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ABSTRACT 7 
Increasing the efficiency in the process to numerically compute the flutter derivatives of bridge 8 
deck sections is desirable to advance the application of CFD based aerodynamic design in 9 
industrial projects. In this paper, a 2D unsteady Reynolds-averaged Navier-Stokes (URANS) 10 
approach adopting Menter’s SST k-ω turbulence model is employed for computing the flutter 11 
derivatives and the static aerodynamic characteristics of two well known examples: a rectangular 12 
cylinder showing a completely reattached flow and the generic G1 section representative of 13 
streamlined deck sections. The analytical relationships between flutter derivatives reported in the 14 
literature are applied with the purpose of halving the number of required numerical simulations for 15 
computing the flutter derivatives. The solver of choice has been the open source code OpenFOAM. 16 
It has been found that the proposed methodology offers results which agree well with the 17 
experimental data and the accuracy of the estimated flutter derivatives is similar to the results 18 
reported in the literature where the complete set of numerical simulations has been performed for 19 
both heave and pitch degrees of freedom.  20 
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1. INTRODUCTION 25 

Long span bridges are prone to aeroelastic phenomena such as vortex induced vibrations, flutter or 26 
buffeting. In fact, safety against flutter instability is one of the fundamental requirements in long 27 
span bridge design. If the wind speed exceeds the critical flutter speed of the structure, self-excited 28 
oscillations of the deck would rapidly amplify causing the collapse of the bridge. 29 

The most widely used method for the identification of the flutter critical wind speed is Scanlan’s 30 
approach, developed in the 1970s (Scanlan and Tomko, 1971), where a set of semi-empirical 31 
functions, named flutter derivatives, must be identified in order to define the motion-induced 32 
aerodynamic load acting on the bridge deck (Bartoli and Mannini, 2008). Traditionally, the 33 
identification of flutter derivatives has been conducted by means of wind tunnel tests of sectional 34 
models of bridge decks. The application in recent years of numerical methods in the identification 35 
of flutter derivatives aims at avoiding expensive and cumbersome experimental campaigns which 36 
are the standard approach in industrial applications currently. 37 

In Computational Fluid Dynamics (CFD) modeling the flutter derivatives identification can be 38 
done following two different approaches (Fransos and Bruno, 2006). The first one requires the 39 
simulation of the forced harmonic oscillations in pitch and heave degrees of freedom. Then, the 40 
flutter derivatives are identified from the amplitude and phase relationships between the imposed 41 
displacement and the induced aeroelastic forces. The second method, based on indicial theory, 42 



requires simulating an abrupt displacement of the body immersed in the flow, which causes non-43 
stationary forces. The flutter derivatives can then be computed from the ratio between the Fourier 44 
transforms of the step-response non-stationary forces and the prescribed step-input displacement. 45 
The methodology, based on the simulation of forced oscillations, has been, by far, more widely 46 
used than the one based on the indicial approach despite the apparent efficiency of the indicial 47 
function approach. 48 

Focusing on applications of the harmonic forced oscillations approach, the trend in the 1990’s and 49 
early 2000’s has been developing in-house CFD solvers based on the finite-difference, finite 50 
element, finite volume or discrete vortex methods. The references in the literature are numerous 51 
and some examples, without intending to be exhaustive are: Mendes and Branco (1998), Larsen 52 
and Walther (1998), Morgenthal and McRobie (2002), Xiang and Ge (2002), Vairo (2003), Jeong 53 
and Kown (2003), Frandsen (2004), Zhu et al. (2007) and Zhu et al. (2009). Developing in-house 54 
software has obviously been a barrier for the application of numerical methods in industrial bridge 55 
design problems due to its scientific complexity and the required labor and financial resources. 56 
Therefore more recently the focus has been put on applying general purpose commercial finite 57 
volume solvers in bridge aerodynamics problems. An early application was authored by Bruno et 58 
al. (2001) who used FLUENT for studying the aerodynamic response of a static box deck and the 59 
effect of section details such as fairings and barriers. Fluid-structure interaction problems have 60 
been addressed more recently. In Ge and Xiang (2008) both in-house solvers and the commercial 61 
code FLUENT are applied, depending on the chosen approach for turbulence modeling. Sarwar et 62 
al. (2008) obtained the flutter derivatives of a bridge deck section and high aspect ratio rectangular 63 
cylinders by means of 3D Large Eddy Simulation (LES) using FLUENT. Huang et al. (2009) also 64 
used FLUENT to compute the flutter derivatives of the Great Belt Bridge and the Sutong Yangtze 65 
cable-stayed bridge. Starossek et al. (2009) employed the commercial software COMET to obtain 66 
the flutter derivatives of 31 different bridge sections, including experimental validation for a subset 67 
of 9 sections tested in a water tunnel. Bai et al. (2010) used a combination of in-house code and 68 
ANSYS-CFX commercial software for computing force coefficients and flutter derivatives of 69 
various 3D deck sections. Huang and Liao (2011) used FLUENT to simulate forced oscillations of 70 
a flat plate and a bridge deck containing a linear combination of a set of frequencies. Also, Brusiani 71 
et al. (2013) employed FLUENT to compute the flutter derivatives of the Great Belt Bridge using a 72 
different turbulence model than Huang and co-workers. Of particular interest is the growing use of 73 
open source general CFD solvers. In Sarkic et al. (2012), the open source code OpenFOAM is 74 
applied to numerically replicate the wind tunnel test for identifying the force coefficients and flutter 75 
derivatives of a box deck cross-section. A more recent application by some of the authors of the 76 
former reference can be found in Sarkic and Höffer (2013) where the LES turbulence model is 77 
applied to the same box deck. 78 

CFD applications based on indicial functions are scarce in spite of its potential. In Bruno and 79 
Fransos (2008) it has been remarked that in this method just a single simulation for each degree of 80 
freedom is required to identify the complete set of flutter derivatives and that only the transient 81 
flow needs to be simulated. Thus, this approach is less demanding in computational resources than 82 
the classical forced oscillation based method. On the other hand, the problem is particularly 83 
challenging from the CFD simulation perspective. Early applications are Lesieutre et al. (1994) 84 
who simulated the motion of a wing in the frame of an application to aircraft manoeuvers and Brar 85 
et al. (1996) who applied the Finite Element Method to obtain the flutter derivatives of an airfoil 86 
and a rectangular cylinder. A modified smoothed indicial approach was further developed in 87 
Fransos and Bruno (2006) and Bruno and Fransos (2008) who used FLUENT to obtain the flutter 88 



derivatives of a flat plate of finite thickness and studied also the effect of the Reynolds number on 89 
the flutter derivatives. The indicial approach has also been applied in the frame of a probabilistic 90 
study of the aerodynamic and aeroelastic responses of a flat plate (Bruno et al, 2009). More 91 
recently Zhu and Gu (2014) have presented a method to extract the flutter derivatives of 92 
streamlined bridge decks, even if the application of the modified indicial approach to bluff bodies 93 
remains questionable.  94 

From the previous review of the state of the art regarding applications of CFD in the design of long 95 
span bridges, the main reasons why numerical simulations are not being generally applied in bridge 96 
design in the industry to complement wind tunnel tests need to be discussed. Developing and 97 
upgrading in-house software is a complex task and requires highly skilled personnel and substantial 98 
funding. Consequently it can only be achieved by a small number of organizations in the world. 99 
The increasing use of commercial software in recent years is making it easier to access the required 100 
technology. However, the cost of licenses, particularly for running massively parallel simulations, 101 
in many cases prevents the extensive use of CFD in design problems. This circumstance has made 102 
particularly appealing the use of open source solvers for both industry and academia, and open 103 
source software has already been applied in bridge design problems. Besides this, the increasing 104 
number of published successful simulations in bridge related problems means that CFD techniques 105 
are nowadays more mature and therefore more robust and reliable. 106 

In spite of the dramatic improvements in computational power and access to cluster technology of 107 
recent years, the computer power demands linked with modeling complex fluid-structure 108 
interaction problems remains a key issue. In this respect, any method or technique which allows 109 
decreasing computational demands would facilitate incorporating CFD based design in bridge 110 
engineering design. A number of researchers have proposed explicit relationships between flutter 111 
derivatives which have proved to be reliable for streamlined bridge decks such as Matsumoto 112 
(1996), Scanlan et al. (1997), Chen and Kareem (2002) or Tubino (2005). The application of these 113 
formulae allows the number of computer simulations for obtaining the flutter derivatives to be 114 
reduced to just half of the number required following the standard approach based on forced 115 
harmonic vibrations in  heave and pitch degrees of freedom. To the authors’ knowledge the 116 
aforementioned approach has not been applied in CFD-based studies to date.  117 

The aim of the current piece of research is to propose a cost effective, and therefore efficient, 118 
computer based approach for obtaining force coefficients and flutter derivatives of bridge deck box 119 
sections which could be used in industrial applications where the shape of different bridge deck 120 
designs could be numerically optimized. Consequently, a 2D URANS strategy is proposed, using 121 
the general purpose open source CFD solver OpenFOAM v2.1.1 in combination with the explicit 122 
relationships between flutter derivatives mentioned above. The more demanding 3D Detached 123 
Eddy Simulation (DES) or LES approaches, in spite of their superior accuracy, have not been 124 
considered in this work since they would pose additional challenges in terms of higher computer 125 
power demands and model setup. 126 

A rectangular cylinder showing a separated and reattached time-averaged flow pattern has been 127 
selected as one of the case studies for the computation of the flutter derivatives. In particular, a 128 
ratio B/H=4.9 rectangular cylinder (B is the prism width and H is the height) was chosen in order to 129 
replicate an existing sectional model at the wind tunnel of the University of Nottingham. In the 130 
literature, the number of published references, both experimental and computational, dealing with 131 
the response of B/H=5 rectangular cylinders is plentiful, to a great extent thanks to the BARC 132 
initiative (Bruno et al. 2014). Taking into account the expected minimal differences between the 133 



aerodynamic response of B/H=4.9 and B/H=5 rectangular cylinders, for the sake of the efficiency 134 
of means in research, the authors have considered that the existing literature on 5:1 rectangular 135 
cylinders is adequate for the validation of the force coefficients and the flutter derivatives of the 136 
B/H=4.9 rectangular cylinder at 0º angle of attack. However, in the case that additional numerical 137 
studies would require validation against experimental data outside the range found in the literature, 138 
further wind tunnel tests could readily be conducted using the existing B/H=4.9 sectional model. 139 

The second application case has been the G1 generic box section described in Scanlan and Tomko 140 
(1971) and Larsen and Walther (1998). The modern practice in long span bridge design has 141 
incorporated box deck cross-sections as the most common choice for these challenging structures. 142 
There are several reasons for this: a good aerodynamic and aeroelastic response characteristic of 143 
streamlined cross-sections, high torsional stiffness, construction economy and, in many cases, 144 
superior aesthetic value compared to truss girders. Recent examples of applications comprising box 145 
decks are the Forth Replacement Crossing in the United Kingdom, the Normandy Bridge and 146 
Millau Viaduct, in France, the Sutong Bridge in China or the Russky Bridge in Russia, amongst 147 
many others. 148 

In the first part of this paper, the fundamental formulation and the numerical approach adopted, 149 
along with the computational models, for simulating the aerodynamic response of the bridge decks 150 
are explained. Then, the results of the study of the sensitivity of the solution to the spatial and 151 
temporal discretisations for the G1 generic section are summarized. Next the aerodynamic 152 
characteristics of the static B/H=4.9 rectangular cylinder are analyzed based on the values of the 153 
Strouhal number, force coefficients and the distribution of the averaged pressure coefficient and its 154 
standard deviation. Then the flutter derivatives of the rectangular cylinder, where the relationships 155 
between flutter derivatives have been applied, are reported and compared with wind tunnel data. It 156 
follows the analysis of the characteristics of the static G1 section based on force coefficients and 157 
the distribution of the averaged pressure coefficient. The results section ends with the report of the 158 
flutter derivatives of the G1 section and the corresponding comparison with experimental and other 159 
numerical data in the literature. Finally, conclusions are drawn from the work reported herein. 160 

2. NUMERICAL FORMULATION 161 

The flow around the bluff bodies of interest is modeled by means of the unsteady Reynolds-162 
averaged Navier-Stokes equations considering incompressible flow. A 2D URANS approach has 163 
been preferred which, according to Brusiani et al. (2013), is equivalent to imposing the perfect 164 
correlation of the flow structures in the span-wise direction.  165 

The time averaging of the equations for conservation of mass and momentum gives the Reynolds 166 
averaged equations of motion in conservative form. According to Wilcox (2006): 167 

 168 
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where 𝑈𝑖 is the mean velocity vector, 𝑥𝑖 is the position vector, 𝑡 is the time, 𝜌 is the fluid density, 170 
assumed constant, 𝑢𝑖

,  is the fluctuating velocity and the overbar represents the time average, 𝑃 is 171 



the mean pressure, 𝜇 is the fluid viscosity and 𝑆𝑖𝑗 is the mean strain-rate tensor. From the above 172 
equation, the specific Reynolds stress tensor is defined as: 173 

 𝜏𝑖𝑗 = −𝑢𝚤
,𝑢𝚥

,����� (2) 
 174 

which is an additional unknown to be modeled based on the Boussinesq assumption for one and 175 
two equation turbulence models (Wilcox, 2006). 176 

 𝜏𝑖𝑗 = 2𝜈𝑇𝑆𝑖𝑗 −
2
3
𝑘𝛿𝑖𝑗  (3) 

 177 

where 𝜈𝑇 is the kinematic eddy viscosity, 𝑆𝑖𝑗 is the mean strain-rate tensor and 𝑘 is the turbulent 178 
kinetic energy per unit mass. 179 

In this work the closure problem is solved applying Menter’s k-ω SST model for incompressible 180 
flows, reported in Menter and Esch (2001). 181 

For the simulations where forced oscillations of the bluff body have been imposed, the Arbitrary 182 
Lagrangian Eulerian (ALE) formulation has been applied for allowing movements of the mesh 183 
inside the computational domain. The conservation of mass and momentum equations are written 184 
as follows (Bai et al., 2010, Sarkic et al., 2012): 185 
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where 𝑈𝑔𝑖 is the grid velocity in the i-th direction. 187 

3. FORCE COEFFICIENTS AND FLUTTER DERIVATIVES COMPUTATION BY 188 
MEANS OF FORCED OSCILLATION SIMULATIONS 189 

The definition of the force coefficients considered in this study is given in (5): 190 
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In the former expressions 𝐷 is the drag force per span length, positive in the windward direction, 𝐿 192 
is the lift force per span length, positive upwards, and 𝑀 is the pitching moment per span length, 193 
positive clockwise,  𝜌 is the fluid density, 𝑈 is the flow speed and B is the bluff body width.  194 

Flutter derivatives are semi-empirical parameters which relate motion-induced forces and with the 195 
displacements of the structure and their time derivative. These parameters have traditionally been 196 
identified using wind tunnel tests, but more recently, numerical based simulations have been 197 
applied. 198 



According to Simiu and Scanlan (1996), the aeroelastic forces on a bridge deck, considering two 199 
degrees of freedom (heave and pitch), can be written as follows: 200 
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where 𝐿𝑎𝑒 is the aeroelastic force per unit of span length, 𝑀𝑎𝑒 is the aeroelastic moment per unit of 202 
span length, 𝜌 is the fluid density, 𝑈 is the flow speed, 𝐾 = (𝐵𝜔) 𝑈⁄  is the reduced frequency, 𝐵 is 203 
the deck width, 𝜔 the circular frequency of oscillation, ℎ is the heave displacement, 𝛼 is the 204 
torsional rotation, ℎ̇ and 𝛼̇ are the time derivatives and 𝐻𝑖∗ and 𝐴𝑖∗ (𝑖 = 1, … ,4) are the flutter 205 
derivatives. 206 

Assuming prescribed harmonic forced oscillations ℎ = ℎ0𝑒𝑖𝜔𝑡 and 𝛼 = 𝛼0𝑒𝑖𝜔𝑡, where h0 and α0 207 
are the amplitudes of the oscillations, and also that motion-induced forces are linear functions of 208 
the movement; after some manipulation, the following expressions are obtained for the 209 
identification of the flutter derivatives: 210 
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where 𝜑𝐿−ℎ, 𝜑𝐿−𝛼, 𝜑𝑀−ℎ and  𝜑𝑀−𝛼 are the phase lags of the fluctuating aeroelastic lift and 212 
moment with respect to the heave and pitch harmonic oscillations and 𝐶𝑙 and 𝐶𝑚 are the amplitudes 213 
of the non-dimensional aeroelastic lift and moment. 214 

It must be borne in mind that in Larsen and Walther (1998), whose results are used later for 215 
validation, the flutter derivatives are computed dividing equations (7.a) to (7h.) by 2. 216 

4. RELATIONSHIPS BETWEEN FLUTTER DERIVATIVES 217 

As mentioned in the introduction, a number of publications can be found in the literature reporting 218 
several relationships amongst flutter derivatives. Tubino (2005) has derived the following 219 
relationships between heave-related and pitch-related flutter derivatives assuming the linear 220 
formulation hypothesis for the self-excited forces: 221 

𝐻1∗(𝐾) = 𝐾𝐻3∗(𝐾) −
𝐶𝑑
𝐾

 (8.a) 
 

𝐴1∗(𝐾) = 𝐾𝐴3∗(𝐾) (8.c) 

𝐻4∗(𝐾) = −𝐾𝐻2∗(𝐾) (8.b)  𝐴4∗(𝐾) = −𝐾𝐴2∗(𝐾) (8.d) 



The above equations are similar to the ones reported by Matsumoto (1996) apart from the (𝐻1∗,𝐻3∗) 222 
relationship, that does not consider the term containing the drag coefficient. For streamlined 223 
sections with low drag coefficient its contribution is nearly negligible. 224 

Experimental validation of the former relationships reported in Tubino (2005), has shown that the 225 
relationships between (𝐻1∗,𝐻3∗) and (𝐴1∗ , 𝐴3∗ ) were satisfied for all the cases considered while the 226 
relationships between (𝐻2∗,𝐻4∗) and (𝐴2∗ , 𝐴4∗) were closely verified for streamlined deck cross-227 
sections, since minor discrepancies are identified between experimental realizations and the 228 
approximated values. In Matsumoto (1996), the reported relationships between flutter derivatives 229 
are confirmed for rectangular cylinders less affected by vortex generation, proposing as a reference 230 
lower bound a 5:1 ratio. 231 

5. GEOMETRY AND COMPUTER MODELING 232 

Two different geometries have been considered as case studies in the present work: a B/H=4.9 233 
rectangular cylinder (H is the section depth or height), and the generic G1 deck section, described 234 
in Larsen and Walther (1998), representative of streamlined box decks.  235 

5.1. B/H=4.9 rectangular cylinder 236 

Figure 1 shows the layout of the flow domain and boundary conditions employed in the rectangular 237 
cylinder simulations. The flow domain considered for the rectangular cylinder case is 40.8B by 30B 238 
similar to the size employed in successful simulations by other researchers such as Fransos and 239 
Bruno (2010). 240 

 241 
Figure 1. Flow domain definition and boundary conditions for the B/H=4.9 rectangular cylinder 242 
(not to scale). 243 

A constant velocity inlet has been set at the upwind boundary (the left side in the figure) of the 244 
computational domain. The incoming flow has a turbulence intensity of 1 % along with a 0.1B 245 
turbulent length scale as per Ribeiro (2011). A pressure outlet at atmospheric pressure has been 246 
imposed at the right side (see figure 1). The upper and lower boundaries have been defined as slip 247 
walls. The corners of the prism have been modeled as sharp and its walls are defined as non-slip. 248 
When the rectangular cylinder is forced to oscillate the resultant velocity field around the 249 



rectangular cylinder wall is corrected, so that the velocity of the flow at the moving boundary is 250 
equal to the mesh velocity and therefore no flux across the wall takes place. 251 

The numerical schemes adopted in the simulations reported herein are summarized next. The 252 
interpolation of values from the cell centers to face centers is done using a linear scheme. The 253 
gradient terms are discretised using the Gauss scheme with a linear interpolation scheme. For the 254 
divergence terms, the Gauss scheme is also selected, adopting linear upwind and limited linear 255 
interpolation schemes. For the Laplacian terms the choice has been the Gauss scheme with a linear 256 
interpolation scheme and a limited surface normal gradient scheme. The Euler first order bounded 257 
implicit scheme was set for the first time derivative terms. 258 

A block structured mesh with a topology similar to the one in Braun and Awruch (2003), has been 259 
generated. The total number of cells is 148320, and the number of cells around the walls of the 260 
rectangular cylinder is 460. For the first layer of cells, the height to width ratio is 𝛿1 𝐵⁄ = 5.11 ×261 
10−4, for which the mean value of the non-dimensional height (𝑦+ = (𝛿1𝑢∗) 𝜈⁄ , where 𝛿1 is the 262 
height of the first prismatic grid layer around the deck and 𝑢∗ is the friction velocity) is about 1.8 263 
and the maximum value is close to 8 at 𝑅𝑒 = 1.01 × 105. These bounds are the similar to those 264 
reported in Sarkic et al. (2012), and in this model, the number of cells with 𝑦+ > 4 is about 5% of 265 
the total number of cells around the rectangular cylinder and they are located mainly in the 266 
windward corners. In both static and forced harmonic oscillations a maximum Courant number of 1 267 
has been imposed, which produces for the static prism at the Reynolds number of reference a mean 268 
non-dimensional time step ∆𝑠��� = ∆𝑡���𝑈 𝐵 = 6.7 × 10−4⁄ . The abundant literature reporting 269 
numerical studies on rectangular cylinders means verification studies concerning mesh size and 270 
time step refinements for the rectangular cylinder case can be avoided, since the authors have used 271 
common mesh topologies and have adopted mesh characteristics and a time step more demanding 272 
than other successful simulations. 273 

5.2. G1 generic deck cross-section 274 

The detailed geometry of the G1 generic cross-section is depicted in figure 8. The flow domain size 275 
in this case is 37B by 27B (B is the deck width), similar to the size employed in the rectangular 276 
cylinder case. The boundary conditions are the same as in the rectangular cylinder case. 277 

 278 



Figure 2. Flow domain definition and boundary conditions for the G1 section (not to scale). 279 

To verify the spatial discretisation, for the streamlined G1 deck section three different grids, with 280 
different mesh densities, have been considered for the static deck case with a 0º angle of attack. 281 
The meshes are identified as Coarse, Medium and Fine grids. In all the cases, a 2D block structured 282 
regular mesh has been used. A high density mesh has been defined around the deck cross-section, 283 
the so-called boundary layer mesh, taking special care in order to obtain maximum values for the 284 
first grid non-dimensional height 𝑦+ below 4, which is a more demanding bound than the one set 285 
by Sarkic et al. (2012) for a similar problem. In this manner, no wall functions are required and the 286 
turbulence model equations are integrated along the viscous sublayer. The thickness of this layer is 287 
B/25. The Coarse mesh comprises 25 rows of elements in this zone and the height of the first 288 
element around the cross-section is defined as 𝛿1 𝐵⁄ = 2.08 × 10−4, while the expansion ratio 289 
between the end cell and the start cell is 25. For the Medium (Figure 3) and Fine meshes the 290 
boundary layer definition was identical: 50 rows considering an expansion ratio of 10, which gives 291 
a first cell non-dimensional height 𝛿1 𝐵⁄ = 2.03 × 10−4, very close to the Coarse mesh case in 292 
order to be able to drive conclusions from the verification analyses since the 𝑦+ values are 293 
comparable for the three cases. For a Reynolds number 𝑅𝑒 = 1.07 × 105, these mesh arrangements 294 
offer a mean value of the 𝑦+ around the deck close to 1, with a very limited number of cells with 295 
𝑦+ > 2 located at the windward corners of the deck. The maximum value of 𝑦+ for the three cases 296 
is about 3.7.   297 

In table 1 the total number of cells, the number of cells around the deck section and the integral 298 
aerodynamic parameters are reported along with the standard deviation (prime symbol) values of 299 
the force coefficients for each mesh. 300 

Table 1. Properties and results of the grid-refinement study for the G1 section.  

Grid Total 
cells 

Cells 
around 
deck 

𝑆𝑡 𝐶𝑑 𝐶𝑙 𝐶𝑚 𝐶′𝑑 𝐶′𝑙 𝐶′𝑚 

Coarse 149600 640 0.20 0.056 -0.026 0.035 0.0003 0.010 0.0022 
Medium 268150 770 0.19 0.057 -0.033 0.034 0.0006 0.022 0.0047 
Fine 363300 770 0.19 0.057 -0.034 0.034 0.0006 0.022 0.0047 

 301 

 302 

  
Figure 3. G1 section block structured grid: a) close-up of the deck and b) detail around the lee-ward 303 
corner of the deck. 304 

The main discrepancies found have been the lower values in the standard deviation of the force 305 
coefficients and the slight underestimation of the lift coefficient when the coarse mesh has been 306 



used. Consequently the Coarse mesh has been disregarded and Medium mesh is adopted hereafter 307 
since the results are similar to the ones obtained using the Fine mesh at a lower computational cost. 308 

Regarding the analysis of the sensitivity of the solution depending on the chosen time step, two 309 
different maximum Courant numbers equal to 1 and 0.5 have been considered in order to check the 310 
influence of the temporal discretisation (Mannini et al., 2010). In table 2, where the non-311 
dimensional time step is defined as ∆𝑠��� = ∆𝑡���𝑈/𝐵, the numerical results obtained are reported, 312 
finding that they offer very close figures; therefore the higher maximum Courant number is 313 
retained for the remaining simulations.  314 

Table 2. Results of the time-refinement study for the G1 section.  
Max. Co. numb. ∆𝑠��� 𝑆𝑡 𝐶𝑑 𝐶𝑙 𝐶𝑚 𝐶´𝑑 𝐶´𝑙 𝐶´𝑚 

1 3.5e-4 0.19 0.057 -0.033 0.034 0.0006 0.022 0.0047 
0.5 1.8e-4 0.20 0.058 -0.037 0.034 0.0006 0.019 0.0040 

 315 

5.3. Grid movement strategy 316 

The computer implementation of the ALE formulation requires a mesh-update method that assigns 317 
mesh-node velocities or displacements at each calculation time step (Donea et al., 2004).  318 

In the simulations conducted in this research the boundary motion is defined by the prescribed 319 
forced oscillations of the bluff body, which follows a sinusoidal law with given frequency and 320 
amplitude. On the other hand, the exterior boundaries of the fluid domain are fixed along the 321 
simulations. The whole mesh is allowed to deform between the moving and fixed boundaries. 322 

Amongst the available mesh movement algorithms a Laplacian smoothing technique for each 323 
component of the node-mesh position has been chosen (Oliver, 2009). According to Jasak and 324 
Rusche (2009), the Laplace equation can be expressed as: 325 

 𝛻 ∙ 𝑘𝛻𝐮=0 (9) 

where u is the node-mesh displacement vector and k is the diffusion coefficient.  326 

In this work the mesh control is achieved by computing the motion of the grid points solving the 327 
Laplace equation with variable diffusivity using a method based on the quadratic inverse distance 328 
from the oscillating boundary. This prevents the distortion of the smallest elements around the 329 
rectangular cylinder (Löhner, 2008). 330 

5.4. Forced oscillations characteristics and application of relationships between flutter 331 
derivatives 332 

With the aim of limiting the computational cost of obtaining the set of 8 flutter derivatives, the 333 
relationships between flutter derivatives (8.a–8.d) reported in Tubino (2005) are applied. As a 334 
consequence, only half of the simulations are required, which represents a substantial reduction in 335 
the computational demands of the problem. The pitch degree of freedom has been chosen as the 336 
one for carrying out the numerical simulations; therefore the 𝐻2∗, 𝐻3∗, 𝐴2∗  and 𝐴3∗  flutter derivatives 337 
are computed by means of the CFD simulations, while the 𝐻1∗, 𝐻4∗, 𝐴1∗  and 𝐴4∗  flutter derivatives are 338 
estimated using equations (8.a) to (8.d). The amplitude of the forced oscillations in the present 339 
work is 𝛼0 = 1° for the two considered application examples. The sign convention adopted herein 340 



has been the same as in Sarkar et al. (2009): heave and aeroelastic lift force positive downward, 341 
while the aeroelastic moment and rotation have been considered positive for a nose-up rotation. 342 

 343 
6. RESULTS AND DISCUSION 344 
6.1 B/H=4.9 rectangular cylinder 345 
6.1.1 Flow simulation around the static B/H=4.9 rectangular cylinder 346 

In table 3 the Strouhal number, the mean drag coefficient and the standard deviation of the lift and 347 
drag coefficients at 𝑅𝑒 = 1.01 × 105 are presented along with experimental data from Schewe 348 
(2009) and the numerical data computed using two different 2D URANS approaches. The URANS 349 
references which have been considered for comparison are: Ribeiro (2011) who reports, amongst 350 
others, the results of a Reynolds Stress Model (RSM) simulation and Mannini et al. (2011) where 351 
the Linearised Explicit Algebraic (LEA) version of the Explicit Algebraic Reynolds Stress Model 352 
(EARSM) coupled with the standard k-ω turbulence model is employed.  It must be borne in mind 353 
that in the references used for validation the ratio of the rectangular cylinder is B/H=5. In table 3, 354 
the reference dimension for drag coefficient and the standard deviations is B, therefore the data in 355 
Mannini et al. (2011), Ribeiro (2011) and Schewe (2009) which are based on H, have been 356 
modified for comparison. For the simulation of the B/H=4.9 static rectangular cylinder the 357 
simulated length has been about 100 non-dimensional time units and the reported results in table 3 358 
have been averaged along a non-dimensional time 𝑠 = 𝑡𝑈/𝐵 = 74. 359 

Table 3. B/H=4.9 rectangular cylinder: Strouhal number and force 
coefficients.  
 𝑆𝑡 𝐶𝑑 𝐶´𝑑 𝐶´𝑙 
Present simulation 0.123 0.227 0.0049 0.193 
Mannini et al. (2011) – LEA k-ω  0.094 0.212 0.0038 0.215 
Ribeiro (2011) - RSM 0.073 0.234  0.18 
Schewe, (2009) – EXP. 0.111 0.206  ≈0.08 

 360 

Table 3 shows a good agreement with the experimental and numerical data, particularly taking into 361 
account that, since the aspect ratio of the rectangular cylinder considered in the simulation is lower 362 
than 5, it must show slightly higher values for both Strouhal number and drag force coefficients 363 
according with the trend in drag coefficient and Strouhal number for rectangular cylinders with 364 
aspect ratios between 4 and 6, reported in Shimada and Ishihara (2012). It is notable how Menter’s 365 
k-ω SST turbulence model considered in this simulation offers results comparable with the 366 
sophisticated LEA approach in Mannini et al. (2011). The proximity of the Strouhal number in this 367 
simulation to the experimental value obtained in Schewe (2009) should also be highlighted and 368 
therefore a better prediction of this parameter than in Ribeiro (2011) has been obtained. 369 

As a further validation of the reported simulations, in figure 4 the side-averaged (between the upper 370 
and lower half perimeters) and time-averaged distribution of the pressure coefficient 𝐶𝑝 of the 371 
static ratio B/H=4.9 rectangular cylinder are reported along with the results in Mannini et al. (2010) 372 
for the k-ω LEA turbulence model, Ribeiro (2011) for the RSM and the statistics for the CFD 373 
realizations reported in Bruno et al. (2014). The side-averaged and time-averaged pressure 374 
coefficient of the ratio 4.9 rectangular cylinder is very close to the median values on the long side 375 
of the rectangular cylinder (l/H between 0.7 and 5.3, being l the length along the half of the 376 
perimeter of the rectangular cylinder, as it is described in figure 4) which indicates that the 377 
accuracy of the simulation is comparable with the CFD realizations in the frame of the BARC 378 



initiative. Furthermore, the numerical results correctly reproduce the experimental data for the 5:1 379 
rectangular cylinder, bearing in mind the scatter in the wind tunnel tests available in the literature.  380 

 381 
Figure 4. Side-averaged and time-averaged 𝐶𝑝 distributions around B/H=4.9 and B/H=5 382 
rectangular cylinders. 383 

In figure 5, the side-averaged distribution of the standard deviation in time of the pressure 384 
coefficient is reported along with the statistical data for the CFD realizations in Bruno et al. (2014) 385 
and the simulations in Mannini et al. (2010) and Ribeiro (2011). In Bruno et al. (2014) the scatter 386 
in the distribution of the standard deviation of the pressure coefficient has been shown for both 387 
experimental and numerical realizations. The standard deviation distribution of the 𝐶𝑝 reported for 388 
the B/H=4.9 rectangular cylinder is well inside the boundaries of the BARC realizations and it is 389 
particularly close to the RSM simulation in Ribeiro (2011). It has reported in Bruno et al. (2014) 390 
that RANS simulations present a minimum in the standard deviation of the pressure coefficient at 391 
about 2H from the windward corner. This minimum is also present in the simulation reported in 392 
this work. 393 



 394 
Figure 5. Side-averaged distributions around B/H=4.9 and B/H=5 rectangular cylinders of the 395 
standard deviation in time of 𝐶𝑝. 396 

Based on the comparison of the drag coefficient, the standard deviation of the lift coefficient, the 397 
Strouhal number and the distribution to the time-averaged and time-standard deviation of the 398 
pressure coefficient, the agreement of the present simulation with the experimental and numerical 399 
data in the literature can be considered adequate. 400 

6.1.2 Flutter derivatives of the B/H=4.9 rectangular cylinder 401 

The flutter derivatives for the aspect ratio 4.9 rectangular cylinder have been computed over a 402 
range of reduced velocities 𝑈𝑅 = 𝑈 (𝑓 ∙ 𝐵)⁄ =(0.88, 26.40). In order to cover the whole range of 403 
reduced velocities, three frequencies of oscillation have been considered (0.5 Hz., 1 Hz. and 3 Hz.) 404 
in conjunction with flow speeds between 1 m/s and 7 m/s, which means that the range of covered 405 
Reynolds number is between 2.52×104 and 1.76×105. In some cases (𝑈𝑅 =2.6, 5.3, 10.6 and 15.84), 406 
the same reduced velocity has been computed with different combinations of flow velocity and 407 
frequency of oscillation in order to verify the independence of the results with the combination of 408 
both parameters.  409 

Since the same mesh has been retained for all the simulations, the non-dimensional height y+ 410 
reaches a maximum value close to 11 for the maximum Reynolds number (𝑅𝑒 = 1.76×105;  𝑈 = 7 411 
m/s), while the mean value of y+ is about 2.7. For the minimum Reynolds number (𝑅𝑒 =412 
2.52×104;  𝑈 = 1 m/s), the maximum y+ reaches a value close to 3.5 and the mean value of y+ is 413 
0.6. With the aim of ascertaining the effect of the differences in the y+ numbers on the simulations 414 
at the lower and upper bounds of the Reynolds number, as well as the dependency of the 415 
aerodynamic characteristics with the Reynolds number, the side-averaged and time-averaged along 416 
with the side-averaged time-standard deviation distributions of the pressure coefficient are 417 
presented for 𝑈 = 1 and 𝑈 = 7 m/s (Figure 6). 418 



a) 

 
b) 

 
Figure 6. Side-averaged distributions around B/H=4.9 rectangular cylinder of the a) time-averaged 419 
and b) time-standard deviation of 𝐶𝑝 for 𝑈 = 1 and 𝑈 = 7 m/s. 420 

Figure 6 shows similar results for the side-averaged distributions of the time-averaged and the 421 
standard deviation of the pressure coefficient. Only small differences in the peak value of the 422 
distribution of the standard deviation of the pressure coefficient around the rectangular prism can 423 
be identified. Consequently, the relatively high values of the maximum y+ at 𝑈 = 7 m/s do not 424 
jeopardize the accuracy of the simulation. At the same time, the aerodynamic characteristics of the 425 
static sharp edged rectangular cylinder at 0º angle of attack  seems to be quite insensitive to the 426 
Reynolds number, as it has been reported in Holmes (2007), citing Scruton (1981). Besides this, in 427 
the set of reduced velocities considered for the computation of the flutter derivatives, the maximum 428 
flow speed of 7 m/s is adopted for a single reduced velocity 𝑈𝑅 = 18.48. In the same manner, the 429 
flow speed of 6 m/s is employed only for repeated values of  𝑈𝑅 = 5.3 and 𝑈𝑅 = 15.84. Therefore, 430 



in the set of flutter derivatives which are presented next, the majority of the simulations have been 431 
conducted at 𝑅𝑒 ≤ 1.26 × 105. 432 

In figure 7 the flutter derivatives computed from these simulations are reported along with the 433 
experimental data in Matsumoto (1996). The length of the simulations reported in the following has 434 
been between 40 and 260 non-dimensional time units, depending on the flow speed and the 435 
frequency of oscillation. 436 

  

  

  

  
Figure 7. Flutter derivatives of the B/H=4.9 rectangular cylinder: computed flutter derivatives and 437 
comparison with experimental data in Matsumoto (1996). 438 



The estimated flutter derivatives agree well with the experimental data and only the 𝐻4∗ flutter 439 
derivative shows some discrepancies with the wind tunnel values. These differences in 𝐻4∗ are 440 
comparable with the ones found in CFD simulations where forced oscillations in the heave degree 441 
of freedom have been conducted, such as in Sarwar et al. (2008) for a B/H=20 rectangular cylinder 442 
or Huang (2009). There are no significant differences for the repeated simulations at the same 443 
reduced velocities, which points out the relative independence of the results with the various 444 
combinations of flow speed and frequency of oscillation. 445 

6.2 G1 generic deck cross-section 446 
6.2.1 Flow simulation around the static G1 section 447 

The drag coefficient, the root mean square of the lift coefficient time history and the Strouhal 448 
number of the G1 section for 0º angle of incidence computed in this study are compared in table 4 449 
with the numerical results reported in Larsen and Walther (1998) who applied the Discrete Vortex 450 
Method in their simulations. In this case the numerical simulation of the static G1 section has been 451 
extended along 65 non-dimensional time units. The time statistics have been obtained from the 452 
final 45 non-dimensional time units. 453 

Table 4. Static G1 section: drag coefficient, RMS of the 
lift coefficient and Strouhal number. 
 𝐶𝑑 𝐶𝑙𝑅𝑀𝑆 𝑆𝑡 
Present simulation 0.06 0.04 0.19 
Larsen and Walther (1998) 0.08 0.07 0.17 

 454 

The agreement amongst the results for the 0º angle of attack is reasonable, however as a further 455 
validation of the numerical approach chosen by the authors, the time-averaged pressure coefficient 456 
distribution along the deck is going to be presented and compared with the experimental data 457 
reported in Sarkic et al. (2012), where the time-averaged pressure coefficient distribution along a 458 
bare box deck is provided. For further comparison, the experimental data in Bruno and Khris 459 
(2003) (taken from Larose, 1992) of the smooth flow tests of a taut strip model of the Great Belt 460 
Bridge fitted with barriers, has also been included. The geometry of the deck and the position of the 461 
pressure probes in the aforementioned reference are taken from Davenport et al. (1992). The 462 
distribution of the time standard deviation of the pressure coefficient is not reported since the 463 
unsteadiness of the flow was rather weak, providing values of the pressure coefficient standard 464 
deviation well below the available experimental data, particularly on the windward half of the cross 465 
section. A similar behavior is described in Sarkic et al. (2012). In figure 8, the geometry of the 466 
bridge decks considered for validation is described, while in figure 9 the time-averaged pressure 467 
coefficient distribution is shown. 468 



 469 
Figure 8. Geometry: a) G1 section b) section in Sarkic et al. (2012) c) section in Davenport et al. 470 
(1992) d) comparison between sections. 471 

  
Figure 9. Time-averaged pressure coefficient distribution: numerical results and comparison with 472 
experimental data in Sarkic et al. (2012) and Larose (1992). 473 

The agreement in the pressure coefficient distribution between the numerical simulation and the 474 
wind tunnel data in Sarkic et al. (2012) is good. On the upper face, the peak values at the windward 475 
corner are correctly simulated and the lateral shift is due to the differences in the geometry in the 476 
upper surface (see figure 8). Also the mean pressure distribution along the horizontal and the 477 
leeward plates have been accurately obtained. The agreement is even better on the lower surface, 478 
since the geometry of the two sections is nearly identical. In the authors’ opinion the similitude in 479 
the Reynolds number (Re≈1×105) of the numerical simulation and the wind tunnel test has 480 
contributed to this close agreement. 481 

When the numerical results are compared with the wind tunnel data from Larose (1992), some 482 
discrepancies can be identified, which can arguably be related to the difference in the Reynolds 483 
number of the wind tunnel tests (Re=7×104) as well as the presence of the barriers in the tested 484 
model. Besides this, discrepancy in the moderate suction on the windward surface in the lower side 485 
of the deck has already been commented in Bruno and Khris (2003). 486 

In order to provide a more complete view of the aerodynamic characteristics of the static G1 cross 487 
section, the force coefficients in the range of angles of attack (-10º, 10º) are computed with an 488 
interval of 2º. The results are compared with the experimental data reported in Reinhold et al. 489 



(1992) for the H4.1 section of the Great Belt Bridge design studies and the 2D numerical results 490 
published in Bai et al. (2010), for the G1 section.  491 

Figure 10 shows the force coefficients of the G1 section. A very good agreement has been obtained 492 
between the computational results and the experimental data for the similar geometry of the H4.1 493 
box deck section. In fact, the change in the slope of the moment coefficient for angles of incidence 494 
higher than 6º has been correctly captured as well as the step increment in the drag coefficient also 495 
for angles of attack higher than 6º. The accuracy of the slopes in the vicinity of 0º for both lift and 496 
moment coefficients should also be noted. 497 

 
 

  
Figure 10. G1 section force coefficients: numerical results and comparison with experimental 498 
(Reinhold et al., 1992) and other numerical data (Bai et al., 2010). 499 

6.2.2 Flutter derivatives of the G1 section 500 

In order to identify by means of a computational approach the flutter derivatives of the G1 generic 501 
section, forced oscillation simulations were carried out at reduced velocities 𝑈 (𝑓𝐵)⁄  equal to 2, 4, 502 
6, 8 10 and 12, as in Larsen and Walther (1998). Also, the formulae applied for identifying the 503 
flutter derivatives are the ones reported in Larsen and Walter (1998) and Bai et al (2010), therefore 504 
the expressions in equations (7.a) to (7h) are divided by 2. The same procedure as in the 505 
rectangular cylinder case has been applied for decreasing the computational cost. As a 506 
consequence, instead of 12 computer simulations, only 6 are required, one for each reduced 507 
velocity considered. In this case the flow velocity is the same in all the simulations and the 508 
frequency of oscillation is modified in the range (0.833, 5) Hz in order to obtain the reduced 509 
velocities of interest. The solution for the fixed G1 section has been set as the initial condition for 510 
the forced oscillation simulations. Since this allows shortening the initial transient, the 511 
computations have been extended for about 50 non-dimensional time units. For the highest value of 512 
the reduced velocity, 𝑈𝑅=12, four complete oscillation periods have been simulated, which is 513 
greater than the 2.5 periods span adopted in Larsen and Walther (1998). 514 



 In figure 11 the numerical results obtained for 𝐻𝑖∗ and 𝐴𝑖∗ (𝑖 = 1, … ,3) are compared with the 515 
experimental ones reported in Scanlan and Tomko (1971). The numerical results obtained by 516 
Larsen and Walther (1998), and Bai et al. (2010) for the same deck section are also included in the 517 
charts. Since no experimental results are available for the 𝐻4∗ and 𝐴4∗  flutter derivatives of the G1 518 
cross-section, the results for the 𝐻4∗ flutter derivative of the H4.1 section in Reinhold et al (1992) 519 
are provided. No experimental data for the 𝐴4∗  flutter derivative of the H4.1 section are available in 520 
the literature to the authors’ knowledge.  521 

  

  

  

  



Figure 11. Flutter derivatives of the G1 generic section: numerical results and comparison with 522 
experimental (Scanlan and Tomko, 1971; Reinhold et al., 1992) and numerical (Larsen and 523 
Walther, 1998; Bai et al., 2010) data. 524 

A very good agreement has been found for the flutter derivatives related to the pitch forced 525 
oscillation: 𝐻3∗, 𝐴2∗  and 𝐴3∗ , which have been obtained from the numerical simulations. For the 𝐻2∗ 526 
flutter derivative, similar discrepancies as in Bai et al. (2010) have been obtained. In fact, for this 527 
flutter derivative, in the case of box decks, differences between experimental data and CFD based 528 
evaluations can be found in other references in the literature, such as Jeong and Kwon (2003), Zhu 529 
et al. (2007), Ge and Xiang (2008) or Brusiani et al. (2013). For the approximated heave-related 530 
flutter derivatives 𝐻1∗ and 𝐴1∗  the obtained results agree with wind tunnel test data and their 531 
accuracy is comparable with the other CFD-based simulations. For the flutter derivatives 𝐻4∗ 532 
and 𝐴4∗  it is more difficult to properly assess the reliability of the approximated values since 533 
experimental data are not available. It has been found that for the 𝐻4∗ flutter derivative the present 534 
simulation provides values very similar to those reported by Larsen and Walther (1998). In the 535 
same manner, the slope is almost the same as for the H4.1 experimental flutter derivative and the 536 
upwards shift of the numerical results can also be found, for instance, in Brusiani et al. (2013) 537 
where the flutter derivatives of the H4.1 section were specifically computed. For the 𝐴4∗  flutter 538 
derivative the approximated values do not show important differences in value with respect to the 539 
ones in Larsen and Walther (1998).   540 

In order to assess the degree of accuracy in the simulations reported in this work, in table 5 the 541 
relative errors in the value of the flutter derivatives 𝐻1∗, 𝐻2∗, 𝐻3∗, 𝐴1∗ , 𝐴2∗  and 𝐴3∗ , for which 542 
experimental data are available, are reported. It must be borne in mind that the data for the lower 543 
reduced velocities cannot be identified from the charts in Scanlan and Tomko (1971) for some of 544 
the flutter derivatives. 545 

The relative errors of the numerical values taking as reference the experimental values are 546 
evaluated according to the following formula:             547 

 
𝑒 =

|𝑒𝑥𝑝. 𝑣𝑎𝑙𝑢𝑒 − 𝑛𝑢𝑚. 𝑣𝑎𝑙𝑢𝑒|
|𝑒𝑥𝑝. 𝑣𝑎𝑙𝑢𝑒|  (9) 

 548 

Table 5. Relative errors in the evaluation of the flutter derivatives of the G1 section 549 
Flutter 

derivative 𝑈𝑅 Present 
simulation 

Larsen and 
Walther (1998) 

Bai et al. 
(2010) 

𝐻1∗ 2 0.14 0.67 0.50 
4 0.23 0.46 0.36 
6 0.30 0.40 0.38 
8 0.33 0.32 0.35 

10 0.29 0.37 0.33 
12 0.31 0.34 0.32 

𝐻2∗ 6 1.60 1.71 1.57 
8 1.03 1.29 1.04 

10 0.93 1.11 0.94 
12 0.87 1.05 0.85 

𝐻3∗ 6 0.54 0.50 0.60 



8 0.12 0.09 0.06 
10 0.06 0.02 0.16 
12 0.27 0.50 0.31 

𝐴1∗  6 0.25 0.00 0.21 
8 0.16 0.33 0.16 

10 0.08 0.24 0.11 
12 0.15 0.26 0.13 

𝐴2∗  2 0.95 2.00 1.50 
4 0.03 0.14 0.14 
6 0.09 0.56 0.25 
8 0.47 0.17 0.54 

10 0.81 0.19 0.88 
12 0.88 0.25   

𝐴3∗  6 0.04 0.10 0.13 
8 0.06 0.15 0.00 

10 0.13 0.05 0.16 
12 0.19 0.00 0.28 

 550 

From table 5, it can be concluded that the accuracy of the three simulations is equivalent, being the 551 
median of the relative errors 0.26 in the present simulation, and 0.33 and 0.32 in Larsen and 552 
Walther (1998) and Bai et al. (2010). In this respect, it is notable how the approximated values 553 
obtained using the proposed approach for the 𝐻1∗ and 𝐴1∗  flutter derivatives are comparable with the 554 
values reported in Larsen and Walther (1998) and Bai et al. (2010) where the harmonic oscillations 555 
in the heave degree of freedom were explicitly computed. 556 

7. CONCLUDING REMARKS 557 

In this article, the force coefficients and the flutter derivatives of an aspect ratio 4.9 rectangular 558 
cylinder and a streamlined deck type G1 cross-section have been computed based on a 2D URANS 559 
approach, applying Menter’s k-ω SST turbulence model. A block structured mesh has been used 560 
and the open source CFD solver OpenFOAM has been applied. 561 

The static response of the rectangular cylinder at a 0º angle of attack has agreed well with the 562 
experimental data in Schewe (2009), the RSM simulation in Ribeiro (2011) and sophisticated 2D 563 
numerical simulations where the Boussinesq assumption is substituted by an EARSM approach 564 
(Mannini et al., 2011).  565 

For the G1 section, the influence of the spatial and temporal discretisations in the numerical results 566 
has been studied. Since both experimental and numerical results of the force coefficients and flutter 567 
derivatives are available in the literature for this particular cross-section, the current computational 568 
results have been validated against the experimental ones and also the accuracy of the simulations 569 
reported herein can be compared with CFD results published by other researchers.  570 

The distribution of the time-averaged pressure coefficient around the G1 section agrees well with 571 
experimental data available in the literature for similar geometries. The force coefficients of the 572 
deck cross-section for angles of attack in the range -10 º and +10º have been obtained. It has been 573 



found that they are in good agreement with the experimental and numerical data in Reinhold et al. 574 
(1992) and Bai et al. (2010). 575 

A notable contribution of this work has been the application of the existing formulae relating the 576 
flutter derivatives (Tubino, 2005) in a CFD based approach. This has allowed the computer 577 
demands of this burdensome problem to be reduced. The pitch-related flutter derivatives have been 578 
extracted from the pitch forced oscillation simulations while the heave-related ones have been 579 
estimated using the expressions in the literature. For the two cases studied a very good agreement 580 
with the experimental flutter derivatives has been found, and at least comparable accuracy with 581 
other numerical simulations where both pitch and heave forced oscillations had been numerically 582 
computed. 583 

This work can be considered a step forward towards the routine use of CFD based techniques in the 584 
aerodynamic and aeroelastic design of long span bridges since it has been demonstrated the 585 
adequacy of the computational results using an efficient 2D approach. Furthermore it but is also a 586 
step forward in the application of numerical optimization techniques in the shape design of bridges, 587 
for which efficient, reliable and computational non-cumbersome CFD techniques are a must. In this 588 
respect, a fully computational approach for the evaluation of force coefficients and flutter 589 
derivatives, as the one reported herein, is required for the application of numerical optimization 590 
techniques. 591 
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