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Abstract

Electromagnetic forming (EMF) is a high velocity cold forming process for elec-
trically conductive metals. The aim of this paper is to analyze a numerical method
to solve a transient axisymmetric eddy current problem arising from mathematical
modelling of this process. We deal with a degenerate parabolic partial differential
equation. Well-posedness can be proved by using regularization arguments. For nu-
merical solution, a finite element method in space combined with an implicit Euler
time discretization is proposed. Error estimates are obtained and numerical results
are shown.

1 INTRODUCTION

In the Electromagnetic Forming (EMF) process the electromagnetic forces are used to
deform metallic workpieces. A transient electric current is introduced in a coil using a
capacitor bank and high-speed switches. It produces a magnetic field that from Faraday’s
law induces eddy currents in the workpiece. The magnetic field, together with the eddy
currents, originate the Lorentz forces that drive the deformation of the workpiece [5, 8, 10].

From the mathematical point of view, the motion of the workpiece introduces two

difficulties to the problem. First, the domain changes along the time. Second, the velocity
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in the workpiece produces currents that in principle should be added in the Ohm’s law.
While the difficulties arising from this additional term have been studied in [3] with a fixed
domain, in EMF typically these currents are not significant, so they are neglected in the
present paper.

The axisymmetry allows us to write the problem in terms of the azimuthal component
of a magnetic vector potential defined in a meridional section of the domain (see, for
instance, [1]). This leads to consider a transient problem where the term involving the
time derivative only appears in a part of the domain, which changes with time. The eddy
current model must be coupled with an adequate mechanical model for the deformation of
the workpiece but in this paper we take the motion of the workpiece as a data.

The outline of this paper is as follows: in Section 2, we describe the transient eddy
current model and introduce a magnetic vector potential formulation under axisymmetric
assumptions. In Section 3, a well-posed weak formulation is stated. In Section 4, we
introduce the finite element space discretization and obtain error estimates. In Section 5,
we propose a backward Euler scheme for time discretization and prove error estimates for
the fully discretized problem. In Section 6, some numerical results for an EMF device are

shown.

2 STATEMENT OF THE PROBLEM

Two different geometries can be seen in Figure 1. In order to have a domain with cylindrical
symmetry, we replace the coil by several concentric rings having toroidal geometry and
carrying the same current intensity. For numerical purposes it is convenient to cut the
whole space. More specifically, we introduce a three dimensional cylinder Q of radius R
and height L containing the coil and the workpiece. Then, by the cylindrical symmetry,
we can work in a meridional section of  denoted by Q. Let Qg :=Q;U---UQ,, where
k=1,---,m are the meridional sections of the coil. Let €, be the meridional section of
the workpiece at time t. We assume that €, N Qg = @ for all £. Tet Q2 := Q\ (QsU ;) be
the section of the domain occupied by air. Finally, let T'y be the intersection between OS2
and the symmetry axis (r = 0), and I'p := 9Q \ I'g (see Figure 2).

We will use standard notation in electromagnetism:
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Figure 1: Sketch of the 3D-domain of the EMF System.
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Figure 2: Sketch of the meridional section of the EMF system.

e E is the electric field, B is the magnetic induction,

e H is the magnetic field, J is the current density,

e 1 is the magnetic permeability, o is the electric conductivity.

The magnetic permeability p is taken as a positive constant in the whole domain. The

conductivity o vanishes outside the workpiece. This piece can be made of different materi-

als, each with a different conductivity. We will make this assumption more precise below;
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by the moment we just assume

O<o<o

IN

o, in the workpiece,

o=0, outside of the workpiece.

In this kind of problem, the electric displacement can be neglected in Ampére’s law, leading

to the so called eddy current model:

curlH = J, (2.1)
aa—? +curlE = 0, (2.2)
divB = 0. (2.3)

This system must be completed with the following relations:
B =uH,

and

oFE, in the workpiece,
J =< Js, in the coil, (data), (2.4)
0, in the air.

Thus, the current density J is taken as data in the coil and unknown in the workpiece
;. Since ¢ vanishes outside €2, the relation above can be written in a single equation as
follows:

J:(TE+J3.

We assume that all the physical quantities are independent of the angular coordinate 6

and that the source current density field has only azimuthal non-zero component, i.e.,
J(t,r,0,z) = J(t, 1 2)e,.
Proceeding as in [1] and [3] it can be proved that

H(LT,Q,Z) = Hr(t7T7 Z)er +Hz(t,7“, Z)eZ7
B(t7T797z) = Br(tﬂ", Z)eT + Bz(tv T, Z)eZ7
E(t,r,0,z) = E(t,r 2)ey,
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Moreover, because of (2.3), we can introduce a magnetic vector potential A for B,

B =curlA, (2.5)
of the form
A(t,r,0,z) = A(t,r, 2)eg (2.6)
and such that (2.2) leads to oA
—FE = o

Therefore, the Maxwell equation system (2.1)-(2.3) can be rewritten in terms of the vector
potential A as follows:

curl <l curlA) =J = Jey,
1

where
0 in Q,
A
J = _g(t)%t in Q, (2.7)
Js in Qg (data).

Thus, we are lead to the following parabolic-elliptic problem:

A 1 .
U(t)aeg + curl <; curl (Aeg)) =0 in Q,

1
curl <f curl (Aeg)) = Jsey in Qg, (2.8)
i

1
curl <f curl (Aeg)) =0 in Q2.
I

3 WEAK FORMULATION

Let L2(Q) be the weighted Lebesgue space of all measurable functions A defined in 2 such
that

1Al q == / AP dr dz < oo,

The weighted Sobolev space H*(€2) consists of all functions in L?(€2) whose derivatives up
to the order k are also in L2(2). We define the norms and semi-norms in the standard way;

in particular

|A‘%IT1(Q) = / (\(97-A|2 + |0.A]%) rdr dz.
Q
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Let Lf/T(Q) be the weighted Lebesgue space of all measurable functions A defined in
such that

1

S Y
HAHLZ/T(Q) = /Q Tdrdz < 00.
Let us define the Hilbert space ﬁ}(Q) by
HN(Q)={Ae H\Q): Ae L},(Q)}
with the norm
) ) 1/2
1Al 72 ) = (HAHH}_(Q) + ||A||L§/T(Q)) :

Finally, let
V:={Ae H(Q): A=0onlp}.

Since part of our domain 2 changes with time, we need to define a reference domain 0

and an application

)

Xt:

— Qt7

T — X(2),

transforming Q into Q; (see Figure 3). We assume X is a sufficiently smooth diffeomor-

phism with respect to space and differentiable with respect to time. A usual way to define

Xy

—

goooooooa goooooooo

)

Figure 3: Reference domain.

X, is through a vector field v which represents the velocity of the workpiece and which is

taken as a data in our analysis. More precisely, from now on we assume v is continuous
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with respect to time and continuously differentiable and globally Lipschitz with respect to

space. We take Q= Q—o, and define t — X; as the solution of the following problem:

0Xy . 5
@) = ot X(@),
X(@) = &

In the appendix section a detailed description of this process can be found. On the other

hand, the conductivity o is taken such that
o(t,x) =o(x), (3.1)

where z = X;(Z) and & is the conductivity in the reference domain ﬁ, which is a measurable
function and satisfies

0<o<o(@ <7, ie

This means that ¢ only depends on ¢ through x and, from a physical point of view, that
the conductivity of each material point remains constant along the process.

Let us introduce the following non-cylindrical open subset of © x (0,7),
Q:={(z.t): ze, te(0,7)}.
Let us consider the following Banach spaces of functions defined in @ :
T
L2(Q) := {¢ : @ — R measurable with / lofPrdr dzdt < oo},
o Jo,

endowed with the norm

llol

T 1/p
Q) = </ / |<p|prdrdzdt) ,
0o Ja

WHQ) = o € Q) O € Q). % € 11(Q), € @),

and

endowed with the norm

¢
P
o 15,1

¢
P
@t 5]

A 1/p
lelhzna = (e o 15 ) -

Moreover we denote H(Q) := W (Q).

T
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Next we deduce a variational formulation of (2.8) and prove it is well-posed. For this
purpose, let us multiply (2.8) by a test vector field Zey with Z € V), integrate over Q and
use a Green'’s formula to obtain

0A
o—Zrdrdz+a(A, Z) = JsZrdrdz, (3.2)
a Ot Qs
where

1
a(A,Z) = / —curl Aey - curl Zeyr dr dz.
QM

It is shown in [7, Propositions 2.1 and 3.1] that a is V-elliptic; namely, there exists a > 0
such that

MZZpywm%m>VZeV

Notice that (3.2) corresponds to a degenerate parabolic problem because the term
including the partial derivative of A with respect to time is only defined in €2;. The proof

of the following theorem can be found in [2].

Theorem 1. Let Js € H'(0,T;L2(Qg)) and A° € HY(Qy). Then, there exists a unique
solution A € L*(0,T;V), with %—‘? € L%(Q), to the weak problem,

/ 00 AZr drdz + a(A, Z) :/ JsZrdrdz YZ € V,a.e. t €10,T]
Q Qg (33)

A(0) = A in Q.
Furthermore,
10:All2) + 1Al 0.73v)
T T
gc{||A0||i~,M+ | 15Ol @+ [ |\ath<t>uzgms>dt}. (3.9

Remark 1. Since A € L*(0,T;V) and 92 € L2(Q) then A € HXQ). From the trace
theorem, this implies that Alg,xioy € LE(Q x {0}) =~ L2(Q). Thus the initial condition in

(3.3) makes sense.

Theorem 2. We make the same assumptions as in Theorem 1. Then the solution A
satisfies \/t O, A € L2(0,T; V).

Proof:  See [2].
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4 SEMI-DISCRETE PROBLEM. FINITE ELEMENT
APPROXIMATION

Let {7, }n>0 be a regular family of triangulations of Q where h is the mesh-size. Let
Vi ={A,eV: AP, VT eT,}.

Let us emphasize that in principle we do not assume that the meshes are fitted to €.
We introduce the following semi-discrete problem: find A, € L2(0,7; V) with 9,4, €
L?(Q) such that

/ O'atAhZhT' drdz + a(Ah, Zh) = / JsZyrdrdz VZ, € Vh,
Q Qg

(4.1)
An(0)la, = Ahlg,
where A has to satisfy the following conditions (see the proof of Theorem 1):
Aplg, =AY in L2(Q), (4.2)
||A2Hﬁ;(n) < C”AOHF;TI(QO)- (4.3)

To obtain AY we proceed as in the proof of Theorem 1. Let A° € V be as in that
proof and A9 the Clément interpolant in V), of A® as defined in [9, Section 7]. From the

properties proved in this reference we have that
10
145 710y < ClA | 3oy

and

| A9 — A°|| 2 — 0, as b — 0.

Therefore, straightforward computations allow us to conclude (4.2) and (4.3).
Similar to the proof of Theorem 1 one can show that problem (4.1) has a unique solution

for A° € H}(S)) and Js € H'(0,T; L2(Qs)). Moreover, the following estimate holds:

T
sup ess/ a(A(t)*rdrdz + / ||Ah(s)||%1(m ds < C {/ a(A%)?rdrdz
o 0 i Q

te[0,7] o

T
+An@@MMMM}
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Now we are in a position to prove error estimates for the computed vector potential
Ay as well as for the physical quantities of interest that can be derived from it, namely,
the approximations Bj, and Jj of the magnetic induction B and the current density J.

According to (2.5) and (2.6), let us define

B, := curl(Apey).

The current density J in the workpiece is given by J = 0’(7%)6@. Hence we define the

computed current density as follows:
0A
Jh = —0 <7ath) ey in Qt.

The following error estimates is proved in [2]

Theorem 3. Let A and Ay, be the solutions of problems (3.2) and (4.1), respectively. Let
B be defined by (2.5) and (2.6) and J by (2.4) and (2.7). Let B, and J}, be defined as
above. If A € HY(0,T; H2()), then, there exists a positive constant C, independent of h,
such that

A= Apll=riz@y < C{IIA0) = An(0)ll 1200 + P Al orsmzi) }» (44)
|B = Bull2oriz@) < C{IIAW0) = An(0)|l 20 + Pl Al iz}, (4.5)
[A— Aull=orizey < C {||A(0) — A0l g1y + hHAHHl(o,T;HZ(Q))} , (46)
19 = Tillzorazon < C{IAWO) = AnO)l gy + MlIAlmorma@y - (A7)

5 FULLY DISCRETE PROBLEM

Let us consider a uniform partition of the time interval [0,T]: {t* .= kAt, k=1,..., N}

with time step At := % For time discretization we use the backward Euler approximation:

0Ay 1 _

/Qk a(tk)WZhT drdz ~ A /Q ) o(t*) (A} — AF™Y) Zyr dr dz.

t t

Thus, the fully discrete approximation of our problem is defined as follows:
Given AY € Vy, for k=1,..., N, find A¥ € V}, such that

1

x o(th) (Af — AF™) Zyrdrdz + a(A}, Z),) = / Js(t") Zyrdr dz \NZ, € Vi, (5.1)
th

Qs
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The previous scheme needs an initial data in a neighborhood of €y containing Q1. Let
us assume that A(0) is known in all Q and take A9 as an approximation of A(0). The

following theorem has been proved in [2].

Theorem 4. If Js € H'(0,T; L2(2)), then problem (5.1) has a unique solution and there
exists a positive constant C' such that
k
max (1451 ) < C {14811y ) + s lmomiazcan | -
Remark 2. Since the domain where the derivative of A is approzimated changes with
time, terms like fﬂ . U(tk)Aﬁ_l appear in the numerical scheme. This is the reason why we
t
cannot follow a more standard approach as that used for the semidiscrete problem. Anyway
we have succeeded in proving the stability of the fully discrete scheme by assuming further

reqularity for Js.

Our next goal is to get error estimates for the solution of the discrete problem (5.1). To

do this we introduce some notation. Given ((;50, R quN) € RN+ we define the backward
difference quotient
B ¢k _ ¢k71
ok = — k=1,...,N.
¢ At b 7 b

For A being the solution of (3.3) and A¥ that of (5.1), we write
A(th) — A} = 6, + gl

with
S =PRA(Y —AF, k=1,..., N,

and
py = A(t") = PLA(tF), k=0,...,N.

To define &% we use the approximation A) of A(0):
5 = PLA0) — AD.
Finally, we define the truncation errors

.= 5A(tk) - atA(tk)v k=1,...N.
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The first step is to estimate 52 in terms of p’fL and 7%, The proofs of the next lemmas can

be found in [2]
Lemma 5. Let A € C°([0,T]; V) N C([0,T]; L3(Q)) be the solution of problem (3.3), and
let 7% := QA(t*) — 0, A(t*). Then

N
Aty /Q o(1)(@5%)?r drd= + max 5], ¢,
k=1 th -

N
< ClRIG @ + A {10320 + 17 W |
k=1

Lemma 6. Let A be the solution of problem (3.3). There exists C independent of h and
At such that, if A€ HY(0,T; H3(2)), then

k=1

N 1/2
(Atz IIBpZI%gmLk)) < Ch*|| Al 0.2 (0

and, if A€ H*(0,T; L*(Q)), then

N 1/2
(Atz |Tk||%z(gtk)> < CAUAllrz0,7502(2)-
k=1

Now we give error estimates for the computed vector potential A as well as for the
physical quantities of interest that can be derived from it: approximations B}’j and J}’f of

the magnetic induction B and the current density J, which are defined as follows:
B) .= curl(A4fey),
Jf = —o(t")0AYes in Qu.

The error estimates for this quantities will be a consequence of Lemmas 5 and 6. The
former depends on the particular approximation A? of A(0) used in problem (5.1). In fact,
recall that A) appears in the definition of &Y. If the solution to problem (3.3) is sufficiently
smooth at time ¢ = 0, namely A(0) € H2(2) NV, then we can take

A?L = IhA(O),

where we denote by Z; the Lagrange interpolant operator. In such a case we have the

following result.
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Theorem 7. Let A and A} be the solutions of problems (3.3) and (5.1), respectively.
Let B = curl(Aey), J = —0 (8,A)|q, ey and By and Jj be as defined above. If A €
HY0,T; H2(Q)NV) N H2(0,T; LA(2)) and AY := T, A(0), then there exists C independent
of h, and At such that

max [|B() = Billze) < C{hlAllm oz + At Allworzwn}
N 1/2
{Atz [T (%) — Jfllizmﬂc)} < C{MAllmormze) + At Al morz@) } -
k=1

6 NUMERICAL TESTS

We have used the numerical method to compute the current density and the Lorentz force
in an example taken from an electromagnetic forming process. We consider the geometry
and physical data of the axisymmetric electromagnetic forming test described in [8] (see
Figure 4) which is a classical benchmark (see [8, 10] for more details). The geometrical

and physical data are given in Table 1.

E

¢ I

B Workpiece F
| 000000000tH
7 ONK I

Coil

Figure 4: EMF. Geometry of the benchmark problem.

The current density Jg was assumed to be constant in each turn of the coil. It was
obtained from [8] where the corresponding intensity was reported. Figure 5 shows this
intensity during the whole process. To determine €2;, we assumed that the workpiece is
a rigid body moving under the action of a Lorentz force f = J x B. To compute f, we
made a preliminary estimate of J and B by solving the electromagnetic model with the

workpiece at a fixed domain )y, as described in Section 6.3 of [3].
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Table 1: Test 2. Geometrical data and physical parameters:

Thickness of the workpiece (F): 0.0012m
Height of the tool coil (H): 0.0115 m
Width of each turn coil (I): 0.0025 m
Distance between coil turns (K): 0.0003 m
Distance coil-workpiece (B): 0.002m
Vertical distance from coil to bottom (C): 0.05 m
Vertical distance from workpiece to the top (A):  0.05 m
Width of the workpiece (E): 0.115 m
Width of the rectangular box (R): 0.2 m
Number of coil turns: 9

Electrical conductivity of metal (o): 25900 (Ohm m)~?
Magnetic permeability of all materials (u): 4710~ "Hm ™!
Final time (T): 90us

40

30

20

Measured Current Intensity (kA)

0 0.2 0.4 0.6 0.8 1

Time (s) X1 04

Figure 5: Test 2. Current intensity (kA) vs. time (s).

We have used the mesh shown in Figure 11 which is more refined in the zone occupied
by Q, for t € [0,7]. We have used a low order integration rule as in the previous test to
compute the integrals of piecewise smooth functions. Figure 7 shows the resulting velocity
of the rigid workpiece. Figures 8-10 show the computed current densities at 10ms, 35ms,

and 90ms, respectively.
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Figure 6: Test 2. Lorentz force in N vs. time (s).
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Figure 8: Test 2. Current density in A /m? at 10us.
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Figure 9: Test 2. Current density in A /m? at
35us .

Figure 10: Test 2. Current density in A /m? at
90us .
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Figure 11: Test 2. Meshes zoom.
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