VALIDACIÓN DEL MÉTODO DE DETERMINACIÓN DE LA FRACCIÓN PM10 DE LA MATERIA PARTICULADA EN SUSPENSIÓN EN AIRE AMBIENTE

VALIDATION OF AN ANALITICAL METHOD FOR THE DETERMINATION OF PM10 PARTICLES IN AMBIENT AIR

VALIDACIÓN DO MÉTODO DE DETERMINACIÓN DA FRACÇÃO PM10 DA MATERIA PARTICULADA EN SUSPENSIÓN NO AIRE AMBIENTE

Alumna: Ana Domínguez López
Directoras: Dras. Soledad Muniategui Lorenzo y María Paz Gómez Carracedo
Fecha: Julio de 2014
INDICE

1. Resumen / Abstract / Resumo .. 4
2. Introducción y antecedentes ... 6
 2.1 Material particulado en aire ambiente .. 6
 2.1.1 Definición .. 6
 2.1.2 Fuentes originarias de la materia particulada ... 6
 2.1.3 Clasificación de la materia particulada ... 6
 2.1.4 Efectos sobre la salud y el medioambiente ... 7
 2.1.5 Fracción PM10 y calidad del aire .. 8
 2.1.6 Valores límite actuales ... 9
 2.1.7 Determinación analítica de la fracción PM10 ... 9
 2.1.8 La norma UNE-EN ISO 20988:2008 ... 10
 2.2 Acreditación de laboratorios de ensayo según la norma UNE-EN-ISO/IEC 17025:2005 ... 12
 2.2.1 La norma UNE EN ISO/IEC 17025:2005 .. 12
 2.2.2 Diferencia entre acreditación y certificación .. 12
 2.2.3 El marco de la calidad en España .. 13
 2.2.4 Estructura de la norma UNE EN ISO/IEC 17025 ... 13
 2.3 Validación de métodos de ensayo .. 15
 2.3.1 Validación de un método de ensayo .. 15
 2.3.2 Precisión ... 16
 2.3.3 Exactitud y veracidad ... 16
 2.3.4 Exactitud e incertidumbre ... 19
 2.4 Estadística básica para la adecuada interpretación de este trabajo .. 19
 3. Objetivos del trabajo .. 21
 4. Métodos .. 23
 4.1 Evaluación de la precisión ... 23
 4.2 Evaluación de la veracidad ... 26
 4.3 Estimación de la incertidumbre .. 28
 4.3.1 Error sistemático (sesgo) .. 28
 4.3.2 Determinación del error aleatorio (precisión al 95% de probabilidad) ... 29
 5. Resultados obtenidos. Discusión y análisis ... 31
 5.1 Parámetros estudiados en la validación ... 31
 5.2 Rango validado, según tipo de filtros .. 31
 5.3 Estudio experimental de la precisión: .. 31
 5.3.1 Cálculo de la repetibilidad .. 35
 5.3.2 Cálculo de la precisión intra-laboratorio: ... 38
 5.4 Estudio experimental de la veracidad ... 39
 5.4.1 Evaluación de los resultados de la intercomparación por el organizador ... 40
 5.4.2 Planteamiento de criterios alternativos de valoración .. 42
 5.4.3 Determinación del sesgo ... 44
 5.4.4 Estudio de la significación del sesgo. Prueba t-student .. 44
 5.5 Estimación de la Incertidumbre de Medida ... 45
 5.6 Características analíticas del método .. 46
 6. Conclusiones ... 48
 7. Bibliografía ... 50
 8. Anexos .. 53
1.- RESUMEN / ABSTRACT / RESUMO
1. Resumen / Abstract / Resumo

Este trabajo presenta la validación del método analítico de determinación de la fracción PM10 de la materia particulada en suspensión en aire ambiente. Se ha llevado a cabo el estudio de la veracidad y de la precisión del método. La veracidad se estudia a partir de los resultados de la participación en ejercicios de intercomparación ya que, debido a las características de la muestra, no es posible disponer de materiales de referencia ni es posible la obtención de muestras fortificadas. La precisión del método se estudia a través de un diseño experimental que cubre todas las posibles variables del método: diferentes condiciones ambientales (dentro de los márgenes establecidos) y diferentes analistas. Tras el estudio de la veracidad y de la precisión, se ha estimado la incertidumbre del método al 95% de confianza a través de los datos obtenidos en la validación, mediante lo que se conoce como una estimación de enfoque directo. El método de estimación de incertidumbre plantead o, se presenta como una opción de estimación rápida y sencilla para la determinación de PM10, basada en las indicaciones de la norma UNE-EN ISO 20988:2008. Este trabajo se ha realizado en el Grupo de Investigación "Química Analítica Aplicada (QANAP)" en las instalaciones del Instituto Universitario de Medio Ambiente (IUMA) de la Universidade da Coruña.

This document presents the validation of the analytical method for determination of the PM10 particles in ambient air. The trueness and the precision of the method were studied. The trueness was studied by means of participation results in inter-laboratory comparisons because, due to the characteristics of the sample, it was possible to get neither reference materials nor fortified samples. The precision of the method was studied through an experimental design that covered all possible variables of the method: different environmental conditions (within the ranges established) and different analysts. The uncertainty of the method at the 95% confidence level was estimated trough the data obtained in the validation. The proposed uncertainty estimation method is presented as a quick and easy option, based on the indications of the UNE-EN ISO 20988:2008. This work has been carried out within the Research Group "Analytical Chemistry Applied (QANAP)" at the Instituto Universitario de Medioambiente (IUMA) facilities (University of La Coruña).

Este traballo presenta a validación do método analí tico de determinación da fracción PM10 da materia particulado en suspensión en aire ambiente. Levouse a cabo o estudo da veracidade e da precisión do método. A veracidade estúdase a partir dos resultados da participación en exercícios de intercomparación xa que, debido ás características da mostra, non é posible dispor de materiais de referencia nin é posible a obtención de mostras fortificadas. A precisión do método estúdase a través dun deseño experimental que cubre todas as posibles variables do método: diferentes condicións ambientais (dentro das marxes establecidas) e diferentes analistas. Tras o estudo da veracidade e da precisión, estimouse a incerteza do método ao 95% de confianza a través dos datos obtidos na validación, mediante o que se coñece como unha estimación de enfoque directo. O método de estimación de incerteza formulado, preséntase como unha opción de estimación rápida e sinxela para a determinación de PM10, baseada nas indicacións da norma UNE-EN-ISO 20988:2008. Este traballo realizouse no Grupo de Investigación "Química Analítica Aplicada (QANAP)" nas instalacións do Instituto Universitario de Medio (IUMA) da Universidade da Coruña.
2.- INTRODUCCIÓN Y ANTECEDENTES
2. Introducción y antecedentes

2.1 Material particulado en aire ambiente

2.1.1 Definición

El material particulado atmosférico es el conjunto de materia en estado sólido o líquido presente en la atmósfera en suspensión, exceptuando el agua pura (IPCC, 2007).

2.1.2 Fuentes originarias de la materia particulada

El material particulado atmosférico es el resultado de la emisión tanto de fuentes naturales (materia mineral re-suspendido, aerosol marino, actividad volcánica, incendios forestales no intencionados, emisiones biogénicas, etc.) como de fuentes antropogénicas (emisiones domésticas, tráfico, procesos industriales, generación de energía, actividades de construcción y demolición, procesos extractivos, agricultura, ganadería, incendios forestales intencionados, quemadas de biomasa, etc.).

Aproximadamente un 78% de la cantidad total emitida de PM10 procede del polvo re-suspendido existente en la atmósfera. Otros focos de contaminación de especial relevancia son la industria, la construcción y el comercio que contribuyen con un 8% y el transporte rodado, con un 7%. Como fuentes minoritarias de contaminación están las quemadas agrícolas (4%) y las de origen doméstico (3%) (fuente Registro estatal de emisiones y fuentes contaminantes, www.prtr-es.es).

2.1.3 Clasificación de la materia particulada

Debido a que el material particulado en suspensión es una mezcla muy variada de materiales compuestos o elementos, no es posible su clasificación en función de su composición y se realiza su clasificación según tamaño, ya que este parámetro resulta de suma importancia en su efecto nocivo en los seres vivos.

Para la clasificación por tamaño se utiliza el diámetro de las partículas. En una partícula esférica el diámetro es una propiedad fácilmente medible, sin embargo, la mayor parte de las veces las partículas atmosféricas presentan formas no esféricas o son completamente amorfas. Debido a esto, sus diámetros deben ser descritos como diámetros equivalentes.

Se define el diámetro aerodinámico, Da, como el diámetro de una partícula esférica de densidad 1 g/cm3 que posea una velocidad de sedimentación igual a la partícula en cuestión.
Las partículas de diámetro aerodinámico igual o inferior a 10 µm se denominan fracción PM10 o partículas gruesas y son las partículas que se consideran respirables y pueden llegar hasta el nivel de la garganta. Las partículas con un diámetro igual o inferior a 2,5 µm (PM2,5 o fracción fina) pueden llegar hasta los pulmones. Finalmente las partículas ultrafinas, con un diámetro igual o inferior a 0,1 µm, pueden pasar del alvéolo pulmonar a la sangre (Figura 1).

Figura 1.- Clasificación del particulado atmosférico en función del tamaño (Revista El Ecologista nº 58).

Pero esta clasificación implica, además, de forma indirecta, una separación de partículas por su diferente composición y origen. Esto es debido a que la fracción PM10 se forma mayoritariamente por procesos naturales como la re-suspensión del polvo de los caminos y el viento (Ej. polvo Sahariano) y también por procesos mecánicos antropogénicos como las obras de construcción. Sin embargo, en el caso de la fracción PM2,5, su origen está principalmente en fuentes de carácter antropogénico como las combustiones, siendo la emisión de los vehículos diésel una de sus fuentes mayoritarias.

2.1.4 Efectos sobre la salud y el medioambiente

Al respirar inhalamos los gases y partículas en suspensión que hay en el aire. Según el tamaño que tengan dichas partículas, podrán conllevar diferentes problemas de salud.

La exposición prolongada o repetitiva a las partículas PM10 puede provocar efectos nocivos en el sistema respiratorio de la persona, no obstante son menos perjudiciales que las PM2,5 ya que al tener un mayor tamaño, no consiguen llegar a los pulmones.
Los estudios científicos relacionan la contaminación por partículas, especialmente las partículas finas, con una serie de problemas significativos de salud, incluyendo:

- La muerte prematura en personas con enfermedad cardíaca o pulmonar.
- Ataques cardíacos no mortales.
- Latido irregular del corazón.
- Agravamiento del asma.
- Disminución de la función pulmonar.
- Aumento de síntomas respiratorios, tales como irritación de las vías respiratorias, tos, sibilancias y disminución de la función pulmonar, incluso en niños y adultos sanos.

Respecto al medioambiente, la contaminación por partículas gruesas puede provocar erosión en materiales de construcción (la piedra de monumentos). Las partículas finas, debido a su menor tamaño, pueden quedar suspendidas en el aire periodos más largos de tiempo y viajar largas distancias depositándose sobre zonas diferentes a las que han sido originadas como lagos, ríos, suelos cultivados, ... provocando acidificación, cambiando del balance de nutrientes y dañando bosques y cultivos, lo que afecta a la diversidad de los ecosistemas.

Además, las partículas tienen una influencia importante en la transmisión de radicación atmosférica y en el ciclo del agua, de tal forma que pueden alterar el sistema de intercambio de energía entre la tierra y la atmósfera, mediante la absorción y dispersión de radicación solar, afectando directamente al clima.

2.1.5 Fracción PM10 y calidad del aire

La determinación de los niveles de material particulado en la atmósfera es uno de los parámetros básicos del control de la calidad del aire, como consecuencia de sus efectos nocivos sobre la salud y los ecosistemas.

En España, hasta el año 2001, el control de los niveles de material particulado en suspensión se realizaba por medidas de humos negros (HN) y de partículas totales en suspensión (PST) según los Reales Decretos 1613/1985 (BOE nº 219 del 12/09/85) y 1321/1992 (BOE nº 289 del 02/12/92) que provienen de la incorporación a la legislación española de las Directivas Europeas 80/779/CEE y 89/427/CEE.

A partir de julio de 2001 entró en vigor la Directiva Europea 1999/30/CE que estableció “valores límite y, en su caso, umbrales de alerta con respecto a las concentraciones de dióxido de azufre, dióxido de nitrógeno y óxidos de nitrógeno, partículas y plomo en el aire ambiente para evitar, prevenir o reducir los efectos nocivos para la salud humana y para el medio ambiente en
su conjunto”. Esta nueva Directiva produjo un cambio en los parámetros de medida pasándose a medir PM10 (definido legalmente como la masa de partículas que pasan a través de un cabezal de tamaño selectivo para un diámetro aerodinámico de 10 µm con una eficiencia de corte del 50 %) en vez de HN y PST, y estableciendo una mayor restricción en los valores límite. Esta Directiva proponía su implantación por medio de dos fases (2005 y 2010), aunque los valores indicativos fijados para 2010 no llegaron a ser ratificados en la evaluación del año 2003 (que se postergó hasta 2007), por lo que en la nueva Directiva 2008/50/CE (relativa a la calidad del aire ambiente y a una atmósfera más limpia en Europa) se establecieron como valores límite de PM10 los fijados para 2005 (valor límite anual de 40 µg/m³ y límite diario de 50 µg/m³ para el percentil 90,4%, con 35 superaciones anuales permitidas). Además de estos valores límite de PM10, en la nueva Directiva 2008/50/CE, se establece un valor objetivo para PM2,5 de 25 µg/m³ para 2010, que en 2015 se convertirá en valor límite.

2.1.6 Valores límite actuales

El Real Decreto 102/2011, de 28 de enero, relativo a la mejora de la calidad del aire, que incorpora la directiva Europea 2008/50/CE, establece, en su anexo I, los valores límite que se recogen en la tabla 1.

| Tabla 1.- Valores límite de las partículas PM10 en condiciones ambientales para la protección de la salud. |
|-------------------|-------------------|-------------------|
| PM10 | Período de promedio | Valor límite |
| Valor límite diario | 24 horas | 50 µg/m³, no podrán superarse en más de 35 ocasiones por año |
| Valor límite anual | 1 año civil | 40 µg/m³ |

2.1.7 Determinación analítica de la fracción PM10

El método de referencia para la determinación de los niveles de PM10 es el método gravimétrico. Este método consiste en el muestreo de aire ambiente durante 24 horas a caudal fijo que se hace atravesar un filtro donde se retiene la fracción a determinar. Un cabezal de corte selecciona la fracción del material particulado que interese (PM10, PM2,5,...). Restando el peso del filtro tras el muestreo y previamente al mismo (en blanco) y dividiendo por el volumen total del muestreo se obtiene la concentración.

Las especificaciones concretas y detalladas del proceso de medida se establecen en la norma europea UNE-EN 12341:1999 "Determinación de la fracción PM10 de la materia particulada en suspensión. Método de referencia y procedimiento de ensayo de campo para demostrar la equivalencia de los métodos de medida al de referencia".
Para el muestreo de partículas PM10 se exige un equipo muestreador que sea capaz de recolectar la fracción PM10 con una eficiencia del 50%. Existen una serie de equipos captadores que son de referencia según la norma UNE-EN 12341. Asimismo, también existen captadores gravimétricos que no siguen estrictamente lo especificado en las normas pero que pueden ser considerados equivalentes al de referencia si superan un estudio de equivalencia que viene descrito en la citada norma.

Una vez realizado el muestreo, se recuperan los filtros en los que ha quedado depositada la materia particulada (Figura 2) y se realiza la determinación de la fracción PM10 por gravimetría en el laboratorio, bajo unas condiciones controladas de temperatura y humedad.

El procedimiento de ensayo es relativamente sencillo, siendo pocos los factores clave que pueden introducir variaciones en el método y que, por tanto, son necesarios controlar:

− Control de las condiciones ambientales dentro de los márgenes indicados por la norma EN UNE 12341:1999 (20±1°C y 50±5%HR).
− Control del instrumento de pesada, estableciendo la norma EN UNE 12341:1999 un resolución mínima de 10µg (0,00001 g).
− Adecuado manejo de los filtros por el operador evitando daños o deterioros debido a la manipulación.

2.1.8 La norma UNE-EN ISO 20988:2008

La norma UNE-EN ISO 20988:2008 “Calidad del aire. Directrices para la estimación de la incertidumbre de medida”, establece unas directrices, basadas en la GUM (Guide to the expression of uncertainty in measurement. JCGM 100:2008), para realizar el cálculo de incertidumbre en base a un método de enfoque directo.
Mientras que la GUM se dirige explícitamente al método de enfoque indirecto, más complejo, basado en la estimación de forma independiente de las contribuciones a la incertidumbre para cada variable que afecta a una determinación, las recomendaciones de esta norma se centran en el enfoque directo, matemáticamente más sencillo, derivado de una serie de datos obtenidos en un adecuado diseño experimental que abarque, de forma conjunta, todas las variables que afectan a una determinación.

La norma UNE-EN ISO 20988:2008 establece que, para la estimación de la incertidumbre, es necesario recopilar series de observaciones que permitan al usuario evaluar tanto las variaciones aleatorias como los sesgos que ocurren en el uso previsto de un método de medición, indicando que si no se tienen en cuenta los sesgos significativos, la estimación de la incertidumbre de la medida no estará completa.

Así, el diseño experimental debe ser tal que todos los efectos que causan variaciones a la medida o un sesgo en el resultado de la medición se vean reflejados.

En dicha norma se consideran como válidos los siguientes diseños experimentales:

A1: Muestreo simple aleatorio.
A2: Observación repetida de un material de referencia mediante un sistema de medición.
A3: Observación de diferentes materiales de referencia en un procedimiento de calibración.
A4: Observación repetida de diferentes materiales de referencia mediante sistemas idénticos.
A5: Mediciones paralelas con un método de medición de referencia.
A6: Mediciones pareadas de dos sistemas de medición idénticos.
A7: Comparación interlaboratorio de sistemas idénticos de medición.
A8: Medición paralela de sistemas idénticos de medición.

Sin embargo se indica que se pueden utilizar otros diseños experimentales para la estimación de la incertidumbre si su ejecución y evaluación estadística se documenta con suficiente detalle para evaluar la representatividad de los datos de entrada.

En este trabajo, se plantea un cálculo de incertidumbre basado en los datos de una intercomparación pero ampliada con un diseño experimental de evaluación de la precisión intra-laboratorio del ensayo.
2.2 Acreditación de laboratorios de ensayo según la norma UNE-EN-ISO/IEC 17025:2005

2.2.1 La norma UNE EN ISO/IEC 17025:2005

La norma UNE EN ISO/IEC 17025:2005 “Requisitos generales para la competencia de los laboratorios de ensayo y calibración”, establece los requisitos de gestión y técnicos que deben cumplir los laboratorios de ensayo y calibración que quieran que se les reconozca su competencia técnica. Dicha norma deriva de la correspondiente norma internacional ISO 17025.

Se trata de una norma de Calidad que tiene muchos aspectos en común con la norma ISO 9001 pero que se distingue de la serie anterior en que presenta una serie de requisitos técnicos (validación de métodos, participación en intercomparaciones, cálculo de incertidumbre de los ensayos, ...) que hacen que los laboratorios que los cumplen estén en disposición de demostrar su competencia técnica para la realización de los ensayos.

Los organismos encargados de reconocer esta competencia técnica, basada en los requisitos de la norma citada (UNE EN ISO/IEC 17025), son los correspondientes órganos nacionales. En España la entidad de acreditación se denomina ENAC (Entidad Nacional de ACreditación).

2.2.2 Diferencia entre acreditación y certificación

El reconocimiento que otorga ENAC se le denomina acreditación, y presenta una diferencia muy notable con la certificación que supone el reconocimiento del cumplimiento de la serie de normas ISO 9000: el reconocimiento de la competencia técnica.

Así cuando un laboratorio ha implantado un sistema de calidad basado en la norma UNE EN ISO 9001, se dice que está CERTIFICADO porque tiene su sistema de gestión de calidad reconocido por una entidad de certificación de sistemas (AENOR; BVQi, DNV, Applus, etc). Pero cuando un laboratorio ha implantado un sistema de calidad basado en la norma UNE EN ISO/IEC 17025, se dice que está ACREDITADO porque tiene su sistema de gestión de calidad reconocido por ENAC pero, además, ENAC respalda su adecuada competencia técnica para la realización de los ensayos dentro del sistema de calidad.
2.2.3 El marco de la calidad en España

En España, existe un único organismo de acreditación, Entidad Nacional de Acreditación (ENAC), que es el único organismo con capacidad de acreditación y, por tanto, con capacidad de respaldar la capacidad técnica de una organización. Según se representa en la figura 3, ENAC realiza la acreditación de laboratorios, entidades de inspección, entidades de certificación de producto, entidades de certificación de sistemas y entidades de certificación de personas según las normas ISO (International Standard Organization) que se indican en los recuadros punteados. Posteriormente, las entidades de certificación de producto, de sistemas y de personas tienen capacidad para certificar (sin reconocimiento de la competencia técnica) a productos, empresas que cumplan los requisitos indicados en las normas de los recuadros correspondientes.

Figura 3.- El marco de la calidad en España.
Fuente: Elaboración propia.

Por tanto, la acreditación es un nivel de reconocimiento que supone el respaldo no solo de la adecuada gestión de una organización sino también de su competencia técnica. Solo es posible para ciertos tipos de organizaciones (laboratorios, entidades de inspección, entidades de certificación, ...) y bajo los estándares de la serie ISO 17000.

La certificación es un nivel de reconocimiento en el que solo se reconoce la gestión de una empresa bajo un sistema de gestión (calidad, medioambiente y otros) sin que por ello se reconozca su capacidad técnica.

2.2.4 Estructura de la norma UNE EN ISO/IEC 17025

La norma UNE EN ISO/IEC 17025 está estructurada en dos grandes bloques: los requisitos de gestión y los requisitos técnicos. A continuación se recoge su índice, junto con una breve descripción del contenido de cada apartado:
Requisitos de gestión

(4.2) Sistema de gestión de la Calidad: Estructura de los documentos. Elaboración de documentos.

(4.3) Control de documentos: Control de documentos (revisión, aprobación, distribución, difusión, modificación...)

(4.4) Revisión de solicitudes, ofertas y contratos: Aceptación de solicitudes de ensayo. Registros de conversaciones con los clientes. Modificaciones a las solicitudes de ensayo.

(4.5) Subcontratación de ensayos: Criterios de subcontratación de ensayos.

(4.7) Servicio al cliente: Cooperación con los clientes. Satisfacción de los clientes.

(4.8) Reclamaciones: Registro y tratamiento de reclamaciones.

(4.9) Control de trabajos de ensayo y/o calibración no conformes: Detección y tratamiento de fallos. Responsabilidades.

(4.10) Mejora: Detección de oportunidades de mejora.

(4.11) Acciones correctivas: Definición y seguimiento de acciones correctivas

(4.12) Acciones preventivas: Definición y seguimiento de acciones preventivas

(4.13) Control de los Registros: Requisitos de los registros técnicos y de calidad.

(4.15) Revisiones por la dirección: Reuniones de revisión por la dirección. Registro y seguimiento de las acciones acordadas.

Requisitos Técnicos

(5.1) Generalidades

(5.3) Instalaciones y condiciones ambientales: Adecuación de las instalaciones. Control y registro de condiciones ambientales. Control de acceso. Orden y limpieza del laboratorio.

2.3 Validación de métodos de ensayo

2.3.1 Validación de un método de ensayo

Los métodos utilizados en un laboratorio de análisis químico han de ser evaluados y sometidos a prueba para asegurarse de que producen unos resultados válidos y coherentes con el objetivo previsto, es decir, han de ser validados. Los laboratorios que adopten métodos de ensayo normalizados deben realizar una validación que demuestre que son capaces de llevarlos a cabo en las condiciones habituales del laboratorio.

La validación de un método se realiza mediante una serie de pruebas experimentales de las que se obtienen datos sobre sus características analíticas: exactitud, veracidad, precisión, linealidad, etc.

Tras el estudio de resultados y su comprobación frente a unos criterios de aceptación preestablecidos, se emite un Informe de Validación que establece documentalmente todo el proceso seguido y las conclusiones obtenidas.

Los parámetros que normalmente se estudian para la validación de un método dependen de si es un método de identificación, de determinación cualitativa o de determinación cuantitativa (tabla 2):

<table>
<thead>
<tr>
<th>Tabla 2.- Parámetros a estudiar en una validación.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo de Ensayo</td>
</tr>
<tr>
<td>---------------------</td>
</tr>
<tr>
<td>Cuantitativo</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Cualitativo</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
2.3.2 Precisión

Según el Vocabulario Internacional de términos fundamentales y generales de Metrología (VIM), edición de 2012, la precisión es la proximidad entre las indicaciones o los valores medidos obtenidos en mediciones repetidas de un mismo objeto, o de objetos similares, bajo condiciones especificadas. Por “condiciones especificadas” se pueden entender condiciones de repetibilidad, condiciones de precisión intermedia, o condiciones de reproducibilidad.

Así pues, la precisión depende únicamente de la distribución de los resultados, no estando relacionada con el valor verdadero o especificado. Se relaciona, por tanto, con el error aleatorio.

Las condiciones de repetibilidad incluyen mediciones repetidas del mismo objeto o de un objeto similar en un periodo corto de tiempo, bajo el mismo procedimiento de medida, los mismos operadores, el mismo sistema de medida, las mismas condiciones de operación y el mismo lugar. La precisión estudiada bajo estas condiciones se denomina repetibilidad.

Las condiciones de reproducibilidad incluyen mediciones repetidas del mismo objeto o de un objeto similar en diferentes lugares, operadores y sistemas de medida, pudiendo también utilizar diferentes procedimientos de medida.

Las condiciones de precisión intermedia incluye el mismo procedimiento de medición, el mismo lugar y mediciones repetidas del mismo objeto u objetos similares durante un periodo amplio de tiempo, pero que puede incluir otras condiciones que involucren variaciones (nuevas calibraciones, patrones, operadores y sistemas de medida).

El Vocabulario Internacional de términos fundamentales y generales de Metrología (VIM) también indica que es habitual que la precisión de una medida se exprese numéricamente mediante medidas de dispersión tales como la desviación típica, la varianza o el coeficiente de variación bajo las condiciones especificadas.

2.3.3 Exactitud y veracidad

El VIM, edición de 2012 define el término exactitud como el grado de concordancia entre el resultado de una medición y un valor verdadero del mensurando, haciendo hincapié en que el término exactitud está relacionado con el error de medida ya que una medición es más exacta cuanto más pequeño es el error de medida (que relaciona con la suma de errores aleatorios y errores sistemáticos).

También define la veracidad como la proximidad entre la media de un número infinito de valores medidos repetidos y un valor de referencia,
indicando que la veracidad está relacionada con el **error sistemático** y no con el error aleatorio.

Por su parte la norma UNE 82009-1: Exactitud (veracidad y precisión) de resultados y métodos de medición, Parte 1: Principios generales y definiciones, equivalente a la ISO 5725-1, establece que la **exactitud** es el grado de concordancia existente entre el resultado de un ensayo y un valor aceptado como referencia, indicando que el término exactitud, aplicado a un conjunto de resultados, implica una combinación de componentes aleatorias y componentes de error sistemático o sesgo.

Dicha norma, también define la **veracidad** como el grado de concordancia existente entre el valor medio obtenido de una gran serie de resultados y un valor aceptado como referencia, indicando que la medida de la veracidad viene expresada usualmente en términos de sesgo (diferencia entre el valor medio obtenido y un valor aceptado como referencia o convencionalmente verdadero) y que, aunque a veces se denomina exactitud de la medida, este término debe de ser evitado porque no es.

De esta forma, tanto en el VIM como en la norma UNE 82009-1 el término exactitud engloba a los errores sistemáticos y aleatorios y, por tanto, a la veracidad (sistemático) y a la precisión (aleatorio).

En la figura 4 se presenta gráficamente la relación entre exactitud (accuracy), veracidad (trueness) y precisión (precision) a través de un ejemplo de lanzamiento de dardos a una diana.

![Representación gráfica de la precisión, veracidad y exactitud.](image)

Figura 4. Representación gráfica de la precisión, veracidad y exactitud.
Según estas definiciones, podemos encontrar los casos de exactitud e inexactitud de un método que se reflejan en la figura 5.

Figura 5.- Exactitud e Inexactitud de un método en función de su veracidad y precisión.
2.3.4 Exactitud e incertidumbre

La incertidumbre es el parámetro, no negativo, que caracteriza la dispersión de los valores atribuidos a un mensurando con una probabilidad dada (normalmente del 95%). La incertidumbre de medida incluye errores sistemáticos, si no se pueden corregir, y errores aleatorios, cuantificados a través de desviaciones típicas (o un múltiplo de ellas dependiendo de la probabilidad de cobertura requerida).

La exactitud de un método y la incertidumbre de medida están relacionadas, siendo la incertidumbre la cuantificación de la exactitud de un método.

Ajustándonos a las definiciones descritas en los anteriores apartados, a lo largo de este trabajo utilizaremos los términos veracidad y precisión para referirnos al error sistemático y aleatorio, respectivamente.

Con respecto a la precisión, utilizaremos el término de precisión intralaboratorio para referirnos a la máxima variabilidad encontrada en nuestro laboratorio, evitando la denominación, incorrectamente utilizada de reproducibilidad, ya que este término está reservado para la variabilidad obtenida en distintos laboratorios.

2.4 Estadística básica para la adecuada interpretación de este trabajo

En el anexo A se indican los conceptos necesarios básicos de estadística que se han utilizado para el planteamiento y desarrollo de este trabajo.
3.- OBJETIVOS DEL TRABAJO
3. Objetivos del trabajo

Este trabajo se incluyen en una de las líneas de investigación del Grupo “Química Analítica Aplicada (QANAP)” relacionada con el estudio de la Calidad del Aire Ambiente.

En octubre de 2013 la Agencia Internacional para la Investigación del Cáncer (IARC) de la Organización Mundial de la Salud (OMS) ha incluido la contaminación del aire ambiente y en especial el "material particulado (PM)" en su clasificación de carcinógenos humanos del Grupo I. Lo que confirma la importancia de la contaminación del aire como un factor de riesgo para la salud humana. Por lo que la determinación y caracterización del material particulado cobra una mayor importancia.

Así, el objetivo de este trabajo es plantear la validación del método de determinación de la fracción PM10 de la materia particulada en suspensión en aire ambiente a través de un diseño experimental representativo de todas las posibles variaciones aleatorias existentes. Se complementará con los datos de participación en una intercomparación (que evalúe las posibles variaciones sistemáticas) y que permita estimar la incertidumbre de medida del método a través de un enfoque directo basado en los requisitos de la norma UNE-EN-ISO 20988:2008.

NOTA: Este trabajo solo se refiere a la parte analítica de determinación gravimétrica de la fracción PM10, quedando excluido el muestreo, tanto de la validación como de la estimación de la incertidumbre, que debería ser objeto de otro trabajo.
4.- MÉTODOS
4. Métodos

4.1 Evaluación de la precisión

Evaluaremos la **precisión** a través de un diseño experimental realizado de forma que la serie de repeticiones obtenidas se vea influenciada por todos los factores que afectan al método de ensayo:

- **Condiciones ambientales**: en el diseño experimental se asegura que las condiciones ambientales han variado cubriendo todo el rango permitido de variación (Tª: 20±2ºC y 50±5%HR). Asimismo, para evaluar la precisión intra-laboratorio, se ha tenido en cuenta la realización de ciclos de acondicionamiento-desacondicionamiento entre pesadas.

- **Equipos instrumentales**: Debido a que el IUMA realiza las pesadas de cada tipo de filtro con una sola balanza, en el diseño experimental no se ha tenido en cuenta la utilización de diferentes balanzas. Si en un futuro esta circunstancia cambiase la incertidumbre, calculada según se describe en este trabajo, debería ser objeto de revisión.

- **Manipulación de las muestras por los diferentes analistas**.

Dentro del estudio de la precisión, se estudiará tanto la repetibilidad del método (grado de concordancia entre resultados de mediciones sucesivas de la misma muestra efectuadas en las mismas condiciones de medida: mismo operador, mismo instrumento de medida y corto periodo de tiempo) como la precisión intra-laboratorio (grado de concordancia entre resultados de mediciones sucesivas de la misma muestra efectuadas en diferentes condiciones de medida dentro del mismo laboratorio: diferente operador, diferente instrumento de medida y largo periodo de tiempo).

Para el estudio de la **repetibilidad** se realizarán pesadas repetidas de muestras reales y de pesadas repetidas de filtros blancos por el mismo analista, el mismo día y con la misma balanza. La repetibilidad del método se obtendrá como suma de las varianzas de la pesada del filtro blanco y del filtro cargado.

Para el estudio de la **precisión intra-laboratorio** se realizarán pesadas repetidas de muestras reales y de pesadas repetidas de filtros blancos por distintos analistas, en distintos días y con la misma balanza (ya que el IUMA dispone de una sola balanza para la pesada de cada tipo de filtro). La repetibilidad del método se obtendrá como suma de las varianzas de las pesadas del filtro blanco y del filtro cargado.

El diseño experimental decidido, que constituye el Plan de Validación del Método, ha sido el siguiente:
PLAN DE VALIDACIÓN DE LA PRECISIÓN (REPETIBILIDAD Y PRECISIÓN INTRA-LABORATORIO) PARA EL MÉTODO DE DETERMINACIÓN GRAVIMÉTRICA DE FRACCIÓN PM10

- Datos del ensayo:

 Determinación: Fracción PM10 por gravimetría
 Norma aplicable: UNE-EN 12341:1999
 Acreditación según norma: Sí
 Matriz: Soportes de muestreo (filtros de fibra de cuarzo)
 Rango de validación: Según tipo de filtro
 C47: 250-4270 µg
 C150: 1700-101350 µg
 R203: 21300-534000 µg

- Muestras a analizar:

 Para cada tipo de filtro que vamos a validar escogeremos tres filtros de distintas “carga” o contaminación repartidos en todo el rango de acreditación: un filtro de carga elevada, un filtro de carga media y un filtro de carga baja. Los filtros de carga alta y de carga baja deberán ser lo más cercanos posible a los límites de rango solicitados en la acreditación.

 Para escoger los tres filtros, comprobaremos si alguno de los filtros que actualmente estamos analizando se adecúa a las cargas contaminantes que necesitamos.

- Plan de repeticiones (para cada tipo de filtro: C47, C150, R203):

 Actualmente los analistas asignados a este ensayo son tres y todos ellos participarán en la validación.

 Cada uno de los analistas pesará 10 veces cada uno de los tres filtros (carga alta, carga media y carga baja) en las mismas condiciones de ensayo posibles (mismo día, misma balanza) pero en días distintos entre ellos. Así, el primer analista pesará 10 veces cada uno de los tres filtros el lunes de una semana, el segundo analista pesará 10 veces cada uno de los tres filtros el lunes de la semana siguiente y el tercer analista volverá a pesar 10 veces cada uno de los tres filtros el lunes de la semana siguiente.

 Además, cada analista, el día que le toque realizar la pesada, pesará 10 veces el mismo “filtro blanco”, es decir, sin carga contaminante.

 Para tomar la máxima variabilidad posible dentro del mismo día, la pesada de los filtros se realizará con la siguiente secuencia “blanco / carga baja / carga media / carga alta” y otra vez “blanco / carga baja / carga media / carga alta”.

 Para tomar la máxima variabilidad entre pesadas de distintos días y distintos analistas, una vez que el filtro complete las pesadas del día 1, se dejará dos días fuera de la sala de condicionamiento y se volverá a acondicionar las 48 horas necesarias antes de las pesadas del día 2, y lo mismo entre el día 2 y el 3.
Todos los resultados serán realizados según el procedimiento de determinación de fracción PM10 que dispone el laboratorio, cumpliendo las condiciones ambientales requeridas (20±1ºC y 50±5%HR).

Tras la obtención de los datos, se comprobará que los resultados obtenidos por los 3 analistas (30) cumplen las condiciones requeridas y, adicionalmente, que han sido obtenidos a lo largo de todas las condiciones ambientales permitidas, de forma que se abarque la máxima variabilidad posible de dichas condiciones y nuestro cálculo de incertidumbre sea representativo.

Con este diseño experimental, la repetibilidad del método es más representativa que el simple cálculo a partir de la falta de repetibilidad de la balanza determinada con una masa patrón, que no incluye los errores posibles debidos a las características de la muestra (filtro) con sus posibles pérdidas de masa en la manipulación de la pesada o incluso del propio método de conservación del filtro entre pesadas).

Cálculo de la repetibilidad:

La repetibilidad del método vendrá dada tanto por la falta de repetibilidad en la pesada del filtro cargado como por la falta de repetibilidad en la pesada del filtro en blanco. Así, para el cálculo de la repetibilidad del método tendremos que hacer una propagación de errores (combinación) de las desviaciones típicas de las pesadas del filtro cargado y del filtro sin cargar. Para cada analista calcularemos su repetibilidad a través de la siguiente expresión:

\[s_{\text{repetibilidad método}}^2 = s_{\text{repetibilidad filtro cargado}}^2 - s_{\text{repetibilidad filtro blanco}}^2 \]

Siendo

- \(s_{\text{repetibilidad filtro blanco}} \) = desviación típica de las 10 medidas realizadas del filtro blanco.
- \(s_{\text{repetibilidad filtro cargado}} \) = desviación típica de las 10 medidas realizadas del filtro cargado.

Como falta de repetibilidad del método tomaremos la mayor falta de repetibilidad encontrada en los tres analistas.
4.2 Evaluación de la veracidad

Evaluaremos la veracidad a través de la información que posee el IUMA sobre la participación en un ejercicio de intercomparación. Es necesario realizar el estudio de la veracidad de esta forma debido a que no existe ningún tipo de material de referencia certificado disponible comercialmente y porque no es posible realizar "dopaje" de muestras (muestras adicionadas).

El estudio de los resultados de la intercomparación se realiza analizando el criterio de aceptación de resultados propuesto por el organizador, proponiendo, si fuese necesario, otros criterios de aceptación alternativos (límites de confianza de la media, número E, desviación máxima permitida, etc.) y obteniendo conclusiones sobre el resultado satisfactorio o no satisfactorio en base a dichos criterios de aceptación.

Del ejercicio de intercomparación se obtendrá el sesgo del método y se estudiará si dicho sesgo es significativo o no. Si el sesgo es significativo, el método presenta un error sistemático y se deberá incluir dicho error como contribución a la incertidumbre de medida.

El sesgo del método es la diferencia entre el valor convencionalmente verdadero de la intercomparación y el valor obtenido por el IUMA constituye el sesgo del método.

\[\text{Sesgo} = |x_{\text{verdadero}} - x_{\text{observado}}| \]

Donde:
- \(x_{\text{verdadero}}\): Es el valor convencionalmente verdadero de la intercomparación.
- \(x_{\text{observado}}\): Es el valor obtenido en la intercomparación.
Determinaremos si el sesgo es significativo, o no, mediante la realización de la prueba t-student.

\[t_{calculada} = \frac{|x_{verdadero} - x_{observado}|}{s_{precisión intra-laboratorio} / \sqrt{n}} \]

Donde:
- \(s_{precisión intra-laboratorio} \): Desviación estándar de la precisión intra-laboratorio.
- \(n \): Número de medidas realizadas para caracterizar \(s_{precisión intra-laboratorio} \).

Si la \(t_{calculada} \) es menor que \(t_{tabulada} \) para \(n-1 \) grados de libertad, con un porcentaje de cobertura del 95% (\(\alpha = 0,05 \)), la estadística nos dice que los valores \(x_{verdadero} \) y \(x_{observado} \) son estadísticamente iguales y, por tanto, no podemos afirmar que el sesgo sea significativo. Si \(t_{calculada} \) es mayor que \(t_{tabulada} \), entenderemos que el sesgo es significativo.

NOTA: La prueba t-student simplemente es una comprobación de si el valor observado está dentro de la distribución t-student para el valor convencional (con un 95% de confianza y \(n-1 \) grados de libertad). Esto se representa gráficamente en la figura 6.

A) Error sistemático, sesgo significativo (\(|X-x_m| \neq 0 \))

![Gráfica A](image.png)

B) Ausencia de error sistemático, sesgo no significativo (\(|X-x_m| = 0 \))

![Gráfica B](image.png)

Figura 6. Representación gráfica de la prueba t-student para comprobar la existencia de sesgo significativo.
4.3 Estimación de la incertidumbre

Estimaremos la incertidumbre, U, a través de la combinación lineal del error sistemático del método (sesgo), si lo hubiera, y el error aleatorio del método (precisión), ambos determinados experimentalmente en la validación.

La suma de ambos errores se realizará según la expresión:

$$ U = \text{error aleatorio (precisión al 95% probabilidad)} + \text{error sistematico (sesgo)} $$

Que se explica gráficamente en la figura 7:

![Gráfica de la incertidumbre al 95% de cobertura](image)

Figura 7.- Representación gráfica de la incertidumbre como suma de los errores sistemáticos y aleatorios.

NOTA: En el anexo A se recogen los conceptos de estadística necesarios para la estimación de la incertidumbre basada en los datos experimentales de la validación.

4.3.1 Error sistemático (sesgo)

En el estudio de la veracidad se calcula el sesgo y se comprueba si es significativo o no a través de la prueba t-student.

Si el sesgo obtenido no es significativo, no se tendrá en cuenta como contribución a la incertidumbre. Si el sesgo obtenido es significativo se tendrá en cuenta sumándolo en valor absoluto directamente al error aleatorio.

$$ \text{Error sistemático (sesgo)} = |x_{\text{verdadero}} - x_{\text{observado}}| $$
4.3.2 Determinación del error aleatorio (precisión al 95% de probabilidad)

Como ya se ha indicado, en la validación se calcula la repetibilidad y la precisión intra-laboratorio a través de los datos del diseño experimental.

La precisión intra-laboratorio es la precisión que se utilizará para cuantificar el error aleatorio del método, ya que es la precisión más desfavorable de las dos estudiadas.

El error aleatorio es necesario conocerlo con una probabilidad de cobertura del 95% de probabilidad, que es la probabilidad con la que normalmente se realiza el cálculo de incertidumbre. Para ello, se multiplicará la desviación típica experimental de la precisión intra-laboratorio por el coeficiente de cobertura correspondiente, k, al 95% de probabilidad y para los grados efectivos de libertad correspondientes, n-1, a través de la expresión:

\[\text{error aleatorio (precisión al 95% de cobertura)} = k_{(95\%, n-1 \text{ grados de libertad})} \frac{S_{\text{precisión intra-laboratorio}}}{\sqrt{N}} \]

\(k_{(95\%, n-1 \text{ grados de libertad})} \): es el factor de cobertura tabulado, según las tablas t-student, para una probabilidad del 95% (\(\alpha = 0.05 \)) y unos grados de libertad n-1, siendo n el número de datos utilizados para calcular \(S_{\text{precisión intra-laboratorio}} \).

\(S_{\text{precisión intra-laboratorio}} \) es la desviación típica obtenida en el estudio de la precisión intra-laboratorio.

\(N \) es el número de repeticiones que se realizan sobre las muestras de ensayo para dar los resultados al cliente en el día a día.

 Nótese que n y N no se refieren al mismo número de datos.
5.- RESULTADOS OBTENIDOS. DISCUSIÓN Y ANÁLISIS
5. Resultados obtenidos. Discusión y análisis.

5.1 Parámetros estudiados en la validación

En la validación del método de determinación gravimétrica de PM10 llevada a cabo en el IUMA según la norma UNE-EN 12341:1999 solo se ha realizado el estudio de la precisión y de la veracidad.

No es necesario estudiar la linealidad del método como parámetro de la validación porque este método NO utiliza una función de respuesta para el cálculo de resultados. Tampoco es necesario calcular ni el límite de cuantificación, porque la validación se ha planteado en un rango que no está cercano al límite de cuantificación, ni la Selectividad/Especificidad ya que el método no presenta interferencias.

5.2 Rango validado, según tipo de filtros

Para la determinación de la fracción PM10, el IUMA puede utilizar diferentes tipos de filtros, en función de la concentración de material particulado que se espera encontrar. Por ello, la validación se ha realizado para todos los tipos de filtros utilizados y, dentro de cada filtro, en el rango de masa y concentración en los que se utilizan.

Los filtros estudiados y los rangos validados para cada tipo de filtro se presentan en la tabla 3. En dicha tabla también se indica la balanza con la que se realiza la pesada de cada tipo de filtro, ya que el IUMA solo dispone de una balanza en la que pesar cada uno de los tipos de filtros.

<table>
<thead>
<tr>
<th>Tipo de filtro</th>
<th>Balanza utilizada</th>
<th>Rango de resultados</th>
</tr>
</thead>
<tbody>
<tr>
<td>C47</td>
<td>ME215p</td>
<td>250-4270 µg</td>
</tr>
<tr>
<td>C150</td>
<td>A200s</td>
<td>1700-101350 µg</td>
</tr>
<tr>
<td>R203</td>
<td>A200s</td>
<td>21300-534000 µg</td>
</tr>
</tbody>
</table>

5.3 Estudio experimental de la precisión:

Para el estudio de la precisión se han tomado, para cada tipo de filtro (R203, C150 y C47), tres filtros de distinta “carga”, o contaminación, repartidos en todo el rango de acreditación: un filtro de carga elevada, un filtro de carga media y un filtro de carga baja. Los filtros de carga alta y baja se han escogido lo más cercanos posible a los límites del rango a validar.
Todos los filtros analizados son filtros de muestras reales que el IUMA conserva. En la tabla 4 se indica el nivel de carga de los filtros.

<table>
<thead>
<tr>
<th>Tipo filtro</th>
<th>Nivel Carga</th>
<th>Carga de los filtros (µg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R203 Balanza A200s</td>
<td>Alta</td>
<td>198030</td>
</tr>
<tr>
<td></td>
<td>Media</td>
<td>96260</td>
</tr>
<tr>
<td></td>
<td>Baja</td>
<td>42183</td>
</tr>
<tr>
<td>C150 Balanza A200s</td>
<td>Alta</td>
<td>51890</td>
</tr>
<tr>
<td></td>
<td>Media</td>
<td>20293</td>
</tr>
<tr>
<td></td>
<td>Baja</td>
<td>2437</td>
</tr>
<tr>
<td>C47 Balanza ME215p</td>
<td>Alta</td>
<td>3040</td>
</tr>
<tr>
<td></td>
<td>Media</td>
<td>1255</td>
</tr>
<tr>
<td></td>
<td>Baja</td>
<td>250</td>
</tr>
</tbody>
</table>

Cada analista asignado a este ensayo (3 analistas: A, B y C) ha pesado 10 veces cada uno de los filtros, además de un filtro blanco de cada tipo de filtro según el diseño experimental recogido en el Plan de Validación descrito en el apartado 4.

Las condiciones ambientales en el momento de la pesada de los filtros se han mantenido dentro de los márgenes establecidos por el método. La temperatura ha oscilado entre 19,4ºC y 20,8ºC. La humedad relativa ha oscilado entre 45,7% y 54,1% HR.

En las tablas 5, 6 y 7 se muestran los datos obtenidos para las pesadas de cada tipo de filtro:
Tabla 5.- Datos obtenidos para los filtros R203 (Balanza A200s).

<table>
<thead>
<tr>
<th>Día</th>
<th>Analista</th>
<th>Repetición</th>
<th>Blanco (g)</th>
<th>R203-Carga alta (g)</th>
<th>R203-Carga media (g)</th>
<th>R203-Carga baja (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Peso de los filtros antes del muestreo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td></td>
<td>4,5139</td>
<td>4,4698</td>
<td>4,4097</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td></td>
<td>4,5026</td>
<td>4,7126</td>
<td>4,5666</td>
<td>4,4521</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td></td>
<td>4,5025</td>
<td>4,7126</td>
<td>4,5663</td>
<td>4,4521</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>4,5021</td>
<td>4,7123</td>
<td>4,5660</td>
<td>4,4518</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>4,5022</td>
<td>4,7138</td>
<td>4,5663</td>
<td>4,4522</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>4,5025</td>
<td>4,7130</td>
<td>4,5667</td>
<td>4,4519</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td>4,5025</td>
<td>4,7134</td>
<td>4,5660</td>
<td>4,4518</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td>4,5023</td>
<td>4,7125</td>
<td>4,5661</td>
<td>4,4520</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td>4,5023</td>
<td>4,7128</td>
<td>4,5660</td>
<td>4,4518</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td>4,5025</td>
<td>4,7129</td>
<td>4,5661</td>
<td>4,4517</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>4,4992</td>
<td>4,7095</td>
<td>4,5654</td>
<td>4,4518</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>4,5016</td>
<td>4,7109</td>
<td>4,5659</td>
<td>4,4515</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>4,5019</td>
<td>4,7080</td>
<td>4,5645</td>
<td>4,4519</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>4,5010</td>
<td>4,7080</td>
<td>4,5655</td>
<td>4,4519</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>4,5026</td>
<td>4,7050</td>
<td>4,5655</td>
<td>4,4515</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td>4,5011</td>
<td>4,7076</td>
<td>4,5648</td>
<td>4,4519</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td>4,5017</td>
<td>4,7091</td>
<td>4,5645</td>
<td>4,4519</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td>4,5023</td>
<td>4,7065</td>
<td>4,5647</td>
<td>4,4517</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td>4,5003</td>
<td>4,7084</td>
<td>4,5657</td>
<td>4,4517</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>4,5006</td>
<td>4,7085</td>
<td>4,5652</td>
<td>4,4513</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4,5013</td>
<td>4,7125</td>
<td>4,5666</td>
<td>4,4519</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4,5013</td>
<td>4,7127</td>
<td>4,5669</td>
<td>4,452</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4,5027</td>
<td>4,7153</td>
<td>4,5665</td>
<td>4,4519</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4,5036</td>
<td>4,7142</td>
<td>4,5667</td>
<td>4,4522</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4,5037</td>
<td>4,7149</td>
<td>4,5662</td>
<td>4,4521</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4,5024</td>
<td>4,7136</td>
<td>4,5662</td>
<td>4,452</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4,5030</td>
<td>4,7145</td>
<td>4,5666</td>
<td>4,4522</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4,5032</td>
<td>4,7146</td>
<td>4,5668</td>
<td>4,4521</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4,5032</td>
<td>4,7171</td>
<td>4,5669</td>
<td>4,4519</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4,5031</td>
<td>4,7149</td>
<td>4,5672</td>
<td>4,452</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4,5021</td>
<td>4,7119</td>
<td>4,5661</td>
<td>4,4519</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Promedio GLOBAL pesadas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nivel de carga del filtro (g)</td>
<td>0,1980</td>
<td>0,0963</td>
<td>0,0422</td>
</tr>
</tbody>
</table>

Nivel de carga del filtro (g)

<table>
<thead>
<tr>
<th>Día</th>
<th>Analista</th>
<th>Repetición</th>
<th>Promedio GLOBAL pesadas</th>
<th>Nivel de carga del filtro (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,1980</td>
</tr>
</tbody>
</table>
Tabla 6.- Datos obtenidos para los Filtros C150 (Balanza A200s).

<table>
<thead>
<tr>
<th>Día</th>
<th>Analista</th>
<th>Repetición</th>
<th>Peso de los filtros antes del muestreo</th>
<th>Blanco (g)</th>
<th>C150-Carga alta (g)</th>
<th>C150-Carga media (g)</th>
<th>C150-Carga baja (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td></td>
<td></td>
<td>1,4256</td>
<td>1,5261</td>
<td>1,5082</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td></td>
<td></td>
<td>1,5176</td>
<td>1,4782</td>
<td>1,5471</td>
<td>1,5110</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>1</td>
<td></td>
<td>1,5173</td>
<td>1,4779</td>
<td>1,5469</td>
<td>1,5108</td>
</tr>
<tr>
<td>4</td>
<td>A</td>
<td>2</td>
<td></td>
<td>1,5173</td>
<td>1,4778</td>
<td>1,5470</td>
<td>1,5106</td>
</tr>
<tr>
<td>5</td>
<td>A</td>
<td>3</td>
<td></td>
<td>1,5173</td>
<td>1,4780</td>
<td>1,5469</td>
<td>1,5106</td>
</tr>
<tr>
<td>6</td>
<td>A</td>
<td>4</td>
<td></td>
<td>1,5172</td>
<td>1,4779</td>
<td>1,5467</td>
<td>1,5110</td>
</tr>
<tr>
<td>7</td>
<td>A</td>
<td>5</td>
<td></td>
<td>1,5172</td>
<td>1,4777</td>
<td>1,5466</td>
<td>1,5108</td>
</tr>
<tr>
<td>8</td>
<td>A</td>
<td>6</td>
<td></td>
<td>1,5171</td>
<td>1,4777</td>
<td>1,5468</td>
<td>1,5106</td>
</tr>
<tr>
<td>9</td>
<td>A</td>
<td>7</td>
<td></td>
<td>1,5170</td>
<td>1,4777</td>
<td>1,5468</td>
<td>1,5106</td>
</tr>
<tr>
<td>10</td>
<td>A</td>
<td>8</td>
<td></td>
<td>1,5170</td>
<td>1,4778</td>
<td>1,5468</td>
<td>1,5106</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td></td>
<td></td>
<td>1,5174</td>
<td>1,4785</td>
<td>1,5459</td>
<td>1,5110</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>1</td>
<td></td>
<td>1,5177</td>
<td>1,4774</td>
<td>1,5469</td>
<td>1,5105</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>2</td>
<td></td>
<td>1,5173</td>
<td>1,4766</td>
<td>1,5456</td>
<td>1,5105</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>3</td>
<td></td>
<td>1,5173</td>
<td>1,4764</td>
<td>1,5458</td>
<td>1,5107</td>
</tr>
<tr>
<td>5</td>
<td>B</td>
<td>4</td>
<td></td>
<td>1,5170</td>
<td>1,4766</td>
<td>1,5458</td>
<td>1,5106</td>
</tr>
<tr>
<td>6</td>
<td>B</td>
<td>5</td>
<td></td>
<td>1,5170</td>
<td>1,4768</td>
<td>1,5457</td>
<td>1,5106</td>
</tr>
<tr>
<td>7</td>
<td>B</td>
<td>6</td>
<td></td>
<td>1,5171</td>
<td>1,4763</td>
<td>1,5458</td>
<td>1,5106</td>
</tr>
<tr>
<td>8</td>
<td>B</td>
<td>7</td>
<td></td>
<td>1,5171</td>
<td>1,4769</td>
<td>1,5459</td>
<td>1,5107</td>
</tr>
<tr>
<td>9</td>
<td>B</td>
<td>8</td>
<td></td>
<td>1,5166</td>
<td>1,4767</td>
<td>1,5461</td>
<td>1,5106</td>
</tr>
<tr>
<td>10</td>
<td>B</td>
<td>9</td>
<td></td>
<td>1,5168</td>
<td>1,4770</td>
<td>1,5459</td>
<td>1,5105</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td></td>
<td></td>
<td>1,5166</td>
<td>1,4777</td>
<td>1,5462</td>
<td>1,5106</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>1</td>
<td></td>
<td>1,5166</td>
<td>1,4773</td>
<td>1,5464</td>
<td>1,5107</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>2</td>
<td></td>
<td>1,5165</td>
<td>1,4776</td>
<td>1,5464</td>
<td>1,5109</td>
</tr>
<tr>
<td>4</td>
<td>C</td>
<td>3</td>
<td></td>
<td>1,5164</td>
<td>1,4776</td>
<td>1,5463</td>
<td>1,5106</td>
</tr>
<tr>
<td>5</td>
<td>C</td>
<td>4</td>
<td></td>
<td>1,5166</td>
<td>1,4777</td>
<td>1,5467</td>
<td>1,5109</td>
</tr>
<tr>
<td>6</td>
<td>C</td>
<td>5</td>
<td></td>
<td>1,5163</td>
<td>1,4774</td>
<td>1,5467</td>
<td>1,5108</td>
</tr>
<tr>
<td>7</td>
<td>C</td>
<td>6</td>
<td></td>
<td>1,5164</td>
<td>1,4781</td>
<td>1,5465</td>
<td>1,5110</td>
</tr>
<tr>
<td>8</td>
<td>C</td>
<td>7</td>
<td></td>
<td>1,5162</td>
<td>1,4782</td>
<td>1,5464</td>
<td>1,5106</td>
</tr>
<tr>
<td>9</td>
<td>C</td>
<td>8</td>
<td></td>
<td>1,5165</td>
<td>1,4776</td>
<td>1,5462</td>
<td>1,5105</td>
</tr>
<tr>
<td>10</td>
<td>C</td>
<td>9</td>
<td></td>
<td>1,5166</td>
<td>1,4772</td>
<td>1,5460</td>
<td>1,5108</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,5169</td>
<td>1,4775</td>
<td>1,5464</td>
<td>1,5107</td>
</tr>
<tr>
<td>Promedio GLOBAL pesadas</td>
<td></td>
<td></td>
<td></td>
<td>0,0519</td>
<td>0,0203</td>
<td>0,0025</td>
<td></td>
</tr>
</tbody>
</table>
5.3.1 Cálculo de la repetibilidad

Con los datos de las 10 repeticiones que ha realizado cada analista, de cada uno de los filtros y del blanco, en las mismas condiciones de ensayo (mismo día, mismo analista, misma balanza y mismo acondicionamiento) calculamos la repetibilidad del método.

Debido a que el cálculo de la fracción PM10 se realiza a través de la resta de las pesadas del filtro tras el muestreo y el filtro antes del muestreo,

\[\text{PM10 (masa)} = \text{Masa filtro cargado} - \text{Masa filtro sin carga} \]
la “repetibilidad del método de cada analista” será la suma de varianzas de las pesadas del filtro cargado y del filtro sin cargar:

\[
\text{Repetibilidad método analista (s) = } \sqrt{s^2_{\text{masa filtro cargado}} + s^2_{\text{masa filtro sin carga}}}
\]

Donde:

- \(s_{\text{masa filtro cargado}} \): es la desviación típica de las 10 medidas, de cada analista, para cada filtro cargado analizado en la validación.
- \(s_{\text{masa filtro sin carga}} \): es la desviación típica de las 10 medidas, de cada analista, para el filtro blanco analizado en la validación.

Como “repetibilidad” tomaremos la máxima encontrada para los tres analistas que han participado en la validación.

Expresamos también la repetibilidad en forma de coeficiente de variación (%CV), que calcularemos dividiendo la repetibilidad por la carga del filtro analizado.

En las tablas 8, 9 y 10 se presentan los datos de repetibilidad obtenidos para cada tipo de filtro.

<table>
<thead>
<tr>
<th>Tabla 8.- Repetibilidad obtenida para los FILTROS R203.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analista</td>
</tr>
<tr>
<td>A</td>
</tr>
<tr>
<td>s</td>
</tr>
<tr>
<td>repetibilidad -método</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>s</td>
</tr>
<tr>
<td>repetibilidad -método</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>s</td>
</tr>
<tr>
<td>repetibilidad -método</td>
</tr>
<tr>
<td>MÁXIMA</td>
</tr>
<tr>
<td>repetibilidad-método (%CV)</td>
</tr>
</tbody>
</table>
Tabla 9.- Repetibilidad obtenida para los FILTROS C150.

<table>
<thead>
<tr>
<th>Analista</th>
<th>Datos</th>
<th>Blanco (g)</th>
<th>C150-Carga alta (g)</th>
<th>C150-Carga media (g)</th>
<th>C150-Carga baja (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Media</td>
<td>1,517240</td>
<td>1,477910</td>
<td>1,546860</td>
<td>1,510770</td>
</tr>
<tr>
<td></td>
<td>s</td>
<td>0,000201</td>
<td>0,000166</td>
<td>0,000201</td>
<td>0,000164</td>
</tr>
<tr>
<td></td>
<td>repetibilidad -método</td>
<td>---</td>
<td>0,000261</td>
<td>0,000284</td>
<td>0,000259</td>
</tr>
<tr>
<td>B</td>
<td>Media</td>
<td>1,517130</td>
<td>1,476920</td>
<td>1,545940</td>
<td>1,510630</td>
</tr>
<tr>
<td></td>
<td>s</td>
<td>0,000131</td>
<td>0,000637</td>
<td>0,000363</td>
<td>0,000149</td>
</tr>
<tr>
<td></td>
<td>repetibilidad -método</td>
<td>---</td>
<td>0,000710</td>
<td>0,000479</td>
<td>0,000347</td>
</tr>
<tr>
<td>C</td>
<td>Media</td>
<td>1,51643</td>
<td>1,47764</td>
<td>1,54638</td>
<td>1,51074</td>
</tr>
<tr>
<td></td>
<td>s</td>
<td>0,000157</td>
<td>0,000317</td>
<td>0,000220</td>
<td>0,000165</td>
</tr>
<tr>
<td></td>
<td>repetibilidad -método</td>
<td>---</td>
<td>0,000354</td>
<td>0,000270</td>
<td>0,000227</td>
</tr>
<tr>
<td>MAXIMA</td>
<td>repetibilidad-método (s máxima)</td>
<td>0,000710</td>
<td>0,000479</td>
<td>0,000347</td>
<td></td>
</tr>
<tr>
<td></td>
<td>repetibilidad-método (%CV)</td>
<td>1,368%</td>
<td>2,360%</td>
<td>13,796%</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 10.- Repetibilidad obtenida para los FILTROS C47.

<table>
<thead>
<tr>
<th>Analista</th>
<th>Datos</th>
<th>Blanco (g)</th>
<th>C47-Carga alta (g)</th>
<th>C47-Carga media (g)</th>
<th>C47-Carga baja (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Media</td>
<td>0,158257</td>
<td>0,162013</td>
<td>0,159995</td>
<td>0,148693</td>
</tr>
<tr>
<td></td>
<td>s</td>
<td>0,000017</td>
<td>0,000018</td>
<td>0,000016</td>
<td>0,000009</td>
</tr>
<tr>
<td></td>
<td>repetibilidad -método</td>
<td>---</td>
<td>0,000025</td>
<td>0,000024</td>
<td>0,000019</td>
</tr>
<tr>
<td>B</td>
<td>Media</td>
<td>0,158260</td>
<td>0,161997</td>
<td>0,159989</td>
<td>0,148688</td>
</tr>
<tr>
<td></td>
<td>s</td>
<td>0,000012</td>
<td>0,000008</td>
<td>0,000010</td>
<td>0,000012</td>
</tr>
<tr>
<td></td>
<td>repetibilidad -método</td>
<td>---</td>
<td>0,000015</td>
<td>0,000016</td>
<td>0,000018</td>
</tr>
<tr>
<td>C</td>
<td>Media</td>
<td>0,158258</td>
<td>0,162023</td>
<td>0,159993</td>
<td>0,148712</td>
</tr>
<tr>
<td></td>
<td>s</td>
<td>0,000023</td>
<td>0,000017</td>
<td>0,000013</td>
<td>0,000010</td>
</tr>
<tr>
<td></td>
<td>repetibilidad -método</td>
<td>---</td>
<td>0,000028</td>
<td>0,000026</td>
<td>0,000025</td>
</tr>
<tr>
<td>MAXIMA</td>
<td>repetibilidad-método (s máxima)</td>
<td>0,000028</td>
<td>0,000026</td>
<td>0,000025</td>
<td></td>
</tr>
<tr>
<td></td>
<td>repetibilidad-método (%CV)</td>
<td>0,960%</td>
<td>2,160%</td>
<td>9,611%</td>
<td></td>
</tr>
</tbody>
</table>
5.3.2 Cálculo de la precisión intra-laboratorio:

Con los 30 datos de pesada de cada filtro (10 datos x 3 analistas) calculamos la precisión intermedia del método. Estos 30 datos han sido obtenidos en distintos días, por distintos analistas, con distinto acondicionamiento pero con la misma balanza, porque para el mismo tipo de filtro usamos siempre una única balanza.

Al igual que con la repetibilidad, tenemos que tener en cuenta que, tal y como hemos podido diseñar el plan de validación, la variabilidad de las 30 repeticiones de pesada no es directamente la “precisión intra-laboratorio del método” ya que la esta precisión tiene que incluir tanto la variabilidad en la pesada del filtro tras muestreo como la variabilidad en la pesada del filtro antes del muestreo, ya que:

\[\text{PM10 (masa)} = \text{Masa filtro cargado} - \text{Masa filtro sin carga} \]

Así, para calcular la “precisión intra-laboratorio del método” hemos de hacer una propagación de errores (en forma de varianzas) de las 30 pesadas del filtro cargado y de las 30 pesadas del filtro sin cargar:

\[
\text{Precisión intra-laboratorio (s)} = \sqrt{s_{\text{masa filtro cargado}}^2 + s_{\text{masa filtro sin carga}}^2}
\]

Donde:

- \(s_{\text{masa filtro cargado}} \): es la desviación típica de las 30 medidas (10 medidas x3 analistas) para cada filtro cargado analizado en la validación.
- \(s_{\text{masa filtro sin carga}} \): es la desviación típica de las 30 medidas (10 medidas x3 analistas) para el filtro blanco analizado en la validación.

Expresamos también la precisión intra-laboratorio del método en forma de coeficiente de variación (%CV), que calcularemos dividiendo la “precisión intra-laboratorio del método” por la carga neta del filtro analizado.

En las tablas 11, 12 y 13 se presentan los datos de precisión intra-laboratorio obtenidos para cada tipo de filtro:
5.4 Estudio experimental de la veracidad

El IUMA ha participado en una intercomparación con un grupo de laboratorios acreditados para la determinación de la fracción PM10 por la norma UNE-EN 12341:1999.

En el anexo B se presentan los resultados del informe de intercomparación enviado por el laboratorio acreditado organizador, en la que se incluyen los resultados de todos los participantes. El IUMA es el laboratorio identificado con el número 5.
5.4.1 Evaluación de los resultados de la intercomparación por el organizador

Debido a que el número de participantes de esta intercomparación ha sido muy pequeño (5 incluyendo el IUMA), el informe recibido no presenta un tratamiento estadístico al uso (Z-score, Número E, índice de compatibilidad,...). El laboratorio acreditado organizador plantea la aceptación de resultados como:

\[
\% \text{ Error (desviación)} \leq \% \text{ Incertidumbre}
\]

Es decir,

\[
\left| \frac{\text{Valor asignado} - \text{Resultado}}{\text{Valor asignado}} \right| \cdot 100 \leq \frac{\text{Incertidumbre laboratorio}}{\text{Valor asignado}} \cdot 100
\]

En nuestro caso, no ha sido posible realizar la evaluación de resultados porque no hemos informado de la incertidumbre del resultado (ya que todavía no había sido calculada).

De todas formas, y a modo informativo para ver el cumplimiento de otros laboratorios, hemos aplicado el criterio de aceptación que propone el organizador para los laboratorios que han informado de la incertidumbre. Los resultados se pueden ver en la tabla 14.
<table>
<thead>
<tr>
<th>Laboratorio 1</th>
<th>Valor asignado (mg)</th>
<th>Resultado (mg)</th>
<th>Diferencia (mg)</th>
<th>Incertidumbre (mg)</th>
<th>Diferencia (%)</th>
<th>Incertidumbre (%)</th>
<th>¿Cumple?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filtro 1</td>
<td>1,15</td>
<td>1,12</td>
<td>-0,03</td>
<td>0,04</td>
<td>-2,95%</td>
<td>3,47%</td>
<td>Cumple</td>
</tr>
<tr>
<td>Filtro 2</td>
<td>1,22</td>
<td>1,17</td>
<td>-0,05</td>
<td>0,04</td>
<td>-4,10%</td>
<td>3,28%</td>
<td>No Cumple</td>
</tr>
<tr>
<td>Filtro 3</td>
<td>1,59</td>
<td>1,54</td>
<td>-0,05</td>
<td>0,04</td>
<td>-2,90%</td>
<td>2,52%</td>
<td>No Cumple</td>
</tr>
<tr>
<td>Filtro 4</td>
<td>1,28</td>
<td>1,22</td>
<td>-0,06</td>
<td>0,04</td>
<td>-4,69%</td>
<td>3,13%</td>
<td>No Cumple</td>
</tr>
<tr>
<td>Filtro 5</td>
<td>0,73</td>
<td>0,7</td>
<td>-0,03</td>
<td>0,04</td>
<td>-3,85%</td>
<td>5,49%</td>
<td>Cumple</td>
</tr>
<tr>
<td>Filtro 6</td>
<td>0,60</td>
<td>0,57</td>
<td>-0,03</td>
<td>0,04</td>
<td>-5,63%</td>
<td>6,62%</td>
<td>Cumple</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Laboratorio 2</th>
<th>Valor asignado (mg)</th>
<th>Resultado (mg)</th>
<th>Diferencia (mg)</th>
<th>Incertidumbre (mg)</th>
<th>Diferencia (%)</th>
<th>Incertidumbre (%)</th>
<th>¿Cumple?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filtro 1</td>
<td>1,15</td>
<td>1,14</td>
<td>-0,01</td>
<td>0,63</td>
<td>-1,21%</td>
<td>54,59%</td>
<td>Cumple</td>
</tr>
<tr>
<td>Filtro 2</td>
<td>1,22</td>
<td>1,31</td>
<td>0,09</td>
<td>0,72</td>
<td>7,38%</td>
<td>59,02%</td>
<td>Cumple</td>
</tr>
<tr>
<td>Filtro 3</td>
<td>1,59</td>
<td>1,62</td>
<td>0,03</td>
<td>0,89</td>
<td>2,14%</td>
<td>56,12%</td>
<td>Cumple</td>
</tr>
<tr>
<td>Filtro 4</td>
<td>1,28</td>
<td>1,11</td>
<td>-0,17</td>
<td>0,61</td>
<td>-13,28%</td>
<td>47,66%</td>
<td>Cumple</td>
</tr>
<tr>
<td>Filtro 5</td>
<td>0,73</td>
<td>0,69</td>
<td>-0,04</td>
<td>---</td>
<td>-5,22%</td>
<td>---</td>
<td>----</td>
</tr>
<tr>
<td>Filtro 6</td>
<td>0,60</td>
<td>0,57</td>
<td>-0,03</td>
<td>---</td>
<td>-5,63%</td>
<td>---</td>
<td>----</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Laboratorio 3</th>
<th>Valor asignado (mg)</th>
<th>Resultado (mg)</th>
<th>Diferencia (mg)</th>
<th>Incertidumbre (mg)</th>
<th>Diferencia (%)</th>
<th>Incertidumbre (%)</th>
<th>¿Cumple?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filtro 1</td>
<td>1,15</td>
<td>1,21</td>
<td>0,06</td>
<td>0,09</td>
<td>4,85%</td>
<td>7,80%</td>
<td>Cumple</td>
</tr>
<tr>
<td>Filtro 2</td>
<td>1,22</td>
<td>1,28</td>
<td>0,06</td>
<td>0,09</td>
<td>4,92%</td>
<td>7,38%</td>
<td>Cumple</td>
</tr>
<tr>
<td>Filtro 3</td>
<td>1,59</td>
<td>1,62</td>
<td>0,03</td>
<td>0,09</td>
<td>2,14%</td>
<td>5,67%</td>
<td>Cumple</td>
</tr>
<tr>
<td>Filtro 4</td>
<td>1,28</td>
<td>1,33</td>
<td>0,05</td>
<td>0,09</td>
<td>3,91%</td>
<td>7,03%</td>
<td>Cumple</td>
</tr>
<tr>
<td>Filtro 5</td>
<td>0,73</td>
<td>0,8</td>
<td>0,07</td>
<td>0,09</td>
<td>9,89%</td>
<td>12,36%</td>
<td>Cumple</td>
</tr>
<tr>
<td>Filtro 6</td>
<td>0,60</td>
<td>0,67</td>
<td>0,07</td>
<td>0,09</td>
<td>10,93%</td>
<td>14,90%</td>
<td>Cumple</td>
</tr>
</tbody>
</table>

Según se puede observar, el laboratorio 1 no cumple en la mitad de los filtros analizados, aunque su máxima diferencia no llega al 6% en ninguno de los filtros analizados. Probablemente esté informando de una incertidumbre demasiado baja. El laboratorio 3 cumple en todos los casos, aun cuando presenta una desviación superior al 13%, pero no debería ser aceptable ya que informa de una incertidumbre demasiado elevada. El laboratorio 4 cumple en todos los casos, aunque en algún caso presenta una diferencia cercana al 11%.

En base a este análisis, el criterio planteado por el organizador de la intercomparación no nos parece correcto ya que depende enormemente de la forma de estimar la incertidumbre de medida que haya utilizado cada laboratorio. Así, una incertidumbre sobrevalorada hará que el laboratorio obtenga resultados satisfactorios en el ejercicio de intercomparación y una incertidumbre infravalorada provocará el efecto contrario.
5.4.2 Planteamiento de criterios alternativos de valoración

Debido a que, a fecha de la participación en la intercomparación, no disponíamos de la incertidumbre asociada a nuestro método y, por ello, no se ha podido utilizar el criterio de evaluación propuesto por el organizador, hemos estudiado los resultados con otros criterios no relacionados con la incertidumbre:

✔ **Criterio 1:** Que el resultado de cada laboratorio esté dentro de los límites de confianza de la media de los cinco participantes.

Proponemos este criterio porque los límites de confianza de la media definen el intervalo dentro del cual se encuentra, con una probabilidad del 95% el valor verdadero del filtro.

\[
\mu = \bar{x} \pm t_{95\%} \cdot \frac{s}{\sqrt{N}}
\]

Los límites de confianza de la media, para un 95% de probabilidad, se indican en la tabla 15:

<p>| Tabla 15.- Límites de confianza de la media. |
|----------------|---------------|------------|----------------|</p>
<table>
<thead>
<tr>
<th>Filtros</th>
<th>Promedio</th>
<th>s</th>
<th>t_{95%}</th>
<th>Límites de confianza (95%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filtro 1</td>
<td>1,15</td>
<td>0,03</td>
<td>2,78</td>
<td>1,080 - 1,23</td>
</tr>
<tr>
<td>Filtro 2</td>
<td>1,22</td>
<td>0,03</td>
<td>2,78</td>
<td>1,132 - 1,31</td>
</tr>
<tr>
<td>Filtro 3</td>
<td>1,59</td>
<td>0,03</td>
<td>2,78</td>
<td>1,515 - 1,66</td>
</tr>
<tr>
<td>Filtro 4</td>
<td>1,28</td>
<td>0,05</td>
<td>2,78</td>
<td>1,135 - 1,42</td>
</tr>
<tr>
<td>Filtro 5</td>
<td>0,73</td>
<td>0,03</td>
<td>2,78</td>
<td>0,656 - 0,80</td>
</tr>
<tr>
<td>Filtro 6</td>
<td>0,60</td>
<td>0,02</td>
<td>2,78</td>
<td>0,552 - 0,66</td>
</tr>
</tbody>
</table>

La evaluación de resultados de todos los laboratorios participantes según este criterio se refleja en la tabla 16:

| Tabla 16.- Comprobación del criterio de los límites de confianza de la media. |
|----------------|---------------|----------------|----------------|
Filtros	**Límites de confianza (95%)**	**Laboratorios**					
	1 (mg)	2 (mg)	3 (mg)	4 (mg)	5 (mg)		
Filtro 1	1,080	1,228	1,12	1,08	1,14	1,21	1,22
Filtro 2	1,132	1,308	1,17	1,15	1,31	1,28	1,19
Filtro 3	1,515	1,657	1,54	1,51	1,62	1,62	1,64
Filtro 4	1,135	1,425	1,22	1,41	1,11	1,33	1,33
Filtro 5	0,656	0,800	0,7	0,67	0,69	0,8	0,78
Filtro 6	0,552	0,656	0,57	0,59	0,57	0,67	0,62
Solo cumplirían este criterio, para todos los filtros analizados, el laboratorio 1 y el IUMA (laboratorio 5).

Criterio 2: Que las diferencias con el valor asignado no superen el 10%:

Este criterio complementa el criterio anterior ya que, en caso de existir mucha dispersión entre los datos de los participantes, el criterio anterior será un criterio muy poco restrictivo. Así, de esta forma, se complementa el primer criterio asegurándonos de que no existe una diferencia mayor del 10% respecto al valor medio de los participantes.

La figura 9 muestra las desviaciones de los laboratorios al analizar los seis filtros.

Figura 8.- Desviaciones de los laboratorios. Comprobación del criterio 2.

Solamente los laboratorios 1 y 5 (IUMA) presentan todas sus diferencias menores de un 10% con respecto al valor asignado, según se puede observar en la tabla 17.

<table>
<thead>
<tr>
<th>%Diferencia</th>
<th>Lab 1</th>
<th>Lab 2</th>
<th>Lab 3</th>
<th>Lab 4</th>
<th>Lab 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filtro 1</td>
<td>-2.95%</td>
<td>-6.41%</td>
<td>-1.21%</td>
<td>4.85%</td>
<td>5.72%</td>
</tr>
<tr>
<td>Filtro 2</td>
<td>-4.10%</td>
<td>-5.74%</td>
<td>7.38%</td>
<td>4.92%</td>
<td>-2.46%</td>
</tr>
<tr>
<td>Filtro 3</td>
<td>-2.90%</td>
<td>-4.79%</td>
<td>2.14%</td>
<td>2.14%</td>
<td>3.40%</td>
</tr>
<tr>
<td>Filtro 4</td>
<td>-4.69%</td>
<td>10.16%</td>
<td>-13.28%</td>
<td>3.91%</td>
<td>3.91%</td>
</tr>
<tr>
<td>Filtro 5</td>
<td>-3.85%</td>
<td>-7.97%</td>
<td>-5.22%</td>
<td>9.89%</td>
<td>7.14%</td>
</tr>
<tr>
<td>Filtro 6</td>
<td>-5.63%</td>
<td>-2.32%</td>
<td>-5.63%</td>
<td>10.93%</td>
<td>2.65%</td>
</tr>
</tbody>
</table>
Adicionalmente, en la gráfica se puede observar si las desviaciones se han producido todas en el mismo sentido o aleatoriamente desviaciones positivas y negativas. Así, el laboratorio 1 y el laboratorio 4 presentan todos sus resultados con una diferencia por exceso o por defecto con respecto al valor asignado. El IUMA presenta cinco resultados por exceso y uno por defecto.

No obstante esta última interpretación no puede ser determinante ya que debido al bajo número de participantes, con que un laboratorio presente un sesgo, el promedio se ve fuertemente influenciado y se desplaza, lo que implica que los otros laboratorios también presentan, de forma indirecta, todos sus resultados desviados un poco por exceso o por defecto.

5.4.3 Determinación del sesgo

Para calcular el sesgo, primeramente calcularemos el sesgo obtenido en el análisis de cada uno de los filtros. Posteriormente, debido a que todos los filtros son del mismo tipo y a que se pueden considerar del mismo nivel de carga, calcularemos la media de todos los sesgos obtenidos que será el sesgo medio. Estos cálculos se reflejan en la tabla 18:

<table>
<thead>
<tr>
<th>Filtros</th>
<th>IUMA (mg)</th>
<th>Valor convencional (mg)</th>
<th>Sesgo (mg)</th>
<th>%Sesgo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filtro 1</td>
<td>1,22</td>
<td>1,15</td>
<td>0,066</td>
<td>5,72%</td>
</tr>
<tr>
<td>Filtro 2</td>
<td>1,19</td>
<td>1,22</td>
<td>-0,03</td>
<td>-2,46%</td>
</tr>
<tr>
<td>Filtro 3</td>
<td>1,64</td>
<td>1,59</td>
<td>0,054</td>
<td>3,40%</td>
</tr>
<tr>
<td>Filtro 4</td>
<td>1,33</td>
<td>1,28</td>
<td>0,05</td>
<td>3,91%</td>
</tr>
<tr>
<td>Filtro 5</td>
<td>0,78</td>
<td>0,73</td>
<td>0,052</td>
<td>7,14%</td>
</tr>
<tr>
<td>Filtro 6</td>
<td>0,62</td>
<td>0,60</td>
<td>0,016</td>
<td>2,65%</td>
</tr>
</tbody>
</table>

La desviación del método en la intercomparación es menor que el criterio de aceptación establecido (10%), por lo que el método se puede considerar exacto.

5.4.4 Estudio de la significación del sesgo. Prueba t-student.

El sesgo obtenido (3,4%) corresponde a un filtro del tipo C47 con un nivel medio de carga (1,1 mg). En el estudio experimental de validación, para este tipo de filtros y a dicho nivel de carga, se encontró una desviación, corresponde a un 3,7%.
Con esos datos realizamos la prueba t-student para evaluar la significación del sesgo:

\[t_{calculada} = \frac{|x_{verdadero} - x_{observado}|}{s_{precision intra-laboratorio} / \sqrt{n}} \]

Siendo \(n=6 \) ya que es el número de datos que se han utilizado para calcular el sesgo medio (los seis filtros analizados en la intercomparación).

\[t_{calculada} = \frac{3,4}{3,7 / \sqrt{6}} = 2,25 \]

El valor de \(t_{tabulada} \) que corresponde a un 95\% para 5 grados de libertad es 2,57, por lo que se cumple que \(t_{calculada} < t_{tabulada} \) por lo que no podemos afirmar que el sesgo sea significativo. Por tanto, no consideramos que el método presente un error sistemático.

5.5 Estimación de la Incertidumbre de Medida

Debido a que el sesgo del método no es significativo, la estimación de la incertidumbre de la medida gravimétrica se realizará únicamente a través del error aleatorio (precisión intra-laboratorio), con una probabilidad de cobertura del 95\%.

\[I = \text{error aleatorio (precisión al 95\% de cobertura)} = k_{(95\%, n-1 \text{ grados de libertad})} \cdot s_{\text{Precision intra-laboratorio}} / \sqrt{N} \]

Siendo:

- \(k_{(95\%, n-1 \text{ grados de libertad})} \): el factor de cobertura tabulado, según las tablas t-student, para una probabilidad del 95\% (\(\alpha=0,05 \)) y unos grados de libertad \(n-1 \), siendo \(n \) el número de datos utilizados para calcular \(s_{\text{Precision intra-laboratorio}} \).

- \(s_{\text{Precision intra-laboratorio}} \): es la desviación típica obtenida en el estudio de la precisión intra-laboratorio.

- \(N \): es el número de repeticiones que se realizan sobre las muestras de ensayo para dar los resultados al cliente en el día a día. En el caso del IUMA \(N=1 \).
En la tabla 19 se muestran los resultados de la estimación de la incertidumbre

<table>
<thead>
<tr>
<th>Tipo filtro</th>
<th>Nivel de carga</th>
<th>Carga NETA del filtro (g)</th>
<th>S precisión intra-laboratorio</th>
<th>g.l. (n-1)</th>
<th>k</th>
<th>Incertidumbre S (g)</th>
<th>%CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>R203 Balanza A200s</td>
<td>Alta</td>
<td>0,197910</td>
<td>0,003125</td>
<td>29</td>
<td>2,05</td>
<td>0,0064</td>
<td>3,2%</td>
</tr>
<tr>
<td></td>
<td>Media</td>
<td>0,096260</td>
<td>0,001247</td>
<td>29</td>
<td>2,05</td>
<td>0,0013</td>
<td>2,7%</td>
</tr>
<tr>
<td>C150 Balanza A200s</td>
<td>Alta</td>
<td>0,042183</td>
<td>0,001020</td>
<td>29</td>
<td>2,05</td>
<td>0,0026</td>
<td>4,9%</td>
</tr>
<tr>
<td></td>
<td>Baja</td>
<td>0,051890</td>
<td>0,000728</td>
<td>29</td>
<td>2,05</td>
<td>0,0013</td>
<td>2,9%</td>
</tr>
<tr>
<td></td>
<td>Media</td>
<td>0,020293</td>
<td>0,000631</td>
<td>29</td>
<td>2,05</td>
<td>0,0029</td>
<td>6,4%</td>
</tr>
<tr>
<td></td>
<td>Baja</td>
<td>0,002513</td>
<td>0,000025</td>
<td>29</td>
<td>2,05</td>
<td>0,0014</td>
<td>37,4%</td>
</tr>
<tr>
<td>C47 Balanza ME215p</td>
<td>Alta</td>
<td>0,002941</td>
<td>0,000025</td>
<td>29</td>
<td>2,05</td>
<td>0,0005</td>
<td>1,7%</td>
</tr>
<tr>
<td></td>
<td>Baja</td>
<td>0,001212</td>
<td>0,000022</td>
<td>29</td>
<td>2,05</td>
<td>0,0004</td>
<td>3,7%</td>
</tr>
</tbody>
</table>

5.6 Características analíticas del método

Las características analíticas del método de determinación gravimétrica de la fracción PM10, según norma UNE-EN 12341:1999, se presentan, a modo de resumen, en la tabla 20.
6.- CONCLUSIONES
6. Conclusiones

A la vista de los resultados obtenidos en este estudio, se demuestra que el laboratorio del Instituto Universitario de Medio Ambiente (IUMA) es competente técnicamente para la realización del ensayo de determinación de la fracción PM10 en base a que el método indicado presenta una adecuada veracidad y precisión.

Asimismo, el método de validación planteado en este trabajo es adecuado para realizar la estimación de la incertidumbre del método de determinación de la fracción PM10, a través de un enfoque directo según las directrices de la norma UNE-EN-ISO 20988:2008, debido a que se ha realizado dicha estimación en base a un diseño experimental representativo de todas las posibles variaciones que afectan a sus resultados.
TRABAJO FIN DE MÁSTER	VALIDACIÓN DEL MÉTODO DE DETERMINACIÓN DE LA FRACCIÓN PM10
MÁSTER EN CIENCIAS, TECNOLOGÍAS	DE LA MATERIA PARTICULADA EN SUSPENSIÓN EN AIRE AMBIENTE
Y GESTIÓN MEDIOAMBIENTAL	
Autora: Ana Domínguez	**Página 49 de 61**

7.- **BIBLIOGRAFÍA**
7. Bibliografía

- CSIC. *NIVELES, COMPOSICIÓN Y FUENTES DE PM10, PM2.5 Y PM1 EN ESPAÑA: Cantabria, Castilla León, Madrid y Melilla.* 2007.
- Registro estatal de emisiones y fuentes contaminantes (www.prtr-es.es)
- Organización Mundial de la Salud (OMS). *Guías de calidad del aire de la OMS relativas al material particulado, el ozono, el dióxido de nitrógeno y el dióxido de azufre.* Actualización mundial 2005.
- AENOR. *Determinación de la fracción PM10 de la materia particulada en suspensión. Método de referencia y procedimiento de ensayo para demostrar la equivalencia de los métodos de medida al de referencia.* UNE-EN 12341. 1999.
- EURACHEM. *Selection, use and interpretation of proficiency testing (PT) schemes by laboratories.* 2000.
- AENOR. *Exactitud (veracidad y precisión) de resultados y métodos de medición. Parte 5: Métodos alternativos para la determinación de la precisión de un método de medición normalizado.* UNE 82009-5. 1999.
- MILLER; J; MILLER, J. Estadística y quimiometría para química analítica. PEARSON EDUCACION. (4ª ed.). 2002. ISBN 9788420535142
- ENAC. Criterios generales para la acreditación de laboratorios de ensayo y calibración según norma UNE-EN ISO/IEC 17025. CGA-ENAC-LEC. Rev. 5. 2009.
8.- ANEXOS
8. Anexos

Anexo A: Conceptos de estadística básica utilizados en este trabajo

Anexo B: Resultados del informe de intercomparación
ANEXO A:
CONCEPTOS DE ESTADÍSTICA BÁSICA UTILIZADOS EN ESTE TRABAJO

El estudio de los resultados de una validación (veracidad y precisión) y la estimación de la incertidumbre asociada a una medida está basada en una serie de conceptos estadísticos que se indican a continuación:

- **Población**: El conjunto de elementos (Ej. Individuos, medidas, etc.) que presentan una característica o variable común que será objeto de estudio.

 La población puede ser finita (Ej. conjunto de todos los hombres mayores de 18 de España) o infinita (Ej. valores que se pueden obtener al analizar repetidamente una muestra).

 En el caso de un análisis químico, la población es el conjunto de todos los valores que se obtienen al analizar repetidamente un analito en una muestra. En este caso la población sería infinita.

- **Muestra (estadística)**: es un conjunto, más o menos numeroso, de elementos que forman parte de una población y que son elegidos, u obtenidos, para ser estudiados de forma que se pueda obtener información relevante sobre la población (Figura A1). La muestra estadística siempre es un conjunto de datos finito.

 ![Figura A1.- Diferencia entre población y muestra.](image)

 En análisis químico, la muestra (estadística) es el conjunto de medidas repetidas que se realizan sobre la muestra (analítica) para determinar el valor verdadero del analito a estudio.

 Es importante no confundir el concepto de muestra estadística, como grupo de elementos pertenecientes a una población, con el concepto de muestra analítica, como porción física de un material sobre el que se estudia un analito.
• **Elemento (individuo o dato individual):** es cada uno de los datos de la población.

• **Media:** Conocida también como media aritmética, o promedio, representa el valor central de una población. En términos matemáticos, es igual a la suma de todos sus valores dividida entre el número de sumandos.

\[
\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}
\]

Siendo:
- \(x_i\) = cada uno de los valores individuales obtenidos
- \(n\) = número de valores individuales

La media de una población se designa por la letra \(\mu\) y la media de una muestra se designa por el símbolo \(\bar{x}\). La media de la muestra, \(\bar{x}\), se utiliza como estimador de la media poblacional.

• **Desviación estándar (o desviación típica) y varianza:** La desviación estándar es un índice numérico que caracteriza la dispersión de una serie de medidas entorno al valor medio. Cuanto mayor sea la desviación estándar, mayor es la separación de los datos a ambos lados de la media. Matemáticamente se calcula como la raíz cuadrada del promedio de los cuadrados de las diferencias de cada dato individual con respecto a la media.

\[
\sigma = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n}}
\]

Siendo:
- \(x_i\) = cada uno de los valores individuales obtenidos
- \(\bar{x}\) = promedio
- \(n\) = número de valores individuales

La desviación típica elevada al cuadrado, es decir el promedio de los cuadrados de las diferencias de cada dato individual con respecto a la media, se denomina varianza, que también es un indicador de la dispersión.

La desviación estándar de una población se representa por la letra sigma, \(\sigma\), la desviación estándar de una muestra por la letra s (minúscula). La desviación estándar de una muestra, s, se utiliza para inferir la desviación de una población.
Cuando calculamos la desviación típica de una muestra para realizar una estimación de la desviación de la población (lo que ocurre en la mayor parte de los casos), se utiliza una modificación de la fórmula anteriormente indicada, utilizando en el denominador n-1 en lugar de n. Esta modificación del cálculo de la desviación se denomina corrección de Bessel y es debida al error que se comete cuando se utiliza la media de la muestra como estimator de la media poblacional.

Por tanto la desviación típica de una muestra, s, se calcula a través de la expresión:

\[
s = \sqrt{\frac{\sum_{i=1}^{n}(x_i - \bar{x})^2}{n-1}}
\]

- **Desviación estándar de la media:** Si de una población extraemos m-muestras de N-datos cada una de ellas y, para cada muestra extraída, calculamos su media, obtendremos un conjunto de m-medias. La dispersión de estas m-medias entorno al promedio de dichas medias es la desviación estándar de la media.

Podemos observar esta situación en la figura A2, en la que, a partir de una población, se obtienen 5 muestras de 3 valores cada una. Las medias calculadas para cada una de las muestras serán \(\bar{x}_1, \bar{x}_2, \bar{x}_3, \bar{x}_4 \) y \(\bar{x}_5 \). Estas cinco medias formarán un conjunto de datos que presentan una desviación típica, \(s_{\bar{x}} \), entorno al promedio de dichas medias.

Figura A2- Representación gráfica de la desviación típica de una media.
La desviación típica de las medias está relacionada con la desviación de la población de la siguiente forma:

\[s_x = \frac{\sigma}{\sqrt{N}} \]

En la práctica, como desconoceremos el valor de la desviación típica de la población, y su mejor estimador es la desviación típica de una muestra, la desviación típica de la media se calcula a través de:

\[s_x = \frac{s}{\sqrt{N}} \]

Esta situación es relativamente frecuente en el campo del análisis químico en el que, estimamos la desviación típica de una población a través de una muestra de datos obtenidos experimentalmente a través de repeticiones sucesivas bajo diferentes condiciones, y posteriormente, en el momento de informar de un resultado a un cliente realizamos una medida por duplicado. En ese caso, la variabilidad de nuestros resultados de ensayo vendrá dada por la desviación típica de las medias de la población tomadas de 2 en 2 que se calculará como:

\[s_x = \frac{s}{\sqrt{N}} = \frac{\sqrt{\sum_{i=1}^{n}(x_i - \bar{x})^2}}{\sqrt{n}} \]

Siendo
N: El número de repeticiones realizadas para hallar la media que será informada al cliente. En este caso 2.
n: El número de repeticiones que conforman la muestra utilizada en la validación, es decir, el número de repeticiones con que se ha calculado la desviación típica de la muestra.

NOTA: Es importante destacar que n y N no se refieren al mismo conjunto de datos.

El significado de la desviación típica de la media es fácil de entender si comprendemos que cuando a un cliente le informamos de un resultado de un ensayo habiendo realizado una sola determinación, sin repeticiones, la variabilidad con la que podemos estar informando a nuestro cliente vendrá dada por la desviación típica del conjunto de repeticiones estudiadas en la validación. Pero si informamos a nuestro cliente de una media obtenida de la realización de dos repeticiones, la variabilidad que tienen las posibles medias informadas será menor que el caso anterior. Y si informamos a nuestros clientes de un dato obtenido como media de 10 repeticiones de un ensayo, la variabilidad en las posibles medias informadas será todavía menor que en los casos anteriores. Generalizando, cuantos más datos se incluyan en el cálculo de la media que se informe a un cliente, menor
será la variabilidad de las posibles medidas informadas. Este hecho es lo que refleja la desviación típica de la media a través de la fórmula:

\[s_x = \frac{s}{\sqrt{N}} \]

- **Coeficiente de Variación (CV):** Es el porcentaje de desviación estándar obtenido. Se calcula dividiendo la desviación estándar por la media. También es conocida como desviación estándar relativa (RSD).

\[\%CV = \frac{s}{\bar{x}} \cdot 100 \]

Siendo:
- \(s = \) desviación estándar
- \(\bar{x} = \) promedio

- **Distribución Normal (o de Gauss):** Distribución continua y simétrica, determinada completamente por la media y la desviación estándar. La gráfica de una distribución normal es similar a una campana, simétrica respecto a su media y asintótica al eje de abscisas, esto hace que cualquier valor es teóricamente posible.

Las variables que siguen este tipo de distribución, existe una probabilidad de un 50% de obtener un dato mayor que la media y un 50% de obtener un dato menor.

En una distribución normal, la moda, la media y la mediana coinciden. Además, la propiedad más significativa de este tipo de distribuciones, según se muestra en la figura 12, es que la probabilidad de que un valor se encuentre en el intervalo comprendido entre \(\mu \pm \sigma \) es aproximadamente un 68,27%. La probabilidad de que un valor se encuentre en el intervalo comprendido entre \(\mu \pm 2\sigma \) es aproximadamente un 95,45% y la probabilidad de que un valor se encuentre en el intervalo comprendido entre \(\mu \pm 3\sigma \) es aproximadamente 99,73%. (Figura A3).
• **Distribución t-student**: Es una distribución de probabilidad que surge del problema de estimar la media de una población normalmente distribuida cuando el tamaño de la muestra es pequeño.

Así, cuando se utiliza una muestra para estimar la media y desviación típica de una población que sigue una distribución normal, no se puede afirmar que se cumplan las probabilidades de que un valor se encuentre en los intervalos establecidos. Es decir, no podemos afirmar que en el intervalo \(\bar{x} \pm 2s \) se encuentre el 95,45% de los datos de la población.

La distribución t-student es una distribución que, en el caso de trabajar con pequeñas muestras, nos permite estimar, a través del parámetro t que depende únicamente del número de grados de libertad (número de datos de la muestra menos 1), el intervalo en el que tendremos una determinada probabilidad de encontrar un valor de la población.

Así, si disponemos de una muestra compuesta por cinco datos, provenientes de una población normal, y pretendemos estimar el intervalo en el que se encontrarán el 95% de los valores de la población, la distribución t-student nos estima que el intervalo que buscamos viene determinado por \(\bar{x} \pm t_{(95\%,n-1)}s \), siendo \(t_{(95\%,n-1)} \) un valor tabulado que depende únicamente del número de datos de la muestra (n-1).
Cuando el número de datos que constituye la muestra con la que se pretende estimar la población tiende a infinito, la distribución t de Student coincide con la distribución normal estandarizada. En la práctica se pueden considerar prácticamente iguales cuando el número de datos de la muestra es mayor o igual a 30.

La distribución de Student fue descrita en 1908 por William Sealy Gosset. Gosset trabajaba en la fábrica de cerveza Guinness, que prohibía a sus empleados la publicación de artículos científicos debido a un incidente previo de difusión de secretos industriales. De ahí que Gosset publicase sus resultados bajo el seudónimo de Student y la distribución se conozca por este nombre.

- **Incertidumbre típica de medida:** Incertidumbre resultado de combinar los errores aleatorios que afectan a un método como contribuciones a la incertidumbre, tipo A o tipo B.

\[
 u_{tip} = \sqrt{\sum_i u_i^2}
\]

En el caso de un ensayo en el que se puede realizar un diseño experimental para la determinación de la precisión del método, englobando todos los posibles errores aleatorios, la incertidumbre típica podrá ser cuantificada a través de la desviación típica de dicha precisión.

\[
 u_{tip} = s_{\text{precisión}}
\]

- **Incertidumbre expandida de medida:** Es el valor numérico que, sumado y restado al resultado de una medida, genera un intervalo dentro del cual se debe encontrar el valor verdadero con una probabilidad determinada (normalmente se utiliza el 95% de probabilidad).

La incertidumbre expandida se calcula multiplicando la incertidumbre típica por el factor de cobertura correspondiente a un 95% de probabilidad y los correspondientes grados efectivos de libertad.

\[
 U = k_{95\%,g.t.} \cdot u_{tip}
\]

- **Factor de cobertura, k:** Es el valor por el que se debe multiplicar la incertidumbre típica para obtener una incertidumbre con una determinada probabilidad y en función de los grados de libertad de una medida.

Sus valores tabulados son los valores del estadístico t-student.
ANEXO B:
RESULTADOS DE LA INTERCOMPARACIÓN

En las tablas B1 y B2 se muestran los resultados de la intercomparación en la que ha participado el IUMA:

| Tabla B.1- Resultados de la intercomparación. Filtros 1, 2 y 3 |
|-----------------|-----------------|-----------------|
| PM0 | Filtro 1 (mg) | Filtro 2 (mg) | Filtro 3 (mg) |
| Media laboratorios (Valor asignado) | 1,15 | 1,22 | 1,58 |
| s | 0,06 | 0,07 | 0,06 |
| Nº Laboratorio | Resultados | Incertidumbre | %Error | Resultados | Incertidumbre | %Error | Resultados | Incertidumbre | %Error |
| 1 | 1,12 | 0,04 | -2,6 | 1,17 | 0,04 | -4,1 | 1,54 | 0,04 | -2,53 |
| 2 | 1,08 | ---- | -6,09 | 1,15 | ---- | -5,74 | 1,51 | ---- | -4,43 |
| 3 | 1,14 | 0,63 | -0,87 | 1,31 | 0,72 | 7,38 | 1,62 | 0,89 | 2,53 |
| 4 | 1,21 | 0,09 | 5,22 | 1,28 | 0,09 | 4,92 | 6,62 | 0,09 | ---- |
| 5 | 1,22 | ---- | 6,09 | 1,19 | ---- | -2,46 | 1,64 | ---- | 3,80 |
| Nº total resultados | 5 | 5 | 5 |

| Tabla B.2- Resultados de la intercomparación. Filtros 4, 5 y 6 |
|-----------------|-----------------|-----------------|
| PM0 | Filtro 4 (mg) | Filtro 5 (mg) | Filtro 6 (mg) |
| Media laboratorios (Valor asignado) | 1,28 | 0,73 | 0,60 |
| s | 0,12 | 0,06 | 0,04 |
| Nº Laboratorio | Resultados | Incertidumbre | %Error | Resultados | Incertidumbre | %Error | Resultados | Incertidumbre | %Error |
| 1 | 1,22 | 0,04 | -4,7 | 0,70 | 0,04 | -4,1 | 0,57 | 0,04 | -5,00 |
| 2 | 1,41 | ---- | 10,16 | 0,67 | ---- | -8,22 | 0,59 | ---- | -1,67 |
| 3 | 1,11 | 0,61 | -13,28 | 0,69 | ---- | -5,48 | 0,57 | ---- | -5,00 |
| 4 | 1,33 | 0,09 | 3,91 | 0,80 | 0,09 | 9,59 | 0,67 | 0,09 | 11,67 |
| 5 | 1,33 | ---- | 3,91 | 0,78 | ---- | 6,85 | 0,62 | ---- | 3,34 |
| Nº total resultados | 5 | 5 | 5 |