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MOTIVATION

This introductory course to the field of inverse problems aims at making sensitive to the
public the ill-posed character of these types of problems.

Let us give a very intuitive definition of what an inverse problem is.

A direct problem is a problem where one deduces effects from causes, whereas in the
inverse problem one wants to find the causes which lead to some determined effects one
can notice or measure.

The direct problem is usually well posed according to Hadamard, that is:

i) The solution exists

i) It is unique

iii) It depends continuously on the data

Unlike this, the inverse problems are usually ill-posed because one (or more) of the
conditions 1), ii) or iii) is not fulfilled, (usually ii) and iii)). The same effects may be
induced by various causes . ..

The inverse problems occur very often in everyday life: in image processing, bioengi-
neering (such that the inverse electro-cardiographic problem where one wants to recover
the potential on the heart from measurements on the torso) or mechanics where one wants
to recover some hidden flaws such as cracks, holes or inhomogeneities from overdetermined
boundary data.

Within this introductory course, we will be concerned with inverse problems defined by

overspecified boundary data. We will focus on the inverse problem of determining a Robin
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parameter and that of solving a Cauchy problem.

Let us note that the Robin coefficient may be recovered by solving a Cauchy problem.

We consider the following problem: provided a partial differential operator is known
within a domain €2, recover the value of the boundary data on a part I', of its boundary,
overspecified data being available on the remaining part I'; of the boundary. This problem
will be called data completion problem, it is as a Cauchy problem for the partial differential
operator and the manifold T',.

This kind of problem arises in many industrial, engineering or biomedical applications
under various forms: identification of boundary conditions, exchange or loss factor on
unreachable part of the boundary, expansion of measured surface fields inside a body from
partial boundary measurements, but it also can be the first step in general parameters
identification problems where only partial boundary data are under control.

The more common problem, borrowed from thermostatics, consists in recovering the
temperature in a given domain when its distribution and the heat flux are known over
accessible region of the boundary. We shall be presenting the issue in the framework of
thermostatics, which is mathematically identical to the electrostatics case encountered in
electric impedance tomography. Note that this procedure is extendable to elastostatics or

any other symmetric linear elliptic problem.

1 IDENTIFIABILITY, STABILITY, REGULARIZATION

This section is devoted to basic concepts regarding the inverse problems.
All the results regarding the inverse Robin problem come from the paper by Slim Chaabane

and Mohamed Jaoua [17].

1.1 Identifiability

To illustrate the first concept (uniqueness) or identifiability let us consider the following
Robin inverse problem [17].

We are interested in determining the Robin coefficient ¢ of some material of which a
body occupying the connected domain € € R? or R? is composed. To this end we shall use

boundary measurements of the temperature on some part K of the boundary 92, which
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is assumed to be of C1! regularity, and, moreover, let v, I'p and I'y be three open subsets

of the boundary such that,

00 =5UTpUTy.

The direct problem associated with the inverse one we deal with is therefore the following:

Au
@

on

U

o
on 9

0in €,
pon Iy,
(1.1)

0on I'p,

0 on 7.

We use the language of the thermal imaging, ¢ thus being the prescribed heat flux on I'y

Prescribed current flux
=0 G

Figure 1: Corrosion detection

(p # 0on I'y), and ¢ the unknown heat-exchange function, which has to be determined

by measuring the temperature on some open subset K of I'y; f = u |. However, problem

(1.1) might also be viewed as a model for a corrosion detection problem by voltage mea-

surements (see, for example, [27, 28]): ¢ is thus the corrosion coefficient, ¢ the current flux

prescribed on I'y and w the electrostatic potential.

Given the flux ¢ and the measured temperature f, the inverse problem is after defining

an appropriate set Q.4 of admissible heat-exchange coefficients, the following:

Find ¢ € Quq such that: the u solution of (1.1) also verifies u |= f.
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Let V be the following space :
V={ueH(Q); ulr,=0};
V' is a Hilbert space with respect to the inner product defined by :
<u,v >:/Q<Vu7Vv >

Denoting by | . |1,o the norm derived from this inner product, let a be the norm of the

trace operator
7V — H2(09)

Uu—1u |asz

while considered as a mapping from V equipped with the energy norm, onto L2(99):

o | U 10,00
a= sup — —.
veViv#£0 | v ‘1,9
The set of admissible Robin coefficients is defined as follows:
0 /= . 1
Qua = ¢ € C°(7); ming(z) > —— +.
ey

a2
The following identifiability result presented in Theorem 1 then holds.
Theorem 1. (uniqueness) Let q; and qo be two elements of Quq, and (w;)i=12 be the

solutions of problem (1.1) with (g;)i=12 as a Robin coefficient. Suppose that uy |x= us |k.

Then ¢ = qo.

Proof: Let ¢; and g2 be two elements of Q.4 such that: u; |x= us |k, and let us denote

by w their difference (w = u; — uz), which is a solution of the following problem:

Aw = 0in Q,
w = 0Oon K,
ow

% = Oon FN.

By using Holmgren’s unique continuation theorem, we get w = 0 in €2, which means that

uy; = uy €  and therefore :

ou
7nl+q1ul = Oon .

7L+Q2U1 = Oonv,
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Thus

ul(ql - QQ) =0 on - (12)

Let us assume that ¢; # ¢o. Thanks to the continuity of ¢; and ¢z, we can find some open

subset ¢ of v with positive measure such that

(r — q)(x) #0 , Vxed.

Equation (1.2) then yields u; = 0 on 9, and w; is therefore a solution of the Cauchy problem
Auy = 0 in

Uy = 0 on?d,

8U1

— =0 9.

an on
If we use Holmgren’s theorem again, we get u; = 0 € Q, which is in contradiction with
pZ0onI'y. 0

Remark 1. Dropping the Dirichlet boundary condition (U'p = 0), the same result holds

with the space of admissible Robin coefficients below:

Qui={a € C°(); q(x) > 0; g(x) #0}
the non-negativity of ¢ being necessary to ensure that the direct problem is well posed (see,

for example, Garabedian [24]).

Cracks identification:
To illustrate further identifiability issue let us consider now the inverse problem of
cracks recovery.
The forward problem:
Given Q, 0 C Q2 and ® € L*(Q), find the solution u of:
Au = 0 in Q\o,

(FP) B—Z = 0 onoao,
di o on 00

on
The inverse problem:

Given Q, ®, f, find o such that the solution of the forward problem (FP) in Q\o also

verifies: u |p,= f.
It was already proven that a single measurement is usually not enough (see [22]); a

single crack by overdetermined boundary data is illustrated in Figure 3.
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Figure 2: Cracks identification

Figure 3: Identification of cracks from a single measurement

1.2 Stability

The measurements are assumed to be performed on a non-empty open subset K of I'y.
Roughly speaking, stability means that small errors in the measurements would yield small

perturbations on the unknown coefficient ¢. To formalize the idea, let us consider the
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mapping 1 defined by
1 Qua — L*(K)
q— [=uqlx
The identifiability result proved above means that 7 is injective, and therefore, that the
restriction
1 Qad — 1(Qad)
is invertible. Limiting our search to any compact subset of Q.4 a weak stability result,

which is merely the continuity of the inverse operator 7!, can be obtained as a straight-

forward consequence of the uniqueness theorem (Andrieux et al [7]).

Local Lipschitz stability

To prove local Lipschitz stability, the Lagrangian differentiation with respect to the domain
has been repeatedly used as a basic and somewhat powerful tool for the study of geometric
inverse problems ([6, 7, 12], etc). The Robin boundary condition has also been studied in
[10], in the framework of 2D cracks recovery a local Lipschitz stability result being proved
using the same technique. Actually, the latter also works for differentiation with respect
to the field or boundary coefficients, as was stated many years ago by Simon [45].

Now given g € Q.q and ¥ € Qy, there exists some real number hg > 0, depending on
¢ and 1, such that

he]l—ho,hol <= ¢":=(q+hr)€ Qu.

Let u" be the solution of problem (1.1) for ¢" as a Robin coefficient. We then have the

following proposition.
Proposition 1. There exist ut and e(h) in H'(Q) such that
ul = u® + hu' + he(h) (1.3)

where limy,_g | €(h) |1.0= 0, u® is solution of (1.1) with q as a Robin coefficient, and u' is
solution of the following problem:

Find u' in V such that,

/<Vu,Vv>+/qu1v:f/ruov for allveV.
Q

v v

(1.4)
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Proof: The variational formulation of problem (1.1) is:
/<Vu,VU>+/un:—/ rv forallve V. (1.5)
Q v TN

Let V* be the dual space of V', and define the following mapping:

A ] = ho, ho[xV(y) — V*

(h,u)%{/<Vu,Vv>+/qhuv7/ cpv}
Q Y TN

the solution u" of problem (1.1) with ¢" as a Robin coefficient is therefore the solution of

A(h,u") = 0. The mapping A being linear with respect to w, its partial derivative with
respect to u (%(Om) = A(0,.)) turns out to be an isomorphism between V and V*. By
the implicit function theorem, it turns out that u” is some C' function of h, provided A is
small enough. This yields expansion (1.3), with u' € V, and lim,_ | £(h) |1.0= 0.

Now, plugging this expansion in the variational formulation (1.5) of the direct problem
with ¢" = ¢+ hr as a Robin coefficient, and identifying in both sides of the equation terms
of the same order in A, we derive that:

e u” solves problem (1.1) with ¢ as a Robin coefficient

e u! solves problem (1.4)

which ends the proof. O

Theorem 2. (Local Lipschitz stability). Assume that U # 0 on vy, and denote by
fl=u" |k . Then

| "= f° lox

] > 0. (1.6)

limhﬂo
Proof:  According to expansion (1.3), (1.6) is equivalent to
| U |O,K> 0.

Let us then assume that u' = 0 on K. In this case, equation (1.4) gives that u! is a solution
of the Cauchy problem
Aul =0 in Q,
Uy 0 on K,
8u1
on

0 onIy,
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which by Holmgren’s theorem leads to
u' =0in Q.
Equation (1.4) then yields to
/ruOU:O, Yo eV
-

from which we derive

ru’=0 a.e. in 1.

From the continuity of 1), and the fact that  # 0 on -, we derive the existence of some
open subset ¥ of v where

w’=0on¥.

The Robin boundary condition yields to:

0
%%zOonﬁ.

Using Holmgren’s theorem again, we derive that «° = 0 in Q, which is in contradiction

with our assumption that ¢ # 0 on I'y. ]

Instability: The Hadamard’s classical example

In 1923 Hadamard [25] provided a fundamental example which shows that the solution
of a Cauchy problem for Laplace’s equation does not depend continuously upon the data
[see figure 4]. The example is as follows: consider the solution u = (uy); to the Cauchy

problem in the half plane

Au =0 in {(z,y) € R*\y > 0},
u(z,0) =0, for every x € R, (1.7)
ou sinnx '
8—(1}, 0) = for every x € R.

n

sin kx sinh k
We have u, = 734, it turns out that

n2

0
ﬂ(3:,0) — 0 uniformly as k& — oo,

on
sin kx sinh ky

2 blows up when & — oo:

whereas, for y > 0, we have uy(z,y) =
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Figure 4: Exponential blow up of the higher frequencies

1.3 Regularization

The content of the present subsection is borrowed to Michel Kern’s Course [29]. Let us
consider an abstract frame: E and F are two Hilbert spaces and A € £(FE, F).

Solving a linear inverse problem returns to

Find z € F such that
Az =2,

where Z is the measurement and Z the unknown.

Usually Z € F. However, we often have:
1. R(A) # F (R(A) C F),
2. R(A) is not closed.

Difficulty (1) is not serious, one can limitate to R(A) instead of F, provided R(A) is closed.

Should this last assumption fail, we are in trouble since:

‘R(A) closed & A7 lis continuous‘

Proof: We suppose A is injective and denote by A~!

A7l R(A) — E,
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its inverse operator.

o If R(A) is closed in F, it’s a Hilbert space. Thus A : E — R(A) is linear continuous

and bijective (since it’s injective). Thus it’s an isomorphism and A~! is continuous.

e Suppose now A~! is continuous. Therfore R(A) = (A7!)"1(E). Since E is closed

and A~! is continuous, R(A) is closed.

Example: The Robin inverse problem [17].

ou
We are recovering ¢ from ulr,, knowing that — has also been prescribed on I'y.

ou

ou a9
f+qu:0:>q:—87”|7.

on

0
Thus, we try to recover u and 8—u on v from the pair (f,¢) on I'y which is (u, a—u) on ['y.
n n

Now ¢ is such that

Our operator A is thus

A:Hzx H2(y) — Hz x H 2(T'y)

AN
“on ) on )y

We have also seen that A~! is not continuous (Hadamard) because of the exponential
magnification of the higher frequency components.

We seek now to solve Az = 2. However, the measurement Z has been polluted by noise.
Instead of Az = Z, we are thus trying to solve Az = z where z = 2 + 4.

Instead of solving Az = z, we then try to minimize ||AZ — 2||%.
The minimization problem is

Find z € F such that
mingep ||Azr — 2|7 = [|A% — 2|[%.

25){

Two cases show up :
1) 3% € FE such that A% = 2(2 € R(A)). Therefore x = % and the problem is solved ....

But this solution & does not depend continuously on the data (Hadamard).
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2) z ¢ R(A)... and in most cases 2 € R(A). Therefore the optimization problem has

no solution. Its minimum is zero, but there is no x € F realizing that minimum.

In case of noise, 2 ¢ R(A) but we don’t know it: we only know some measurement z°

such that

12— 2°||p=4.

In order to overcome these difficulties, Tikhonov has proposed a regularization procedure:

instead of solving (LS), let us solve (LS:)

Find x € E minimizing
(L5) { 1Az — 2[[% + €|l — o[-

Proposition 2. Problem (LS.) is equivalent to
(NE.) (A*A+ eIz = A*2 + 2ny .
(NE.) has a unique solution that continuously depends on Z.

Proof:
J(z)

|[Az — 2[|F + ||z — ol [,

<Ar— 2, Av — 2 >p et <a— 19,0 — T >p,

< A Az, x >p =2 < Az, 2 >p +e¥|x||% — 282 <z, 10 >+ |wol |4 + |]2][%,
= < A*Ax,x >p 4+ |x||% — 2 <z, A*2 + 2w >p +e|nol|% + |12]13,

= < (A*A+z,x >p -2 < 2, A2 + &%y >p +cst.

J(z) is quadratic with respect to x, and its minimum is characterized by J'(z) = 0.
J'(z) = 2(A*A + 1w — 2(A*2 + £%0).

Thus
J'(z) =0 (A*A+ 1)z = A*2 + %a0.

Does this problem has a unique solution?

A*A + £2] is coercive on E

< A*Ax,x >p et < xx >p,
2| -

< (AA+e )z, >p

IV Il
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It is thus continuous and bijective (automorphism of E).

Therefore, A*A + €21 is bijective and (N E.) has a unique solution.

(NE.) (A*A+e* )z = A*2 + exg
Thus

< A*Az,x >p +%|z||%
1 Az||% + &2||=[[%

142 [l + 2|l [2o] |-
A2 [gll2]|e + &%||z] sl zol| &,

IAIA

and

£+ [|2ol|& -

1 .
lolle < 1A%z

We have thus continuity with respect to the data and a blowing up happens when ¢ — 0.
O

Let us now look at the problem with noisy data.
Assumptions:

1) There is an ideal observation Z € R(A)
At =2.
2) Moreover, we suppose that (Baumeister’s assumption)
teRA = it=Aw, welrl.
3) Finaly let 2% be the noisy data measurements

128 — 2llp = 5.

[12° = Zllr

- is called the noise/signal ratio.
[12llr

We thus look at the solution of the following problem

Tse € E7
min, {[| Az — 2] |% + €[|x — 2ol[%}
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where x4, will thus solve:
(a) A*Axs, + w5, = A*z5 + 2,
Let x. solve the Tikhonov problem with the ideal observation:
ze € E,
min, [|Az — 2[5 + &2|la — ol [3-

Therefore x. solves

(b) A*Ax. + w5 = A*2 + 2.

Using (a) and (b), we get
A*A(xse — 12) + (x50 — ) = A (25 — 2),

from which we derive

I 7
llese —aelle < 5~ ll2s = Zllp,
)
< 415
O
Now, let us estimate the second part of the error, which is ||z. — || g.
Z solves AT = 2 = A*Az = A*Z.
Thus
A*A(z. — 2) + %2, = 2.
Let us suppose zy = 0. Thus
A" Az, — ) = —2p 4 &2 — 23 = —52(.105 —I)+ 23,
and
<A A(x. — ), 0. — 8 >p = —&2<a.— 2,0, — 2 >p et <A1 — 3 >p,

= —2<a. -3, 2. -2 >p+2 < AW, x. — T >p,

which yields
2E +e? < w, A(z. — &) >p,

|A(ze — 2)|[F = —*|z. — &
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which gives
|A(ze = 2)|[ < =[x — 2[5 + 2| Jwl[p||A(z: = 2)|]p -
Now we use
g2 1
b< —a®+ —b?
W=y +2£2 ’

. g2 1 .
[[wl|pl|A(ze — 2)[|F < §||wH% + 2?2”14(% — )| [

Thus
4

. N € 1 N
1A(ze = D)l < —€*llz= — &[5 + Fllwlfi + 5|1 A - 2)I[F,

from which we drive
1 ANT12 54 2 2 112
SllA@e = 2)llr < S llwllp -z — 2[5

Thus

llze — 2| < < [lwlf.

=
2
Gathering these two estimates, we get

€

w .
\/ill Il

R 1)
l[5: — 2||p < HA*H;Q +

Problems:
1) We don’t know ||w|| or ||A*]| and can’t thus determine the right value of .
2) The computed solution is not exact, even though the data are noise free.

This is the reason why we shall be studying alternative regularisation methods.

2 THE ROBIN COEFFICIENT RECOVERY

Model problem: The Robin one

A = 01in Q,

ou .

n = & on I'y, prescribed current flux
n

U = f on I'y, measurements

— +qu = 0Oon~.
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Suppose ¢ is determined. Therefore, we have twice too many prescribed data on 'y, which

allows to solve two problems: a Dirichlet problem (D) and a Neumann problem (N)

N . .
AuP — 0inQ, ?“N = 0inQ,
i
(D) UDD = fOIl FN, : (N) 87 = & on FN,
on = on 7y o + quN = 0on .

Therefore, let us minimize the misfit between u” and v in order to get the actual ¢. Many
misfit functions may be proposed to that end.

The energy error functional has been introduced in [37] in the context of a posteriori
estimators in the finite elements method. Within the inverse problem community this
functional has been introduced in [31, 32, 33] in the context of parameter identification.
It has been widely exploited in the same context in [15]. It has also been used for Robin
type boundary condition recovering [17]. For lacking boundary data recovering (i.e. Cauchy
problem resolution) in the context of Laplace operator, the energy error functional has been
introduced in [5, 4]. A study of similar techniques can be found in [14] and the analysis
found in these papers uses elements taken from the domain decomposition framework [42].

There is a large amount of literature in the field of Cauchy’s problems.

e Ordinary least squares:

Ja) = [, [uP(q) —u™ (),
= Jo, [F =N (@)

We have seen above that this is not the best choice, because of the blowing up of the

Cauchy solution away from the prescription boundary.

e Energy least squares:

/|V(uD—uN)\2+/|uD—uN 2.
Q v
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The advantages of such an approach is that it has a physical meaning: it may be
interpreted as a constitutive law error functional. Furthermore, it is expected to have
a stabilyzing feature in so far as it is a distributed least squares (not a boundary

integral).
Theorem 3. There exists a unique solution q € Quq such that
0) Ja)<J(@), Y4 € Qua

and q 1is the solution of the inverse problem

Find q € Quq such that the solution u of

Au = 01inQ,
ou

(IP)S (FP)S an = ¢ only,
o +qu = 0on
on qu = -

also verifies u= f on 'y,

provided (IP) has a unique solution (identifiability) q € Quq.

Proof:

e Let g solve (IP) therefore J(q) = 0, since u(q) = u” and also u(q) = v (this is (F'P))

and

J(q) < J(d) V] € Qua,

e Suppose ¢q; and ¢ are two solutions of (O).

Therefore v’ = u and w2 = ul’, since J(q1) = J(g2) = 0. It follows that both u}" and
ud solve the inverse problem and thus «) = ud’, which yields ¢ = ga. O

2.1  The constitutive Kohn-Vogelius gradient algorithm

In order to implement the gradient algorithm, we need to calculate the gradient J'(q).r.
To that end, both expansion of u% and u% are needed (with respect to h). We prove that
(see for details [17])

ul = uQ + huy + he(h).
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We have already proved that:

uly = u® + hul, + hn(h),

where u}, and u}; solve

uh €V =HY Q)
(V1) /VU}VVU—&-/qu}Vv:—/ rulv, Yve HY(Q),
Q

Y 'y
up € Vo(Q)

(D1) /VUEVU—&-/QU};U = —/ rupv, Yo € Vp(Q).
Q v I'n

Theorem 4. Derivative of the error-function.

. Jlan) — J(q

7o) = iy TOLZID L g,
—0 A 5

with q, = q+ hr.

Proof: We can write

J(q) = Jplq) + In(q) + Jon(q)

In(g) = Jo [Vun]? + fﬁ/(I|UN|2
Ip(@) = [o[Vup|* + [ qlup|?

and finally
Jpn(q) = =2 {/ VupVuy + /quDuN} .
Q ¥

This latter is constant since

0
VupVuy = —/ Aunup + ﬂU,D
Q Q r on
8uN .
But up = f and o = pon 'y and Auy =0 in .
n
Therefore
ou
/V’LLDVUN :/ (pf+/ NUD.
Q 'y Y on
Since v _ —quy, we get
on

/VUDVUN:/ cpf—/quNUm
Q I'n vy
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and thus

/VuDVuN+/quNuD :/ pf = cst.
Q ¥ I'n

This term will not interveign in the derivative.

Now, using the asymptotic expansion above, we get that
Jp(q).r = 2/ VUODVu})-FZ/quODU}D +/T|u(1))|2»
Q . S
and similarly
Iy(q).r = 2/ VuyVuy + Q/qu?vu}v + /r|u?\,\2.
Q . .

Now, using formulation (N;) with v = u%;, we get

Ty(q)r = —2 / Pl f? + / Pl = — / Pl
Y Y Y

Using also (D) with v = u%, we get

Th(g)r = 2| / ViVl + / quub] + / Pl P,

Q v bl
But
07,1 0,1 0,1 oup 0,1
VupVup + [ qupup = — | Aupup+ | —=up+ [ qupup .
Q ¥ Q r on 7

0 o Ou 0 uy, 1 :
up verifies Bn +qup =0 on 7 and B, —#on I'n, whereas up vanishes on Supp ¢.
Therefore

/VU%VU}) + /qu%u}j =0
Q2 v

and thus

Jb(é])f:/rlu%lz-
0l
The derivative is announced
J(q).r = /T(IUOD\2 — |u ).
¥
O

We will refer to this algorithm as the Kohn-Vogelius one (KV-algorithm), because Kohn

and Vogelius introduced this error functional to the inverse problems community.
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The K-V algorithm

e Choose ¢° € Quq
- Calculate u

(
- Compute J'(q

q) and u™ (q)
)

o "M =q"—pJ(q")

It is nothing but the gradient algorithm applied to the KV functional.

1. As all gradient algorithm, it is slow.

2. Understand why it is?

Jq) = / r(u(g) — 13, ()) -

Suppose r = sin(nc). Therefore, J'(q) sin(no) is the n'* Fourier coefficient of (u% — u%).
Provided up and uy are smooth, the components of the gradient then decrease fast. It
turns out that the gradient search is thus nothing but a search along the lowest frequencies.
The algorithm is therefore expected to squeeze the higher frequencies components, and

consequently to behave in a stable way (since instabilities show up in the higher frequencies)

2.2 Stability of the Kohn-Vogelius algorithm (or/and robustness)

Find ¢ € Q4 such that u

Au = 0in Q,

ou Find ¢ € Q,q such that u
(IP) ? = vonly, (0P

£+qu = 0Oon~. J(q) <J(d), Y9 € Qu

on

also solve u(q) = f.

1) If the measured data f are “exact”, then (IP) < (OP)

2) The measurements are noisy. Thus
(a) The inverse problem has no solution

(b) The optimization problem may have.
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Theorem 5. Suppose f, € H%(FN) is a sequence of “noisy measurements” such that
fo— f € H2(Ty). Therefore:
1) ¥n € N, the optimization problem (OP,) with data f, has at least one solution
2) gy being any solution of (OP,), we have lim,, . ||g, — qllo, = 0.

Proof:  It’s somewhat technical (see Chaabane et al. [17]). O

Remarks:

1) This result is a stability one for the optimization problem, not for the (/P). Indeed, g,
has no conection with any inverse problem, whereas ¢ has. However, this theorem tells us
it makes sense to solve the optimization problem with approximate data (f,,) since we get

an approximation ¢, of the desired impedance q.

2) usually noisy data f,, are not expected to belong to Hz(I'y).

We have f. = f+¢, e € L*(Ty) and ||e||r2qy) =€

What is usually run is:
(a) Smooth f. by some method, such as cubic splines and get fg which is smooth
enough ..., say f. € Hz(I'y) (actually f. € C2(T'y)).
But how close to the actual data f is f.? We can prove that (Chaabane et al. [18])

/e = fllosory < cle+n2),
h = [ splining path |

A

fe = fllioory _c§+h>

Therefore, choosing h ~ /e, we get

1/ = Fllosory < ce
and
1fz = Fllioory < eve.
(b) Use the smoothed f. data to solve (OP).
Therefore, get ¢. and, using the stability theorem
tim 1g. — qllo, = 0.

This is a robustness result, though not a quantitative one. 0
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3 SOLVING CAUCHY PROBLEMS

This section is due to a strong collaboration with Amel Ben Abda.

3.1 Data completion

V-k(z)Vu=0 in Q
k(z)Vu-n=@ on Iy (3.1)
u="T on Iy.
Let us consider the Cauchy problem (3.1). Assuming the data (®,7T) are compatible, i.e.
that this pair is indeed the trace and normal derivative of a unique function u, extending
the data means finding (¢, t) such that:
V- k(x)Vu=0 in  Q,
u=T,k(x)Vu-n=® on Ty, (3.2)
u=t, k(x)Vu-n=¢ on TI,.
The question is to reconstruct numerically the pair (p,1).

However, in practical problems data are not expected to be compatible, since data
errors may occur from measurement discretization and modelling errors. The ill-posedness
in Hadamard’s sense arises  dramatically =~ when one tries to approximate a given data
(®,T): it is possible to approach it as closely as desired on I'y by traces of a single harmonic
function, the “surprise” being a hectic behavior of this function on the remaining part of
the boundary, see Hadamard’s example [25] (reported in subsection 1.2). In this section,
we resort to a rough but usually efficient regularizing techniques consisting of solving the
ill-posed problem iteratively and choosing a suitable stopping criteria which determines
an optimal solution [19]. The introduction of two distinct fields, each of them meeting
only one of the overspecified data, avoid the need of a regularisation procedure for the
resolution of the data completion problem. Using separately the two boundary conditions
on I'y has also been used in the algorithm proposed by Kozlov et al [34], where again no
regularization procedure is cast into the resolution method.

We will restrict ourselves to situations where the boundary 0 consists of two closed
manifolds of class C? such that 9Q = I';|JI', and Ty T, = 0. However, all the results

stated thereafter are also true in the case of less smooth boundaries and when I'; and I,
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have contact points. As already mentioned, the pairs of compatible data are dense in the

set of all possible data pairs. For this known result we refer to the book by Fursikov [23].
Lemma 2. For T and ® data:

1. For a fized T in HY?(Ty), the set of data ® for which there exists a function u in
HY(Q) satisfying the Cauchy problem (3.1) is everywhere dense in H=/?(Ty).

2. For a fizred ® in H™Y?(Ty), the set of data T for which there exists a function w in
HY(Q) satisfying the Cauchy problem (3.1) is everywhere dense in H'Y/?(T'y).

Proof: Let us prove the first assertion. The second one can be obtained by the same
arguments. It is sufficient to prove the result for T = 0. Let u € H'(Q) satisfying the

problem:
V- k(z)Vu=0 in
u =0, on Iy, (3.3)
kE(x)Vu-n=® on T,

Assume, now, that the first assertion fails. Tet R be the subspace of H~'/2(T';) consisting of
fluxes ® compatible with the Dirichlet data 0 (i.e; the fluxes ® for which (3.3) is solvable).
R, the closure in H~/2(T), is a proper subspace of R in H~/2(I'y). Therefore there exists

a non-vanishing continuous linear form [ on H=Y%(T'y) (I € R in H'/?(Ty)) such that:
(L&) =0, V ®cR. (3.4)

Consider, now, the mixed well-posed following direct problem:

V- k(x)Vo=0 in Q,
v=1, on Ty, (3.5)
E(x)Vv-n=0 on T,

Applying the second Green’s formula to the fields v and u we get:
/ vk(x)Vu-n —uk(x)Vo-n=0. (3.6)
9

The integral is to be understood in the duality sense. Exploiting the boundary data, we

obtain:

/ vk(x)Vu-n=0. (3.7)
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Let us consider a field y € C>(T',), the well-posed mixed problem:

V. k(@)VZ=0 in Q
Z =0, on Ty, (3:8)
E(x)VZ-n=x on T,

has a unique solution in H'(£2). From (3.7) one gets:

/X-vzo, Vx in C®(Ty,) (3.9)

u

and therefore v satisfies the following homogenous Cauchy problem:

V-k(z)Vo=0 in Q,

v =0, on I, (3.10)
E(x)Vv-n=0 on T,.
Then by the Holmgren theorem v = 0, which leads to [ = 0. ]

Minimization problem

In this section we formulate the previous inverse problem as a minimization one. For each
given (7,1) € HY?(T';) x H-Y/*(I';), we consider two mixed well-posed problems. The first
one is called the Dirichlet problem (with Dirichlet condition on T';)

V- k(x)Vup =0 in Q
(Pp) u =T on I'y
k(z)Vup -n+aup =n+ar on I,

where « is a scalar parameter.

The second one is called the Neumann problem (with Neumann condition on T'y)

V- k(z)Vuy =0 in Q
(Pn){ Ek(x)Vuy-n+ fuy =n+p7 on [,
k(z)Vuy-n =@ on Ty

where [3 is a scalar parameter.

Then, the unknown data (¢, ¢) can be characterized as the solution of the following min-
imization problem: (p,t) = argmin, . E,_ ,(n,7) where E, s is the following energy-like
error functional defined on H/?(T,) x H~'/%(T",) by:

En,7) = /Q(k(w)VuD — k(2)Vuy).(Vup — Vuy) . (3.11)

For the problems (Pp) and (Py), the introduced parameters («, /) permit us to specify
different types of boundary conditions on I',. We will treat the minimization problem using

one of the following conditions:
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e The Neumann-Dirichlet case which will be denoted by ND. It corresponds to o =0
(i.e. (Pp) with Neumann boundary condition on I',) and 3 = +oo (i.e. (Py) with

Dirichlet boundary condition on I',).

e The Dirichlet-Dirichlet case which will be denoted by DD. It corresponds to a =
[ = +00. In this case, the first order optimality condition leads to the variational

form of the Steklov-Poincaré operator.

e The Neumann-Neumann case which will be denoted by NN. It corresponds to o =

[ = 0. It describes the so-called dual Steklov-Poincaré operator.

3.2 An energy-like error functional

The energy-like error derivative

Using the properties of the up and uy, it is straightforward to derive an alternative ex-

pression of the E/yp functional:

Enn(n,7) = /F_(n — k(@) V) (up — 7) + / (k@) Vupn — O)T —uy).  (3.12)

e
This expression shows that the error between the two fields up and uy can be expressed

equivalently by an integral involving only the boundary of the domain {2 with respect to

the pair (n,7), it is easy to evaluate the gradient of the error functional:

Lemma 3. For a pair (n,T)

%’%7(77777).1/} = /Fz [up(n) — 7] + /F,z k(@)Vui() -n|[T —uy(T)] (3.13)
M%T(nj).h = g [k(x)Vun(T)-n—mn]h +/F [® — k(2)Vup(n) -n]ui(h)  (3.14)

for all (h,y)) € H*(T',) x H-Y*(T,), and where u* and wu} solve:
V-k(x)Vu; =0 in Q,
uwf =0 on Ty, (3.15)
E(x)Vui-n=1¢ on T,
V. k(@)Vu; =0 in Q,
uy =h on Ty, (3.16)
E(x)Vuy-n=0 on TIy4.

Problems (3.15) and (3.16) depend on directions ¢ and h.
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The Lagrangian derivative: adjoint state

The components of the gradient can be computed in a more efficient way by using the
adjoint state method, which makes it possible to evaluate the gradient in any direction
using only the determination of two adjoint fields v; and ve. We consider the following
Lagrangian:

L(uDqu7/U17v27 )‘auvnv T) - /
Q

k(x)(Vup — Vuy)? —&-/Qk(z)VuDVvl —/ nuy

Iy

+ /Q k(2)Vuy Vg, — /Fd Py + /F [ + Auy — 7)) (3.17)

and the following spaces:

Vi = {veH(Q) /v, =T}
VW = {veH'(Q)/vlr, =0}

Then (un,un,v1,va, A\, 1) € Vi x HY(Q) x V2(Q) x H'(Q) x HV*(T,) x H~Y2(T,).
Lemma 4. For any (n,7) and the above defined fields, it follows:
END(T}'/T) :L(“D?’“N:v17v27)‘7:u;7]77—)' (318)

The gradient of Exp can be obtained from the partial derivatives of L with respect to n and

T, that is:
oF T
%w = — / 20,0 (3.19)
E
M.h =— / 2(n — kVun.n — kVug.n)h (3.20)
or T,
where:
V- k(z)Vu, =0 in  Q
v =0 on Ty (3.21)
kE(x)Vuy -n=k(x)Vuy -n—n on T,
V- k(z)Vuy =0 in
vy =0 on T, (3.22)

kE(x)Vvg-n=kVup-n—® on Ty.
We opted for this Lagrangian form, where boundary conditions are incorporated explic-
itly, in order to ensure that the underlying functions spaces are fixed and do not depend

on the unknown field 7.
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Revisiting Kozlov-Maz’ya-Fomin’s algorithm

The method is related to that introduced by Kozlov in |34] and widely numerically exper-
imented (see [43] and references therein). In that approach, the data completion problem
is solved on the basis of an alternating iterative procedure, where successive solutions of
well-posed mixed boundary value problems for the original equation are computed. The
method has been proved to be convergent. Our approach generalizes that of [34]: as shown
below, the KMF’s method can be viewed as the energy-like error functional minimization
by an alternating procedure in the ¢ and ¢ directions. Therefore, solving the Cauchy sys-
tem (3.2) is achieved when the data completion (¢,t) leads to the same field up = uy
in Q. Basically, the iterative data completion procedure of [34] is derived from these ob-
servations. It can be summarized as follows: starting from an initial guess of the flux ¢
on I, this guess is iteratively corrected by solving alternately problems of form Pp and
Py, where at each iteration the appropriate boundary data results from the solution of the
previously solved boundary value problems. A sequence of well-posed mixed problems is
generated as follows: u?*! solves Pp with t replaced by u?, while u**? solves Py with
¢ replaced by k(x)Vu?*!.n. Reverting to our energy-like error functional, the link with

KMF’s algorithm is revealed by the following proposition:

Proposition 3. The KMF’s algorithm can be interpreted as an alternating-direction min-

imization method for the energy-like error functional E. More precisely:
o Step 2j + 1 of KMF algorithm: u**1 is characterized by:
WP = upn (TP = 791 = argmin Exp(n®, 7) with n* = Vu¥ nlp,
o Step 25 + 2 of KMF algorithm: u*7*2 leads to:

w2 = up (1) <= ¥ = argmin Exp(n, 797 with 797 = ¥

u

The convergence of KMF’s algorithm is proved for a compatible data pair.

3.3 The first order optimality condition

We derive here the first order optimality condition for the previous minimization problem.

In the case of compatible data we have the following result.
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Theorem 6. When (T, ®) is a compatible pair, the minimum of E, g is reached when:

up = uy + Const on T,
(3.23)
k(x)Vup -n = k(z)Vuy.n on T,.

Remark 5. Link with the Domain Decomposition tools: When dealing with the
domain decomposition tools to solve Pp and Pxn on the subdomain €y and $y respectively,
the parallel solution Pp and Py would give the value up and uy of u on each subdomain
and these values would satisfy the compatibility condition: continuity of the fields and of

the normal derivative across I';

up = un on Fu:
(3.24)
E(x)Vup-n = —k(z)Vuy-n on T

(the sign — is related to the change of unit normal orientation,).

! 1.

Q), we resort here to a fictition domain decomposition process.
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Proof: ~ We derive the first optimality conditions in the three considered cases. (i) The

Neumann-Dirichlet case: the problems (Pp) and (Py) are considered using, respectively,

Neumann and Dirichlet conditions on T',. For each given (7,7) € HY?(T;) x HY*(T),

we have the following mixed well-posed problems

V- k(z)Vul =0 inQ V- k(z)Vuy =0 inQ
(Pp) ul, =T only (Py){ E(@)Vuy-n =0 only
k(z)Vul-n =n onl, uy =7 onl,.

Using the Green formula, the partial derivative of Exp = F,

by

0FEND
or

(w) =

J
= f k(x
o0

where 7} is the solution to

2vk(2)V(ujy
)V (ry)

0400 With respect to 7 is given

—u}).Vry dz

n(uy —ul)ds,

V. k(@)Vry =0 inQ
E(z)V(rg)-n =0 only
ry =w on I'y.

Since k(z)V(r{) -n =0 on 'y, we get:

1))
20 () = /F K@)V () - n (uf — ) ds Yw e HY2(T,). (3.25)
In a similar way we derive the partial derivative of Eyp with respect to 7
E
0 8ND (h) = / 2k(2)V (u}, — uly) - Vi dz
Ui (3.26)
= k(2)V(u}, —uly) -nrihds, Yhe HVY*(T,),
Ty
where 7 is the solution to
V- k(@)Vrh =0 in Q
= on I'y
E(x)V(h)-n =h on T,.
Consider the Steklov-Poincaré operator
Sy Hl/?(r\u) N H—l/Z(Fu) (3 27)

w — k(z)V(ry) - -n.
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One can observe that the kernel N(Sy) and the range R(Sy) of the operator Sy are defined

by
N(Sy) =R and R(Sy) = H V*(T,).

Then, it follows that Sy : HY*(I',)/N(Sy) — H~Y*(T,) is an isomorphism. Conse-
quently, the equation (3.25) implies the first condition of Theorem 6:

uy —up = Const on I',.

For the second condition, we introduce the dual Steklov-Poincaré operator:
-1 . pg-1/2 1/2
Sy, HTY(T,) — H h(Fu) (3.28)
h — rh.
From the fact that (7, ®) is a compatible pair one can deduce that Sf,l is an isomorphism.
Then the equality
E(@)V(u}) -n=k(z)V(uy)-n onT,,

follows immediately from the equation (3.26).
(i) The Dirichlet-Dirichlet case: We consider the problems (Pp) and (Py) with Dirichlet

conditions on I',. Then, we have

V- k(z)V(up) =0 inQ V-k(z)V(uy) =0 inQ
(Pp) uf, =T only (Pv)] k(@)V(uy) -n =P onTy
uy, =v onl,, ufyy =v onl,,

for each v € H'2(T,).

Using the Green formula, we derive

Bmeoe(0) = Epp(v) = 1/2 | (@) (uty = k). 9, — 3.

Q

The partial derivative of Epp with respect to v is given by:

agiD(h) - /Qk(a:)V(uvD(v) —uy(v)) - V(rp —r%)  Vhe HV(T,),

where 7, and 7% are respectively the solution to

Vok(z)Vrh =0 inQ V- k(@)Vrl =0 inQ
o =0 onTy E(@)V(rh)-n =0 only
rh =h onT,, o =h onl,.
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From the weak formulation of the last problems we obtain:

9Ebp )y _ )V (uh () — ul(v)) - n - (1 ub(v) — u () k(z)V (%) - n
5220 = [ k@) V) = k() 0 0h) + [ (o) = k)@ V) .

Using the fact that 7. = 0 and k(z)V(r}) - np, = 0, we get

5220 = [ k@ (up) — ) meh Vhe HT)

The second condition of Theorem 6 follows immediately from the last equation.
(i) The Neumann-Neumann case: Here we impose Neumann conditions on I',. This
case corresponds to the so-called dual Cauchy-Steklov-Poincaré operator. We consider the

following mixed boundary value problems:

V- k(@)Vul =0 inQ V- k(@)Vu}, =0 inQ
(Pp) q k(@)V(up)-n =n onT, (Pv){ k(@)V(uy) -n =n onl,
u) =T only E(@)V(u}) -n =@ onTy.

The Theorem 6 is fulfilled when v}, = u% + const, which can be expressed by:
Exn(g) = / K@)Vl — ) - V(e — )
Q
The partial derivative of Fyy with respect to 1 can be written as:

a?;N (h) = /ﬂux)wu%(n) — k() V(rh—rk), Yhe H VAT,

where 7% and 7% are respectively the solution to

V k(x)Vrh =0 inQ ~V - k(z)Vrh =0 inQ
k(z)V(rh) -n =h onT, k(x)V(rk)-n =0 only
rh = on Ty k(x)V(r)-n =h onT,.

Using Green formula and the fact that r% = 0 and k(z)V(r%) -n = 0 on I'y, we obtain

OENN
h
2

/ (ul, —ul)-h, Vhe HYXT,)
Ty

which implies the first condition of (3.23).
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The interfacial operators

In this section we introduce interfacial operators. For each case, we rephrase the first order

optimality condition, described in the previous section, in terms of an interfacial operator.

1. The Neumann-Dirichlet case: The solutions uy and u}, can be decomposed as
uly = uly + ) and uly = v + 1.
Then, the equalities (3.23) can be rewritten as

T n _—,0 0
Ty — T, =Up—uy on I,

{ k(x)V(ry) -n—k@)V(E)) -n =k@)Vh) -n—Ek@@)V@d) -n  on T,
Using the definitions of the fields r% and 7}, we deduce the following interfacial

system satisfied by (7, 7)

=S5l (n) =ud —uy on T,
—Sn(r)+n =k@)V@) -n—k@) V) -n on Ty,

T
s _—
(n) X

0 0

_ Up — Uy . ot
where y = < @) V(W) - 1 — k(z)V(ud) - n > only depends on the data (7, ®)

(1 =5
s_(*SN ; )

2. The Dirichlet-Dirichlet case: We decompose the solutions v}, and u}; as

which can be written as:

and

uhy =ul +rY and  wl =l F Y.

According to the previous theorem, when the minimum is reached we have

up =uy on I,
E(@z)V(uy) -n =k(@)V(u)) -n on T,

The first condition is always fulfilled. The second one reads
E(x)V(r}) -n—k(@)V(ry) -n=—(k(z)V(uh) -n—k(z)V(ul) -n) on T,.

This identity amounts to the requirement that v satisfies the Steklov-Poincaré type
equation:

S(w)=x on T, (3.29)
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where x = —(k(z)V(u}) - n — k(z)V(u})) - n, and S is the Stokes-Cauchy-Steklov-

Poincaré operator formally defined by
S(v) = (Sp — Sn)(v) = k(x)V(r}) -n — k(x)V(ry) - n.

3. The Neumann-Neumann case:

In this case the first relation in (3.23) gives

uhy=u} and S(n)=x on T,

where y = —(u%, — u%), and S is defined by S(n) = Sp' — Sy' =7}, — .

3.4 Numerical illustration

We deal with a two dimensional problem defined in a cross section 2. The domain €2, the

accessible boundary I', and the inaccessible boundary I, are depicted in Figure 5.

Figure 5: Domain € for the test problem.

Aming to validate the proposed approach, we consider here the identification of the
temperature and the heat flux on the inner circle I', from an over-specified data on the
outer circle I',. The data is generated from numerical solution (i.e. Synthetic data). The
numerical simulation are run under the Freefem-+ software environment [26]; it is a free
software based on the Finite Element Method. The domain (2 is discretized using an
uniform mesh with 100 nodes on I', and 200 nodes on I',.

We reconstructed the unknown data on I', in the case Dirichlet-Dirichlet.

The stopping criteria is F()\) < e, where ¢ is a given tolerance level.
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1

Synthetic data are generated by solving the following forward problem:

This test deals with the reconstruction of singular data. We note k =

—div(kVu) =0 in Q

k%; =1 on Ty
ROE— 1 on Ty
u=RE(--) on I,

(3.30)

where z = x + iy and taking the restriction of this solution and its normal derivative on
'y, we obtain the Cauchy data ® and 7" in problem (1.1).

We choose a source point a in the vinicity of the inner boundary.

In Table 3, we represent some numerical results for various values of the parameter a.
As can be seen from this table, the number of iterations increases when the value of a
approaches of T',,.

In Figure 6, the reconstruction of the Dirichlet data are presented, in, for a = 0.5, a = 0.8

a | nr. of nodes | nr.elements € nr. iterations
0.5 680 1210 1073 2267
0.8 680 1210 1073 15020
0.9 680 1210 1073 32227

Table 3: Number of iterations at different values of the parameter a.

and a = 0.9 on I',. The agreement in both these reconstructions are reasonable and stable.
We observe that the recovered solution matches quite well the exact one. Note that there
are some problems to actually capture the high peak of this solution.

In the previous test, the data were the exact values of the synthetic solution. However,
in practice, it is necessary to consider noisy data. Here, we still consider the singular test

case but the input boundary Dirichlet data T has been perturbed as follows:
T=T+ow

where ¢ denotes the noise level relative to ||T||z2(r,), and w is a random function generated
by Freefem+-+. We illustrate the results with various levels for a = 0.8.

In Figures 7 and 8, we plot the exact and the recovered solution still on I',.
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Figure 6: Reconstruction of Dirichlet data

Figure 7. Reconstruction of Dirichlet data with a noise of 2% (left) and 4% (right).
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Figure 8 Reconstruction of Dirichlet data with a noise of 10% (left) and 20% (right).
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