Mathematical Modelling in Food Engineering

J. A. INFANTE, B. IVORRA, A. M. Ramos, J. M. REY, N. SMITH
Universidad Complutense de Madrid. Madrid, Fspana
A. FRAGUELA

Benemérita Universidad Autonoma de Puebla. Puebla, Mézico

Abstract

Nowadays, in industrialized countries, food products that are frequently consumed
are processed in order to prolong their shelf life, to avoid as much as possible their
decomposition, and to maintain or even improve their natural qualities such as flavor
and color. Decomposition of food is mainly due to microorganisms and enzymes,
since they are involved in the physical and chemical processes of transformation of
food substances. At present, consumers look for minimally processed, additive-free
food products that maintain their organoleptic properties. This has promoted the
development of new technologies for food processing. One of these new emerging
technologies is high hydrostatic pressure, as it has turned out to be very effective in
prolonging the shelf life of foods without losing its properties.

This work deals with the modelling and simulation of the effect of the combination
of Thermal and High Pressure Processes, focusing on the inactivation that occurs
during the process of certain enzymes and microorganisms that are harmful to food.
We propose various mathematical models that study the behavior of these enzymes
and microorganisms during and after the process, and study some related inverse
problems.

1 INTRODUCTION

Food Engineering has been studied in the past decades, specially from mid-twentieth cen-
tury to now on. Obviously, humans have been interested in food conservation since ancient
times, using traditional techniques such as desiccation, conservation in oil, salting, smok-
ing, cooling, etc. Due to the massive movement of the population to the city, a great

supply of food in adequate conditions was necessary. Therefore, the food industry was
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developed in order to guarantee large-scale food techniques, to prolong its shelf life, and

to make logistic aspects such as transport, distribution and storage, easier.

Classical industrial processes are based on thermal treatments. For example, pasteur-
ization, sterilization and freezing. The disadvantages of freezing are non-homogeneous
crystallization, that produces big crystals that may damage the food. For classical heat
application processes, temperature is in a range of 60 to 120°C, and the processing time
can vary from a few seconds to several minutes. The main aim of these processes is to inac-
tivate microorganisms and enzymes that are harmful to food, in order to prolong its shelf
life, to maintain or even to improve its natural qualities, and mainly to provide consumers
with products in good conditions. The problem of processing food via thermal treatments
is that it may loose a significant part of its nutritional and organoleptic properties. At
present, consumers look for minimally processed, additive-free food products that main-
tain such properties. Therefore the development of new technologies with lower processing

temperatures has increased notoriously in the past years.

One of the new emerging technologies in this field is the combination of thermal treat-
ments (at moderate temperatures) with high hydrostatic pressure, thereby reducing the
problems described above. Many companies are using this technology and it is being
increasingly used in countries such as Japan, USA and UK. Recent studies [2, 13] have
proven that high pressure causes inactivation of enzymes and microorganisms in food,
while leaving small molecules (such as flavor and vitamins) intact, and therefore it does
not modify significantly the organoleptic properties of the food. High pressure can also be
used for freezing, resulting in uniform nucleation and crystallization. Our aim is to model

mathematically these high pressure processes, in order to simulate and optimize them.

Two principles underlie the effect of high pressure. Firstly, Le Chatelier Principle,
according to which any phenomenon (phase transition, chemical reaction, chemical reac-
tivity, change in molecular configuration) accompanied by a decrease in volume will be
enhanced by pressure. Secondly, pressure is instantaneously and uniformly transmitted

independently of the size and the geometry of the food (isostatic pressure).
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2 MATHEMATICAL MODELLING OF MICROBIAL AND
ENZYMATIC INACTIVATION

Kinetic models are used for the development of food preservation processes to ensure safety.
They also provide tools to compare the impact of different process technologies on the re-
duction of microbial populations or enzymatic activity. In this section we present mathe-
matical models and the parameters that describe Microbial and Enzymatical Inactivation !
due to the combination of thermal and high pressure treatments.

In order to describe changes in microbial populations as a function of time, when the
food sample is processed at temperature 7" and pressure P we can use the first-order kinetic

model?:

AN (4T, P)
dt
]\/v(O;T7 P) :N(), (21)

= —k(T,P)N(t; T, P), t>0,

Solution: N(t;7T,P) = Ny exp (f /t k(T(s), P(s)) ds) ,

where N(t; T, P) is the microbial population at tir?le t, when the food sample is processed
at temperature 7' and pressure P, Ny is the initial microbial population and (T, P) is
the inactivation rate constant [min™!|, also called death velocity constant in the case of mi-
croorganisms. Therefore, we have encountered a first inverse problem: to identify (T, P)
for adequate ranges of temperature and pressure. The same model can be used to estimate
the changes in the enzymatic activity as a function of time by changing N(¢; T, P) for
A(t; T, P), and Ny for Ag.

Another equation used very often (e.g. [14]) to calculate changes of microbial population

as a function of time is the following:
N(t;T, P) —t
1 = t>0
= (57) - 20
N(0; T, P) = Ny, (2.2)

Solution: N(t;T, P) = Ny 10‘f3 DTGP ds

Hnactivation may be defined as the reduction of undesired biological activity, such as enzymatic
catalysis and microbial contamination.

2Higher-order models that describe changes in microbial populations as a function of time can also be
found in the literature [15].
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where D(T, P) is the decimal reduction time |min|, or time required for a 1-log-cycle?
reduction in the microbial population. We have encountered another inverse problem: to

identify D(T, P) for adequate ranges of temperature and pressure.

2.1 Identification of kinetic parameters

For isostatic processes, k(T') can be given by Arrhenius’ equation:

w0 =g ((50) (77 7))- (23)

where #(T) [min~!] is the inactivation rate for an arbitrary temperature 7' [K]|, k7., [min=!]

is the inactivation rate at reference temperature Ty [K], E, [J/mol] is the activation
energy’ and R = 8,314 [J/(mol K)| is the universal gas constant. And for isothermal

processes, £(P) can be given by the following equation (based on Eyring’s equation):

—AV*(P — Py
k(P) = kp,, exp (#) ) (2.4)
where x(P) [min~!] is the inactivation rate for an arbitrary pressure P [MPa], rp_, [min~]

is the inactivation rate at reference pressure P [MPa| and AV* [cm?®/mol| is the volume
of activation®.

For temperature and pressure dependent processes, (7, P) may be calculated by:

K(Pv T) = Rref €XP <%(P - Pref)) exp <ASref (T - Tvref)) exp <7AK(P - Pref)Q)

RT RT 2RT
—2A¢ AG, T
exp <W(P — Pref)(T - 7-;"ef)> exp < RT (T(lnﬂ - 1) + Tref)> ?

(2.5)
where there are several kinetic constants that express the dependence of (T, P) on tem-
perature and pressure.

By construction (T, P) and D(T, P) are related by x = @, thereby it is possible to
move from one model to the other. However, we may also calculate D(T, P) directly by

3A 1-log-cycle reduction is equivalent to reducing the population dividing it by ten. In the same way,
a n log-cycle is equivalent to reducing the population dividing it by 10™.

4Activation energy (chemistry): the minimum amount of energy that is required to activate atoms or
molecules to a condition in which they can undergo chemical transformation or physical transport.

®The volume of activation is interpreted, according to transition state theory, as the difference between
the partial molar volumes of the transition state (V) and the sums of the partial volumes of the reactants
at the same temperature and pressure.
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using suitable equations. For D(T') and D(P), we have, resp. [14]:

D(T)) T— ,Tref
lo = — 2.6
. ( Dy, zr (26)
D(P)) P — Pref
lo = — 2.7
: < Dp,, zp (27)

where zp [K] (resp., zp [MPa]) is the thermal (resp., pressure) resistance constant that
can be defined as the temperature (resp., pressure) increase needed to accomplish a 1-
log-cycle reduction in the decimal reduction time value D [min|; Dy, (resp., Dp,,) [min]
is the reference decimal reduction time at reference temperature Ty [K| (resp., reference
pressure P, [MPal) within the range of temperatures (resp., pressures) used to generate
experimental data.

Therefore, the inverse problems consisting of identifying functions (T, P) and/or D(T,
P) are converted into parameter estimation problems (we have to identify E,, AV*, zr,
zp, etc...).

This parameter identification may be done using linear regression. For example, if
we have experimental data of the concentration of a certain microorganism in food after
being processed for different times and at different pressures and constant temperatures, we
could proceed as follows: Firstly we consider the measurements done at the same pressure,
therefore we would follow model (2.1) and model (2.2). Using linear regression we identify
the kinetic parameters x and D. Secondly, as we have data measured at different pressure
values, we follow equations (2.4) and (2.7) in order to find a formula to express the pressure
dependence of x(P) and D(P). The parameters we identify are AV*, P, and kp,, for
K(P): zp, Per and Dp,, for D(P). We do this again using linear regression. For general

processes we could use, for instance, equation (2.5) with non—linear regression techniques.

3 MODELLING THE TEMPERATURE PROFILES

As can be seen in Section 2, kinetic equation (2.1) describing the enzymatic activity evo-
lution, as a function of time ¢, depends on the pressure and temperature evolution, P(t)
and T'(t), respectively.

In practice, the pressure evolution, P(t), is known as it is imposed by the user and

the limits of the equipment. In the case of the temperature evolution T'(¢), it is necessary
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to consider the adiabatic heating effects due to the work of compression/expansion in the
considered High Pressure device. The temperature of the processed food may change with
time and with space, therefore we need a heat transfer model capable of predicting the
temperature for the processed food. In this work, firstly a heat transfer model taking
into account only conduction effects is presented, and secondly a model also including
the convection effect. As these models are time and spatial dependent, we also introduce
a brief description of the domain describing the High Pressure device considered in our

simulations.

3.1 Spatial domain description

High Pressure experiments are often carried out in a cylindrical pressure vessel (typically
a hollow steel cylinder, see Figure 1) previously filled with the food and the pressurizing
medium [9, 12]. The sample is located in the inner chamber at a temperature that can
be the same or different to the one in the pressurizing medium and/or the solid domain
surrounding it, which may cool or warm the food following user criteria.

Let us consider three domains: the whole domain Q* of the High Pressure device;
the domain €, where the food sample is located; and the domain 2} occupied by the
pressurizing medium. Due to the characteristics of this kind of processes, we assume that
thermally induced flow instabilities are negligible. Therefore, axial symmetry allows us to
use cylindrical coordinates and the corresponding domain is given by half of a cross section
(intersection of the cylinder with a plane containing the axis) and are denoted by Q, Qg

and Qp, respectively (see Figure 1).

3.2 Heat transfer by conduction

We consider the heat conduction equation

20,0

apP_. . .
v or V- (kVT) = Q%T in Q" x (0,t), (3.1)

where T' |K] is the temperature, p = p(T, P) the density [Kgm™], C, = C,(T, P) the heat
capacity [JKg 'K], k = k(T, P) [Wm~'K~!] the thermal conductivity, ; [s] the final time
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Figure 1: Scheme of the High Pressure device (Left) and its corresponding 2D computa-
tional domain (Right). More details about the notations can be found in [9].

and a = «(T, P) is given by

thermal expansion coefficient [K~1] of the food in Qf,
a = ¢ thermal expansion coefficient [K 1] of the pressurizing fluid in Qf,

0, elsewhere.

The conductive heat transfer equation (3.1) is completed with appropriate initial and
boundary conditions depending on the High Pressure machine, in order to determine the

solution that we are looking for (see [9]).

As previously, the coefficients in (3.1) can be evaluated considering inverse problems.
For instance, in Section 5 the thermal conductivity k is estimated as a function of pressure
P[5, 6, §].

This model is suitable when the filling ratio of the food sample inside the vessel is much
higher than the one of the pressurizing medium. But when this does not occur, the solution
of this model is very different from the experimental measurements [12]. One way to solve
this problem is to include the convection phenomenon that takes place in the pressurizing
medium. The resulting model is more expensive from a computational point of view but

the results are more accurate.
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3.3 Heat transfer by conduction and convection

The non-homogeneous temperature distribution induces a non-homogeneous density dis-
tribution in the pressurizing medium and consequently a buoyancy fluid motion (i.e., free
convection). This fluid motion may strongly influence the temperature distribution. In
order to take into account this fact, a non—isothermal flow model is considered. There-
fore, we suppose that the fluid velocity field, u [ms™!|, satisfies Navier Stokes’ equations
for compressible Newtonian fluid under Stokes’ assumption (see, for instance, [1]). The

resulting system of equations is:

pcp%f — V- (kVT) + pCyu - VT = Q%T in Q% (0, ),
0 2

pa—?fvw(VquVut)er(u-V)u:pr*gV(nV'u)+pg in 5 x(0, 1),
%+V-(pu)=0 in Qf x(0, ),

(3.2)
where g is the gravity vector [ms™2|, n = n(T, P) the dynamic viscosity |Pas|, p = p(z, 1)
the pressure [Pa| generated by the mass transfer inside the fluid, and P + p is the total
pressure [Pa] in the pressurizing medium }. System (3.2) is completed with appropriate
point, boundary and initial conditions. If the food sample is liquid two more equations for

its velocity and density should be added (see |8, 9]).

The coefficients in (3.2) can be determined by considering various inverse problems (see
[5, 8]).

4 COUPLING OF INACTIVATION AND HEAT-MASS
TRANSFER MODELS

Figure 2 shows an example of final temperature and food sample enzymatic activity dis-
tributions obtained using a numerical version of models (2.1) and (3.2) (see 9] for more

details). We have considered the following treatment:

The initial temperature is Ty = 40° C in Qg and Ty = 22° C in Q\Qg, and the pressure
is linearly increased during the first 305 seconds until it reaches 600 MPa. Thus, the
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pressure generated by the equipment satisfies P(0) = 0 and

12
dpP 6—10106 Pas™!, 0<t <305,
dt 0 Pas™1, t > 305.

The considered enzyme is Lipoxygenase (LOX): this enzyme is present in various plants
and vegetables such as green beans and green peas. It is responsible for the appearance of
undesirable aromas in those products.

Equation (2.5) is used to describe k with Pt = 500 MPa, Ty = 298 K, kpr =
1.34 x 1072 min™", AV, = —308.14 cm®mol ', AS,es = 90.63 Jmol 'K, AC, = 2466.71
Jmol 'K~ A¢ = 2.22 em®mol 'K™!, Av = —0.54 cm®J'mol ™! (see Ref. [10] for more

details).

40
42 39
- 37 38
22 37
36
27 -

22

Figure 2: Temperature distributions in €2 (Left) and LOX enzymatic distributions in Qg
(Right) at time ¢t = 15 min after the considered process.

5 IDENTIFICATION OF A THERMAL CONDUCTIVITY
COEFFICIENT

We assume that the thermal conductivity depends only on pressure: k = k(P); this is
a reasonable assumption, for example, in processes where the temperature range is mod-

erate and there is no phase change. The problem of identifying the function k(P) from
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certain experimental measurements of the temperature is considered. If the experiment is
performed with an injective curve of pressure P (e.g. if it is a strictly increasing function)
the problem of identifying k(P) is equivalent to identify k(t) = k(P(t)).

We consider a simplified model in which the sample of solid food is assumed to be
contained in a cylindrical pressurized chamber, with a very high filling ratio, so convection
phenomena is not taken into account. Moreover, we assume there is heat transfer between
the food sample and the walls of the equipment, and its temperature is given by a known
function 7°(t). Also, the only heat source is due to the pressure increase and the heat
transfer coefficient A is assumed known. Finally, we consider that the heat conduction in
the vertical direction is negligible and, therefore, our interest lies in knowing what happens
in a certain height of the sample where the thermocouples are placed.

Thus, the simplified model for which we address the problem of identification of thermal

conductivity is

QCP% — k(AT = aP'()T  in Bg x (0,t),
KOO = h (@@ ~T) o 9Bax (0,1), o
T="T, in Bg x {0},

where R > 0 and t; > 0. By C R? denotes the ball of center 0 and radius R; P €
CH([0,%¢]); k € C([0,%]), with k(t) > ko > 0, is the unknown heat conductivity coefficient;
T° € C(]0,t]) denotes the chamber walls temperature; 7 is the outward normal to the
boundary of Bg unitary vector; h > 0 denotes the heat transfer coefficient and Ty is the
sample initial temperature, assumed constant. Our goal is to identify function k from
temperature measurements done at points of Bg. Since the values of the coefficients at
atmospheric pressure are known, we take the initial pressure to be the atmospheric one,

hence, k(0) is known.
5.1 Expression of the solution in terms of their values on the
boundary.

Denoting as X = C*!(Bg x (0,#)) N C**(Bg x [0,t]), we have

Theorem 1: If k is a Lipschitz function in [0,ts], P is a Holder continuous function in
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the same interval and the compatibility condition
T°(0) =T,

holds, then problem (5.1) has a unique (classical) solution T € X. Moreover, T is a radial
function. o

Now, we find an integral representation of the solution of the problem (5.1) in terms of
its values on the boundary:

Theorem 2: Denoting by

173
m(t) = T(R,t), ¥(r,0) = R> — 2Rrcosf + 1%, K(s) = / k(z)dz,

1 385 (PO-P(r))
t = ——" d t = e“
forr €10,R) and t € [0,t] the solution of problem (5.1) can be written as
o Rh t 27 oCp
T(r1) = TiQ(1.0) + 1 [ (1°(r) = m(n) Qt7)g(t,r) [ e 20200 agay
T Jo 0

R —rcosf _ecp
4

L L 7 S A A o~ S0t go
gt [ (- o mep ) [ AT doir

27 Jo

5.2 Uniqueness of solution of the inverse problem

Here we deal with the uniqueness of solution of the inverse problem, meaning that function
k(t) is uniquely determined in some interval [0, ;] by the values of function T'(r,t) at r = R
and at another point rq € [0, R), for every ¢t € [0, t].

We point out that this is not true in general. For example, if the external temperature
evolves as

T(t) = Tye s PO-PO)

the function T'(t) = T°(t) is the solution of direct problem (5.1), regardless of function k.
To ensure the uniqueness of solution of the problem of identifying the coefficient of
conductivity, we restrict the context in which the problem is posed assuming the following

hypotheses:
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(H1) Te(t) =Tp for all t € [0, t].
(H2) P is a linear increasing function. Thus, P’ = 3 > 0.

If there are different functions k; and ks that produce the same measurements m(t) at
the right end, R, and also at some other point o € [0, R), the following result proves that
such functions must be equal.

Theorem 3: Let T and Ty be the solutions of the following problems, respectively

T
gcp%t —R(BAT = aP' (T in Br x (0,4),
T
kl(t)% — h(Te(t) = T) on 9B x (0, 1),
T= TO n BR X {0}7
and or
QCPE — ko(t)AT = aP'(t)T  in Bg x (0,tg),
kQ(t)% =h (Te(t) — T) on, OBR X (0, tf)7
T = TO mn BR X {0}7

where k; € C1([0,t]), with k; > ko > 0,1 = 1,2. Assuming (H1), (H2) and that for all
t €0, t] it holds that

Ti(R,t) = Tao(R,t) and Ti(ro,t) = Ta(ro,t) for some ry € [0, R).

If functions ki and ko are two positive constants, or more generally, if the k; functions are

locally analytic on the right in [0,t;) and verify

te _ 2
/ ka(s)ds < 2ol (5.2)
0 4
and
af 1 .
K@) < ki(t) —= ———— t € [0,4], i = 1,2, 5.3
z()— ()Qcpegac/;t_l E[ f]l ( )

then kl = kz. o
The previous result shows that if we assume that the measurements at ry and R agree
with those done at a temperature that is modeled by (5.1), with k verifying the requested

hypothesis, then function k is uniquely determined from such measurements.
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Moreover, it is remarkable that the more separate the measurements are done (i.e., the
more closer rq is to zero), less restrictive becomes condition (5.2), related to the a priori
information about k. Therefore, we can assure the uniqueness of solution of the inverse
problem for a wider set of functions.

Remark: Inequality (5.3) is actually only a restriction over time intervals where k is
an increasing function (in fact, (5.3) holds for constant and non increasing functions).
Moreover, since

1

lim ——— = o0,
t—0+ %t _ 1 ’

eecr
every function k satisfies (5.3) for short time intervals.
The functions considered in the numerical tests verify (5.3), which is part of the a priori
information needed to identify the coefficient of conductivity. This means that coefficient
k cannot have abrupt changes, which is typical of processes that produce a phase change,

which does not happen in the cases studied here. o

6 NUMERICAL IDENTIFICATION WITHOUT
REGULARIZATION. NUMERICAL EXAMPLES

We begin this section describing the methodology used to solve an inverse problem, based
on a collocation method with piecewise linear continuous functions in a temporal partition.
An approximation of this kind for function k will be used (i.e., the unknowns will be the
values of k at each of the points of the partition).

We assume the experimental measurements have been done at the center and boundary
of the ball, for each instant ¢;,i = 1,2,...,n, of the partition. Then, the equality of
Theorem 2 is written with r = 0 and ¢ = t;, the value of T(0,t;) is replaced by the
measurement at the center of the sample at that instant, and function m is replaced by the
piecewise linear interpolation of the measurements of the boundary. The derivative of m
is approximated by a first order progressive formula. The approximation of the integrals
in (0,¢;) is done by the trapezoidal rule, considering the values of the integrands at t;
to be zero (right limit of the integrands). These approximations result in a system of
n non-linear equations with n unknowns, corresponding to the n values of k at instants

ti;i = 1,2,...,n. As already said, the value of k at the initial instant is assumed to be
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known, as it corresponds to the value of k£ at atmospheric pressure.

The results obtained for the identification of the coefficient of conductivity are presented
for three test cases in which the same linear pressure increase has been used (see (6.1)) and
the same data perturbation (as will be explained subsequently). Three different types of
functional dependences for function k have been considered: linear, as a radical and as a
power. The domain and the parameters of the physical problem have been taken to be the
same as in the solid type food case considered in [9] (i.e., those of tylose). A process like
P2 described in that paper is considered, except for in this case the pressure increase is
much slower (in 1800 seconds instead of 183), so that the conductivity effect can be much
more notorious.

In particular, the pressure has been taken to be
Pt)=02t+01 (6.1)

and the functions & that will be identified have been chosen as

0'75¢ + 450 [0'75t + 450 0'25¢ + 1350\ *
Lk = 55 2) k() = 1800 3) Mt)z( 1300 ) ‘

Increasing k functions have been considered, as it is physically reasonable to expect con-
ductivity to increase as pressure increases (see, e.g., data for different materials in [11]).
The size of these functions has been chosen so that they have the same order as the average
conductivity of tylose in [9], that is 0'559. All of these functions satisfy inequalities (5.3)
and (5.2), related to the a priori information about k.

The obtained results are shown in Figure 3. As can be seen, the error in identifying & is
bigger at the end of the time interval. This is because the values of k at the final instants
are only involved in the last equations, therefore their value is less determinant in the non—
linear system, and so the numerical solution with the required degree of precision admits
bigger errors at the end of the interval. This makes it more difficult to obtain values for k,
at those instants, that change with respect to the initial proposed value of the iteration.
Coherently, the biggest errors for the temperature calculated after the identification are
achieved when the error for k is biggest, and they stay related as time evolves. However,
the errors in the approximation for 7" are of less order than those of the measurements,

i.e., the order of perturbation, what makes the results very satisfactory.
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In Figure 3 the highest value of the percentage relative error is indicated (as “% max.
de error”), for each of the numerical tests. If the solution of the problem corresponding to

the approximate identification of k is denoted by i then the maximum value of such error

T(- ty) —T(-t
. <|| (1) <,k>||c<BR>X100).

12 T (- ti)llesr)

is given by

We calculate the “exact” solution of the direct problem using the Matlab tool pdetool, on
a partition of the time interval [0, 1800] divided equally into 61 instants. Then the value
at the center and boundary of the ball is calculated for such instants. The measurements
with error are generated by perturbing the values of the temperatures at both points, and
in the same way for all three cases. The perturbation is of order 1% of the temperature

range.

7 REGULARIZATION ALGORITHM

In this section a regularization algorithm is presented for the problem under study. We
consider the spaces Z = Lo(0,¢;) and U = Lo(0, ;) x L2(0,1¢) and, for each € > 0, the
compact and convex subset K. C Z defined by

K. = {k € HY(0,t:) : k(t) > ko, t € (0,1), k(t) = ko, t € [0, 2],

te _ 2
/ k(s)ds < Wﬁ'(ﬂ < k(t) Q—Cﬁ% cd. in (O,tf)}.
0 0 PeeCp” — 1

Let m(t) = T(R,t),m°(t) = T(ro,t), be the exact temperatures measurements, that cor-
respond to the solution of the model for a unique &k € K.. Denoting by mg(t) and m{(¢)

the respective perturbed measurements with order §, namely,

ms m _ ]2 0 _ 02
a(((7) . (%)) = s =l g = e <.

and defining the operator

A K. — U
ko= (m(t),m°(t)),
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Figure 3: Thermal Conductivity (Left) and error in temperature (Right) corresponding
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to the case when k is a line (Top), a radical (Center) and a power (Bottom).

we propose the problem of solving, in a stable way, equation: Ak = (ms(t), m3(t)), through

the solution of the optimization problem

min d?
kek.

( Ak, (m5
ms

0

))
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The methodology we design to approximate such solution is based on the discretization
of the set K. and the functional A by means of piecewise linear continuous functions in
the intervals [t;_y,t,], where t; = £ are the instants when the n measurements are done.
Parameter € has to satisfy the restriction of being smaller than the time interval between
two measuring instanst, i.e., 0 < ¢ < t—f As shown by the approximate solution method

n
(see [3]). the corresponding iterative process should stop at the first instant ¢ verifying

RE (Aki, (m3)> <42
ms

for which a regularized solution is obtained.
The difficulty of this algorithm is the need to project the descent direction at each
iterative step of the optimization method being used, on the compact set K., that has an

empty interior in Z (see [7]).
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