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Abstract

The contain of this lecture is mainly taken from [1] and [2].

1 NOMENCLATURE

Physical quantities

T  temperature

T, reference temperature

Ty flame temperature

E  enthalpy

D density of the porous fuel bed
M fuel load

D, gas density

K thermal conductivity of the porous fuel bed
C  heat capacity

Cy gas heat capacity

H  flame height

M, moisture content

A, evaporation latent heat

A,  pyrolysis heat
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2 (GOVERNING EQUATIONS

The dimensionless equations governing the fire spread in a region €2 with boundary I are:

oe +w.Ve — cAu+ au = R(u,y) (2.1)
e € G(u)
Ay = —g(u)y.

The boundary and initial conditions are given, respectively, by

u(x,t) =0, xel,t>0 (2.4)
u(x,0) = up(x), x€Q (2.5)
y(x,0) =yo(x), x€Q.

The unknowns e =

_ I'-Ty
u = "7

ﬁ, - and y are the dimensionless enthalpy, the dimen-
sionless temperature and the mass fraction of solid fuel, respectively. 7, is the mass frac-
tion lower bound of extinction. w = DDgggv is a re-scaled velocity and g is defined by
g(u) = s (u,y)B where the function s is given by

1 if U > Uy O Y > Y
+ = - '
sT(u,y) = { 0 otherwise

The non-dimensional enthalpy e is an element of a multivalued operator G, given by:

U if U < Uy
[ty 5w+ Ay if U = U,
Gu) =4 u+A, it w, <u<u,
[up + Ny, up + Ay + 2] if U=,
U+ Ay + Ay if U > Uy,

where u, and u, are the non-dimensional evaporation temperature of the water and the
non-dimensional pyrolysis temperature of the solid fuel, respectively. The quantities A,
and A, are the non-dimensional evaporation heat and pyrolysis heat, respectively and are
related to the physical quantities by

M,A,
A = CT,,

AP
Ay = o

The convective term w.Ve takes into account the energy convected by the pyrolisated gas
through the elementary control volume.
The right hand side describes the thermal radiation from the flame above the layer. A
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derivation of this term is given in the appendix. This term is a convolution operator given
by,

R(x)(g/ﬂ( )f(x—f()df(
sy

ao 4
which takes into account nonlocal radiation from the flame, where § = %[t] [1], [t].[1] are

the time scale and length scale respectively, and Q(u,y) = {2 € Q; u(z) > u, and y(z) >
Ye} 1s the fire domain on the surface.

The term kAu describes thermal conduction and au represents the energy lost by convec-
tion in the vertical direction. The parameters x and « are related to physical quantities
bym:%anda:%.

Equation (2.3) represents the fuel mass variation by pyrolysis.

It should be noticed that in the burnt zone the multivalued operator does not exactly
represent the physical phenomena as the water vapor is no more in the porous medium.
This drawback can be circumvented setting A, = 0 and A, = 0 in the burnt area.

These model is a variant of the models in [7] (chapter one), Model I in [6] or model in [8]
where we have introduce the influence of the moisture content and the heat absorption by
pyrolysis, by using the enthalpy multivalued operator. The nonlocal radiation term used

in this paper is derived in the appendix.

3 NUMERICAL METHOD

3.1 Time integration

Let At = t"*1 — " a time step and let y", ¢® and «® denote approximations at time step
t", to the exact solution y, e and u respectively.
We consider a semi-implicit scheme by discretizing the total derivative, see [10]

Oe+w.Ver é(e”*l —e")

where &" = e" o X", and X"(x) = X(x, " ") ~ x — wAt is the position at time " of
the particle which is at position x at time ¢"*!. At each time step we solve,

yn+1 B yn n n
Loyt (31)
n+l _ zn
% — kAU + au™tt = R” (3.2)
et e Gumth). (3.3)

The basic idea is to treat implicitly the positive terms. Instead the nonlocal radiation
term, which is costly computed, is evaluated explicitly at time ¢".
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3.2 Iterative solution at each time step

Problem (3.1),(3.2),(3.3) is non linear due to the multivalued operator G. We consider first
an exact perturbation of this problem.
Let w > 0 be a given parameter and set

G =G —wl
where I is the identity; then (3.3) can be written
2L = et L € G (gL | (3.4)
For A and w verifying Aw < 1, the resolvent
Y=+ AG) = (1= M) +2G)7!
is a well defined univalued operator and the Yosida approximation of G“ is given by
w_I-J%
AT T
It is easy to check that inclusion (3.4) is equivalent to equation

Zn+1 _ Gg\;(un—kl + )\Zn-H) .

This suggests the following algorithm for solving (3.1), (3.2), (3.3):
For u™, y™ and 2", given

1. Set u" 10 = qn, 2 HL0 = zn

2. Compute
T
ntlitl _ Y

y 14 Atg(untti)

n+1,i+1

3. Compute u solving

(OéAt + w)un+l,i+1 o AtlﬁAunJrl’iJrl — é" o zn+1,i + AtRn .

4. Compute z"THH = Gy (yntHitl 4 \pnthiy

5. If ||zt — znFLi|| > Tol, update i + i + 1 and go to step 2,
else, end of the loop.

For Aw < 1/2 the Yosida approximation G¥ is Lipschitz operator with constant 1/ and
the convergence of the algorithm can be proved [11].
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uy up u

Figure 1: G* operator
3.3 Practical computation of z"THi*!

In the following we take Aw = 1/2. Set @ = u™™1+! 4 \2nH1i then

which is equivalent to solve (for Aw = 3)
(wl+G)z 3 2wa.

Then s is given by (Figure 1):

if 2wu < (14+w)u, then 7= 22

if (14 wu, <2wi < (14 w)u, + Ay then z=u,

if (14 w)u, + Ay < 2wt < (1+w)u, + Ay then z= Qﬂ?

if (14+w)uy+ A <208 < (14+w)uy+ A+ A, then zZ=u,

if (14+w)u, + A, + A, < 2w then z= mﬁ#

4 NUMERICAL RESULTS

First we consider the influence of the moisture content, M,, defined as the ratio of the
weight of water absorbed to the weight of dry wood in a case without wind and slope. The
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numerical calculation corresponds to a square fuel bed of 3 x 3 m? composed with Pinus
Pinaster with a fuel load of 1 kg/m?2. We have studied the propagation of a fire front for
different moisture contents, neglecting first the pyrolysis heat. We used the following set
of parameters:

K=01JK's7', C=1300Jkg™", h=15Jm 2K 's7!

T = 300K, T, =373K, T, = 500K
M, =0.10, 0.15, 0.20, A, =2.25 x 10°Jkg™*, A, =0., 3.0 x 10*Jkg™*
H=02m, §=02s".

We take the time scale [t] = 1 s and the length scale [[] = 1 m which gives the following
non-dimensional parameters:

k=13x10" a=0.02, A\, =06,09, 1.2, A\, =0. 0.09.

0 represents an empirically set parameter. This parameter takes into account flame and
fuel properties, particularly the temperature of the flame T and the absorption coefficient
a, and it is adjusted for a given fuel in accordance with the rate of spread. The fire is
ignited at the center of the square. We obtain a circular fire front as it is foreseen. In
Figure 2 we have plotted the non dimensional temperature on the line x5 = x; at different
time steps for M, = 0.1. The effect of the moisture content can be clearly appreciated in
the plate before the fire front. In Figure & we present the temperature profile at time 150 s
for different moisture contents. For the three values of M,, 0.1, 0.15 and 0.2 considered the
rate of spread are 1.07 cm/s, 0.76 cm/s, 0.49 cm/s respectively. For a given fuel load there
is an upper value of fuel moisture above which the fire will not propagate; in this example
this critical value is M, = 0.22. The heat absorbed by pyrolysis is usually much lower than
the heat absorbed by evaporation of water and is sometimes neglected or emulated by an
equivalent heat mechanism modifying the specific heat. To see the effect of the pyrolysis
heat we show in Figure 4 for M, = 0.05 and for A, = 0 and A, = 30 kJ /kg the position of
the fire front at time 150 s. This affects the critical value for the moisture content.

In the second example the influence of the slope and the wind is considered. The slope
modifies the nonlocal radiation term in a similar manner as does the wind, so the effect in
the propagation of the fire front is similar. The wind has two effects, in one hand through
the convective term, on the other hand determine the tilt angle of the flame, increasing or
decreasing nonlocal radiation. We take a terrain surface given by z = x5 tan(p) representing
an inclined table. ¢ is the inclination angle of the table. The dimension of the table is
3x3 m? A wind velocity above the table is considered in the z; direction. The parameters
0 and 3 are adjusted so that the rate of spread as a function only of the slope angle and
only of the wind velocity fit the values given in [9]. We show in Figure 5 the maximum
rate of spread for an slope angle ¢ = 7/6 and several wind velocities. The contours of the
temperature are showed in Figure 6. This numerical results agrees reasonably with the
images of the experiment described in [9].



ENVIRONMENTAL PROBLEMS III: FIRE PROPAGATION MODELS

3 T
moisture
content, 0.1 150 time,s.
~ 100 N
251 pyolysis [\ ~ n N q
heat, 0. [\ \ ra / \
\
2 \ R
|
|
S |
215+ | R
E |
® |
3 |
g |
21 F | R
|
|
|
|
05| | 4
\
0
. . I I I
-2 -1 0 1 2
m. line x2=x1

Figure 2: Temperature at different time steps for M, = 0.1
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Figure 3: Temperature at time 150 s for different moisture contents
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Figure 4: Temperature at times 50 s and 100 s for different pyrolysis heat
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Figure 5: Front position and isotherms at time 50 s

All the computations have been done using P1-Lagrange finite elements approximation,
and anisotropic adaptivity, implemented with FreeFem+-+, a finite element package by
Pironneau and Hetcht [13].
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Figure 6: Front position and isotherms at time 100 s
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Figure 7: Front position and isotherms at time 150 s
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5 SIMPLIFIED MODEL: ENTHALPY-RADIATION MODEL

5.1 Physical model

Let @ = [0,1,] % [0,,] C R? a rectangle and S be a surface defined by the mapping
S:Q +— R3
zy o (z,y,h(z,y))
representing the part of the terrain where the propagation of a fire can take place (see
Figure 8). We will assume that vegetation can be represented by a given fuel load M
(kg/m?), together with a moisture content M,, (kg of water / kg of dry fuel). M and M,
are scalar functions defined on ). Besides we will assume that the height of the flames in
a particular fire is known and bounded by H. In order to take into account some three
dimensional effects, and particularly the radiation from the flames above the surface S, we
will consider the following three dimensional domain

D ={(v,y,2) € R* (x,9)€Q, h(r,y)<z<h(r,y)+H}.

In the following sections we develop a model for fire propagation considering the energy
and mass conservation equations in the surface S, and the radiation equation in D. We
denote, as usual, the boundaries by the symbol 0.

N
D A &
7 lr':' 3
<t &
\\ e o \\ \.\

Figure 8: Fire domain

5.2 Energy equations

As the front of pyrolysis and the front of drying are assumed to be sharp we have neglected
heat conduction in the vegetation. Energy conservation is described by the equations:

e+au=r inS, te€(0,tmau) (5.1)
e€Gu) inS, te(0,tna)- (5.2)
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The initial condition is given by the Arrhenius law:

u(x,0) =up(x) x€S8. (5.3)
The unknowns e = ﬁ and u = T;Z:’“ are the non-dimensional enthalpy and the non-

dimensional temperature.
The non-dimensional enthalpy e is an element of a multivalued maximal monotone
operator (7, given by:

u if U < Uy
[ty 5 Uy + Ay if U = Uy
Gu) =< u+2X, if w, <u<uwy,
[up + Ay, up + Ay + Ay if U= up,
u+ A, + A, if U > Uy, .

Where u, and w,, are the non-dimensional evaporation temperature of the water and the
non-dimensional pyrolysis temperature of the solid fuel, respectively. The quantities A,
and ), are the non-dimensional evaporation heat and pyrolysis heat, respectively and are
related to the physical quantities by

M,A

)\u o i
CTs
AP

A = CTy,

It should be noticed that in the burnt zone the multivalued operator does not exactly
represent the physical phenomena as the water vapor is no more in the porous medium.
This drawback can be circumvented setting A, = 0 and A, = 0 in the burnt area.

The term au represents the energy lost by convection in the vertical direction. The pa-

rameter « is related to physical quantities by a = ]’&[g
5.3 Fuel equation
The mass fraction of solid fuel y, is given by
Oy=—gw)y nS te (0, tmna) (5.4)
y(z,0) = yo(x) xeS. (5.5)

Equation (5.4) represents the fuel mass variation due to pyrolysis and (5.5) is the cor-
responding initial condition. ¢ is given by the Arrhenius law g(u) = (v > w,)(y >
ye)Bexp(—v/(1 + u)) where y, is the mass fraction lower bound of extinction and the
logic expressions are equal to 1 if the expression is true and 0 if the expression is false. -~ is
related to the activation energy E,, by v = R?;, R being the universal constant of perfect
gases.
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5.4 Radiation

The right hand side of equation (5.1) describes the thermal radiation reaching the surface
S from the flame above the layer. The intensity is defined as the radiadion energy passing
through an area per unit time, per unit of projected area and per unit of solid angle.
The projected area is formed by taking the area that the energy is passing through and
projecting it normal to the direction of travel. The unit elemental solid angle is centered
about the direction of travel and has its origin at the area element.

After adimensionalization, the radiation equations in the direction €2 can be written as

QVi+a'i=06(1+u,)* inD (5.6)
t=0 ondDN{x; Qn <0}

where i = Mlc[t%m’ a* = [lJa and § = w Uy = % is the non dimensional flame
temperature. In a first approximation we have considered a gray body and neglected the
scattering. Here, a(x) is the mean absortion coefficient of the gray body and is a function
of the point x = (x,9,2) € D. 0 =5,6699 x 1078 Wm 2K ~* is the Stefan-Boltzmann con-
stant. The right hand side represents the total emissive power of a blackbody. The incident
energy at a point x(z,y, h(x,y)) of the surface S due to radiation from the flame above
the surface per unit time and per unit area will be obtained summing up the contribution
of all directions €2, that is ,

r(x) = / i(x, Q) dw, (5.8)

w=0

where we have only considered the hemisphere above the fuel layer.

6 NUMERICAL METHOD

6.1 Time integration

Let At = "t — " a time step and let y", ¢" and «" denote approximations at time step
t", to the exact solution y, e and u respectively.
We consider a semi-implicit scheme. At each time step we solve,

6n+1 —en

Q" ot =" (6.1)
6n+1 c G(un+1) (62)

ytt =yt Wl o
A A} (6.9

The basic idea is to treat implicitly the positive terms. The nonlocal radiation term
r, depends strongly on the temperature u and on the fuel mass y, therefore, it will be
evaluated explicitly at time ¢™ and its computation is explained in subsection 5.4. Once
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the radiation 7™ is given, problem (6.1,6.2,6.3) is non linear due to the multivalued operator
G. However, the solution of this problem can be reduced to explicit calculations as it is
explained in the next subsection.

6.2 Solution at each time step

The multivalued operator in (6.2) is maximal monotone, then its resolvent J, = (Id+\G)™!
for any A\ > 0 is a well defined univalued operator. Morever, the Yosida approximation of

G, Gy = Id;‘h is a Lipschitz operator and the inclusion (6.2) is equivalent for all A > 0 to
the equation
e = Gy (u"t + Ae™), (6.4)
or
+1 _ J)\(un+1 +/\en+1)_ (65)
On the other hand, rearranging (6.1) we have
1 1 1
n+1 n+1 n n
— = — —r". 6.6
e ozAte ozAte + ozr (6.6)
Taking A = 1/(aAt) by substitution in (6.5) we obtain
S e (6.7)
U 1/alt N e" 7" .
Once u™*! has been obtained by solving (6.7) we calculate e" and y"** explicitly
"t =" — aAtu™ + Atr™, (6.8)
yrt = y (6.9)

1+ Atgluntty

6.3 Practical computation of J1/aAt(ﬁ€" + %r”)

It remains to explain how to calculate u"*! in (6.7). That is, for a given b = ——e" + 17",
compute s = Jy/4a:(b), which is equivalent to solve

(@At Id + G)s 5 b= aAtb (6.10)
Then s is given by (Figure 9)
if b< (1+aAt)u, then s= 2
f (14 alAt)u, <b< (1+aAt)u, + A\, then s =,
1f (1+ aAt)u, + A, < b < (1 + aAt)u, + A, then s= 11:02\&
if (14 altyu, + A, <b< (14 aAt)u, + A, + A, then s=u,
if (1+aAt)u,+ A, + A, <b then s= b;igxzp
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ot G

Figure 9: aAt Id + G operator

6.4 Numerical solution of the radiation equation

The radiation term 7 in the energy equation (5.1) is computed by numerical integration in
(5.8). More precisely. at each point (z,y, h(x,y)) on the surface S we consider the tangent
plane, its corresponding unit tangent vectors

Oh\t
S (1,07%)t i (0717671/)

Y P
1+ (5)? 1+ (52

and the unit normal

(_%7 _%7 l)t
n= .

L+ (G2 + (8h)?

In the corresponding axes the directions €2 can be expressed

Q=cT,+coTy+cn, c3 >0,

where ¢, ¢, ¢3 are determined by the couple (0, ¢) with 0 < 6 < 7/2 being the angle of
Q with n (polar angle) and 0 < ¢ < 27 the angle of the projection of € on the tangent
plane (azimuthal angle), with 7, (10).
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Figure 10: tangent space

To be more specific, let us denote yu = cosf, v = cos¢, and ¢ = cosa = 7, - T, that
is, « is the angle between the two tangent vectors. Then the expression of €2 in the base
{Ts, Ty} is

1/27\/1—§ —<\/1_ 1/2\/1_727_ + um, (6.11)
V1—¢? Vi—g !

which gives the following expression for the cartesian components

Q=(1-p 7o+ (1= p?)

Q= (Qh 927 Q3)t7

where
0 — 0h+ 1 YWI=¢Z—cy/1—72
1= - s
; — 2
,/1+<%>2+<3—z>23x R
1 V31— p?/1 =72
o dh dh 2 Gy 8h)2 V1—¢? '
y
1-— 1—¢2— 1—~20h
Q, = \/ 1 7\/ 2 —¢y/1-19%0 N

Y S A

. 1 V1—p?/1—=920h
\/1+(%§)2 Vi—¢ oy

Finally, summing up for all the solid angles in (5.8)

0=n/2 rop=27
/ / i(X,0,0)cosOsinf didp =
0 ¢=0

=1
i (X, ) (%, 1Y)

dpdry +/ / dudry 6.12

/N . / i N A e (6.12)
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where i, (resp. i_) stands for the radiation intensity i corresponding to an angle ¢ such
that 0 < ¢ < 7 (resp. ™ < ¢ < 2m). The integrals in (6.12) are computed using Gauss-
Legendre quadrature with respect to p and Gauss-Chebyshev quadrature with respect to
v in order to cope with the singular weight \/17 That is

1

7,)/2

r(x) ~ Z Wit 1 (X, pe, V)b + Z Wia i (X, fs Vo) - (6.13)
k,l kil
Characteristics method

To compute the incident radiation in the direction € at a point on the surface S (z,7, 2),
with z = h(Z, ), we consider the characteristic line

[0.¢] — R?

§— (2(§) =T+ &, y(€) =7+ &, 2(§) = 2+ E0Q3) .

On the characteristic, equation (5.6) becomes

di
d{( +ati = 6(1+ uy), (6.14)

which can be solved together with the condition
lim i(§) = 0. (6.15)

To solve the problem, we need to evaluate the gas temperature u, in the domain D.
The solution of the energy and fuel equations (5.1, 5.2, 5.4) only provides the temperature
u on the surface S. To extend the temperature field to the whole domain D we proceed
as follows: If there is no wind, we extend the temperature vertically, that is, we define the
extension @ by a(x,y,z) = u(z,y, h(z,y)) for all points (z,y,z) € D and h(x,y) < z <
h(z,y) + H. In the case of wind conditions, we compute the extended field assuming a
convective transport, that is, a(z,y, z) = u(x — (z — h(z, y))f}—z, y—(z—h(z, y))Z—Z, h(z,y)).
Here (v, vy, v,) stands for the velocity field which we suppose to be known. More precisely,
(vg,vy) is a horizontal meteorological velocity field and v, is computed by the rule v, ~
V10H. Otherwise a three-dimensional velocity field can be computed involving only two-
dimensional computations using for example the model in [14].

6.5 Example 1: Fire propagation in the Ebro River Basin

In this example we consider the fire propagation in a zone of the Ebro river basin where
the combined effects of the topography, wind and radiation can be observed. First due to
the wind the fire front follows the river bed. Later the wind turns and by effect of radiation
the fire crosses the river and rises up to the top of the mountain.
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wind field solid fuel, initial time

Figure 11: Wind field, topography and initial fuel distribution

solid fuel, after 50 time steps solid fuel, after 200 time steps

Figure 12: Fuel distribution and burned zone after 50 and 200 time steps

6.6 Example 2: Parallel computing perfomance of the radiation
term

In this example we consider the parallel computation of the radiation term and its efficiency.
The example corresponds to a fire near the village of Cofrentes in the center of Spain. Main
physical parameters are:

e Zone 6 km long by 3 km width
e Water content: 2%

e Half-time decay: 700 seconds

e Flame height: 20 meters

e Flame temperature 1225°C

e Wind velocity (1st): NO WIND

e Wind velocity (2nd): 10 m/s — 20 m/s
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Main numerical data are:
e Mesh size: maximum size 100 meters, minimum size 50 meters
e number of uknowns per variable: 31774

e Time step: 200 seconds

e Numerical integration points for radiation: 8 x 2 = 16.

Figure 13: Fire front position without wind

Figure 14: Fire front position with wind
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‘ Number of threads ‘ Run Time (seconds) ‘ Acceleration ‘ Efficiency ‘

1 3.798 1 100%
1 1.110 3,42 86%
8 631 5,57 70%
16 687 5,53 35%

Table 1: Run times and efficienty for eight directions of numerical integration

| Number of threads | Run Time (seconds) | Acceleration | Efficiency

1 12.265 1 100%
1 3.220 3,81 95%
8 1.770 6,03 87%
16 1.606 7,64 8%

109

Table 2: Run times and efficiency for sixteen directions of numerical integration

APPENDIX

In this appendix we estimate the nonlocal radiation term R in equation (5.1). In a non

scattering medium, for a gray gas, the incident radiation intensity at a given point of the
terrain surface for a fixed direction, integrated over all wavelengths, is given by (see[12],
and Figure 7):

i(p) =i(0)e " + /OH in(p*)e” B dpr (6.16)

where a is the absorption coefficient, (s fo *)ds* is the optical thickness for a path
of length s, and ¢, is the intensity radlatlon from a black body.

Assuming that the gas out of the flame is a transparent medium, then i(0) = 0 and taking
oT} (k)
fl
s

into account that inside the flame 7,(pn) = we obtain assuming a flame with small

width - -
o ao

. fl —a(s2—51)\ ~ Il

i(u(s)) =TI (1 — el

where sy — 57 is the travel length inside the flame.

The energy flux ¢ at a point P(x,z) of the terrain surface is obtained integrating for all

directions

T (52 - Sl) )

0=27 =7 /2
q _/0 /ﬂ i(3,0) cos(B) sin()dBdo .

For a flame with triangular section of vertex V and base centered in O, see Figure 8,
setting oy the angle between the flame and the horizontal plane, v the angle between the
horizontal projection of the flame with the position vector of the point x with respect to
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the center of the base of the flame, «y the slope of the terrain surface, and B the width of
the flame base, we get

B acT} (27 (/2 Bsin f(tan § — tan 5 5) d6d6 617
q(X) - cos y+tan ay tan as 2 B \2 ﬁ . ( . )
g 0 Bu (tanaffcos’ytanas +tanﬁ) - (ﬁ)
. . . . : dA
Now using a Simpson rule to integrate with respect to 5 and observing that df = m
X —X
we obtain
aoT? ‘o, _
q(X): f / g(a7,‘}/7a~’ﬁH)dA7 (618)
T Jo, Ix—X]
where . .
( 8,) = 2(7r 5 )sin(m’%)(tan(ﬁ”%) — tan Gy)
glag 7, &, Pr) = 3'2 H (czos'y+tanaftanas +tan(ﬁ}12+%))2

tan ay—cosy tan as

llz—&|| _ cosy+tanoy tan ozs)
T .

and (8, = argtan(

tan ay—cosytan as
Finally the expression for R in (5.1) is obtained by adimensionalization, taking 6 =
aoT?

e [l1] and f(x — %) = forasin)

0 P2 o \) OLf
v T

O\ P
\.ocs_/

Figure 15: Flame position
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