td>
<td>60-40</td>
<td>0,0</td>
<td>3,7</td>
<td>5,4</td>
<td>7,1</td>
<td>7,6</td>
<td>8,1</td>
</tr>
<tr>
<td>2000</td>
<td>60-40</td>
<td>0,0</td>
<td>2,3</td>
<td>3,4</td>
<td>3,6</td>
<td>4,0</td>
<td>4,3</td>
</tr>
<tr>
<td>≥ 2 600</td>
<td>60-40</td>
<td>0,0</td>
<td>0,9</td>
<td>1,4</td>
<td>1,9</td>
<td>2,1</td>
<td>2,2</td>
</tr>
<tr>
<td>≤ 200</td>
<td>70-30</td>
<td>2,8</td>
<td>13,4</td>
<td>19,1</td>
<td>24,8</td>
<td>25,2</td>
<td>25,5</td>
</tr>
<tr>
<td>400</td>
<td>70-30</td>
<td>1,1</td>
<td>12,5</td>
<td>17,5</td>
<td>22,0</td>
<td>22,6</td>
<td>23,2</td>
</tr>
</tbody>
</table>

Con Intensidad horaria de 600 v/h y prohibición de adelantar entre el 60% y el 80%:

\[F_{pa} = 19,2\% \]

\[PTS = 60,18\% \]

Con lo tanto obtenemos un nivel de servicio C, superior al requerido por la normativa para el año horizonte de proyecto.
6. CARRIL ADICIONAL LENTO.

La normativa 3.1 IC para el trazado de carreteras dispone que es necesario ampliar la plataforma añadiendo un carril adicional cuando el nivel de servicio disminuya por debajo del fijado para el año horizonte del proyecto, en este caso el nivel D.

Además, se añadirá un carril adicional si se cumplen sucesivamente las dos condiciones siguientes:

- La velocidad del vehículo pesado en la rampa o pendiente disminuye por debajo de 40 Km/h.

- El nivel de servicio disminuye en dos niveles en la rampa o pendiente respecto a los tramos adyacentes.

En el caso del presente proyecto, el nivel de servicio no desciende en ningún caso del nivel C, por lo tanto no es obligatorio disponer de un carril adicional lento, pero siguiendo las indicaciones del Manual de Capacidad, si se dispondrá de un carril adicional lento si el vehículo pesado reduce su velocidad en 16 Km/h y el volumen y porcentaje de vehículos pesados justifica el sobrecoste que supone el carril adicional.

La perdida de velocidad del vehículo pesado se calcula utilizando el siguiente gráfico:
Analizaremos las velocidades y perdidas de velocidad en cada una de las pendientes para ambos sentidos. Solo se analizarán en cada sentido las pendientes ascendentes, que son en las que el vehículo pesado puede perder velocidad.

Sentido Catoira-Vilagarcía:

<table>
<thead>
<tr>
<th>Tramo</th>
<th>Longitud (m)</th>
<th>Pendiente(%)</th>
<th>Vi(Km/h)</th>
<th>Vf(Km/h)</th>
<th>Perdida(Km/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1000</td>
<td>2,85</td>
<td>40</td>
<td>54</td>
<td>-14</td>
</tr>
<tr>
<td>2</td>
<td>600</td>
<td>5,3</td>
<td>54</td>
<td>40</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>400</td>
<td>5,88</td>
<td>80</td>
<td>55</td>
<td>25</td>
</tr>
<tr>
<td>4</td>
<td>1600</td>
<td>2,22</td>
<td>80</td>
<td>70</td>
<td>10</td>
</tr>
</tbody>
</table>

Sentido Vilagarcía-Catoira:

<table>
<thead>
<tr>
<th>Tramo</th>
<th>Longitud (m)</th>
<th>Pendiente(%)</th>
<th>Vi(Km/h)</th>
<th>Vf(Km/h)</th>
<th>Perdida(Km/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>800</td>
<td>5,6</td>
<td>40</td>
<td>35</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>450</td>
<td>4,4</td>
<td>80</td>
<td>64</td>
<td>16</td>
</tr>
<tr>
<td>3</td>
<td>1500</td>
<td>0,5</td>
<td>64</td>
<td>80</td>
<td>-16</td>
</tr>
<tr>
<td>4</td>
<td>700</td>
<td>3,5</td>
<td>80</td>
<td>65</td>
<td>15</td>
</tr>
</tbody>
</table>

A pesar de que solo es recomendable en un tramo, se situarán, carriles adicionales al principio de la vía por la derecha, y al final por la izquierda, debido a las bajas velocidades de los vehículos más lentos (vienen de glorieta por lo tanto con velocidades menores a 40 Km/h). Además se situará otro carril adicional por la izquierda entre los PKs 4+000 y 4+600 aproximadamente.

En el tramo de mayor pendiente, se decide no implantar un carril adicional por la derecha ya que no se justifica el sobrecoste de implantación de un carril adicional en ese tramo. El hecho de que se encuentre en una zona de grandes cantidades de desmonte, precedidas de un viaducto, hacen que no sea rentable disponer de un carril ahí, ya que es un tramo muy corto, de menos de 500 m. y el coste, sería muy alto.

Por lo tanto, los carriles adicionales son los siguientes:

- Carril adicional derecho entre PKs 0+250 y 1+650.
- Carril adicional izquierdo entre PKs 4+000 y 4+600.
- Carril adicional izquierdo entre PKs 5+900 y 6+650.

En todos los casos, siguiendo las recomendaciones de la normativa, los carriles adicionales se dispondrán por la derecha de la calzada. Habrá una cuña de transición al inicio y final de cada carril adicional y la longitud de esta cuña será de 120 m. Se mantendrá la anchura que indica la norma 3.1-IC para los arcenes y bermas también en aquellos tramos que dispongan de un carril adicional.
ÍNDICE:

1. INTRODUCCIÓN.
2. VOLUMEN DE TRÁFICO PESADO.
3. EXPLANADA.
4. SECCIÓN DE FIRME.

ANEJO Nº6: FIRMES
1. INTRODUCCIÓN.

El objetivo del presente anexo es el dimensionamiento de la explanada y capas de firme en el tronco del corredor, estructuras, enlaces y glorietas. Para ello se tendrán en cuenta las directrices de la normativa española recogidas en el anexo de la Instrucción de Carreteras 6.1-IC ‘Secciones de Firme’.

La normativa recomienda seleccionar las distintas capas de firme a partir de dos criterios, el volumen de tráfico pesado y la calidad de la explanada.

2. VOLUMEN DE TRÁFICO PESADO.

En el anexo de tráfico ya ha sido determinado el volumen de tráfico pesado, tanto en el año de puesta en servicio como en el año horizonte de proyecto.

\[
\text{IMD}_{2020} P = 575 \text{ vehículos día.}
\]

\[
\text{IMD}_{2040} P = 765 \text{ vehículos día.}
\]

La normativa indica que, a falta de datos, se suponga un reparto de tráfico 50/50 para cada carril. Por lo tanto, consideraremos el IMDp para el año de proyecto.

\[
\text{IMD p = 383 vehículos día.}
\]

Se establecen 8 categorías de tráfico pesado, según el valor calculado previamente:

<table>
<thead>
<tr>
<th>CATEGORÍA DE TRÁFICO PESADO</th>
<th>T00</th>
<th>T0</th>
<th>T1</th>
<th>T2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(vehículos pesados/día)</td>
<td>≥ 4000</td>
<td>< 4000</td>
<td>< 2000</td>
<td>< 800</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CATEGORÍA DE TRÁFICO PESADO</th>
<th>T31</th>
<th>T32</th>
<th>T41</th>
<th>T42</th>
</tr>
</thead>
<tbody>
<tr>
<td>(vehículos pesados/día)</td>
<td>< 200</td>
<td>< 100</td>
<td>< 50</td>
<td>< 25</td>
</tr>
</tbody>
</table>

Según estas tablas, y considerando nuestra IMDp, nos tenemos una categoría de tráfico pesado T2. Pero teniendo en cuenta las consideraciones de la normativa que dice: “Donde se justifique que los ejes de los vehículos pesados pueden estar especialmente sobrecargados, deberá considerarse la posibilidad de adoptar una categoría de tráfico pesado inmediatamente superior (en las inferiores a la T00), sobre todo en los valores próximos al límite superior de la categoría correspondiente. Del mismo modo podrá procederse en los casos de tramos en rampa con inclinaciones medias superiores al 5% (o superiores al 3% cuya longitud sea superior a 500 m).” Por lo tanto, debido a las pendientes que presenta el corredor, se decide subir una categoría, la T1.
3. EXPLANADA.

Se distinguen, según la calidad de esta, tres categorías de explanada. Estas categorías se determinan según el módulo de compresibilidad en el segundo ciclo de carga (Ev2), obtenido de acuerdo con la NLT-357 «Ensayo de carga con placa». Según los valores del ensayo, se clasifica la explanada según la siguiente tabla:

<table>
<thead>
<tr>
<th>CATEGORÍA DE EXPLANADA</th>
<th>E1</th>
<th>E2</th>
<th>E3</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1</td>
<td>> 60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E2</td>
<td>> 120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E3</td>
<td>> 300</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

En este proyecto, se considera que, en las zonas de desmonte, debido a las características geológicas y geotécnicas, se dispone de un lecho rocoso que permite la obtención de una explanada de categoría E2 sin necesidad de emplear suelo seleccionado.

Ahora bien, en las zonas de terraplén, es necesario recurrir a la tabla de formación de explanadas que se muestra a continuación para determinar la qué materiales son necesarios para elaborar una explanada adecuada, por lo menos de categoría E2. Teniendo en cuenta esto, y siguiendo las indicaciones de la normativa, tras eliminar el suelo vegetal, será necesaria, al menos una capa de 75 cm de suelo seleccionado para la obtención de una explanada de categoría E2.

Sin embargo, y siguiendo las indicaciones de la normativa, que recomienda, para la capa superior utilizada en la formación de las explanadas, el uso de suelos estabilizados in situ con cal o cemento. Por lo tanto es recomendable la estabilizar una capa superior de 30 cm de suelo con cal o cemento, obteniendo de este modo, una categoría de explanada superior, la E3. Esta estabilización in situ conlleva un sobrecoste, que se ve compensado a la hora de ejecutar las capas de firme, ya que los espesores de estas se ven reducidos.
4. SECCIÓN DE FIRME.

Teniendo en cuenta la categoría de la explanada (E3) y la de tráfico pesado (T1) la normativa 6.1-IC propone tres posibles secciones de firme:

Tras descartar los firmes rígidos, las opciones son o bien una capa mayor de 25 cm de mezclas bituminosas sobre 25 cm de zahorra artificial, o una capa de 20 cm de mezclas bituminosas sobre una capa de 20 cm de suelocemento.

Elegimos la segunda opción con el fin de ahorrar espesor en las capas bituminosas.

4.1. TIPOS DE MATERIALES.

Se indica en la siguiente tabla los espesores recomendados para las diferentes capas que componen el firme según la categoría de tráfico correspondiente. En las secciones que haya mas de una capa bituminosa, el espesor de la capa inferior será mayor o igual al de la superior:

<table>
<thead>
<tr>
<th>TIPO DE CAPA</th>
<th>TIPO DE MEZCLA (*)</th>
<th>CATEGORÍA DE TRÁFICO PESADO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>T00 a T1</td>
</tr>
<tr>
<td>Rodadura</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PA</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D y S</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Intermedia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D y S</td>
<td>6-19(*)</td>
<td></td>
</tr>
<tr>
<td>Base</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S y G</td>
<td>7-15</td>
<td></td>
</tr>
<tr>
<td>MAM</td>
<td>7-13</td>
<td></td>
</tr>
</tbody>
</table>

(*) Ver definiciones en tablas 5 y 8 y artículos 542 y 543 del PG-3.
(**) Solvo en arcenes, para lo que se seguirá lo indicado en el apartado 7.

La capa de rodadura estará constituida por una mezcla bituminosa drenante (PA), definida en el artículo 542 del PG-3, por una mezcla bituminosa discontinua en caliente de tipo M o F, definida en el artículo 543 del PG-3, o por una mezcla bituminosa...
en caliente de tipo denso (D) o semidenso (S), definida en el artículo 542 del PG-3.

Para las categorías de tráfico pesado T00 a T1 se emplearán las mezclas bituminosas discontinuas en caliente tipo M o bien las drenantes, según las condiciones pluviométricas y de intensidad de la circulación.

Las mezclas drenantes sólo podrán aplicarse en carreteras sin problemas de nieve o de formación de hielo, cuyos accesos estén pavimentados, con tráfico suficiente (IMD ≥ 5 000 vehículos/día) y con un régimen de lluvias razonablemente constante que facilite su limpieza. No se utilizarán sobre tableros de estructuras que no estén debidamente impermeabilizados y en todo caso deberán preverse sistemas específicos de captación y de eliminación del agua infiltrada a través de la superficie del pavimento.

A los efectos de aplicación de esta norma, y salvo justificación en contrario, no deberán proyectarse pavimentos con mezcla drenante en altitudes superiores a los 1 200 m, ni cuando el tramo a proyectar esté comprendido en la zona pluviométrica poco lluviosa. La siguiente imagen recoge las zonas pluviométricas lluviosa y poco lluviosa.
Estamos, por lo tanto, dentro de la zona 3, que a su vez se encuentra englobada dentro de la categoría lluviosa.

Es importante tener en cuenta, también, para la elección del tipo de ligante bituminoso, así como para la relación entre su dosificación en masa y la del polvo mineral, la zona térmica estival definida en la siguiente imagen:

La zona de proyecto se encuentra dentro de una zona térmica estival denominada ‘media’.

4.2. MATERIALES PARA LA SECCIÓN DE FIRME.

Se deben determinar los siguientes parámetros para la selección de las mezclas bituminosas en caliente:

- Tipo de betún asfáltico.
- Relación ponderal entre la dosificación del betún y la de los áridos.
- Relación ponderal entre la dosificación del betún y la del polvo mineral.

Por lo que los materiales a emplear son los siguientes:

- **Capa de Rodadura**: Mezcla asfáltica PA-12 (Tipo drenante) Formada por betún 60/70 y un 4.5% de betún sobre áridos. Relación filler/betún 1.3

- **Capa Intermedia**: Mezcla asfáltica impermeable S-20. Formada por betún 60/70. Y 4% mínimo de betún sobre áridos. La relación filler/betún es 1.2.

- **Capa de Base**: Mezcla asfáltica G-25. Formada por betún 60/70 y un 3,5% de betún sobre áridos. Al menos un 50% del filler será de aportación. La relación filler/betún es 1.1.

- **Capa de Subbase**: Suelocemento.
Se emplearán también tratamientos superficiales entre las distintas capas:

- **Riegos de adherencia**: Se dispondrán entre las capas de mezclas bituminosas. Como ligante se empleará la emulsión ECR-1 con 0.5 kg. de ligante residual por m² y se seguirán las especificaciones del PG-3 en el artículo 531.

- **Riegos de Curado**: Se dispondrán riegos de curado sobre las capas tratadas con un conglomerante hidráulico, según lo dispuesto en el artículo 532 del PG-3.

4.3. SECCIONES DE FIRME ESPECIALES.

4.3.1. Arcenes.

Siguiendo las prescripciones de la normativa 6.1-IC, los arcenes del Corredor, de 2,5 m de ancho deben ser dimensionados para la categoría de tráfico pesado correspondiente. Deben disponer de una capa de rodadura que de continuidad a la rasante de la calzada. Debajo del pavimento se rellenerá con el mismo material de la subbase, suelocemento.

4.3.2. Ramales de enlace y glorietas.

Con el fin de dar continuidad a la vía, y facilitar el proceso constructivo de esta, se decide que el firme en glorietas y ramales de enlace sea el mismo que el del tronco de la vía.

4.3.3. Estructuras.

En las estructuras correspondientes al tronco del corredor, las capas de firme serán las siguientes:

- Capa de impermeabilización.
- Capa de rodadura: 3cm de PA-12.
- Riego de adherencia.
- Capa intermedia: 5 cm de S-20.

La determinación de las secciones de firme tanto en las reposiciones de caminos y carreteras, como en estructuras de paso superior e inferior no son objeto de estudio en el presente anteproyecto.
4.3. SECCIÓN DE FIRME PROPUESTA.

-Rodadura: 4 cm de PA-12.
-Riego de adherencia con emulsión ECR-1.
-Intermedia: 6 cm de S-20.
-Riego de adherencia con emulsión ECR-1.
-Base: 10 cm de G-25.
-Riego de Imprimación con emulsión ECL-1.
-Subbase: 20 cm suelocemento.
ÍNDICE:

1. INTRODUCCIÓN.
2. LEGISLACIÓN APLICABLE.
3. ANÁLISIS AMBIENTAL DEL TERRITORIO.
4. EVALUACIÓN DE LOS IMPACTOS.
5. MEDIDAS PROTECTORAS Y CORRECTORAS.
6. PLAN DE CONSERVACIÓN.
7. PROGRAMA DE VIGILANCIA AMBIENTAL.

ANEJO Nº7: IMPACTO AMBIENTAL.
1. INTRODUCCIÓN.

El objetivo de este anexo es realizar una evaluación ambiental simplificada de las previsibles incidencias en el entorno que entrañará la ejecución de las obras del anteproyecto.

El objetivo de este estudio es contribuir a evitar posibles alteraciones e impactos sobre el medio ambiente. Aunque en muchos casos sea imposible, o al menos económicamente inviable, evitar por completo los impactos, el objetivo es minimizarlos en la medida de lo posible.

Para ello se valoran los impactos sobre el medio ambiente de los distintos procesos de construcción del anteproyecto. De este modo, se puede determinar si el impacto ambiental supone la pérdida total o parcial de recursos o este aumenta la vulnerabilidad del ambiente, lo cual lo convierte en más sensible frente a otras alteraciones.

Para la realización de un estudio de impacto ambiental en este tipo de proyectos, la normativa aplicable es numerosa:

2. LEGISLACIÓN APLICABLE:

-Normativa Europea:
- Directiva 97/11/CE, de 3 de marzo, relativa a la evaluación de las repercusiones de determinados proyectos públicos y privados sobre el medio ambiente.
- Directiva 2001/42/CE del Parlamento Europeo y del Consejo, de 27 de junio de 2001, relativa a la evaluación de los efectos de determinados planes y programas en el medio ambiente.

-Normativa Nacional:
- Real Decreto 1131/1988, de 30 de septiembre, por el que se aprueba el reglamento para la ejecución del Real Decreto Legislativo 1302/86, de 28 de junio, de evaluación de impacto ambiental.
- Ley 21/2013 de 9 de Diciembre de Evaluación Ambiental.

-Normativa Autonómica:

La Comunidad Autónoma de Galicia tiene facultades para establecer medidas adicionales de protección ambiental, tal y como queda recogido en el Estatuto de Autonomía, donde se reconoce la competencia exclusiva para aprobar las normas adicionales sobre protección del medio ambiente y paisaje:
- Ley 1/95 de Protección Ambiental de Galicia.
- Cumplimiento de la Ley 21/2013 de 9 de Diciembre de Evaluación Ambiental.

Este proyecto se clasifica según la Ley 21/2013 en el Anexo II, Grupo 7, perteneciente a ‘proyectos de infraestructuras’, y apartado i):
‘Construcción de variantes de población y carreteras convencionales no incluidas en el anexo I.’

Los proyectos pertenecientes al Anexo II deben estar sometidos a una evaluación ambiental simplificada. Por ser este un anteproyecto, no entra dentro de los objetivos fundamentales una evaluación del impacto ambiental de forma exhaustiva, de modo que se realizará una valoración muy simplificada con el fin de determinar el alcance del impacto ambiental que podría generar la construcción de este anteproyecto.

3. ANÁLISIS AMBIENTAL DEL TERRITORIO.

3.1. Análisis del Medio Físico.

El Corredor se sitúa entre los términos municipales de Catoira y Vilagarcía, comenzando en un punto al situado Oeste del centro de Catoira, en la vía EP-8001 y terminando al Norte de Vilagarcía, en la variante VG-4.7. Es un entorno de elevada riqueza medioambiental y paisajística, situado en una zona montañosa con vastas masas forestales.

- Climatología y Meteorología.

El clima de la zona, dentro de las características generales del clima costero gallego, océánico húmedo, es templado, con moderadas precipitaciones y poca oscilación térmica. A continuación se presentan datos climáticos obtenidos en la Estación de Pontevedra en el Periodo 1985-2010:
Datos Climáticos Medios:

<table>
<thead>
<tr>
<th>Medida</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperatura Media (°C)</td>
<td>14,8</td>
</tr>
<tr>
<td>Temperatura Media Máxima (°C)</td>
<td>19,2</td>
</tr>
<tr>
<td>Temperatura Media Mínima (°C)</td>
<td>10,4</td>
</tr>
<tr>
<td>Precipitación Mensual Media (mm)</td>
<td>134,4</td>
</tr>
<tr>
<td>Humedad Relativa Media (%)</td>
<td>72</td>
</tr>
<tr>
<td>Días de Precipitación >1mm</td>
<td>131,3</td>
</tr>
<tr>
<td>Días de Nieve</td>
<td>0,2</td>
</tr>
<tr>
<td>Días de Tormenta</td>
<td>13,9</td>
</tr>
<tr>
<td>Días de Niebla</td>
<td>31,9</td>
</tr>
<tr>
<td>Días de Helada</td>
<td>1,8</td>
</tr>
</tbody>
</table>

Datos Climáticos Extremos:

<table>
<thead>
<tr>
<th>Medida</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Máx. núm. de días de lluvia en el mes</td>
<td>30</td>
</tr>
<tr>
<td>Máx. núm. de días de nieve en el mes</td>
<td>1</td>
</tr>
<tr>
<td>Máx. núm. de días de tormenta en el mes</td>
<td>8</td>
</tr>
<tr>
<td>Prec. máx. en un día (l/m2)</td>
<td>108,1</td>
</tr>
<tr>
<td>Prec. mensual más alta (l/m2)</td>
<td>596,3</td>
</tr>
<tr>
<td>Prec. mensual más baja (l/m2)</td>
<td>0</td>
</tr>
<tr>
<td>Racha máx. viento (Km/h)</td>
<td>115</td>
</tr>
<tr>
<td>Tem. máx. absoluta (°C)</td>
<td>39,5</td>
</tr>
<tr>
<td>Tem. media de las máx. más alta (°C)</td>
<td>29,2</td>
</tr>
<tr>
<td>Tem. media de las mín. más baja (°C)</td>
<td>3,4</td>
</tr>
<tr>
<td>Tem. media más alta (°C)</td>
<td>22,7</td>
</tr>
<tr>
<td>Tem. media más baja (°C)</td>
<td>7,9</td>
</tr>
<tr>
<td>Tem. mín. absoluta (°C)</td>
<td>-3,6</td>
</tr>
</tbody>
</table>

-Geomorfología y geología:

La zona presenta un relieve variado, con zonas con pendientes suaves y otras más montañosas con pendientes pronunciadas. La mayor parte de los materiales rocosos pertenecen al complejo de Lage. Se trata en su mayoría de granitoide migmático.

-Hidrología Superficial y subterránea:

Los materiales son bastante impermeables, lo que provoca que se forme una red de drenaje superficial marcada.

-Fauna:

Se expone a continuación una lista con las especies de aves, mamíferos, anfibios y réptiles presentes en la zona:

-Aves:

- *Larus ridibundus*. Gaviota reidora común
- *Larus fuscus*. Gaviota sombría
- *Anas platyrhynchos*. Ánade real
- *Limosa lapponica*. Aguja colipinta
- *Ardea cinerea*. Garza real
- *Alcedo athíns*. Martín pescador
- *Egretta garzeta*. Garceta común
- *Picus viridis*. Pito real
- *Porzana porzana*. Polluela pintoja

Temperatura Media (ºC)

14,8

Temperatura Media Máxima (ºC)

19,2

Temperatura Media Mínima (ºC)

10,4

Precipitación Mensual Media (mm)

134,4

Humedad Relativa Media (%)

72

Días de Precipitación >1mm

131,3

Días de Nieve

0,2

Días de Tormenta

13,9

Días de Niebla

31,9

Días de Helada

1,8
- **Chlidonias Niger.** Furamel común
- **Sfema sandvicensis.** Charrán patinegro
- **Motacilla cinerea.** Lavandera cascadeña
- **Caplimulgus europaeus.** Chotacabras gris
- **Sylviia undata.** Currucha rabilarga
- **Phalacrocorax carbo.** Cormorán grande
- **Accipiter gentilis.** Azor
- **Sylviia atfcapilla.** Currucha capirotada
- **Accipiter nisus.** Gavilán
- **Cisticula juncidis.** Buitrón
- **Paros ater.** Carbonero garrapinos
- **Numenius arquata.** Zarapito real
- **Garrulus glandarius.** Arrandejo
- **Streptopelia turtur.** Tórtola común

- Mamíferos:

- **Erínaceus europaeus.** Erizo europeo occidental
- **Sciurus vulgaris.** Ardilla común
- **Crocidura russula.** Musaraña común
- **Mustela erminea.** Armíño
- **Rhinolophus hipposideros.** Murciélago pequeño de herradura
- **Mustela nivalis.** Comadreja
- **Rhinolophus ferrumequinum.** Murciélago grande de herradura
- **Plecotus auritus.** Orejudo septentrional
- **Lepus capensis.** Liebre

- Anfibios:

- **Triturus bascai.** Tritón ibérico
- **Bufo bufo.** Sapo común
- **Triturus heveticus.** Tritón palmeado
- **Hyla arborea.** Rana de San Antón
- **Salamandra salamandra.** Salamandra común
- **Rana iberica.** Rana pasilarga
- **Chioglossa lusitanica.** Salamandra rabilarga
- **Rana perezi.** Rana común

- Réptiles:

- **Anguis fragilis.** Lución
- **Chalcides striatus.** Esganzo común
- **Laceria lepida.** Lagarto ocelado
- **Coronella australis.** Culebra lisa europea
- **Lacerta schreiberi.** Lagarto verdinegro
- **Natrix natrix.** Culebra de collar
- **Podarcis bocagei.** Lagartija de Bocage
- **Vipera seoanei.** Víbora de Seoane
-Flora:

En general predominan las masas forestales, compuestas en su mayoría por pinos o eucaliptos y matorral atlántico. Las especies que habitan la zona son las siguientes:

- *Carex extensa*. Hierba perenne con rizoma corto.
- *Juncus maritimus*. Junco de mar.
- *Juncus maritimus*. Hierba perenne con estolones tuberosos.
- *Scirpus tabernaemontani*. Hierba perenne y rizomatosa.
- *Phragmites australis*. Hierba perenne y rizomatosa.
- *Pinus pinaster*. Pino marítimo.
- *Ulex europaeus*. Tojo.

3.2. Análisis del Paisaje.

El paisaje es la expresión espacial y visual del medio. El paisaje presente en la zona se caracteriza por la alternancia entre la geomorfología montañosa del borde litoral y el fondo escénico, definido por el horizonte del mar. La actuación humana en el paisaje está presente fundamentalmente por el tipo de vegetación existente, predomino de campos de cultivo y el núcleo urbano de Catoira. Además, las infraestructuras creadas en la zona, como puede ser la presencia de carreteras y líneas de ferrocarriles también influye notablemente en el paisaje.

En este anteproyecto, adquiere gran importancia la calidad estética del entorno natural. La morfología tiene una gran importancia en la calidad del paisaje y la vegetación ofrece una gran aportación a la calidad escénica, no tanto por su naturalidad sino por el factor cultural que implica. Los campos de cultivo presentes en la zona ofrecen un paisaje característico, además de esto, la variedad que ofrecen las especies arbóreas autóctonas y sobre todo la vegetación de marismas.
3.3. Análisis Socioeconómico.

El territorio de la zona denota la característica estructural del litoral rural gallego, aunque se deja sentir la influencia de la proximidad del área de población de Catoira. La población se dedica mayoritariamente al sector primario en esta zona, a actividades pesqueras o agricultura. En Vilagarcía, la actividad económica es similar en la zona de estudio del anteproyecto, diversificándose en el centro. En este, las actividades son más variadas, relacionadas con el puerto y el comercio principalmente.

La estructura tradicional de la propiedad del terreno en minifundio, determina un sistema arcaico de asentamientos pequeños y dispersos.

4. EVALUACIÓN DE LOS IMPACTOS.

A continuación evaluaremos los principales impactos ambientales que se prevé, serán generados, durante la fase de construcción y explotación.

4.1. Fase de Construcción.

Acción: Expropiaciones.
Factor afectado: Socioeconómico.

Las expropiaciones necesarias para la realización de las obras se sintetizan en el anexo de expropiaciones de este proyecto constructivo. Las afecciones generadas en este sentido, se corrigen en gran medida con una justa valoración de los bienes afectados.

Acción: Desbroce.
Factor afectado: Edafología y erosión.

Los desbroces para la ejecución de las obras conllevan la destrucción de la capa edáfica del terreno. Estas actuaciones serán negativas durante las obras, si bien han de adoptarse medidas correctoras consistentes en la preservación de la tierra vegetal existente que se retire en el desbroce, para su posterior utilización en la revegetación de taludes y zonas a explanar, con el fin de minimizar este tipo de impactos.
Acción: Desbroce.
Factor afectado: Capacidad agrícola-forestal.

El impacto de la construcción de este nuevo trazado puede considerarse medio, debido a que en parte ocupa terrenos de aprovechamiento forestal. No ocupa prácticamente parcelas empleadas para el aprovechamiento agrícola.

Acción: Desbroce.
Factor afectado: Vegetación.

Se contempla la afección elevada a masas arbóreas, pero no se detecta afección a especímenes singulares. El número de árboles afectados es elevado debido a que la mayor parte de la vía discurre por terrenos con masas forestales.

Acción: Movimiento de tierras.
Factor afectado: Geología.

Las únicas afecciones son las derivadas de la alteración de las formas del relieve natural producida por la construcción de desmontes, terraplenes y estructuras singulares.

Acción: Movimiento de tierras.
Factor afectado: Hidrología y drenaje.

Los impactos potenciales por este tipo de acciones, se generan principalmente, por desvío de los cursos de agua y por invasión de los mismos por terrenos y materiales de desecho. Se prevé la necesidad de desvíos de algunos arroyos. Los riesgos de invasión del cauce por tierras y otros materiales, son evitables mediante una correcta vigilancia ambiental que ponga en práctica las medidas correctoras que en este sentido han de establecerse.

Acción: Movimiento de tierras.
Factor afectado: Calidad del agua.

Este tipo de impactos, han de medirse teniendo en cuenta las afecciones que sobre el medio natural podrían producirse como consecuencia de la degradación de su hábitat, debido al aumento de al turbidez de las aguas.
4.2. Fase de Explotación.

Acción: Presencia de la infraestructura.
Factor afectado: Paisaje.

El paisaje se verá afectado, en fase de funcionamiento, debido a la interferencia que la infraestructura genera en las unidades de Paisaje, al introducir en el medio un elemento extrínseco. Estos impactos, se podrán corregir en gran medida, mediante medidas que los minimicen, consistentes en la revegetación de taludes con especies idénticas o similares a las existentes en el entorno.

Acción: Presencia de la infraestructura.
Factor afectado: Fauna.

Los impactos sobre la fauna derivados de la presencia de la infraestructura, están relacionados con los atropellos y comunicación transversal de la fauna. Dadas las características de la fauna existente, formada principalmente por anfibios, reptiles y pequeños mamíferos, la comunicación transversal de las especies, queda en parte garantizada a través de los pasos inferiores, superiores y obras de drenaje que se proyectan.

Acción: Presencia de la infraestructura.
Factor afectado: Patrimonio histórico-artístico.

No se afectan yacimientos arqueológicos ni edificios civiles, religiosos o castrenses.

Acción: Presencia de la infraestructura.
Factor afectado: Hidrología.

Las obras de drenaje y las estructuras diseñadas, permiten el paso del caudal de máxima avenida. En consecuencia no se prevén impactos.

Acción: Presencia de la infraestructura.
Factor afectado: Comunicación.

Se han repuesto las principales vías de comunicación locales afectadas. Algunos pequeños caminos no han sido repuestos, pero sólo en casos concretos donde mediante otra reposición se consiga un nivel de servicio igual o mejor al presente en la actualidad.

Acción: Efluentes gaseosos y sonoros.
Factor afectado: Comunicación.

La puesta en servicio del corredor liberará a la población de Catoira de la cercanía del tráfico, generándose un impacto positivo.
5. MEDIDAS PROTECTORAS Y CORRECTORAS.

5.1. Medidas Protectoras.

-Protección de la calidad del aire:
El transporte de material provoca la formación de polvo. Los pesados vehículos utilizados trituran el material formando finos. Como medidas protectoras se recomiendan riegos periódicos con estabilizantes químicos o agua, especialmente en zonas urbanas.

-Protección de la red de drenaje:
Al objeto de mantener el esquema de drenaje se diseñan las oportunas obras de fábrica dimensionadas para períodos de retorno de 100 años, como se puede comprobar en el anejo de drenaje. Con el fin de proteger la calidad de las aguas durante los procesos constructivos se prohibirán los vertidos a la red de drenaje natural. Una vez finalizadas las obras se llevará a cabo un plan de restauración con la implantación de las especies vegetales existentes.

-Protección de la flora y la fauna:
Se evitará en la fase de despeje y desbroce la tala de más ejemplares arbóreos de los necesarios. Además como medida de protección a la fauna, se intentará evitar alterar a aquellas especies importantes en sus ciclos de reproducción.

-Protección del sistema socioeconómico:
A pesar de ser pocas las vías de importancia afectadas, con el fin de mantener la permeabilidad territorial, se repone la comunicación en las carreteras y servicios que se vean afectados.

5.2. Medidas Correctoras.

Las medidas correctoras tienen como principal finalidad la implantación de una cubierta vegetal en todas las superficies que queden desprovistas de ella como consecuencia de las diferentes actividades de la construcción del corredor. Los fines de esta revegetación son, por una parte, lograr una mejora estética y paisajística de la obra, y, por otra, eliminar los riesgos de erosión. De este modo se consigue un elemento de enlace entre la carretera y el entorno que atraviesa, se reduce el impacto visual de las obras y se suavizan aspectos paisajísticos no gratos para el usuario.

-Cubierta vegetal: Se aprovecha la tierra vegetal extraída del propio terreno para formar una cubierta vegetal en taludes.
-Hidrosiembra: De este modo el entramado de raíces y tallos sujeta la superficie, creando una tierra fértil y propiciando la colonización natural de los taludes por especies autóctonas.
-Plantaciones: Especies arbustivas y arbóreas de mayor o menor tamaño, que reduzcan la erosión y el impacto paisajístico.
6. PLAN DE CONSERVACIÓN.

Para la conservación de los trabajos de revegetación se prevén una serie de acciones encaminadas a mantener las plantas en perfecto estado.

Una vez ejecutadas las obras, comienza el plazo de garantía de un año de duración, lo que se asegura el mantenimiento y conservación de las plantaciones durante este periodo. Finalizado el plazo de garantía y una vez recibida la obra definitiva será necesaria la conservación de las plantaciones y de las hidrosiembras durante tres o cuatro años para lograr un buen arraigo y mantener las plantas en buen estado. Una vez pasado este periodo de tiempo las plantas ya poseerán un desarrollo suficiente para garantizar su propio mantenimiento.

Con motivo de lo expuesto anteriormente, se proponen las siguientes tareas de mantenimiento:

- **Desbroces y siegas:** Eliminación de la maleza y escarificación del terreno que rodea a árboles y arbustos.
- **Abonado:** Se realizará un abonado anual a base de abono de naturaleza húmica.
- **Riegos:** Los riegos se efectuarán en los meses de verano sobre las plantaciones realizadas tanto de árboles como de arbustos e hidrosiembra.
- **Podas:** Se efectuará una poda anual, durante el invierno sobre las especies que lo requieran, ya sea para facilitar su normal desarrollo o para evitar que invadan la calzada y las cunetas.

7. PROGRAMA DE VIGILANCIA AMBIENTAL.

El programa de vigilancia ambiental tiene como objetivo la asunción, por parte de los promotores del proyecto, de un conjunto de medidas que, sin alterar los planteamientos iniciales del proyecto, sean beneficiosas para el medio ambiente. Se establece con él un sistema que trata de garantizar el cumplimiento de las indicaciones y medidas protectoras y correctoras. Mediante el seguimiento y control propuestos, se podrán comprobar los efectos de ciertos impactos de difícil predicción. Esto permitirá tomar medidas que corrijan el impacto que se genere en el transcurso del tiempo, como resultado del proceso de puesta funcionamiento de la vía. El plan se divide en diversas actividades según el factor que deba ser controlado. No es objeto de este anteproyecto el detalle de las actividades específicas de cada parte del programa de vigilancia ambiental.
ÍNDICE:
1. INTRODUCCIÓN.
2. TERRENOS AFECTADOS.
3. PRESUPUESTO.

ANEJO Nº8: EXPROPIACIONES.
1. INTRODUCCIÓN.

En el presente anejo se cuantifican las expropiaciones que se han de realizar para la ejecución del corredor. Para ello se ha calculado la superficie total de los terrenos necesarios para la construcción de la variante, aplicándose un precio medio por metro cuadrado expropiado. En este anteproyecto, y debido a que el suelo expropiado está, casi en su totalidad, formado por terrenos de cultivo o bosques, se decide fijar un precio estándar por metro cuadrado para todo tipo de terreno, y un valor fijo para las viviendas.

2. TERRENOS AFECTADOS.

Según lo establecido en el Reglamento General de Carreteras:

- Artículo 75.1:
 Los proyectos de construcción o trazado de nuevas carreteras, variantes, duplicaciones de calzada, acondicionamiento, restablecimiento de las condiciones de las vías y ordenación de accesos habrán de comprender la expropiación de los terrenos a integrar en la zona de dominio público, incluyendo en su caso los destinados a áreas de servicio y otros elementos funcionales de la carretera.

- Artículo 75.2:
 Excepcionalmente, en los casos de viaductos y puentes, la expropiación y, en consecuencia, la configuración de la zona de dominio público, podrá limitarse a los terrenos ocupados por los cimientos de los soportes de las estructuras y una franja de un metro, como mínimo, a su alrededor.

El resto de los terrenos afectados quedarán sujeto a la imposición de las servidumbres de paso necesarias para garantizar el adecuado funcionamiento y explotación de la carretera.

- Artículo 74.1:
 Son de dominio público los terrenos ocupados por las carreteras estatales y sus elementos funcionales, y una franja de terreno de ocho metros en autopistas, autovías y vías rápidas, y de tres metros en el resto de las carreteras, a cada lado de la vía, medidas en horizontal y perpendicularmente a la misma, desde la arista exterior de la explanación.

 La arista exterior de la explanación es la intersección del talud del desmonte, del terraplén o, en su caso, de los muros de sostenimiento colindantes, con el terreno natural.

 En los casos especiales de puentes, viaductos, túneles, estructuras u obras similares, se podrá fijar como arista exterior de la explanación la línea de proyección ortogonal del borde de las obras sobre el terreno. Será en todo caso de dominio público el terreno ocupado por los soportes de la estructura.

 Teniendo en cuenta lo anterior, se dispondrá de una franja de 8 metros para la zona de dominio público en el tronco de la vía, y de tres metro en los ramales y glorietas.
3. PRESUPUESTO.

Teniendo en cuenta lo expuesto anteriormente, el valor de las expropiaciones es el siguiente:

<table>
<thead>
<tr>
<th>DESCRIPCIÓN</th>
<th>PRECIO UNITARIO (€)</th>
<th>MEDICIÓN</th>
<th>VALOR (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>m² Expropiaciones</td>
<td>6,00</td>
<td>262.893,88</td>
<td>1.577.363,26</td>
</tr>
<tr>
<td>Ud. Viviendas</td>
<td>300.000,00</td>
<td>1,00</td>
<td>300.000,00</td>
</tr>
<tr>
<td>TOTAL</td>
<td>6,00</td>
<td></td>
<td>1.877.363,26</td>
</tr>
</tbody>
</table>

Por lo que el importe para expropiaciones asciende a un total de UN MILLÓN OCHOCIENTOS SETENTA Y SIETE MIL TRESCUENTOS SESENTA Y TRES EUROS CON VEINTISEIS CÉNTIMOS.
ANEJO Nº9: PRESUPUESTO PARA CONOCIMIENTO DE LA ADMINISTRACIÓN.
Presupuesto de ejecución material

<table>
<thead>
<tr>
<th></th>
<th>Importe (€)</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 TRABAJOS PREVIOS</td>
<td>147.466,10</td>
<td>0,91</td>
</tr>
<tr>
<td>2 EXPLICACIÓN</td>
<td>5.447.906,17</td>
<td>33,76</td>
</tr>
<tr>
<td>3 FIRMES</td>
<td>2.793.229,16</td>
<td>17,31</td>
</tr>
<tr>
<td>4 DRENAJE</td>
<td>1.261.946,24</td>
<td>7,82</td>
</tr>
<tr>
<td>5 ESTRECHAS</td>
<td>4.591.783,10</td>
<td>28,46</td>
</tr>
<tr>
<td>6 SEÑALIZACIÓN, BAJAMIENTO Y DEFENSAS</td>
<td>539.718,00</td>
<td>3,34</td>
</tr>
<tr>
<td>7 IMPACTO AMBIENTAL</td>
<td>643.572,56</td>
<td>3,99</td>
</tr>
<tr>
<td>8 VARIAS</td>
<td>472.840,01</td>
<td>2,93</td>
</tr>
<tr>
<td>9 SEGURIDAD Y SALUD</td>
<td>238.476,92</td>
<td>1,50</td>
</tr>
<tr>
<td>TOTAL P.E.M.</td>
<td>16.136.938,26</td>
<td></td>
</tr>
</tbody>
</table>

17% Gastos Generales. 2.743.279,50
6% Beneficio Industrial. 968.216,30
Suma de G.G. y B.I. 3.711.495,80

Presupuesto Base de Licitación 19.848.434,06
I.V.A. 21% 4.168.171,15
Presupuesto Base de Licitación más I.V.A. 24.016.605,21
Valor de las Expropiaciones 1.877.363,26
Presupuesto para Conocimiento de la Administración 25.893.968,47

Asciende el presupuesto para conocimiento de la administración a la expresada cantidad de VEINTICINCO MILLONES OCHOCIENTOS NOVENTA Y TRES MIL NOVECIENTOS SESENTA Y OCHO EURO CON CUARENTA Y SIETE CÉNTIMOS.

A Coruña, Julio de 2015
El autor del anteproyecto:

Miguel Burés Muñiz.
ANEJO Nº10: REPORTAJE FOTOGRÁFICO.
Nuevo Corredor entre Vilagarcía de Arousa y Catoira.
1. Camino de acceso a un depósito de agua.

2. Paso Superior en el Camino a la izquierda de la bifurcación.
3. Paso Superior y reposición del camino.

4. Rego do Freixeiro.
5. Carretera bajo viaducto do Freixeiro.

8. Vista desde el monte del valle que atraviesa el viaducto do Freixeiro.
9. Vista desde el monte al valle que atraviesa el viaducto do Souto da Vila.

10. Vista desde la carretera al valle que atraviesa el viaducto do Souto da Vila.
11. Vista desde el sur al monte y al valle.

12. VG-4.7 en la zona del enlace.