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Abstract
We present here some basic elements of the mathematical theory for three different
contexts of multiscale simulation: homogenization theory for elliptic equations, atom-
istic to continuum models for elastic materials, and micro-macro models for polymeric
fluids. The exposition is pedagogic and elementary. Both theoretical and numerical
aspects are addressed.

1 INTRODUCTION

We present here some basic elements of the mathematical theory for multiscale simu-
lation in three different contexts: homogenization theory for linear elliptic equations in
Sections 2, 3, and 4, atomistic to continuum models for elastic materials in Section 5, and
micro-macro models for polymeric fluids in Section 6. The exposition is pedagogic and
elementary. Both theoretical and numerical aspects are addressed. The material contained
in these lectures notes is adapted from several publications of the author, some of them
in co-authorship: the textbook [117] (in French) for the basic theory of homogenization,
the works [40, 64, 116, 32| for more advanced aspects —in particular related to stochastic
homogenization—, the review articles [42, 123] for multiscale simulations of solids and fluids.

Many other references are mentioned in the body of the text.
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Of course, these lectures notes are only a poor surrogate to more extensive presentations
contained in well known textbooks and monographs. This is especially true for Sections 2
and 3 where we present basic elements that may be found in many places in the literature.
We by no means claim for originality, except, perhaps, for having collected in a single
set of notes topics different in nature that are (to the best of the author’s knowledge)
nowhere addressed in a unified and elementary manner. Even periodic homogenization
and stochastic homogenization are not often covered simultaneously. For more detailed
views on the topics, we refer, for instance to [28, 58, 99, 4] for homogenization, [151, 153]
for multiscale fluid modelling.

A more comprehensive presentation of some more advanced topics hardly approached
in the first three sections in homogenization theory will be given in two publications in

preparation [118, 119].

2 PERIODIC HOMOGENIZATION

Our first topic is homogenization, and we begin by a short simple exposition of a prototyp-
ical problem in the periodic setting. The purpose of this Section 2 is then to recall some
basic ingredients of elliptic homogenization theory in the periodic setting. We refer e.g.
to the monographs [28, 58, 99] for more details on homogenization theory, to [4, Chapters
1 and 2] for a pedagogic introduction, and to [97] for a short non technical overview of

related problems.
We consider, in a regular bounded domain D in R?, the problem

—div [Aper (f) VUE] =f in D,
(2.1)
u*=0 on JD,
where the matrix A, is Z%periodic and (for simplicity) symmetric. In order to ensure
well-posedness, we assume the coercivity condition: (A(y)z,z) > c||z|* for some ¢ > 0
independent from z € R? and y € Q. For ¢ small, the above problem is prohibitively
expensive to treat computationally: the typical meshsize to use in a finite element method

(say) must be smaller than ¢ in order to capture the oscillations of the solution «¢ arising

from the oscillations of the coefficient A, (f) The purpose of homogenization is to replace
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problem (2.1) by an equivalent, a.k.a. homogenized, problem, the solution «* of which is
close to u® for e sufficiently small, in a sense made precise below. The first step of the
construction of the homogenized problem, as will be shown in the following sections, is the
solution to the so-called corrector problem associated to (2.1) which reads, for p fixed in
Rd

—div (Aper(y) (p + va)) - 07

(2.2)

wy, is Z%-periodic.

Problem (2.2) has a unique solution up to the addition of a constant. Then, the homoge-

nized coefficients read

A% = [ (e V) A0 (e + T, )y = [ (e V) A0y
(2.3)
where @ = [0,1]? is the unit cube. The main result of periodic homogenization theory is
that, as € goes to zero, the solution «° to (2.1) converges to u* solution to
—div[A*Vu*]=f in D,

(2.4)
uw* =0 on OD.

The convergence holds in L*(D), and weakly in H}(D). The correctors w,, (for e; the

canonical vectors of R?) may then also be used to “correct” u*, that is, identify the behavior
x

of u® in the strong topology Hj (D). Several other convergences involving A, (7) and u®
€

also hold. All this is well documented.

The practical interest of the approach is evident. No small scale ¢ is present in the
homogenized problem (2.4). At the price of only computing d periodic problems (2.2)
(as many problems as dimensions in the ambient space, taking indeed p the vectors of
the canonical basis of R?), the solution to problem (2.1) can be efficiently approached for
e small. As above mentioned, a direct attack of problem (2.1) would require taking a

meshsize smaller than . The difficulty has been circumvented.

We will now take a pedestrian approach that explains why the above result hold. We

will examine the related numerical techniques in Section 3.
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2.1 “Zero-dimensional” intuition

To begin with, we modify (2.1) in a dramatic way: we consider a one-dimensional domain,

take A, a scalar valued function (denoted a., for simplicity), delete the differential

operators of (2.1), and are left with the oversimplified equation —a,e, (7) u*(x) = f(x),
€

which admits the obvious solution

w () = —ah (2) J@). (2.5)

€
We see that finding an homogenized problem then amounts to identifying the behaviour,
. I . [
as ¢ vanishes, of the sequence of oscillating functions a,,, (7)
€

The topology of weak convergence is the appropriate tool for this purpose.

Proposition 1. Let b be a function in L>®(R), assumed 1- periodic. Then the sequence
of functions b(;) weakly- converges in L°(R) to the constant function with value < b >,
€
called the average of b:
1
<b>= / b. (2.6)
0
Recall that a sequence of functions f,, is said to weakly-* converge in L¥(R) to fo, if

for all functions g € L'(R), [ f, g converges to [ fg.

Proof of Proposition 1:

For consistency, we outline the simple proof of Proposition 1. We wish to prove that,

for all v € L'(R), )
/b(g)v(x) d:r—>/0 b/v.

Tt suffices to prove the claim when v is the characteristic function of an interval and then

to use the density of piecewise constant functions in L*(R). For a < 3, we would like to

/jb(:)dx—>(ﬂ—a) /Olb.

Using periodicity and denoting by [z] the integer part of the scalar x, we have

prove that

B8
€

[b(jj)dx — < [“sway

}_[g]_1)<b>+5/

o (2]

(B —a) <b>+0(). (2.7)

ole

:g(

BEESS
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This concludes the proof. &

Remark 1. The result of Proposition 1 of course holds true in any dimension. The proof

can be indeed easily adapted to the multidimensional setting.

Considering Proposition 1, we obtain

ut = —(aper) [, (2.8)

as the weak-* limit of «° in (2.5) when e vanishes. Based on this, it is natural to guess that
the homogenized equation arising from (2.1) will be related to the average of the periodic

function A, ). We will see that it is indeed the case, at least in the one-dimensional setting.

We remark that an even more naive approach would consist, given the statement of
Proposition 1, in guessing that the homogenized equation is obtained, as e vanishes, by
simply replacing in (2.1) A, (g) by its average (A,.,). This is not correct, as will be seen
in the simple one-dimensional setting in the next section. It is actually already clear on our
“zero-dimensional” calculation, since we obtain (2.8) and not: u* = — ((ape,))”" f. Unless
the function is constant, we never have (b') = ((b))™" (see a proof below). Otherwise
stated, knowing the statistics of A, is not sufficient to know the statistics on the solution
u, and this of course owes to the fact that the map A,.. — wu that associates to A, the

solution u to the equation is not linear.

2.2 One-dimensional setting

We now reinstall the differential operators, and consider the one-dimensional setting:

()

u(0) = us(1)

1, in]O, 1[
(2.9)

0,
where a is a 1-periodic, scalar valued function. We assume it is positive, bounded and

bounded away from zero, that is, there exist 0 < ¢; < ¢y < 400 such that
0<e <a(r)<e, Vrelol] (2.10)

We additionally assume that f € L%(]0, 1[).
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Consider u¢ the solution to (2.9). For brevity, we omit to prove here that € uniquely ex-
ists. This is evident, either solving the equation (recall we are working in one dimension !),
or using the Lax-Milgram lemma (and then the proof of course carries over to the multi-
dimensional setting). An alternative to the latter approach, which then can be adapted
to cover the case of dimensions higher than or equal to 2 and provided the matrix A, is
symmetric, is to remark that the equation considered is indeed the Euler-Lagrange equa-

tion associated to the minimization in H{(]0,1]) of the strongly convex energy functional

1 d !
O v. We will return to this interpretation in Section 2.6.
3 *— | fv. We will his i ion in Section 2.6
0

We now prove

Proposition 2. The solution u® € H}(]0,1[) to problem (2.9) converges in L?(]0,1[), and
weakly in H3(]0,1[), to the solution u* € H(]0,1[) of the homogenized equation

) =1 (2.11)
Proof of Proposition 2

We could of course prove the Proposition solving explicitly for u® solution to (2.9) and
using its explicit expression. We shall indeed make use of the explicit expression of the
solution u® later on (see Section 2.5). With a view to generality, we prefer to argue here
without making use of any explicit expression of the solution. The proof is then closer to

the proof needed in the multidimensional context (although it is still simpler).

Multiplying the equation by uf, integrating over the interval [0, 1] and integrating by

[ = [ s

which, using the Cauchy-Schwarz inequality and the coercivity, yields

d Yoxod
il e gy < [ G < 1o e oy

parts, we obtain

Since u° vanishes at 0 and 1, we use the Poincaré inequality to obtain, for some constant
c >0,
llufllZz2qo.p < I lz2goapllullz2oap-
d
The sequence uf and the sequence d—us are therefore both bounded in L?(]0,1[), that is,
x
u® is bounded in HE(]0,1[). Using the Rellich Kondrakov theorem, we may assume, up
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to the extraction of a subsequence, that u° converges in L? to some function u*, and that
%ue weakly converges in L? to %u*. By construction, u* € H}(]0, 1]).

The above part of the argument (establishment of a priori estimates and convergence
up to an extraction) carries over to the multidimensional setting. The sequel of the proof

now specifically exploits the one-dimensional setting in order to identify the limit.

We now integrate once (2.9):
x, d . ’
—a(—)—u° = + ¢, 2.12
Ergow = [ £+e (212)
where, using the bounds on a and u®, we know that the sequence of scalars c. is bounded.
Up to an extraction, we may assume that c. converges to some c. We write
d

— = O /Oxf +ce). (2.13)

Since ¢! is also in L™ and periodic, we may apply Proposition 1, and we therefore know

d T
that fd—us weakly converges in L? to the function < a™' > (/ f+ c). Hence
r 0

d * -1 !
-t =<aTt > (/0 f+e). (2.14)
The limit «* of the sequence u® of solutions to (2.9) therefore solves

—%(ﬁ%m =/, (2.15)
supplied with the boundary conditions u*(0) = u*(1) = 0. We finally note that, for another
converging extraction of the sequence u®, we would obtain the same limit function and same
limit equation, because the entire sequence a_l(é) converges to < a~' >, and the solution
to (2.15) is unique. Thus our argument holds for the whole sequence itself, without any

extraction needed. This concludes the proof. &

Remark 2. We have already noticed, in the body of the proof, that the first part of the
argument is not specific to the one-dimensional setting. We also note that this first part
does not make use of the specific assumption put on the coefficient of the equation, namely
here the periodicity. Only the second part of the argument uses the periodicity to explicitly
identify the limit equation. This observation is not restricted to the one-dimensional setting

(see Section 2.7).
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2.3 A striking numerical observation

We are now in position to demonstrate that naively using a discretization approach on a
problem of type (2.1) leads to a wrong result when one cannot afford taking sufficiently fine
discretization parameters. For this purpose, we consider the one-dimensional problem (2.9)
and use a classical P1-finite element approach on a regular mesh of size h > ¢ to mimick
a difficult situation. The discrete variational formulation is set on the finite dimensional
space Vo, C HE(]0,1[) of P1 finite elements and reads: Find ui, € Vo, such that, for all

Up, € ‘/Oh;
x duj, duy,

/01 (=)=t =" de = /01 f(@)vp () d. (2.16)

e’ dx dx
The rigidity matrix A, of the problem has entries

Ay = [ a5 dhta) 6}(2) (.17

where we denote by ¢; a generic P1 finite element basis function. Proposition 1 tells us

that, as € goes to zero, these entries converge to

[Aglij =< a> / oi(x) ¢ () da. (2.18)

These are indeed the entries of the rigidity matrix associated to the discrete variational
formulation: Find uy € Vg, such that, for all v, € Vo,

! duh d’Uh

<a> —_
o dr dx

dxz/o f(@) v (2) de, (2.19)

which is the formulation associated, using the same discretization approach, to the differ-
ential equation
2
—<a> —u f, in]0,1]
2 ) ?
dz (2.20)

u(0) = u(1) 0.

Consequently, for a meshsize h > ¢, the discrete finite element solution ressembles the

solution to (2.20) and not that to the correct homogenized problem (2.11), unless the
coefficient a is constant. Recall indeed that < a™! >=< a >~ if and only if we have

equality in the Cauchy-Schwarz inequality

fieJans ()



TOPICS IN MULTISCALE SCIENCES 161

1

which imposes that @ and a™ are two proportional functions, and thus that a is constant.

We conclude that using too coarser a mesh on a problem with highly oscillating co-
efficients such as (2.9) for € small is inappropriate. The purpose of homogenization is to

bypass this difficulty.

2.4 Dimension 2 and beyond

It is now time to address the dimensions higher than or equal to two. The tremendous

additional difficulty is that geometry comes into play.

Two exactly solvable settings

There are actually two particular settings known in dimension higher than one that still
lead to an explicitly solvable homogenized problem: laminated materials and checkerboard
materials. Let us briefly mention these two settings. They are useful both for theoretical
considerations (they illustrate how much the two-dimensional situation is different from the
one-dimensional one), and for computational purposes (they provide testbeds for numerical
approaches).

The case of a laminated material corresponds to the equation

—div (( a(zﬁl) a(gl) )Vue(ml,.rg)) =/ (2.21)

which also reads

—div (a(%)(aixlus(xl, Ta)er + %Us(iﬂl, w3)es)) = f. (2.22)

We have denoted by (eq, e2) the canonical basis vectors in the two dimensional plane. The
equation is considered on the square Q = [0,1]? and supplied with homogeneous Dirichlet
boundary conditions. The function a is 1-periodic, and satisfies (2.10). It only depends on
the first coordinate xy of x = (21, x2), thus the terminology “laminated”. A prototypical
example is

a(a) = { o when 0<z <1/2 (2.23)

G when 1/2<ux; <1

which corresponds in (2.21) to a model of a two-fold material consisting in lamellas, ar-
ranged along the direction x; of respective coefficients o and /3, each lamella having thick-

ness /2 (See Figure 1).
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Figure 1: Left: Laminated material, the structure is invariant along direction zo and e-
periodic along direction x;. Right: Two-dimensional checkerboard: although the amount
of each “phase” is similar to that for the laminated material, the homogenized equation is
drastically different.

The homogenized problem obtained from (2.21) is defined in the following:

Proposition 3. As e vanishes, the solution u® to (2.21) converges to the solution u* to

1

— div <( ~ais > Vu*) =f (2.24)
0 <a>
that is
1 0 0
—div (——— w(zy, v2)er+ < a > —u*(xl,xg)@)) =f.

E)xg

The result of the above Proposition is intuitively clear. In the direction x;, the material

—Uu
<al>0x

behaves similarly to the one dimensional material studied in the previous section, while in
the direction x, the material has no small scale oscillation and therefore responds as the

classical algebraic average < a > of its constitutive components.

Our second explicit example is a checkerboard material. We consider a function a(xy, z2)
periodic of the unit square (), and piecewise constant, with values o and § both positive.

See Figure 1. We then consider A° = a(%, 22) Id and the solution v in Hj(Q) to

—div A*Vu® = f, (2.25)
that is,
o2y 0 ]
—div ( EO € a(ﬂ7ﬁ) )Vu (a?hxz)) =f
or
Ty T 0
—div ( (?17?2)(67%U (w1, 22)e1 + 9 U€($1,$2)€2)) =f



TOPICS IN MULTISCALE SCIENCES 163

Then, we have
Proposition 4. The solution u® to (2.25) converges to u* € H}(D) solution to
—div A*Vu* = f, (2.26)

where

A*=\/af Id. (2.27)

For both the proofs of Propositions 3 and 4, we refer to the bibliography. The proofs
are not difficult (especially the former) and are entirely based upon explicit analytical
manipulations.

The comparison of the above two examples shows that, as announced, the main feature
of dimension two is the onset of geometry. It is clear that the homogenized matrix obtained
in the limit of vanishing ¢ is sensitive to the geometry of the combination of the two

materials.

Two-scale expansion

Our two examples above are the only examples known to date for which an explicit ex-
pression of the homogenized matrix can be analytically obtained. All other cases require
a different, non analytical approach.

From a theoretical result, Proposition 5, which will be given below, the existence of the
homogenized matrix is ensured, but no information is given on its explicit expression. We
present in this section an approach, called two scale expansion, which gives such an explicit
expression. For now, the approach is formal. An outline of its mathematical foundation
will be given a rigorous sense in Section 2.4 below.

We begin by postulating that the solution u® to (2.1) writes as the following expansion
in powers of &:

W () = uo(z, g) + euy(a, g) + uy(a, g) ¥ (2.28)
where, at each order k, the function wuy is assumed to depend on two arguments: a macro-

x
scopic variable x and a microscopic variable —. The dependence upon this latter variable
€

is assumed periodic, that is

y — ug(w,y) is periodic with periodic cell @ = [0, 1]%. (2.29)
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The form of the functions u; appearing in the expansion is not (yet) made precise but a
good prototypical form to think of to fix the ideas is the product of a “slowly” varying
function in z by a “rapidly” varying function in f. The approach now consists in inserting
expansion (2.28) in (2.1) and equating powers ?n €. The calculation is tedious but not

difficult. All that needs to be borne in mind is the derivation rule:

V (v(z, %)) = (V,v)(z,y) + é(vyv)(ac,y)7 where y = g (2.30)

where we denote by V, and V,, the partial derivatives in « and y respectively. Of course,
0
P ...,—azd).

We obtain an infinite hierarchy of equations (one for each order in ¢):

each one is a d-tuple of partial derivatives (

—div (A(y) - Vu©)
= ivy(A(y) - Vol )
=2 | A0 Tyt ) + vy (A) - Vota(o,)
+divy (A(y) - Vyur (2, y))
- {divx(A(y) - Vauo(x,y)) + divy (A(y) - Ve (z,y))
+div,(A(y) - Vyui(2,y)) + divy (A(y) - Vyue(z,y))
+0(e). (2.31)
The nullity of the coefficient of 5—12 writes
divy (A(y) - Vyue(z,y)) = 0, (2.32)

which yields
Vyuo(z,y) = 0. (2.33)
Indeed:

IN

c/’Vyuo(x,y)‘Q /(A(y)Vyuo(x,y),VyUO(x,y))dy
Q Q

by coercivity of A
= —/ divy (A(y) - Vyuo(z, ) wol(z, v) dy
Q

" / (A0 V() w0l ),
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where the first term vanishes because of (2.32) and the second term vanishes by periodicity
of ug(z,y) with respect to y. We have denoted by n the unit outward normal on 9Q. The

condition (2.33) means that ug only depends on the macroscopic variable:
1 .
The term in — next gives:
€
—divy (A(y) - (Vauo(@) + Vyui(2,y))) = 0.

The equation satisfied by u; therefore reads

Uy periodic.

Momentarily admitting that ug is known, and noticing the linearity of the equation, the

solution to (2.35) may be explicitly written as

8U0
Z arz ), (2.36)

where the functions w; are the solutions to the following problems (called cell-problems or

corrector problems in this setting):

{—divy<A<y>~<ei+vywi<y>>) ~0, nQ,

w; periodic, (2.37)

where ¢;, i = 1,...d denotes the i-th unitary vector of the canonical basis of R?. The
functions w; are only unique up to the addition of a constant, but it is easy to see in the
argument that follows that, at least in this simple periodic setting and for the purpose of
determining the dominant order in expansion (2.28), the value of the constant does not
matter.

An important methodological remark is in order. Equation (2.35) that defines u; and
will eventually (anticipating on the sequel) allow to express the homogenized matrix A* is
seen as an equation in the variable y, varying in the unit cell Q). In fact, in the early stages
of our calculations, the variable y was not independent from the macroscopic variable =

T
(we used to have y = =). Here we in fact
€

(i) decouple y from x
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1

(ii) deliberately make a confusion between — D and R, so that (2.35) is in fact posed on
€

the entire space (consistent with the fact that, seen from the microscopic scale, D is

an infinite domain)
(iti) and eventually use periodicity to set equation (2.35) only on Q.

None of these manipulations is clear. But this turns out to be the right perspective for
this periodic setting, as the proof of the validity of the expansion will show. Other settings
than this periodic linear setting can lead to significant related difficulties (see for instance

the random setting in Section 4).

We finally identify ug. To this end we return to (2.31) and look to the zero order term:
in order for (2.1) to be satisfied, we need that:

—diVy(A(y) : (vzul (Ivy) + Vy“?(l'v y))) =
div,(A(y) - (Vyui(z,y) + Veue(x))) + f, (2.38)
along with periodic boundary conditions for u, on the boundary of Q.

A necessary (and actually sufficient) condition for the existence of a periodic function
ug such that (2.38) holds is that the integral of the left hand side over the periodic cell

vanishes. Indeed, if g is a periodic, vector-valued function,

/Qdivg(y)dy=/6Qg(y) -n=0.

The integral of the right-hand side of (2.38) therefore also vanishes, which yields

~div, ( /Q Aly) - (Vyur(a,y) + Vauo(z)) dy) = f(x).

Inserting the value (2.36) of w; in terms of the functions w;, we obtain

d
8’LLO

~diva /Q Al) - X Gt Ty (o) + €5) dy) = f(2) (2.39)

=1
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Now

/QA@» 3203 us(3) + ) dy

= Ox;

d
:/QA D (Vo @)); (Vyw;(y) + ;) dy

Jj=1

[
M=

(Fue) | 46 (@) +) i)

(ZZ/ () (Tyus(y) + &) dy (Vuo( >>)

J=1 k=1

3 (ZA (Vuo(z )ei

= A" Vuy(z)

1

[
.
a i M& i

where the entries of the matrix A* read, for i,j = 1...N,
Ay = [ (A0) () +5).c0 (2.40)
An equivalent expression (using integration by parts) is
Ay = [ (A e+ Ty (e + ) dy. (2.41)
Equation (2.39) now writes as the following homogenized problem

{—div(A*-Vuo) = [, inD, (2.42)

uyg = 0, ondD.

Determining the homogenized behaviour (behaviour for small €) of the solution u® to

(2.1) therefore requires a two step procedure

(i) solving for w; solution to (2.37) for each direction ¢ and computing the entries of A*

using (2.41),
(ii) solving for ug (also, for evident reasons, denoted by u*) solution to (2.42).

Computationally, we avoid solving one equation with a prohibitively fine mesh, and we

prefer solving the N periodic problems (2.37) on the 'microscopic’ unit cell, plus problem
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(2.42) at scale 1 (therefore not needing any more a fine mesh, since ¢ is absent from the
equation). Doing so, we find an approzimation to u. solution to (2.1) at a certain order of

accuracy in ¢, as will be formalized below.

Remark 3. Note that the approach is all the more efficient if we have to solve (2.1) for
many right hand sides f (since problems (2.37) are independent of f and can be solved

once and for all). The gain is also all the more important as € is small.

Proof of the correctness of the expansion

The calculations of the previous section are purely formal. They can be justified in many
ways. We outline here two possible proofs, based on different arguments, that show that u®
converges to g solution to (2.42), in a sense made precise below. Much more can be found
in the vast literature on the subject. We will primarily argue on the so-called energy
method of Murat and Tartar. Then we shall mention the two-scale convergence approach

by (independently) Nguetseng and Allaire.

The energy method. The energy method, more appropriately called the method of
oscillating test functions, is due to Murat and Tartar [143, 171]. Tt is based on the principle
of compensated compactness. We briefly sketch their proof. We do this in the periodic
setting, but it should be borne in mind that the approach is not restricted to periodic
setting and has been designed for more general settings. First, remark that the solution u®
to (2.1) is bounded in H', and thus converges, up to an extraction, weakly in H'. Similarly,

A(z/e)Vus converges weakly in L?:

Vuf — Vg in L?, (2.43)
Aper (f> VuE — o in L2 (2.44)
1>

Then, the solution w, (for p = ¢;) to (2.37) satisfies
Xz *
YV, (g) (V) = 0, (2.45)
(where (-) denotes the average in the periodic setting), thus:

p+ Vu, (g) ~pin L™ (2.46)
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In addition, we define A* using the following weak limit:

& T * * : o)
AL, (g) (p—i— Vw, (g)) (A9 pin L™ (2.47)
Note that this is equivalent to (2.40) in the periodic setting, given Proposition 1. Using
that (2.43) and (2.46) are curl-free, and that (2.44) and (2.47) are divergence-free, the

compensated compactness principle [143, 171] (or, more precisely here, the celebrated div-

curl Lemma) allows to pass to the limit in both sides of
. T T
A (2) (v (2))) 90 = (o 9 0)” [ (2) 9],

[(A*)Tp] " Vo = o, (2.48)

getting

where 7y is the weak limit of A, (f) Vué. Recall that the div-curl Lemma states that
when two sequences of vector valued functions f¢ and g€ weakly converge in (LQ(D))d,
respectively to f and g, and are such that divf€ is compact in H_l(D) and curl g€ is
compact in (H’l(D))d, then the sequence of scalar products £°.g° converges, at least in
the sense of distributions to the scalar product f.g. The result is not evident since the
product of two weakly converging sequences is typically unknown. The argument above is
a direct application of the lemma.

All this is valid for any p € R?. Thus equation (2.48), along with —div (ro) = f, gives
the homogenized equation satisfied by uy (and equivalently proves that ug solution to this

equation is the limit, weak in H' and strong in L?, of the sequence u®).

The main two ingredients have been
(i) the weak convergence of rescaled functions (for A,.. and Vuw,),
(ii) the well-posedness of the corrector problem,

along with the compensated compactness principle.

The two-scale convergence method. An alternative method was introduced first by
NGuetseng [146], and further developed by Allaire [3]. In contrast to the above energy

method, designed for a general purpose, it was originally introduced to deal with the
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periodic setting. In this setting, the crucial tool (which in some sense plays the role of
the compensated compactness principle in the preceding method) is that any bounded

sequence uf in H'! satisfies the following convergences (up to extraction of a subsequence):

u® — ug in HY,
v e 0 1u@), [ (v D)t — [ [ (o) + V(o p)etr vy

for some u; € L*(D, H)(Q)). Using this result, the proof of homogenization goes as
follows: we multiply the first line of (2.1) by ¢y(z) + ¢y (z,%), where ¢, € H'(D)
and ¢, € HY(D, H!,(Q)), and use {(z,y) = A(y)(Vo(z) + Vyo,(z,y)) in the above

per

convergence. This implies

ALWWW+%%@MA@W%W+%%WM@W=AM@ (2.49)

It follows
—div , [A(y)(Vuo(z) + Vyui (2, y))dy] = 0,

in @ with periodic boundary condition. This implies that

8”0
(x,y) Z B:EZ x)w;(z

Inserting this equation into (2.49) gives the homogenized problem.
Again, we see that the convergence of rescaled functions plays a key role, together with

the definition of the corrector problem (in fact implicitly contained in (2.49)).

As we pointed out above, the two-scale convergence method was at first designed to deal
with the periodic setting. However, it was then developed further to deal with much more
general cases (see [147, 148, 149, 150]), which provide a nice, although rather technical,
framework for putting the above formal considerations into mathematical terms. It remains
that it intrinsically exploits the fact that we have two different scales: a micro scale, which
we denote by €, and a macro scale, which we set equal to 1. This explains the words
"two-scale" convergence. In some sense, what depends on the micro scale is set on some
unit cell (which is the unit cell of the periodic lattice in the periodic case), giving an
"explicit" corrector equation. We thus have in this case a more explicit way of computing

homogenized coefficients than with the energy method.
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2.5 Revisiting the one-dimensional setting

171

It is instructive to return to the one-dimensional setting (2.9) for which we know (by

specific one dimensional arguments) that the homogenized problem reads as (2.11). We

know there that the limit of u® is:

ut=<al> (—m /Ozf(t)dt—i—/Oxtf(t)dt-l—x(/olf(t)dt—/Oltf(t)dt)), (2.50)

the first derivative of which reads:

(WY =< ' > (/Oxf(t)dtJr(/olf(t)dt/Oltf(t)dt)>.

On the other hand, the two-scale expansion claims that the limit is solution to

d , ,d .
_% (a %uﬂ) - f7 m [07 1]7
up = 0, atOandl,

where the homogenized coefficient a* is expressed as (2.41):

o = / a(y)(1 + ! (9))? dy,

with w solution to (2.37), that is

f%m(y)(udi’yw(y))) —0, in[0,1],

w 1-periodic.

It is straightforward to see that

( ) 1 /y B
w - a .
4 YT et 0

Inserting (2.53) into (2.52), we find the explicit value

1 1

1

o= [+ wwra= [ o

<a ' >2a(y)?

dy

Co<al>

(2.54)
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which agrees with the value determined in Section 2.2. The result obtained using the

two-scale expansion therefore agrees with the explicit one-dimensional approach.

The one dimensional setting allows us to move on to another issue: how to obtain the
strong limit of u¢ in H'. Since all calculations are explicit in dimension one, we may in

fact determine the exact solution u®. It can be shown that

ug(x)——<cg+/0zf(t)dt>/0 i(t)dt—&—/o (/O i(i)dt)f()dt (2.55)

/0 a'e dt/ fFt)dt + /(/0 Cll(t;)dt)f()dt
/01

—(a(5) ) /()% (2.56)

3

with the constant

Ce

@M—‘
m\w

where we have denoted by F(x / f(t)dt. We now consider:

() — (up) = <_l(§)+ < é >> (ce + /Oz f(t) dt)

- <aii (c€+/01f(t)dt—/oltf(t)dt>.

We easily note (using an argument similar to that used in the proof of Proposition 1) that

cE—I—/lf(t) dt—/ltf(t) it = 0(e). (2.57)

On the other hand, the first term of the right hand side only weakly converges to zero,
again using Proposition 1. That convergence is (generically) never strong, and we deduce

that (u®)’ — (up)" only weakly converges to zero in L%
To improve the approximation, we now form the difference
x
(u(@))" = (wo(2) +eug(@)w(2))’

making use of the first two terms of the two scale expansion. After some simple computa-

tions, we obtain

(@) = (o) + D) = 25 (et [ sa- [isar)
+(—z <a'>+ /Oz a’l(é)dt) f(x), (2.58)
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where (2.57) and Proposition 1 now give a strong convergence of the right-hand side (in

fact they show that (2.58) is a O(g) in L>([0,1])). We therefore obtain
u®(x) — (ug(x) + sug(aﬁ)w(g)) converges to 0 in H*(D). (2.59)

Note that this shows, in the one-dimensional setting (see Proposition 5 below for a ge-
neral statement), that the first two terms of the two scale expansion allow for a strong
convergence in H'. This motivates the terminology corrector problem for (2.37): the func-
tion w (called the corrector) allows to correct the weak H' convergence of u® to ug and
makes it strong. Note also that we do not claim (and it is indeed not correct, as a simple
one-dimensional computation would easily show it) that the remainder in (2.59) is o(e).
Note finally that ug(z) +cug(z)w(2) does not satisfy the homogeneous Dirichlet boundary
condition satisfied by wu® itself. The quality of the local convergence is thus expected to

degrade when approaching the boundaries of the domain D, and this is indeed the case.

2.6 Energy viewpoint

We briefly present in this section a different viewpoint on the problems considered. When
the matrix A,., is symmetric, equation (2.1) may be seen as the Euler-Lagrange (or opti-
mality) equation of the following mimization problem

uei}%f@% /D (Vu(z), Ager(2) V() de - /D F@)ulz) de. (2.60)
1t is therefore natural to ask about a possible similar variational definition of the homoge-
nized problem. Tt is indeed possible to first define the homogenized matrix A* as

VzeRY zA* 2= inf /(Vu(y) , Aper(y) Vu(y)) dy. (2.61)
Vu periodic J/Q

/Vu:z
Q

Proving that (2.60) agrees with our former definition of the homogenized matrix is easy
(and left to the reader) in the one-dimensional setting. It is more intricate in higher
dimensions. Next, the homogenized solution uy may be expressed as the minimizer to

. 1 .
e ( - /Q (Voly) . Aw) W<y>>dy) i [fu o)
fQ Vv = Vu(x)
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2.7 An incursion into the general theory

The periodic setting we have considered so far is a simple setting. In fact, most results
established above can be extended to a more general setting. It usually comes at the price

of losing the “explicitness”. The general result states:

Proposition 5. Let D be a bounded domain in RY, and let A® be a sequence of invertible
matrices with entries in L=(R?), satisfying A° > ¢ Id and (A°)™t > cold (in the sense
Vo € RY, (A, x) > ei||x||?, and likewise for (A%)™') for two constants ¢; > 0 independent
from e. Then, there exists a homogenized matriz A* satisfying the same properties as A®
and a subsequence A of the original sequence A® so that, for all functions f € H YD),

the function u® solution in H(D) to
—div AV = f (2.63)

converges in the following sense

’

ut =t ATV~ AVt ATV - VeE —~ ATVt - Vot (2.64)

respectively in weak-H} (D), weak-L*(D) and in the distribution sense. In addition,

/ ATVE -V dr — / AVu* - Vu* da, (2.65)
D D

where u* € H} (D) solves
—div A*Vu* = f. (2.66)

This proposition is part of the theory of H-convergence, by F. Murat and L. Tartar in
the 1970s, a theory that generalizes the theory of G-convergence, by S. Spagnolo, which
was restricted to the case of symmetric operators.

The main two points of the result are

e that the matrix A* and the subsequence ¢’ do not depend on the right-hand side f: in
the terminology of Mechanics, an homogenized “material” exists, the same whatever

the load;

e that the homogenized equation obtained is of the same form as the original equation
(this is not evident, and many counter-examples exist for other settings, we refer to

the bibliography).
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In contrast, the major weakness of the result is that no explicit expression of A* is
provided. The periodic context was one possible context to obtain explicit expressions. The
random ergodic context presented in Section 4 below is another one. In homogenization

theory, there is always a balance between generality and explicitness!

The last couple of theoretical results we will mention deals with the term at next order:

Proposition 6 (Theorem of correctors). Under the assumptions of Proposition 5, there

exist N sequences of functions zf/ € HY(D) satisfying

2“0, weakly in H'(D), (2.67)
and
—div A% (e + szl) =) _div A e;, strongly in H™ (D), (2.68)
such that
Vus — (Id + VZE’) Vur = 0, strongly in (L'(D))%. (2.69)

. . ’
The functions z; are called the correctors, since they allow for a strong convergence of u®

to u* in (2.69).
Corollary 7. Under the assumptions and with the notation of Proposition 5, the homog-
enized matriz A* reads

A= lim A7 (1d + V7). (2.70)

weak in (L2(p))dxd

It is easy to see, comparing with the periodic setting, how (2.68) and (2.70) respectively
relate to our cell problems (2.37) and the average (2.40) (note that in the periodic case
—div A*e; = 0 since A* does not depend on z). Similarly, as is the case in the periodic
setting presented above, correctors allow to “explicitly” express the homogenized matrix

(although the explicitness is arguable!)

3 NUMERICAL ISSUES

Solving practically the homogenized problem in the periodic setting is rather straightfor-

ward. The corrector problem (2.2) is first solved as a variational problem posed on a
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/
\

—divA*&) grad u*)=f

Figure 2: Schematic representation of periodic (and locally periodic) homogenization: The
homogenized matrix, used in the equation replacing the original, highly oscillating equa-
tion, is constructed “cell by cell”

bounded domain with periodic boundary conditions. Next, the homogenized matrix A* is
constructed using (2.3), and the homogenized problem (2.4) is finally solved on a mesh of
size H > e.

An easy adaptation of the above strategy allows to address locally periodic problems,
that is problems of the type (2.1) with a coefficient matrix Ay, (z, %) that is periodic on its
second argument. Then, one corrector problem per macroscopic point x needs to be solved,
and the homogenized matrix is in fact a z-dependent matrix A*(x). The computational
situation is schematized on Figure 2.

A new category of methods have appeared in the past few years. They provide an
alternate approach to the above “direct” homogenization strategy. One motivation for
their introduction is to obtain the solution to (2.1) for some parameter ¢ that is small,
without using the asymptotics € — 0. The hope is to better approximate the solution u®
for € that is not too small. Practice shows that this hope is generally achieved, although
the regime where the approach is computationally efficient still corresponds to rather small
values of e.

We only outline here the bottom line for such methods, which carry several names. One
instance is the MultiScale finite Element Method (MsFEM). We refer to [77] for a more
exhaustive presentation of that approach, and only look here at a prototypical, academic
example of the approach.

The idea to obtain an efficient numerical approach is to start from the following basic
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observation. The difficulty of (2.1) and problems of the same type is that the computational
approach needs to capture the small oscillations of the solution u® inherited from those of
the coefficient matrix Ay, (). As earlier mentioned, a general purpose finite element basis
set is only able to capture these oscillations if the meshsize is taken sufficiently small.
An alternative approach is to use basis functions that are not generic, but are specifically
designed for the problem at hand (somewhat in the spirit of spectral methods in other
contexts of scientific computing). In order to build such basis functions, the idea is to

consider the two-scale expansion introduced above:

w(x) = +ez% wi(2):

This expression encodes the fact that the corrector functions, obtained solving the cell
problems at the microscopic scale, contribute to the accuracy of the approximation of u°.
Thus the idea is to solve boundary problems reminiscent of the cell problem, and then to
use the solutions to these problems in the construction of the finite element basis. There
are several variants of the idea, due to several authors.

Suppose for simplicity we work in dimension 2, and that the computational domain is
meshed using squares and )1 finite elements denoted by ;. We may for instance determine

the functions 7 solution to

I
=

on a typical mesh cell,
= 0, on the boundary,

i

{ —div (A(2) - V(nl + "))
T]E

and next set ¢! = 1’ + ', which solves

—div (A(%) - V¢l) = 0, on a typical mesh cell
oi(zy) = by, at the vertices z; of the cell
oL is continuous crossing edges.

The functions ¢! are then adopted as finite element basis set. Note that the small oscilla-
tions are encoded in the basis itself, and thus the finite element solution is likely to be of

better quality, for a given meshsize h still large as compared to €.

The above described approach has of course an applicability way beyond the periodic

context.
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4 STOCHASTIC HOMOGENIZATION

4.1 Basic mathematical setting and main result

The present section introduces the classical stationary ergodic setting. Throughout the
section, (€2, F,P) denotes a probability space. For any random variable X € L!(€,dP),
we denote by E(X) = [, X(w)dP(w) its expectation value. We fix d € N*, and assume
that the group (R%, +) acts on . We denote by (7;)zcpa this action, and assume that it

preserves the measure P, i.e
VzreR? VBeF, P(r,B)=P(B). (4.1)
We assume that 7 is ergodic, that is,
VBeF, (VzeR’ 7,B=B)= (P(B)=0 or 1). (4.2)

In addition, we define stationarity: any F € Li (R? L'(Q)) is said to be stationary if

loc

for almosty € RY,  F(z +y,w) = F(z, 7,w) almost everywhere in x, almost surely.
(4.3)
The ergodic theorem [100, 165] can be stated as follows:

Theorem 8 (Ergodic theorem, [100, 165]). Let F' € L™ (R%, L*(R)) be a stationary random
variable in the sense of (4.3). Then

1
— F(z,myw)dy — E(F) in L®(R?), almost surely. (4.4)
BR Br R—o0
This implies that
F (E,w) LOE(F) in L®(R?), almost surely. (4.5)
€ e

It is useful to intuitively define stationarity and ergodicity in terms of material modeling.
Pick two points  and y # z at the microscale in the material. The particular local
environment seen from z (that is, the microstructure present at x) is generically different
from what is seen from y (that is, the microstructure present at y). However, the average

local environment in z is identical to that in y (considering the various realizations of the
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random material). In mathematical terms, the law of microstructures (here modelled by
the coefficient matrix A in (4.6) below) is the same at all points. This is stationarity. Tt
is then possible to construct a group action 7 that satisfies the above properties. On the
other hand, ergodicity means that considering all the points in the material amounts to
fixing a point x in this material and considering all the possible microstructures present
there.

Note that periodicity is indeed a particular case of the stationary ergodic setting. It
is obtained taking  the N dimensional torus R?/Z, letting P be the Lebesgue measure
on Q, and defining the group action 7 by 7,y = x + ymod Z%, for all (z,y) € R? x Q. It
is easily checked that 7, preserves the Lebesgue measure and that it is ergodic. But of

course, the stochastic ergodic setting is much broader than the periodic setting.

We now fix D an open, smooth and bounded subset of R%, and A a square matrix of size
d, which is assumed stationary ergodic in the sense defined above, and which is assumed to
enjoy the classical assumptions of uniform ellipticity and boundedness. Then we consider
the boundary value problem
—div (A (2 £) = in D,
dv( (E7w) Vu) f , o)
u*=0 on JD.
Standard results of stochastic homogenization |28, 99] apply and allow to find the homog-
enized problem for problem (4.6). These results generalize the periodic results recalled in
Section 2. The solution u® to (4.6) converges (weakly in H' and almost surely in w) to the
solution to the deterministic problem (2.4) where the homogenized matrix is now defined

as:

[47)iy = E (e + Vo (5, ) Ay ) es) (4.7)
where for any p € R, w, is the solution (unique up to the addition of a (random) constant)

in {we L2 (RY, 2(Q)), Vw e L2 (R:, L2(Q)} to

loc unif
—div[A (y,w) (p + Vw,(y,w))] =0, as. on R?

Vw, is stationary in the sense of (4.3), (4.8)

E (Vu,(y, ) = 0.
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2
unif

We have used above the notation L for the wuniform L? space, that is the space of
functions for which, say, the L? norm on a ball of unit size is bounded above independently
from the center of the ball. The fact that, in this simple linear elliptic case, the corrector

allows to obtain a strong convergence in H' of u¢ is for example proved in [154].

A striking difference between the stochastic setting and the periodic setting can be
observed comparing (2.2) and (4.8). In the periodic case, the corrector problem is posed on
a bounded domain (namely, the periodic cell Q). In sharp contrast, the corrector problem
(4.8) of the random case is posed on the whole space R, and cannot be reduced to a problem
posed on a bounded domain (it will be, but only for computational purposes). The reason
is, condition E (Vw,(y,-)) = 0 in (4.8) is a global condition. Tt indeed equivalently reads,
because of the ergodic Theorem, a.s. — lim

R—+00 |BR‘ Br
of balls Bg of radii R. The fact that the random corrector problem is posed on the entire

Vw,(y, -) dy = 0 for any sequence

space has far reaching consequences both for the theory and for numerical practice. For
the theory, we observe we have to work in a non compact context. This is one of the, if not
the, major difficulty of stochastic homogenization. It is not too critical here, because we
are in a simple (meaning: strongly elliptic, in divergence form) and linear setting, but for,
say, nonlinear situations, this non compactness causes huge difficulties, and leaves unsolved
many problems. For the numerical approximation, this is also a serious issue. Truncations
of problem (4.8) have to be considered, and the actual homogenized coefficients are only

deterministic, and correct in the asymptotic regime.

Remark 4. [t is well known that, even in the periodic setting, some of the difficulties we
mention for the random setting already arise when the operator is, for instance, nonlinear.
Then determining the periodic homogenized problem cannot always be reduced to a simple
computation on one single periodic cell of the problem. Likewise, proving that a corrector
function exists, and that it indeed allows to have a strong convergence in H' can be difficult,

or open.

4.2 Simple analysis

¢

Like in the periodic case, it is instructive to consider the “zero-dimensional” and one-

dimensional settings. We will in particular be able to highlight some important differences
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between the periodic and the stationary ergodic settings. Since we have laid some ground-
work in the periodic case, we will be able to argue more rapidly here. Besides the little
technicalities mentioned here, the reader should bear in mind that the outcome of the
discussion is that the random context for homogenization is incredibly much richer than

the periodic context. To some extent, random homogenization is generic.

Deleting all the differential operators in (4.6) and considering a one-dimensional context
immediately shows that the question is, again, to identify the weak limit, as e vanishes, of
the sequence b(f,w) for b a stationary ergodic function. It is exactly the purpose of the
ergodic theoremi: Theorem 8, to determine this limit, namely E(b), and states that it is an

almost sure limit.

Moving on to the one-dimensional setting

\
—
~

[

S
=
2‘

o

2
I

f, in]0,1[
(4.9)

u(0) =u(1) = 0,

we of course can exploit our computations in the periodic case. On the one hand, we know
the exact solution u® by (2.55)-(2.56), the formula holding almost surely in w. On the

other hand, we may solve the corrector problem

%(a@, )1+ /(y)

) =0, in[0,1],
w’ stationary ,E(w') =0

)

and find, similarly to in (2.54) that, up to an additive constant,

Y

w(y,w) = -y + (E(a‘l)yl / a(r,w)dr. (4.10)

0

This of course yields the value a* = (E(a~'))”" for the homogenized coefficient appear-
ing in the homogenized equation, that is the one-dimensional version of (2.4). Like
in the periodic case, it is elementary to prove that u® converges to the solution u* of
the latter equation. The convergence holds weakly in H! and, this time, almost surely
in w. Including the corrector allows for a (almost sure in w) strong convergence in H! of

uf(z,w) — (u*(z) + e (u*)'(z) w(%,w)) to zero.
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Although the ergodic stochastic setting shares many properties of the periodic setting,
even the consideration of the one-dimensional simple situation allows to exhibit some strik-
ing differences. We have already seen that a major difference is that the corrector problem
is posed on the entire space, and not on a bounded domain (the periodic cell). We now
mention two additional differences: the nature of the corrector and the rate of convergence.

It is easily remarked on (4.10) that the corrector w is not a stationary function. Only
its first derivative w'(z) = —1 + (E(a™!))™" a~!(z,w) is. In the periodic setting, both
functions were periodic. This is in fact related to the following phenomenon, not restricted
to the one-dimensional setting. If Vw is a periodic function that has zero mean, then
w is a periodic function (and, of course, conversely). In contrast, if Vw is a stationary
function with E(Vw) = 0, then we do not necessarily have w stationary, but we only can
claim that w is sublinear at infinity, that is (1 + |z|)~" w converges to zero as |z| — +oo,
almost surely in w (this is a consequence of the ergodic theorem, and can be easily verified
e.g. using (4.10)). Even though the homogenized matrix involves only the gradient of the
corrector, and not the corrector itself, this observation complicates the situation.

In the one-dimensional setting, we have the explicit expressions of u° and u*, which are
of course valid, only changing the notation (the average is replaced by the expectation value,
and the dependence upon w is possibly indicated), both in the periodic and the stationary
ergodic settings. We are thus able to explicitly express the rate of the convergence of
the latter to the former. We have seen in (2.58) the explicit expression of the difference
() — (v +e (u*)’w(g)), We easily deduce that

wl@) = (Lo (2) @) (@) = = (e~ e) a(D) ™, (4.10)

1
where ¢, is, we recall, defined in (2.56) and where we denote by ¢, = — F. Tt follows

0
that, in the periodic case, the difference scales, in L®-norm (and thus L?-norm), as e:

(W) — (1 +u( )) () = 0(c) (4.12)

9

The exact same expression for the stochastic case shows, using a central limit theorem,

that
Ve [(us)' - (1 + w’(;)) (u*)'] converges in law to a Gaussian. (4.13)
e
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We note that for a central limit theorem to hold, we need to assume more than ergodicity.
The appropriate setting is to assume mizing, which is a condition ensuring that correla-
tions become sufficiently small at large distance. In this simplified presentation, let us
only mention that if the coefficients a(z,w) and a(y,w) are independent for 2 # y, then
mixing holds. Likewise, considering now the functions and not their first derivatives, two

straightforward calculations show that in the periodic setting
u® —u" = Op2(e), (4.14)
while in the stochastic setting
VE ' [uf — u*] converges in law. (4.15)

A striking contrast between the periodic and the stationary setting is the above different
scalings. For the reader not familiar with probability theory, let us briefly mention why
the above convergences can well be expected to hold at the indicated rates. We only argue,
for brevity, on (4.12) and (4.13). The other two convergences (4.14)-(4.15) proceed from

the same type of arguments. In (4.11), we observe that

1o
. L ! F fO CL(E) lF
Ce — Cyp = - 1 N1
0 fo a(z)
and hence deduce that the rate of convergence is directly inherited from the rate at which,

1

in the “zero-dimensional” setting, the oscillating function b(:) = a(<)™" converges to its

e c
weak limit (its average). It is easily seen on the proof of Proposition 1 (using (2.7)) that,
if b is periodic, then b(é)f < b > weakly converges to zero at the rate O(¢). On the
other hand, this is the purpose of the central limit theorem (here for ergodic stationary
functions) to state that, when b is stationary ergodic N {b(;7 w) — E(b)] converges in law
to a Gaussian. This, along with elementary manipulations, :ntirely explains the different

rates of convergence in (4.12) through (4.15).

4.3 Two-dimensional and more general settings

In dimensions higher than one, as we now know well because of our experience with the

periodic setting, we do not have any explicit expression for the functions manipulated.
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Like in the periodic case, there are almost no exactly solvable model either. The only
explicit case the author is aware of is the so-called random checkerboard, which is the exact
analogous setting to the periodic case mentioned in Section 2.4: the (scalar) coefficient is
defined on the unit cube and randomly takes values o and 3, each with probability 1/2,
on each of the quarters of the cube. Within the cube and from one cube to any other, all

random variables are independent. Then the homogenized matrix is again given by (2.27).

In full generality, delicate arguments have to be conducted. It is out of the question to
prove in these introductory lecture notes that the main results announced in Section 4.1
indeed hold. In order to give a flavour of the difficulties specific to the stationary ergodic
setting, we will only outline here the proof of the existence of the corrector, that is the
solution to (4.8). As mentioned above, the difficulty is that we need to work on the entire
space R?. The idea is to lift all the differential calculus on the abstract probability space,
and use the variational theory (Lax-Milgram Lemma and related notions). But, even
then, a remaining difficulty is the absence of any Poincaré inequality. To circumvent the
difficulty, we need to approzimate problem (4.8). This is typically performed introducing

the following auxiliary problem: search for a stationary function w,, such that
—div [A(y,w) (p + Vi, (y, )] + 0wy, =0, (4.16)

on the whole space, for n > 0 supposedly small. On the abstract probability space, the

problem reads

~DIV[A(p+ GRAD W,,)| +nW,, =0, (4.17)

where we have used obvious notation for the divergence and gradient differential opera-
tors on the abstract space, and for W, corresponding to w,, in the sense w,,(z,w) =
Wyu(Tow). A simple application of the Lax-Milgram lemma proves the existence and
uniqueness of the stationary function W,,. It is then easy to show, by coercivity, L? bounds
on GRAD W, ,, and /qW,, ,respectively, that are independent of 7. It follows that, up to
an extraction, we have weak convergence of the sequence of gradients Vw,,(y,w), to some
stationary function that is necessarily a gradient Vw,(y,w). Equation (4.8) is easily ob-
tained passing to the limit of vanishing 7 (note that the approximating term 7w, , vanishes

because it reads /7 times a bounded function). The condition E (Vw,(y,-)) = 0 is also
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easily obtained from the weak convergence and E (Vw,,(y,-)) = 0 which holds because

W,y is itself stationary. We note that, as expected, no stationarity is known on wy,, itself.

For all other questions related to the linear elliptic problems in divergence form un-
der consideration here, we refer the reader to the bibliography. The general message is,
somewhat vaguely stated, that, apart from the already mentioned differences, all what is
true in the periodic setting is still true here. Problems that are not variational, or that
are nonlinear, or both, are orders of magnitude more difficult. For the nonlinear non vari-
ational case, anything can happen! And it is certainly not the appropriate place here,
in this introductory exposition, to present the many difficulties or open problems present
in that context. The take-away message is, again loosely stated, that each single issue
that is simple in the linear case (existence, uniqueness of the corrector, etc) can become
extremely difficult, can admit a different answer, or is still an unsolved question. We refer
to [132, 166] for examples of important contributions on various issues. Note that several
of these difficulties are already present in the periodic, nonlinear nonvariational case. They

are just even more difficult in the random context.

4.4 Numerical approaches
The first practical task is the computation of the homogenized matrix A*. The matrix A*

is approximated by the matrix

1
|QN‘ QN

which is in turn obtained by solving the corrector problem (4.8) on a truncated domain,

[A3%],, @) (ci+ Vel (@) A@w.w) (e + Vul gw) dy  (418)

say the cube Qn C RY of size (2N + 1)¢ centered at the origin:

4.19
w)(-,w) is Qn-periodic. (4.19)

{ —div (A(-,w) (p—|— lel)v(~7w))) =0 on RY
Although A* itself is a deterministic object, its practical approximation A% is random. It is
only in the limit of infinitely large domains @) that the deterministic value is attained. On
the theoretical level, new questions arise on the convergence of approximations, precisely
related to the random nature of the objects. On a practical level, questions about how to

improve rates of convergence and also how to control wariance issues enter the picture.
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There are several (in fact not that many) existing works in the literature that examine

some aspects of numerical stochastic homogenization. We wish to cite:

e the original contribution [179] by Yurinski, where the convergence of some truncated
approximation of A* is established, along with an estimate of the rate of convergence
(in short, problem (4.8) is regularized and then A* is approximated on a bounded

domain),

e a similar study [47] by Bourgeat and Piatnitsky for a specific approximation more
relevant to actual numerical practice (in short, both problem (4.8) and the expec-
tation (4.7) (seen as a normalized integral over the whole space) are truncated as

in (4.18) (4.19)),

e the work [144] by Naddaf and Spencer on a discrete (“lattice-type”) approximation

of the differential operator present in the original problem (4.6),

e and the enterprise by Gloria and Otto (see [89] for homogenization problems set
on random lattices and publications announced in preparation for some problems for
differential operators) to establish sharp estimates of the convergence of the numerical
approximation in terms of size of the truncation domain and other discretization

parameters.

Besides the above works, where the focus is on convergence and rates of convergence,
practical issues are to improve prefactors in convergences and also reduce variance in the
empirical means everywhere used to approximate expectation values. We refer the reader

to the recent works [32, 33, 64, 65] for more details on these issues.

Alternative approaches are, like in the periodic context outlined in Section 3, based
upon determining suitable finite element basis sets, well adapted to the problem at hand.
The approach is still in its infancy for the random context, and we believe many interesting

tracks for future research are possible, see [176].

Finally, we wish to mention a series of works the purpose of which is to approximate
random homogenization problems that only contain “a small amount” of randomness (in
a sense made precise) using a set of deterministic problems, see the overview article [116]

and the contributions [9, 10, 11, 63].
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In any event, it has to be clear in the reader’s mind that numerical random homogeniza-
tion is still a field very much unexplored, as compared to other computational problems
in partial differential equations. As a sign of this, we mention that, in the engineering or
mechanics communities, random homogenization is often performed with very crude ap-
proaches: most often only bounds on the homogenized coefficients are utilized, and when a
numerical approximation of the coefficient itself is seeked, the computational approach is
still very much ad hoc. Many textbooks are available that describe the practical approaches

used in the applied disciplines. Obviously, there is still much room for improvement.

5 ATOMISTIC TO CONTINUUM MODELLING

This section presents a rather recent, multiscale strategy used for modelling solid materials.
The strategy consists in concurrently coupling two different levels of description of matter:
atomistic modelling on the one hand, continuum mechanics on the other hand.

As announced in the introduction, this section is adapted from [42]. The review article

[122] has also been useful.

5.1 Continuum elasticity theory

To begin with, we need to lay some groundwork, recalling some basic elements on the
standard mechanical description of a solid material subjected to forces. For simplicity
and brevity, the setting is static. We refer e.g. to the monograph [57] for a complete
mathematically oriented presentation including time-dependent situations.

We denote by D the reference domain that the material occupies at rest, by ¢ the
deformation it is subjected to, i.e. the map from D to R? that gives the current position of
the material. We also denote by u(z) = ¢(z)—x the displacement, and by Vo : D — M
the gradient of deformation, where M3 denotes the space of square matrices of size 3 x 3.
The general equations that describe the equilibrium of our sample material, when subjected

to body forces f and boundary forces g, read
—divT=f inD, (5.1)

with the boundary condition T'-n = g on dD. Here, T denotes the stress tensor (more
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precisely the first Piola-Kirchhoff stress tensor), and n is the unitary outward normal vector
on 0D.

In order to close the equation (5.1), a relation is needed between the stress tensor 7" and
the kinematic description of the material, provided by the fields ¢, v or F'. In contrast to
equations (5.1) which are general, the relation linking T to, say, ¢, depends on the material
considered. In such a relation is indeed encoded the physical and mechanical nature of the

material. Formally, such a closure relation reads
T = T(z,0(x),...), (5.2)

and is called a constitutive relation, or a law of behavior. Equation (5.2) is symbolic:
derivatives of ¢ may also be inserted, as well as other points than x (or, in a time-dependent
setting, times anterior to the time ¢ at which the stress tensor is evaluated). The relation
may be a differential equation, a partial differential equation, an integral equation, etc.

A commonly used framework is

T(e) = g7 (V9)

(5.3)

where W is the density of mechanical energy. Actually, owing to the fact that the laws
of mechanics are invariant under rigid rotations, the function W may only depend on Vi
via VTV, Along with (5.3), equation (5.1) is then recognized as the Euler-Lagrange

equation for the minimization of a problem of the form

iggéw(vw(w))dw - /Dfso - /wgso, (5.4)

where A is the set of all admissible deformations ¢. We omit several technical (and actually
also fundamental) issues in this expository presentation, see for example the works [21, 57].
The most famous example of density W is provided by linearized elasticity. Then, W is

the simple quadratic form
1 1 T
W = S€: A:e where €= E(Vu +Vu') and u(x)=¢(z)— . (5.5)

This model has the advantage that the Euler-Lagrange equations of the variational problem
(5.4), with W given by (5.5), are linear. Note however that this density W is not invariant

under rigid rotations.
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For a given material, the derivation of the constitutive law (5.2) is a central theoretical
question, and a challenging practical issue. Then, the resolution of (5.1), or the minimiza-
tion of (5.4), is the purpose of the numerical simulations performed. Despite all these
efforts, and all the expertise accumulated, the strategy for the derivation of a constitutive
law for a solid material is delicate and challenging. Therefore, it is useful to develop an

alternative strategy: multiscale modelling.

We emphasize that bypassing the macroscopic constitutive law is one of the major
purpose of multiscale modelling in materials science. In principle, the constitutive law
is expected to encode the physical nature of the material, so that the phenomena taking
place at all the scales finer than the macroscopic ones are accounted for. A multiscale
model is also aimed at encoding such a relation, but, in contrast, without translating it
into an ezxplicit mathematical relation. The physical nature of the material is inserted via
an explicit microscopic description, which is in turn coupled with the usual macroscopic
description of the material. Loosely speaking, the derivation of the constitutive law is
implicitly performed by the simulation itself. The amount of physical intuition needed is
expected to be smaller, the computational effort will compensate for it. Likewise, it is hoped
that less modeling assumptions will be needed: ideally, a universal microscopic model is
inserted in the universal macroscopic description. In doing so, the sources for inaccuracies

are easier to identify, and the assessment of the quality of the result is simpler.

5.2 Bottom line for Atomistic-to-continuum modelling for crystals

When a model for the density of mechanical energy (5.3) for a given solid material is
unknown, one has to return to the microscopic scale, and use appropriate atomistic models.
The task is then to deduce from the atomistic scale an appropriate density of mechanical
energy, that is, a specific form for a constitutive law (5.2).

To this end, we proceed as follows: we give ourselves a microscopic description of the
sample, next we fix the deformation ¢ that is imposed to the material at the macroscopic
level and directly apply it to the atomic sites at the microscopic level, and we search for
the macroscopic limit of the energy obtained.

We expect to derive an explicit form for the macroscopic mechanical energy of the

sample deformed by ¢, thus a link between the density of mechanical energy W, and the
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energy model used at the microscopic level.

For simplicity, we consider an elementary two-body interaction potential at the atomic
scale, and place the atoms on a particularly simple geometrical arrangement. At the
microscopic scale, the material occupies the domain D, and we assume its substructure is
the truncation DN L of a periodic lattice £. Every pair of sites (77, T;) in DN L interacts
with a pair potential V' (z; — ;). We assume the periodic lattice has a cubic unit cell, and
that the atomic site stands at the center of this cell. The length of the cell is denoted by
€, and vanishes in the macroscopic limit. The potential V| taken radially symmetric, is
assumed to be smooth, and have compact support. No body force, nor boundary force, is
applied to the material. The deformation we apply to the sample is assumed to be smooth.

All these assumptions aim at avoiding unnecessary technicalities.

JHHRY 30N
e R
¢ e
Gy

Figure 3: Deformation ¢ of a crystalline material.

We now apply the deformation ¢ (see Figure 3). The microscopic energy formally reads:

3
T;€(ND)NZ3  T;#T;€(ND)NZ?

3 DD Y w(%)?(%) . 66)

1

In fact the above sum is truncated over a finite domain, containing N = £~ sites per

dimension. It is normalized by the total number of particles (since the energy is an extensive
quantity). Note also that we need to rescale all distances by a factor % = ¢, so that the
equilibrium length (i.e., say, the length r that minimizes the function r — V (r)) is also of
order ¢ for consistency. The purpose is now to identify the limit of (5.6) when N — oc.
This means that we both let the truncated lattice go to the whole infinite lattice at the

microscopic scale, and let the lattice size vanishes, so as to pass to the macroscopic limit.
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In this simple case, the analysis is obvious. As ¢ is smooth, we write its Taylor expansion

at the first order and neglect the terms of higher order:

C o) (@) -0 (2)) = 5o (B) m-m 6

N
We insert this in the potential V', and in turn search for the first order. Arguing formally,
omitting some technicalities in particular related to boundary terms that can be easily
handled, and using the periodicity of the lattice, we see that the limit formally reads

dn ey 23 v(v(F)m). 9

€(ND)NZ3  TR#0€Z3

Denoting by

> V(Velr) TR), (5.9)

TR A0EZ3

we observe that (5.8) is a Riemann sum in W, and converges as N — 400 to

1 __
|D|/ vde= o] /D > V(Velr) ) de (5.10)

TRAOELD
where |D| is the volume of the domain D. At the macroscopic level, the (non-dimensional)

density of mechanical energy therefore reads

W (Ve(x Z V(Ve(z) - 77). (5.11)

Tk;éoezd
We observe that this energy is indeed the energy of the original periodic lattice deformed
by the linear map V() at the macroscopic point z. A simple example is the case of the
quadratic potential V' oc |r —Teq\Q where 7., denotes some equilibrium interatomic distance.
It is easily seen, at least formally and in dimension one (and if particles stay ordered), that
the above derivation then yields the linearized elasticity model (5.5) as a limit in (5.11). For
the simple case treated here (periodic lattice, pair-potential interaction), this derivation of
a macroscopic density of energy has been known for long. The work [39] presents a rigorous
and systematic study of such a question. In fact, the approach may be generalized to a
large variety of settings: various energy models and various geometries at the microscopic
scale, various shapes of materials, etc. See for instance, in the bibliography, the related

works [54, 38, 39, 40).
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In full generality, the expressions obtained are all of the form
W(Ve(x)) = Energy of the microstructure at macro point x deformed by V(x). (5.12)
The multiscale nature of the model is obvious on that expression.

It is illustrative to mention a slight extension of the simple case presented above. We
consider, instead of a periodic lattice of atomic sites as the microscopic model for the
crystalline structure, a random perturbation of this arrangement. More explicitly, we
assume that, before rescaling, the atomic sites now stand at points 7;(w) = i + X;(w),
where i is the three-dimensional integer index that also denotes an arbitrary point of Z3,
and where X;(w) is a set of ergodic stationary random variables. Then, arguing as above,
but this time additionally using the ergodic theorem, the density of mechanical energy

obtained in the macroscopic limit reads

W(Vel) =E |3 3 V(Vola) (k+ Xulw) - Xo@))| . (519
k£0e73

instead of (5.11). We refer to the original paper [39] for the details of the derivation.

The above derivation of the continuum mechanics energy (5.10) from the atomistic
energy (5.6) is based on a smoothness assumption on the deformation . In many situations
of interest (for instance when dislocations appear, as in the nanoindentation simulation
shown in Figure 4), such an assumption does not hold in the whole domain, and one
cannot use a model based on (5.10). Using an atomistic model in the whole domain is
not possible either, due to its prohibitive computational cost. We now describe a coupling
method, whose motivation is based on the observation that, actually, the deformation that
we are after is not smooth in only a small part of the solid. So, a natural idea is to try to
take advantage of both models, the continuum mechanics one and the atomistic one, and
to couple them, in a domain decomposition spirit. The description below is a toy-version
of the QuasiContinuum Method (QCM), as presented in its initial version [169, 168] by
E.B. Tadmor, M. Ortiz and R. Phillips. The method has been next amended, and we will
describe a more mature formulation in Section 5.3.

The microscopic energy of a given deformation ¢ is (5.6), that we recast as

1
Emicro(so) = ﬁi Z . El((p)v
Tie(ND)NZ?
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Figure 4: A typical numerical simulation coupling discrete and continuum mechanics, in
a cube of size 2 pum (Courtesy M. Fivel, INPG; see also the work [81] by M.C. Fivel,
C.F. Robertson, G.R. Canova and L. Boulanger).

where

Te(ND)NZ3, T5#77
denotes the energy of atom i.

We now split the computational domain D into two non-overlapping subdomains,
D= Dreg ) Dsing> (515)

where D, is a domain where the deformation is expected to be smooth (see Figure 5).
Consequently, in D,.,, we can approximate the atomistic energy by a continuum mechanics
expression, in the spirit of (5.10)-(5.11). In Dy, we cannot make this approximation, and
we keep the original atomistic model. For a given deformation ¢, we hence write

Fueo® = 35 Y E@tys Y B

Z7€(NDyeg)NZ3 7€ (N Dging)NZ*

1 T L 5
i ZW\D(N)H\” > Eile), (5.16)

Z7€(NDyeg 7€ (N Dsing)NZ3

Q

where U is defined by (5.9). The expression (5.16) is next approximated by

1 1
Ee(¢, Dreg) = 7/ W) do 4 L o
0P =y fp, MO 2 B
L 1
T D e Ei(y). 5.1
o1 ), (Ve drt s 30 Ele)h (517

T;€(NDsing)NZ3
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Recall that W(z) = W(Vp(x)) is the energy of an atom in an infinite system deformed
by the linear map Vy(z). The domain D, is hence often called the local zone, since
only the knowledge of the deformation ¢ in a neighborhood of x is needed to compute the
energy of an atom located at x. The situation is completely different in Dgp,. We make
the standard assumption that, beyond a cut-off radius r., the potential V' vanishes. Hence
only the atoms inside the ball of center = and of radius r. interact with an atom located at
xz € D. In view of (5.17) and (5.14), we see that the energy of an atom of Dy, located at
©(T;/N), depends on the positions of all the atoms in a ball of radius r. around ¢(7;/N),
and not only on the values of ¢ in a neighborhood of ¢(z;/N).

Nanoindenter (25 \AA)

Non smooth deformation
Smooth deformation. w ——

1000 \AA

2000\AA

Figure 5: Schematic representation of a nanoindentation experiment: close to the stiff
indenter, one expects a non-smooth deformation of the soft material, hence the need of a
fine model. Further away, the deformation is smooth, and a macroscopic model, discretized
on a coarse mesh (here quadrangles), provides a good enough accuracy.

In practice, a finite element method is employed in D,., to approximate the deforma-
tion ¢. The first term of (5.17) is computed by a numerical quadrature, involving a few
quadrature points in each finite element. In the case of a piecewise linear approximation,
the degrees of freedom are the values of ¢ on the vertices of the mesh in D,.g, and the posi-
tions ¢ (T;/N) of the atoms belonging to Dng (that is, those such that T; € (NDgng) NZ3).

An equilibrium configuration ¢, is defined as the global minimizer of an approxima-
tion of (5.17), along the ahove lines (note that some methods alternatively focus on local
minimizers, rather than global ones, or on critical points of the energy). This configuration
only makes sense if it is smooth in D,e.. Indeed, in that region, we replaced the original
atomistic energy by a continuum mechanics energy, which is possible only under some

regularity assumptions on the deformation. If, according to a certain criterion which is
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part of the multiscale method, the deformation ¢, is considered not smooth in a subdo-
main Djyee Of Dy, then the partition (5.15) is updated accordingly, and a new partition
D =D U DY defined by

reg sing?

new new
D = Dreg \ Dirrega D, = Dsing ) Dirreg7

reg sing —

is considered: the domain Diyee, which was described at the continuum scale, is now
described at the atomistic scale. A coupled energy of type (5.17), based on this new
partition, is considered. This yields the following iterative procedure. Start with a given

partition of D, and then iterate over the steps:

e on the basis of the current partition, define the coupled energy (5.17);

e solve the variational problem associated with that energy (we denote ¢, its global

minimizer);
e update the partition on the basis of ¢, along the lines of the above discussion.

We now assess the computational gain. Evaluating the energy of atom ¢ is more expen-
sive when using the nonlocal model (5.14) than when using the local model (5.9). Indeed,
in the local formulation (5.9), it is easy to compute the position of all the atoms in the
ball of cutoff radius around atom i. On the other hand, computing the energy of atom ¢
according to the nonlocal expression (5.14) requires to know all the positions ¢ (z;/N) of
the atoms j in the cutoff radius ball centered around atom . This is a computationally
demanding task, since one first has to determine in which finite element each of these
atoms j is. Besides, in practice, finite elements of the subdomain D, contain a very large
number of atoms n.. As a consequence, computing the contribution of the local zone D,
to the total energy is much cheaper with the coarse-grained model than with the reference
model. Indeed, in the coarse-grained model, this contribution, which is exactly the first
term of (5.17), can be computed by evaluating the energy of an extremely small number
of atoms (those at the quadrature points, where W needs to be evaluated). In constrast, in
the reference model, one has to compute the energy of a large number n, of atoms. So the
computational gain comes from a two-fold argument: in D,.,, the energy of much fewer
atoms needs to be evaluated, and each of these evaluations is cheaper, since a local model

is used rather than a nonlocal one.
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5.3 Numerical approaches

The method analyzed in Section 5.2 is a model example for more advanced methods, such
as the QuasiContinuum Method (QCM). In its initial version [168, 169], the approach first
considers the continuum scale, with a standard continuum mechanics model, discretized
by a finite element method. The multiscale feature of the method appears when the
elastic energy of an element is computed. Depending on some criteria, some elements
are declared to be too heterogeneously strained for a macroscopic description to be valid.
They are considered henceforth as a set of discrete particles. The associated energy is then
computed according to an underlying atomistic model. Otherwise, for an element that is
smoothly deformed, the standard original continuum mechanics model is used to compute
the energy.

In the second, posterior, version of the method [163] that we describe below, the oppo-

site viewpoint is adopted. The starting point is a multibody atomistic energy,

Enmicro() = Z Ei(p), (5.18)

sum of the energies E;(¢) of each individual atom ¢ when the current configuration of the
atomistic system is defined by . We define the equilibrium configuration as the solution

to

inf { Eicro(0); ¢ € A}, (5.19)

with

A= {go € R¥, ¢ satisfies some boundary conditions} ,

where d is the space dimension. In practice, the system under consideration is composed
of an extremely large number N of atoms. Hence, the evaluation of (5.18), for a given
¢, is already a challenging task. Furthermore, the variational problem (5.19) is set in a
high-dimensional space.

To drastically diminish the number N of degrees of freedom, N, atoms are selected,
with N, < N. They are called the representative atoms, abbreviated repatoms. Let i,,
1 < a < N,, denote their indices. Their current positions {goia}aN;l are the only remaining

degrees of freedom of the reduced system. The positions of the N — N,. non-representative
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atoms are obtained by interpolation. The idea of interpolation is related to the Cauchy-
Born rule, see the work [86]. More precisely, a mesh is built upon the repatoms in the
reference configuration. Let ¢} be the reference position of atom i, and S,(z) be the
piecewise affine function associated with the node « (for simplicity, we henceforth consider

a P1 finite element method). In a one-dimensional setting, we thus have

Qa1
T =Py : o i
(107;0 (pioe—l lf (}g(z) ' S z S SD(Z) ’
0~ ¥o
Sa(l‘) = T — (107""“ ) ’
0 . o o
()Oia Tat1 if ('06 <r< 90;) +1’
0 0
0 otherwise.

The position of any atom ¢ in the deformed configuration is obtained from the current

positions of the repatoms using the interpolation formula
N,
o= Saleh) o (5.20)
a=1
Otherwise stated, a Galerkin approximation

inf { Eniero(¢); ¢ € A and satisfies (5.20) } (5.21)

of (5.19) is performed.
We now turn to the practical evaluation of the energy (5.18), and explain how to handle

the large number of terms it involves. Assume that the energy of atom i reads

E(p)== >,  V(Z-¢) (5.22)

G |lpd —pt||<rent
for some interaction potential V' with some cutoff radius r°**, and assume that the reference
configuration is a periodic lattice. Consider an atom ¢ that only interacts with the atoms
J of the same finite element. The key point is to observe that its energy F;(¢) actually
does not depend on i. Indeed, when atoms i and j belong to the same finite element, on

which S, is an affine function, we infer from (5.20) that

== (g (b —&h) ¥,
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where ¢’ is the gradient of S, in the finite element ¢, which is a constant vector. Hence,
@l — ' is a function of goé — ¢}, parameterized by the finite element ¢ and the current
positions {g*}"" of the repatoms:
oy =F (906 - 95, {90"'“}5;1) :
Inserting the above relation in (5.22), we observe that E;(p) is a sum of terms that only
depend on ) — @, that we write
Ei(p) = %Zﬁ (sf% a2 {soi"}]av;l) :
J#i
The reference configuration being a perfect lattice, we obtain that the above sum actually
does not depend on i.

Hence, all atoms i in a finite element ¢ that only interact with atoms j in the same finite
element share the same energy, which we may thus denote by F,, and which only depends
on the current positions of the repatoms (actually, only on those related to the vertices
of the finite element): E;(p) = E; ({(pi“};vll). By choice, the exact same expression
E, ({gpi“}i\il) is taken as an approximation of the energy of atoms that interact with
atoms belonging to different finite elements. We hence approximate the energy (5.18)

using
Emicro((p) = ZnZEZ ({Spla}ivll) ) (523)
L

where ny is the number of atoms included in the finite element ¢. Note that there are much
fewer terms in the sum (5.23) than in the sum (5.18). We next approximate (5.21) by the

problem
inf {Emim,(tp); ¢ € A and satisfies (5.20)} , (5.24)

which can be solved in practice, since it is posed on a space of moderate dimension (there
are dN,. < dN degrees of freedom), and it involves energies E‘micm(g@) that can be computed
practically.

So, in its second version, the QuasiContinuum method somewhat consists in an efficient
quadrature rule to compute (5.18). This second formulation leads to similar equations as

the first version, presented in Section 5.2, in the case of a discretization using Lagrangian

P1 finite elements. Indeed, in that case, the degrees of freedom in both the first and second



TOPICS IN MULTISCALE SCIENCES 199

versions are the current positions of the atoms at the mesh vertices. In addition, using the

fact that Vi is constant over each triangle Ty, the first term of (5.17) reads

1
Dl Jp..

Wve)ir= Y Mgy,

;TgCDreg | |

where U/T} is the triangulation of D,e,. The volume ratio |Ty|/|D| is equal to ny/N, where
ny is the number of atoms included in the finite element 7, and N is the total number of
atoms in the system. Besides, by definition, W(Vgpm) is the energy of an atom in a lattice
deformed by the linear map Vo r,, which is exactly equal to the energy Ey ({(pi“}f;l).
Hence, the first term of (5.17) reads

ﬁ/D W(VQp(I)) dr = % Z ng By ({@lﬂ}?ﬂ) :

ree 4Ty CDreg

Up to a multiplicative constant, we recover the expression (5.23) in the subdomain D,e,.
The QuasiContinuum method has been applied in a number of practical situations, see

e.g. the works [140, 162, 170, 139, 13, 135] for more examples and some numerical analysis.

5.4 Some elements of analysis

We first need to mention that the mathematical and numerical study of the models of
classical continuum mechanics form a scientific field in itself, before even addressing specific
issues related to an atomistic coupling. We will not review here such aspects and refer the
reader to, for instance, the very nice review [21]. The reader can consult [23, 141] for all
issues related to quasiconvexity a central issue in this field. In short, quasiconvexity
is the natural condition on the potential 1V so that problem (5.4) admits a minimizer.
Important issues are also examined in [82, 83, 56, 112, 142, 22]. The important rigidity
lemmas are exposed in [101, 102, 85, 160]. For the gradient Young measures, a useful tool
to study oscillating minimizing sequences (often present in this type of problems), we refer

to [142, 156, 178].

The problem of minimizing energies coupling atomistic to continuum, like the coupled
energy (5.17), brings substantial difficulties to an already quite intricate landscape. We only
mention here two typical spurious effects that can arise when coupling two mathematical

descriptions so different in nature as the atomistic and the continuum description. First,
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it was demonstrated in a one-dimensional setting, in [36, 35], that minimizing the coupled
energy can lead to inconsistencies. The appearance of a fracture in the zone described
by continuum mechanics can typically energetically cost less than in the zone described
by atomistic modelling. This is of course incorrect, from the modelling viewpoint, and
ruins naive adaptive strategies. The model can be amended so that the spurious effect
disappears. See [36] for more details.

Another example of such difficulties is the existence of ghost forces at the interface
between two zones modelled by two different models. The notion has been first introduced
and discussed in [163], see also [67, 69, 122, 164]. The phenomenon is not present in
the oversimplified case of one dimensional nearest neighbor interactions, but arises for
any other interaction law, even in a one-dimensional system with second nearest neighbor
interactions and no external force. The difficulty comes from the lack of balance for atoms
close to the interface: some of the neighbours of such an atom can be missing (it is in
the “other” zone), and an error appears. What should be an equilibrium is not, since
some forces do not compensate each other. Several techniques exist to fix the flaw: energy
based formulations and force based formulations (the latter consists in approximating the

atomistic forces (rather than the energy)). See [122, 69, 68, 70, 72, 67].

Similar problems are encountered in the dynamics. This is reminiscent of well-known
problems in, for instance, wave propagations, where dedicated methods such as perfectly
matching layers (see [29, 174] for instance) and/or transparent boundary conditions are

needed (see [1, 2, 109, 145]).

The above discussion certainly demonstrates that appropriately setting the problem is
delicate. The definite practical success of numerical approaches involving hybrid problems
should motivate further mathematical efforts. The state of the mathematical understanding

is certainly lagging behind the success of the numerical simulations.

6 MICRO-MACRO MODELS FOR COMPLEX FLUIDS

Our final topic is the micro-macro modelling of some non-Newtonian fluids: polymeric
fluids. Similarly to our previous section on solid modelling, we now present an approach

that concurrently couples a mesoscopic 'statistical’ description of the fluid material and a
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more traditional, entirely macroscopic description. As announced in the introduction, this

section is adapted from [42, 123].

6.1 Macroscopic models for fluids

To begin with, we recall here some elements on the modelling of viscous incompressible
fluids. Consider a viscous fluid with volumic mass (or density) p, flowing at the velocity
u, and experiencing external forces f per unit mass. Denote by T the stress tensor. The

equation of conservation of mass for the fluid reads

0
8{; + div (pu) = 0, (6.1)
while the equation expressing the conservation of momentum is
0
(gtu) + div(pu@u) — divT = pf. (6.2)

For such a viscous fluid, the stress tensor reads T'= —pId + 7, where p is the (hydrody-
namic) pressure, and 7 is the tensor of viscous stresses. The equations are supplied with
appropriate initial and boundary conditions we omit. In order to close the above set of
equations, a constitutive law is needed, which relates the viscous stress 7 and the velocity
field w, namely

T=1(u,p,...). (6.3)
Expression (6.3) is symbolic. A more precise formulation may involve derivatives in time,

or in space, of the various fields 7, u, p, ...

The simplest possible situation is that of Newtonian fluids (typically the case of wa-
ter), for which, by definition, 7 linearly depends on the velocity w. Under appropriate
assumptions, it can then be shown that the relation between 7 and w necessarily takes
the form 7 = A (divu) Id + 2nd, where A and 7 are the two Lamé coefficients, and d de-

notes the (linearized) rate of deformation tensor d = = (Vu + Vu'), with the convention

0 5(
(Vu);; = %  The derivation proceeds, and in the case of an incompressible (divu = 0)

Ox;

homogeneous (p = p,) Newtonian viscous fluid, the equations obtained are the celebrated

incompressible Navier-Stokes equations

ou
Po<a+(u'v)u>—ﬁAu+Vp - p0f7 (64)
0.

divu
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When the fluid is not Newtonian, that is, in many practically relevant situations (most
of the fluids of the everyday life are indeed not Newtonian: blood, wine, oil, ...), a
constitutive equation (6.3) needs to be identified. It is of course specific to the fluid
under consideration. Equations (6.1)-(6.2) together with the constitutive equation (6.3)
(and possibly equations for the energy and the temperature) then form the model for the
fluid. For non-Newtonian fluids, many constitutive laws, and thus many purely macroscopic
models, exist. All are based upon considerations of continuum mechanics. It is usual to
decompose the stress tensor T as the sum 7 = 7,, + T, where 7,, denotes the Newtonian
contribution and 7, denotes the part of the stress (called non-Newtonian or extra stress)
that cannot be modelled in the Newtonian manner. The bottom line is then to write an
equation, in the vein of (6.3), ruling the evolution of the non-Newtonian contribution T,
and/or encoding a relation between the latter and other quantities characterizing the fluid
dynamics, such as the deformation tensor d, or Vu itself. One famous example is the

Oldroyd B model, which, in non-dimensional form, writes:

Re (%—?—i—u-V’u) =(1—-¢)Au— Vp+div T,
divu =0, (6.5)
oT,

o 0 Ur _ T_ € mn_ 1
o +u- V1, — (Vu)r, — 7,(Vu) We (Vu+(Vu) ) we TP

The Reynolds number Re > 0, the Weissenberg number (ratio of the characteristic relax-
ation time of the microstructures in the fluid to the characteristic time of the fluid) We > 0
and e € (0,1) are the non-dimensional parameters of the model.

The Oldroyd B model is not capable of reproducing many experimentally observed be-
haviors. Refined macroscopic models for viscoelastic fluids have thus been derived, allowing
for a better agreement between simulation and experiments. Each model correspond to a
particular constitutive law. Overall, they yield better results than the Oldroyd B model,
and satisfactorily agree with several prototypical experiments on simple flows. Of course,
in terms of scientific computing, solving the three-field problem (6.5) is much more difficult
and computationally demanding than the 'simple’ Newtonian problem (6.4). However, the
major scientific difficulty is neither a mathematical one nor a computational one. The ma-
jor difficulty is to derive a constitutive equation (6.3). It requires a deep qualitative and

quantitative understanding of the physical properties of the fluid under consideration. And
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there are many fluids, and many experimental situations. For many non-Newtonian fluids,
complex in nature, reaching such an understanding is therefore a challenge. Moreover, even
if such an equation is approximately known, evaluating the impact of its possible flaws on
the final outcome of the simulation is not an easy issue. It can only be completed a pos-
teriori, comparing the results to actual experimental observations, when the latter exist,
and they do not always exist. The difficulty is all the more prominent that non-Newtonian
fluids are very diverse in nature.

All this, in its own rights, motivates the need for alternative strategies, based on an
explicit microscopic modelling of the fluid. This gives rise to the so-called micro-macro
models. The lack of information at the macroscopic level is then circumvented by a mul-
tiscale strategy consisting in searching for the information at a finer level (where reliable
models do exist, based on general conservation equations, posed e.g. on the microstruc-
tures of the fluids). The latter information is then inserted in the equations of conservation

at the macroscopic level.

6.2 Micro-Macro simulations of polymeric fluids

Polymeric fluids are non-Newtonian fluids. They consist of a solvent where, at the meso-
scopic scale, polymeric chains float, see Figure 6. Each polymeric chain, itself possibly
consisting of thousands of atoms, is admittedly well modeled using a coarse-grained de-
scription. The simplest possible such description consists in a single end-to-end vector,
called a dumbbell, that models the total length and overall direction of the chain, see
Figure 6.

Our purpose is now to explain how the derivation of an explicit constitutive law can
be bypassed in this context. The success of the enterprise owes to the existence of a well
established kinetic theory for solutions of polymeric chains, see the monographs [30, 31,
73, 151, 153]. The theory is based on a statistical description of the chains.

For our exposition, we pick the specific example of polymeric fluids, but the field is much
wider. We mention the modelling of liquid crystals (see the reference books [73, 151], and
the articles [180, 61, 84] for some mathematical and numerical studies), or suspensions
(see |95, 51, 52, 53, 27]), or blood flows (see the models proposed in [79, 152]), would lead

to considerations similar in spirit.
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Figure 6: Left: A collection of polymeric chains lies, microscopically, at each macroscopic
point of the trajectory of a fluid particle. Middle: The dumbbell model: the end-to-end
vector X is the vector connecting the two beads that model the entire polymeric chain. It
is supposed to accurately model the typical behaviour of the entire chain. Right: Kramer
formula the contribution of all polymeric chains to the stress is obtained summing over
all chains cut by the plane considered.

Let us now denote (¢, , 7) the probability density for the end-to-end vector r modeling
the polymer chains at macropoint & and time ¢. The variation of 1 follows from three

different phenomena:

1. a hydrodynamic force: the dumbbell is elongated or shortened because of the inter-
action with the fluid; its two ends do not necessarily see the same fluid velocity, the
slight difference in velocities (basically Vu(t, ) r) results in a force elongating the

dumbbell (Vu(t, x) r, where ¢ denotes a friction coefficient;

2. an entropic force F' issued from the coarse-graining procedure and which is reminis-

cent of the actual, much more complex, geometry of the entire polymeric chain;

3. a Brownian force, modelling the permanent collisions of the polymeric chain with

solvent molecules, which (randomly) modifies its evolution.

The equation of conservation of momentum reads as the following evolution equation on
:
81/) (t7 w? ,r.)
ot 2 2%kT (6.6)
= —div, Veu(t,z)r — EF(’P) otz r) | + N Ap(t, ).

Equation (6.6) is called a Fokker-Planck equation. The three terms of the right-hand side of

+u(t,x) - Vab(t, z,r)

(6.6) respectively correspond to the three phenomena listed above. A crucial point is that,
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in this right-hand side, all differential operators acting on 1 are related to the variable r of
the configuration space, not of the ambient physical space. In contrast, the gradient of the
left-hand side is the usual transport term in the physical space u - V.. In the absence of
such a transport term (this will indeed be the case for extremely simple geometries, such as
that of a Couette flow presented below), (6.6) is simply a family of Fokker-Planck equations
posed in variables (¢, ) and parameterized in . These equations are coupled only through
the macroscopic field w. When the transport term is present, (6.6) is a genuine partial
differential equation in all variables (¢,z,r). It is intuitively clear that the latter case is

much more difficult, computationally and mathematically.

Once 7 is obtained, its contribution to the total stress, and, further, its impact on
the macroscopic flow, need to be formalized. Elementary considerations of continuum
mechanics (see Figure 6) show that the contribution to the stress is given by the so-called

Kramers formula,
T,(t,x) = —n,kTId + n, /(r ®@ F(r))y(t,z,r)dr, (6.7)

where n,, denotes the total number of polymeric chains per unit volume.

The complete system of equations combines the equation of conservation of momentum
at the macroscopic level, the incompressibility constraint, the Kramers formula, and the
Fokker-Planck equation for the distribution of the end-to-end vector. In non-dimensional

form, it reads:

Re (aa—l;—k (uV)u) —(1-€eAu+Vp—divr, = f,
divu =0,
Tt @) = Wi </( ® F(r)y(t,z,r)dr — Id> : (6.8)
WOLT) |t ) Vai(t )
= *leT (( su(t,x)r — ﬁF( )) ¢(t7w7r)) + ﬁArd}(t,m,r).

An alternative description of the evolution of polymeric chains is provided by the

stochastic viewpoint. This viewpoint is actually extremely useful in practice, because it
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allows to circumvent the difficulties related to the high-dimensionality of the Fokker-Planck
equation (6.6). Tt is indeed to be borne in mind that when the geometric description of
the chain is richer than a coarse, dumbbell model, then the end-to-end vector is replaced
by a possibly highly multidimensional vector, and the dimensionality of the Fokker-Planck
equation grows correspondingly.

As an alternative to (6.6), we may model the mesoscopic part of the system by the set

of stochastic differential equations:

dXi(x) + u(t,z) - VXi(x) dt = Vu(t,z) X () dt — %F(Xt(w)) dt +2 kTTdVVt, (6.9)

where X, (z) denotes the stochastic process modeling the conformation of the polymeric

chain at « at time ¢. The stress is then given by

(t.x) = n, (E(Xt(a:) ® F(X,(2))) — /md), (6.10)
where n,, is the concentration of polymers. The coupled system is thus:
ou .
Re §+u~Vu —(1—e¢Au+Vp=divr,+ f,
divu =0,
€ (6.11)
=g (]E(Xt ® F(X,)) - Id),
1 1
dX VX, dt = X, dt - —F(X,) dt + ——dW,.
+u- VX, VuX, TWe (Xy)dt + e W,

In both the above systems (6.8) and (6.11), the force F' needs to be made specific.
In full generality, it is assumed of the form F(X) = «'(|| X]|)

X1

for a given potential

12
7. The simplest potential 7 is the quadratic potential myoex(l) = Hg. A peculiarity

of this choice is that the multiscale model is then equivalent to the Oldroyd B model
(6.5). Other choices of forces allow to capture important physical behaviours and yield

models that are genuinely mu21tiscale: the FENE force corresponding to the potential
bkT
—In(l—-——
2 bkT/H
general, it is believed that a multiscale model is more accurate than a purely macroscopic

mrene(l) = — is the most commonly used type of such forces. In
model, and that the description of the microstructure need not be sophisticated to give
excellent results, capturing the right qualitative physics being the only important issue (see

the FENE force in contrast to the Hookean force).
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6.3 Numerical approaches

We now turn to the discretization of the systems (6.8) or (6.11). Most of the numerical
methods employed for the simulation of non Newtonian fluids are based upon a finite
element discretization in space and Euler schemes in time, using a semi-explicit scheme: at
each timestep, the velocity is first solved for a given stress, and then the stress is updated,

for the corresponding velocity.
Three types of difficulties typically arise:

1. An inf-sup condition must be satisfied by the spaces respectively used for the discrete
velocity, the pressure and the stress (in order for the discretization to be stable for e

close to 1).

2. The advection terms need to be appropriately discretized, in the equation of conser-
vation of momentum, in the equation on 7, in (6.5), in the equation on ¢ in (6.8),

on in the SDE in (6.11).

3. The nonlinear terms require, as always, special attention. On the one hand, some
nonlinear terms stem from the coupling: Vur, +7,(Vu)T in (6.5), VuX; in (6.11)
or div .(Vurd(t,z,r)) in (6.8). On the other hand, for rheological models more
complicated than the Oldroyd-B or Hookean dumbbell models, some nonlinear terms
come from the model itself (see the entropic force F(X;) in (6.11) for FENE models

for example).

Besides, for both micro-macro models and purely macroscopic models, one central difficulty
of the simulation of viscoelastic fluids is the so-called High Weissenberg Number Problem
(HWNP), see for instance [110, 111]. It is indeed observed that numerical simulations do
not converge when We is too large and that the problem gets all the more delicate as the

mesh is refined.

Because the reader might be more familiar with a purely deterministic formulation,
we begin by outlining the numerical approach for problems of type (6.8). The discretiza-
tion of the Fokker-Planck equation in (6.8) is typically performed using spectral methods
(see [133, 167, 113]). It is not easy to find a suitable variational formulation of the Fokker-

Planck equation, and an appropriate discretization that satisfies the natural constraints on



208 CLAUDE LE BRIS

the probability density ¢ (namely non negativity, and normalization). We refer to [55, 134]
for suitable discretizations in the FENE case. A major difficulty is the possible high dimen-
sionality of the Fokker-Planck equation. In the context of polymeric fluid flow simulation,
when the polymer chain is modelled by a chain of N + 1 beads linked by N springs, the
Fokker-Planck equation is a parabolic equation posed on a 3N-dimensional domain. Some
numerical methods have been developed to discretize such high dimensional problems. The
idea is to use an appropriate Galerkin basis, whose dimension remains limited when dimen-
sion grows. We refer to [66, 177, 50] for the sparse-tensor product approach, to [136, 114]
for the reduced basis approach and to [6, 7, 124] for a method coupling a sparse-tensor

product discretization with greedy algorithms used in approximation theory.

The numerical approach for the coupled system (6.11) involving the stochastic differen-
tial equations formulation is different. A Monte Carlo method is employed to discretize the
expectation: at each macroscopic point @ (i.e. at each node of the mesh once the problem
is discretized), many replicas (or realizations) (X;"*)i<p<x of the stochastic process X
are simulated, driven by independent Brownian motions (W/)i>1, and the stress tensor is

obtained as an empirical mean over these processes:

K
€ 1
T We (K XN e F(XPN) - Id> .
k=1

In this context, the discretization method coupling a finite element method and a Monte
Carlo technique is called CONNFFESSIT for Calculation Of Non-Newtonian Flow: Fi-
nite Elements and Stochastic SImulation Technique (see [115]). We describe below the
implementation of this method in a simple geometry.

To give a flavour of the numerical difficulties involved when solving coupled problems of
the type (6.8) or (6.11), we momentarily consider the simple situation of a start-up Couette
flow (see Figure 7). The fluid flows between two parallel planes. Such a model is typically
obtained considering a flow in a rheometer, between two cylinders, and taking the limit of
large radii for both the inner and the outer cylinders (see Figure 7). At initial time, the
fluid is at rest. The lower plane (y = 0, modelling the inner cylinder of the rheometer) is
then shifted with a velocity V(¢), which, for simplicity, will be set to a constant value V'
(sinusoidal velocities may also be applied). On the other hand, the upper plane (y = L,
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modelling the outer cylinder of the rheometer) is kept fixed. Such a setting is called a
start-up flow, and because it is confined between two parallel planes, a Couette flow.
We denote by x and y the horizontal and vertical axes, respectively. The flow is assumed

invariant in the direction perpendicular to (z,y).

inflow
outflow

velocity profile

Figure 7: Schematic representation of a rheometer. On an infinitesimal angular portion,
seen from above, the flow is a simple shear flow (Couette flow) confined between two planes
with velocity profile (u(¢,y),0,0).

After appropriate assumptions (the flow is laminar, the velocity writes u = u(t, y) e,

the entropic force is taken Hookean, etc), the coupled system (6.8) simplifies into

ou 0%u or

) = g [ PQUtY.PQ P Q.

o Y0 (o 1 (6.12)
E(tvyvpvQ) = _ﬁ <<87y(t’y)Q - mp> w(ﬁ% P7 Q))

9 1 1 82 82
_i,_@ (mQ w(t,y,P, Q)> + m (ﬁ + T@) 1/)(1‘/-,1/7 P, Q)a

where P and @ are the two components of the end-to-end vector 7, along the x and y

axes respectively. In the above system, 7(t,y) denotes the zy entry of the tensor 7.
Actually, the pressure field, and the other entries of the stress tensor may be then deduced,

independently.
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We emphasize at this stage the tremendous simplifications that the Couette model
allows for. Owing to the simple geometric setting and the fact that the flow is assumed
laminar, the divergence-free constraint (6.8) is fulfilled by construction of the velocity field
and can be eliminated from the system. In addition, both transport terms (u - V)u and
(u - V)4 vanish, again because of evident geometrical considerations. This explains the
extremely simple form of the equation of conservation of momentum in this context, which
indeed reduces to a simple one-dimensional heat equation. This set of simplifications is
specific to the Couette flow. Substantial difficulties arise otherwise.

The macroscopic equation is discretized with finite elements: P1 finite elements for the
velocity and PO finite elements for the stress tensor.

If the mesoscopic scale is modelled by the Fokker-Planck equation, the latter may be
discretized using finite difference in time (taking explicit the transport term and implicit
the parabolic terms) and a spectral method for the space variable. More precisely, we
first introduce the equilibrium solution for the last line of (6.12) when w = 0, namely
Yo (P,Q) = %exp —w , rewrite the Fokker-Planck equation using ¢ = @ as
the primary unknown function, and next proceed with the discretization. Because of the
specific form of ¢, the most appropriate Galerkin basis consists of (tensor products of)
Hermite polynomials H;. which indeed satisfy % / H;(P)H;(P)exp (—P?/2)dP = §;;.
Note that the use of such a spectral basis allov?f;r t§ circumvent the practical difficulty

related to the fact that the equation is posed on the whole space.

Alternatively to the last two lines of (6.12), the mesoscopic scale may be modelled using

the stochastic differential equations

1P(.1) = (G0 ~ gz P9)) e+ eV
(6.13)
Q) = ~ g QO+ IV

where V; and W, are two mutually independent one-dimensional Brownian motions, and

the stress is given by

€

") =7 [ PQULP.QAPIQ = G BPEIQM).  (614)

The system is discretized using a forward Euler scheme in time and a standard Monte-Carlo
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method for replacing the above expectation value by an empirical mean:

yntl _ pgrtt At At
prtl — Ap—L Titl on 1—— | P~ —V" 6.15
ik Ay T gwe ) Tk Y e Y (6:15)

At [ At
n+1 _ o o M/n 1
k (1 2Wo> @+ We *7 (6.16)

for 1 < k < K (number of realizations of the random variables), where V* and W} are
independent normal random variables, and
hyn+1 e 1+ n+1ynt1
()it = We K - Pi,k Q- (6.17)
This discretization is the CONNFFESSIT approach mentioned above, implemented in

a simple case.

A crucial remark (which not only applies to the Couette flow, but also to more general
situations) is the following. Since the stress (7%)*! is an empirical mean (6.17), it is
thus also a random wvariable. 1t follows that the discretized macroscopic velocity itself
is a random variable. In contrast, at the continuous level, K — oo in (6.17), and the
stress and the velocity are both deterministic quantities (since the expectation value is
a deterministic quantity). Consequently, computing the velocity or the stress using the
stochastic approach implies performing a collection of simulations, and averaging out the
results. This immediately brings variance issues into the picture. Appropriate variance
reduction methods can be applied. We refer to [123, 103].

The Matlab codes corresponding to the above description are available at

http://hal.inria.fr/inria-00165171
The numerical approach to treat other types of entropic forces (like the FENE force) and
other geometries of flows follows the same line, but the extension can be quite involved,
especially for the Fokker-Planck approach.

It is evident from the above discussion that the work load implied by such a coupling
may be overwhelming in many practical, especially three-dimensional, situations. Thus the
micro-macro simulations are, to date, limited in applications. They serve as a backroom

strategy to validate or derive appropriate constitutive laws. They may also be employed on

a limited portion of the computational domain (typically in a layer close to the boundaries
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where non-Newtonian effects are expectedly important; see for example [78] for results in

this direction).

6.4 Elements of mathematical and numerical analysis

The questions raised by the above multiscale models in terms of mathematical analysis
and numerical analysis are diverse in nature, because the mathematical objects involved
are themselves diverse. The situation can of course not be expected to be simpler than,
say, models like the Oldroyd B model (6.5). There is a two-fold reason for this. Firstly, the
multiscale models are indeed, for some simple particular cases, equivalent to some single-
scale models. We have mentioned the Hookean model equivalent to the Oldroyd B model.
Secondly, multiscale systems at least involve macroscopic equations, either because they
couple general equations of conservation (like the first two lines of (6.8)) with equations
at finer scales, or because they use in practice two different sets of equations in different
regions of the computational domain, and one of such set of equations is often purely
macroscopic. Without even speaking of the coupling issues, considering separately each

region, or each equation, is necessary.

Mathematical analysis Systems like (6.5) modelling purely macroscopically non-Newt-
onian fluids typically include the Navier-Stokes equations, with the additional term div 7,
in the right-hand side. The equation on T, is essentially a transport equation and, formally,
T, has at best the regularity of Vu (this formal observation is important for the choice
of appropriate functional spaces for the mathematical setting, and of the discretization
spaces for numerical methods). The term div 7, in the right-hand side of the momentum
equation is not likely to bring more regularity on w. It is thus expected that the study
of these coupled systems contains at least the well-known difficulties of the Navier-Stokes
equations. Recall that for the three-dimensional Navier-Stokes equations, it is known that
global-in-time weak solutions exist but the regularity, and thus the uniqueness, of such
solutions for appropriate data is only known locally in time.

Besides the difficulties already contained in the Navier-Stokes equations (which essen-
tially originate from the Navier term w - Vu), the coupling with the equation on 7, raises

additional problems. First, these equations contain a transport term w - V7, without any
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diffusion term in the space variable. They are hyperbolic in nature. The regularity on the
velocity w is typically not sufficient to rigorously treat this transport term by a character-
istic method. Moreover, these equations involve a nonlinear multiplicative term Vu 7,.
Finally, for the most sophisticated models, the equations defining 7, generally contain ad-
ditional non-linearities. These difficulties of course limit the state-of-the-art mathematical
well-posedness analysis to mainly local-in-time existence and uniqueness results. They also
have many implications on the numerical methods (in terms of choice of the discretization

spaces, stability of the numerical schemes, ...).

Many examples of results for such macroscopic models may be found in the literature.

See, for instance, [157, 91, 92, 80, 127, 130, 159, 80].

For multiscale models, the study has begun with the early work [158]. There is now a
growing literature on such models, presumably because they are prototypical of a broad
class of multiscale models, where some parameters inserted in the macroscopic equations

are computed using models at finer scales.

The difficulties present for the purely macroscopic models discussed above are also
present mutatis mutandis in the multiscale models. They are related to the transport
terms (in addition to w- Vu, we now have u- VX, and w- V), the nonlinear terms either
coming from the coupling between variables (in addition to the variables (w,p) and 7, we
now have VuX; and div . (Vur)), or inherently contained in the equations defining 7,

(due to the non-linear entropic force F').

The list of contributions include, for the coupled system involving the Fokker-Planck
equation: [125, 181, 128, 24, 25, 26, 182, 131, 137, 129, 59, 60, 62]. Note the recent global
existence result obtained in [138]. For the system (6.11) using the stochastic differential

equation: [115, 46, 92, 74].

Perhaps the more striking fact for the theoretical analysis of the all these problems is
that, in contrast to the situation of “standard” fluids, where energy estimates provide all
the estimations needed, here free energy estimates need to be employed. Indeed, a standard

formal manipulation on this system, involving some elements of stochastic calculus, yields
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the following quite standard a priori estimate:

%e%/ |u\2(t,m)+(1—f)/ |vU|2(t,m)+W—%/E(H(Xt(w)))

tawer | BIPX@)I) = s [ AT(Xi(@)), (6.18)

where II is the potential of the force F' = VII. Notice that the right-hand side of this

equality is typically a positive term (recall that, in practice, the potential IT is convex). The
situation is different from the usual a priori estimates for, say, the Navier-Stokes equations
where the right-hand side is zero. Here, some energy is brought to the system by the
finer scales. On finite time intervals, this is however not a difficulty for the mathematical
analysis.

A typical result is, in the case of Hookean dumbbells in a shear flow, the global-in-time
existence and uniqueness result proved for the first time in [106]. The solution (u, X;) on

the interval [0, 77 satisfies the estimate
HUH%gO(Lg) + H“Hig(ﬂg,y) + ||Xt||%§<>(L;2,(L5)) + HXi”if(L'-é(LE,))
< C (IXolByzz) + luollZs + T+ 1171212, -

This setting (Hookean dumbbell in a shear flow) is actually extremely specific. A global-
in-time existence and uniqueness result is obtained since the coupling term Vu X, of the
original problem simplifies to g—th, where @, is known independently of (u, P,). In other
words, this coupling term is, serendipitously, no more nonlinear.

More general studies are presented in [105, 107, 75, 44]. See also [120, 121] for related

issues.

On the other hand, the presence of an energy source, the right-hand side of (6.18), affects
the analysis of the long-time behaviour, like questions related to return to equilibrium. For
such questions, the appropriate notion to introduce is that of free energy rather than energy.
Assume zero Dirichlet boundary conditions on the velocity w. The expected stationary

state (equilibrium) is
u(oo,x) =0, (oo, x, X) = weq(X) ox exp(—II(X)).

The free energy

Ft) = R;/Iul (t, ) +*/ Rdwtmx)ln(m>’
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sum of the kinetic energy plus the relative entropy with respect to the equilibrium t,,, can
be shown to satisfy:
ar € Otz X))\ |?
—=—(1- Vul(t - — t,e,X)|VxIn | ——~—~ 6.19
i 0= [vures) g [ [ vee 0 van (SR 9

Comparing with (6.18), we observe that the introduction of the entropy allows to elimi-
nate the positive right-hand side. Standard techniques of kinetic theory (like Logarithmic
Sobolev inequalities, see [12]) allow then to conclude that, under appropriate conditions,
the fluid returns to equilibrium after perturbations. We refer to [104, 14]. The multimaths
character of the setting is evident.

We would like to also mention that these estimates on the micro-macro system can
be used as a guideline to derive new estimates on related macro-macro models (see [98])
and also to derive new approximation schemes (see [49]). This is an interesting (perhaps
general) byproduct of mathematical studies of multiscale systems to actually contribute to

better understand and approximate the associated purely macroscopic models.

Numerical analysis. Of course, the difficulties raised by the discretization of the models
are, as always, reminiscent of the difficulties of the mathematical analysis. Here again,
as mentioned above, the treatment of the multiscale problem necessarily requires a good
knowledge of the treatment of the purely macroscopic model. An overview of the numerical
difficulties encountered when simulating purely macroscopic models for non Newtonian
fluids may be found in [110, 17, 153]. As for multiscale problems, we will only, for brevity,
address here the stochastic formulation of the equations, that is, system (6.11). A typical
result of numerical analysis, proved in [106, 74], deals with Hookean dumbbells in a shear

flow. The error estimate for the discretization approach reads:

K
—n 1 n n
w) -+ [BR.Q - £ 3P
k=1

L3(12) Ly(LL)

1
<CO|lAy+At+—|.
- (y ﬁ)

The main difficulties for the proof originate from the following facts:
e The velocity uj is a random variable. The energy estimate at the continuous level
cannot be directly translated into an energy estimate at the discrete level (which in

turn would yield the stability of the scheme).
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e The end-to-end vectors (P}, Q})i<k<x are coupled random variables (even though

the driving Brownian motions (V;*, W/");<x<x are independent).
e The stability of the numerical scheme requires an almost sure bound on Q7.

For an extension of these results to a more general geometry and discretization by a finite
difference scheme, we refer to [126]. A convergence result in space and time may be found

in [43]. Many other studies now exist in the literature.
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