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Abstract

The contain of this lecture is taken from the articles [1] and [2].

1 WIND FIELD MODEL

1.1 Wind equations

Let w C R? be a two—dimensional normalized bounded and connected domain representing
the projection of the three dimensional ground surface, x = (z1,x2) be any of its points
and 7 be the time. We use small letters for the two—dimensional problem, and capital
letters for the three dimensional problem. All quantities are adimensionalised.

Let us consider the three—dimensional domain Q = {(x,2) : € w, h(zx) < z < 0}
representing the studied air layer. We assume that the height § is small in front of the
width and that the height h(x) of the surface at point « is smaller than 6. In this section,
we denote by an index ., the three-dimensional operators, and by an index , the bi-
dimensional operators.

The air velocity U = (Uy, Us, Us) and the potential P satisfy the Navier—Stokes equa-
tions. On one hand, the momentum equation reads

ou 1
or +U- VU Re

where T is the adimensional temperature, Re is the Reynolds number, A is related to the
Grashoff number (indeed, AT is the Grashoff number), and ez = (0,0, 1).
On the other hand, the air compressibility is neglected, so that

V. - U=0. (1.2)

A
AU+ Ve P = 5o Tes, (1.1)
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In order to specify the boundary conditions, we decompose the boundary into 99 =
SUAUL, where S = {(z,2) : € w, z = h(x)} is the ground surface, A = {(z,2) : x €
w, z =0} is the air upper boundary and L = {(z,2) : v € Jw, h(z) < z < ¢} is the air
lateral boundary. Boundary conditions are

ou
U-N= 07 aiN . = CU, on S, (13)
U3 = 0, azUl = GZUQ = 07 on A7 (14)
U|, = (tm,0), onL, (1.5)

where ( is the friction coefficient, N is the 3D inner unit normal vector field to OS2, and
the subscript 4, denotes the tangential component. Here v, is the horizontal component
of the meteorological wind (its vertical component is neglected), that is assumed to be
known, non depending on z and with a null total flux through the lateral boundary, that
is,

0,V =0, / (0 —h)uvy, -vds =0, (1.6)
Ow

where v = (vq,v) is the 2D inner unit normal vector field to dw. We complete these
equations with the initial condition

Ulr=o = U, (L7)

where U is the initial velocity, that we assume to be known. Equations (1.1) to (1.7) are
well posed, i.e. there exists a solution (U, P), which is unique up to an additive constant
on pressure for a small enough Reynolds number.

We distinguish the vertical velocity from the horizontal one denoting W = Us, V =
(U1, Us), and we define the horizontal flux at a point 2 € w and time 7 by

5
Vir,x) = /’( )V(T.,x,z) dz. (1.8)

The incompressibility and the fact that the air does neither cross S nor A, that is, U-N = 0,
involve that the horizontal flux is also incompressible, that is

V.-V =0. (1.9)

1.2 Asymptotic wind equations

Using the fact that the thickness § of the considered air layer is small compared with its
width, and assuming that the wind is not too strong and more precisely that 6*Re < 1,
then preserving only the dominant terms and re-scaling P. Equations (1.1) and (1.2) write

—2V+V,.P = 0, (1.10)
0.P = AT, (1.11)
V. - V+oW = 0. (1.12)
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Boundary conditions (1.3), (1.4) and (1.5) give

(V,W)-N=0, 8.V=CV, onb5, (1.13)
W =0, 9.V=0, ondA, (1.14)
V-v=(6—h)vy, v, ondw. (1.15)

Equations (1.10) to (1.15) are well posed: given v, satisfying (1.6) and 7', there exists a
solution (V, W, P) which is unique up to an additive constant on P. For more details about
this convection asymptotic model and its further solution (1.16), (1.17) and (1.18), see [4].

1.3 3D Horizontal velocity in terms of 2D potential

We assume that the air temperature linearly decreases with the height and vanishes on the
upper boundary (for a non zero constant given air temperature on the upper boundary,
similar formulas hold and numerical results are very close), that is
06—z
T(r,x,2z) =ts(1,0) ———,
and that the temperature tg = tg(7,2) on ground surface is given. Then, by Equation
(1.11), there exists a 2D potential p = p(7, ) such that

1
P(r,2,2) = p(r,x) + t(7, ) (52 - 522),
where t is a re-scaled temperature given by

t(r,x) = 72%(;’(;5))

The potential p is called 2D because it only depends on the first two spaces variables
x = (x1,22); it also depends on time 7, but this last acts now as a parameter.

Then, Equation (1.10) and boundary conditions 9,V (7, x,d) = 0 and 0,V (7, z, h(x)) =
¢V (7, z, h(zx)) included in (1.14) and (1.13) provide

V(x,z) = m(z, 2)Vup(r, z) + n(x, 2) Vit (T, x), (1.16)
where

m(z,z) = (%ZZ — 0z — %hZ(x) + (0 +&h(x) — 56),
n(r,z) = ( - 2—14,24 + édz?’ - é63z + 2—14h4(x)

1 1, 1 .
+ 5Eh*(@) + 50°h(x) - 566 )

1 3
— G+ OR @)

being £ = 1/( the inverse of the friction coefficient (.
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1.4 Equations governing the 2D potential

Using (1.16) in Equations (1.9) (which follows from (1.12), (1.13) and (1.14)) and (1.15),
we find that the potential p = p(7, ) satisfies the following 2D houndary problem

—V, - (aVep) =V, - (bV,t) in w, (1.17)
9 _ —bﬁ +v ond (1.18)
ag - =—bg-+v onduw, .

where
0= ale) = 30— h(@)*(3 + 65— h(a),
b=b(x) = %(5 — h(2))? (252(25 +5€) — 20(6 — 5E)h(x) — (36 + 5ER%(x) + h?’(x))7
and
v=uv(r,x) = (6 — h(z))v,(r,2)  v(x)

is the horizontal normal flux on dw. By Hypothesis (1.6), it satisfies

/awv=0. (1.19)

Equations (1.17)—(1.18) are well posed: given ¢ and v, there exists a solution p, which is
unique up to an additive constant. This constant will be fixed by the extra condition

/p:(].

1.5 Variational solution of the 2D potential equations

Let
L3 (0w) = {v € L*(0w) : /awv = 0},

V:{(pEHl(u}):/Lp:O}.

w

Given ¢t € H'(w) and v € L}(0w), by Lax-Milgram theorem, there exists a unique p € V
such that

/an-ch:/ vapf/th‘Vap, Yo e V. (1.20)
w Ow w

Let us check that it satisfies (1.17) and (1.18). Given ¢ € D(w), ¢ = ¢ + ¢ belongs to
V for some ¢ € R; then (1.20) writes [ aVp V¢ = — [ bVt -V since [, v(¢p+c) =
¢ [,,v = 0. This provides Equation (1.17) in distribution sense. Now (1.17) and (1.20)
give [ (V- (aVp+bVt))p = [, ve. This provides Boundary Condition (1.18) in a weak
sense since  may coincide with any given element of H'(w) in a neighborhood of dw.

In fact, data depend on time 7 which acts as a parameter: given #(7) € H'(w) and
v(7) € LE(Ow), there exists a unique solution p(7) € V.
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2 THE OPTIMAL CONTROL PROBLEM

In order to simplify notation in the sequel, the time 7 is omitted since it acts as a parameter,
and the index , is omitted in differential operators since they only act on this variable.

2.1 Identification of wind on the boundary

We are going now to identify v to the solution u of an optimal control problem: given N
experimental measurements V; of the wind velocity at given points (z;,2:), i = 1,... N,
we search the value of v € L3(dw) such that the V(z;, 2;) given by (1.16) are as close as
posible to the experimental values V;. This is an optimal control problem where:

e v € L2(0w) is the control.
e The state equations is (1.20).

e The cost function is chosen to be
1 N «
J0) = 5 Vo) = Vil + 5 /w o
Due to (1.16),

J(v) = %Z lm(zi, 2:) Vo) + nlwi, 2) V() — Vil|* + %/@ V2. (2.1)

In practice, instead of (2.1), we use the following regularized functional

10 =53 [ pa@lme. 5)Vple) +n(o. )40 ~VilPdo+ 5 [ 22)

where Pei is a suitable mollifier cancelling outside a small ball B(xz;,€¢) and such that
J pei(x)dx = 1. For example,

1 /x—ux;
peile) = =o(F—2),

where p(x) = cexp(—1/(1 — ||z||?)) for ||z]| < 1, and p(x) = 0 for ||z|| > 1.
The optimal control problem to be solved is to find u € L2(0w) such that

J(w)= inf J(v). (2.3)
veLZ(0w)

Remark. The regularization term ¢ faw v2do is necessary for mathematical reasons. Indeed,
without this term the optimal control problem has no solution (if we search for the control
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u in the whole space L3). We have choosen o a small number. If a good estimation of the
wind flux v & u* is known on the boundary, we can modify the cost functional in (2.1) as
follows:

J(v) = %Z / Pei(@)||m(z, z)Vp(x) + n(x, z)Vi(x) — Vi||* dz + %/a (v —u*)*do

and choose a larger value for a. Note that we cannot impose at the same time the value of
the wind flux on the boundary and the value of the solution at several given points, as once
the wind flux v is given on the boundary the wind field is uniquely determined by (1.17)-
(1.18). Therefore the optimal control problem with the former functional is a compromise
(and so is the value of the parameter ) between these two sets of data. Usually in practical
applications we do not have a good estimation of the flux on the boundary, and this is the
reason why we choose the value of a to be small, typically o = 0.001.

2.2 Solution of the optimal control problem

Let Bv € V be the solution of
/aVBU -V = / vp, Vo eV, (2.4)
w Jw
and r» € V be the solution of

/aVr Vo =— / bVt-Vy, Veoel. (2.5)

The operator B is linear continuous from LZ(0w) in V, and r is independent of v.
The solution of (1.20) is p = Bv + r, therefore

J(v) = %ﬂ(v, V) — A(W) + p (2.6)

where 7 is the bilinear continuous function on L2(dw) x L2(dw) given by

N
m(u,v) = Z / pei(mV Bu) - (mVBv) + a/ v, (2.7)
=1 Jw Ow
A is the continuous linear function in L3(dw) given by
N
Av) = Z / pei(mVr +nVt —V;) - mV B, (2.8)
i=1 7w

and p is the constant

1 X
=3 Z / PeiVi- Vi (2.9)
i=1 /e
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Obviously,
m(v,v) > 0‘||U||%g(aw)~

Then, by Theorem 1.1 Chapter 1 in [5], there exist a unique solution u of Problem (2.3).
It is characterized by J'(u) = 0, where J'(u) is the derivative of J at point u, which is a
real linear continuous function on L2(dw). That is

J'(u)-v=0, Yo Li(0w). (2.10)

Using the chain rule,

N
J(u)-v= Z / Pei(MVp+nVt = Vi) - mVBv + a/ uw (2.11)
im1

Ow

(this formula holds for all u € V).

2.3 Definition of the adjoint state and elimination of the control

Denote now p the potential associated to w by (1.20), that is the unique solution p € V of
/an-th:/ utpf/thVgo, Yo e V. (2.12)
w Ow w
Let

W:{weHl(w): y;:o}.

Ow
We introduce the adjoint state as the solution ¢ € W of:

N
/qu -V = Z/pm-(mVp—i- nVt —V;) -mVy, Y € W. (2.13)

Since J'(u) = 0 the expression (2.11) of J' provides

N
Z/Pe,i(mVpﬂLth—Vi) -mVBv = —a/ uv. (2.14)
i=1 7w Ow

Let us take ¢) = Bv+c in (2.13) where ¢ = — [, Bv/|w| is such that ¢ € W. With (2.14)

it gives
/qu -VBv = —oz/ uv. (2.15)
w ow

On the other hand, let us take ¢ = ¢ 4 ¢ in Definition (2.4) of Bv, where ¢ = — [ q/|w]
is such that ¢ € V. Since [, v =0, we get

/aVBv-Vq:/ 1)q+c’/ v:/ vq. (2.16)
w Ow Ow Ow
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Comparing (2.15) and (2.16), it results, for all v € LE(dw),

/ qu = —a/ uv. (2.17)
Ow ow

Since u € L§(Ow) (by definition (2.3)) and qla, € L§(Ow) (because [, ¢ =0 from ¢ € W),
(2.17) implies

1
- _2q 2.18
u=-—-q (2.18)

Using this, Definition (2.12) of p, gives

1
/an-th—l—f/ qcpz—/th-Vgo, Yo e V. (2.19)
w @ Jow w

2.4 An equivalent problem

In order to allow easier numerical computation, let us see that it is equivalent to solve
coupled equations (2.19) and (2.13) in H'(w) instead of V and W.
On one hand, (p,q) € H'(w) x H'(w) and satisfies

1
/an-chJra/ qgazf/th-Vgo, Vo € H'(w), (2.20)
w Ow w
N
/qu SVip = Z/pm—(mVp + 0Vt —V;)-mVi, Yo e H'(w). (2.21)

Indeed (2.20) is satisfied by constant ¢ (since [, ¢ = 0) and therefore by all ¢’ + ¢ with
¢ €V and ¢ € R, that is for all ¢ € H'(w). And (2.21) is satisfied by constant 1 and
therefore by all ¢’ + ¢ with " € W, that is for all v € H*(w).

On the other hand, let us check that the solution of (2.20) (2.21) is unique up to a
constant on p. Let here (p,q) denote the difference of two possible solutions. It satisfies
(2.20)—(2.21) with ¢ = 0 and V; = 0. Setting ¢ = ¢ in such (2.20) and ) = —p in such

(2.21) and adding, we get
1 N
2
- q + / Pei

and then gla, = 0. Setting now ¢ = p in (2.20), we get [ al|Vp|* = 0 and then Vp =0
and p is constant. Setting finally ¢ = ¢ in (2.21), we get [ a||Vg||* = 0 and then ¢y, = 0
gives ¢ = 0. This proves that (Vp,q) is unique, that is the uniqueness of (p,q) up to a
constant on p.

mVp|l” =0




ENVIRONMENTAL PROBLEMS II: WIND FIELD MODEL 81

2.5 Expression of the adjusted wind

There exists a unique (Vp,q) solution of coupled equations (2.20) (2.21). Indeed there
exists u € L2(Ow) satisfying (2.10), and then p € V solution of (2.12) and ¢ € W solution
of (2.13), and then (Vp, q) satisfies (2.20) (2.21) and is unique as seen in section 2.4. The
adjusted wind velocity V(z,z) is given in terms of this Vp(z) at every point (x,z) by
(1.16).

3 APPROXIMATED SOLUTION

3.1 Approximated equations

In order to make p unique and to improve numerical solution, we actually compute the
solution of the following approximated equations: find (p,q) € H'(w) x H'(w) solution of

1
/an~VsO+v7/ pw+a/ qw:—/th-V% Vo e H'(w), (3.1)
w Ow Ow w

N
/qu-Vz/J—l—n/a qw:Z/pm(mVp—l-th—ViydeJ, Vi € H'(w), (3.2)
w w -1 Jw

for a small parameter n (in the examples below n = 0.001), and then we compute the
(approximated ajusted) wind velocity V(z, z) at every point (z, z) in terms of Vp(x) using
expression (1.16).

Remark. The reader could expect regularization terms involving integrals on w instead
of dw. In (3.2), the regularization term nfaw qv is used in order to get fawq =0 (by
choosing ¢ = 1). Indeed this important condition (it gives v € L2(0w) by (2.18)) which
followed from the exact equation (2.20) (by choosing ¢ = 1) is no longer contained in the
approximated equation (3.1). In this last, we then use the regularization term 7 [, pe in
order to get Equality (3.3) below.

3.2 Convergence

Let us check that the solution of (3.1)—(3.2) goes to the solution of exact equations (2.20)-
(2.21) as n — 0. At first, let us bound ¢. Setting ¢ = ¢ in (3.1), ¥» = —p in (3.2) and
adding, we get

N

N
1
E/ ¢+ /pf,i\ITﬂVpl\Qz—/th-Vq— > /pf,i(th—Vi)-mVp (3.3)
Ow =1 Jw w w

i=1

By Cauchy—Schwarz inequality, it follows that

N
1 0 1 2
E/awq +2;/wp€’,¢||mVp|| < —/wat-Vq. (3.4)
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Here and in the sequel, ¢; denotes various positive numbers independent of 7, p and gq.
Setting ¢ = ¢ in (3.2) and using m < cya and Cauchy Schwarz inequality, we get

N
1
5 [alval+n [ @< [ plmvl+a
w Ow i=1 Jw

Dividing by 2¢3, adding to (3.4) and using b < csa and Cauchy—Schwarz inequality, we get

1
f/ qQ—kc(,-/a,HVqH2 <. (3.5)
Q' Jow w

This implies that ¢ is bounded in H'(w).
Now, let us bound p. Setting ¢ = p in (3.1) and using b < cza, Cauchy Schwarz
inequality and (3.5), we get

1 1 1/2
§/a||Vpll2+n/ p2§08—f/ pq§c8+c9(/ p2) : (3.6)
w Ow @ w Ow

Setting ¢ = 1 in (3.2), we get [, ¢ =0, and then, setting ¢ = 1 in (3.1), we get

1
/ p=——-{[ ¢=0. (3.7)
Ow Qan J ow

Therefore Poincaré-Wirtinger inequality ([, p?)"/? < c10( [, [[Vp]*)"/? holds. Then (3.6)
gives ([ [IVp]*)"/? < c11 and p is bounded in H'(w).

Let now 7, — 0. There exists a subsequence such that the corresponding solution
(Pns @) of (3.1)—(3.2) goes to some limit (p,q) weakly in H'(w) x H'(w) and therefore
strongly in L*(w) x L?(w) and its trace converges strongly in L?(0w) x L?(0w). Then the
limit (p,q) satisfies exact equations (2.20)-(2.21). These equations possessing a unique
solution, as seen in § 2.4, all subsequences go to the same limit and therefore the whole

sequence (pPn, ¢n) goes to (p, q).

3.3 Computation of wind

Practically, we compute the unique solution (p,q) of (approximated) coupled equations
(3.1)-(3.2) for a small parameter 7, and then we compute the (approximated ajusted)
wind velocity V(x, z) at every point (z, z) in terms of Vp(z) using expression (1.16).

3.4 Finite element approximation

Let us discretize the approximated equations (3.1)—(3.2). Let T be a uniform triangulation
of w corresponding to a discretization parameter H and let Vi be the associated space of P
(or P,) finite elements. Besides a better order of convergence, a reason in favor of P against
P, is that in practical applications, the variable of physical interest is the wind velocity V'
which is obtained from the potential p using expression (1.16), involving derivatives.
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Choosing a finite element basis {¢,} for Vg, we introduce the following matrices

G= {/WGWT'W’“M/aW@%}J

1 N
¢, = {a/aw@(ﬁk}rkv Cy = {;/wﬂe,imQ V@'Vﬁﬁk}nk

s

and the vectors

N
= {- [wevo} o = {-% [ra@i-vom o] .

T

Then, the discrete problem associated to (3.1)—(3.2) is the following linear algebraic system:

(2 91021-1)
702 G q fq

The matrix in (3.8) being nonsymmetric and very ill-conditioned, most of the standard
iterative methods fail to converge or have a very slow convergence (this is the case of
GMRES-ILU preconditioned). For moderate number of unknowns we use the state-of-
the-art sparse LU factorization [6]. In [2] a highly effective solution method is obtained by
means of a preconditioned Schur complement approximate, leading to a nonsymmetric sys-
tem that can be solved by GMRES in a constant number of iterations. For the description
and a complete numerical analysis of this approximate see [2]. According to this numerical
analysis and to the numerical experiments described in the following section, the number
of iterations appears to be insensitive to 1 and only mildly dependent on «. Note that p
is determined up to a constant, but only Vp is needed to compute the wind velocity V.
Then we choose 1 small enough so that the perturbation term does not affect the value of
Vp up to the desired precision.

3.5 Solution method for the linear system

Consider the block triangular preconditioner

G -C
P = { 0o o } . (3.9)
We have
L6~ 6t GeGt ] [ I 0
MPy *[CI G H 0 ¢ |T|ac nraciaet | G0

The following implementation only requires vectors of length n within GMRES: first we
find the solution of the block lower triangular system

1, 0 Yo | | by
[CIG*I I, + O/ G106 ] {yp} = [b,, ! (3:11)
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and then we recover the solution of (3.8) by solving the block upper triangular system

KR ININ

0 G P Yo |

If a sparse Cholesky factorization of G is available, the latter system can be easily solved.

Since G represents a discrete elliptic operator in 2D, it can be factored very efficiently and

with relatively low fill-in by a sparse Cholesky factorization like the one described in [6].
The solution of the linear system (3.11) is given by [b,; y,] where y, solves the reduced

system

(I, + C,G~'C,G Yy, = b, — C1G'by, (3.12)

which can be written as
(G+ G ') Gy, =4, where d =b, - C,G'b,. (3.13)

Solving the reduced system (3.13) with GMRES is equivalent to applying right-precon-
ditioned GMRES to the Schur complement system

Sz,=d, vy = Gz,

using G as the preconditioner. As shown below, this iteration converges at a rate inde-
pendent of h. Clearly this requires solving two linear systems with coefficient matrix G at
each step, just like GMRES preconditioned by P;, applied to the unreduced system (3.8).
The advantage of the reduced system approach is that it requires only vectors of length
n (rather than 2n) and this results in very substantial savings already for moderate n.
Again, a sparse Cholesky factorization of G (computed once and for all at the outset) can
be used to compute the action of G~ on a vector.
Summarizing, the algorithm (which we call P3) is the following:

R = chol(G)
f = R\(R"\b,);
d=b, - O\ f
Po . solve (G+CiG7'Cy)G 'y, =d with GMRES (3.14)

p = R\(R"\y,);
q=f+ R\(R"\(C2p))

where the Matlab-like ‘backslash’ notation x = A\b denotes the solution of Ax = b.
Furthermore, in GMRES the coefficient matrix (G + C1G7'Cy)G™! is not constructed ex-
plicitly. Tnstead its matrices are applied to a vector in sequence; G~! is applied by using its
Cholesky factors R and RT, computed in R = chol(G). In practice, the matrix G is first
reordered using an approximate minimum degree (AMD) algorithm [9] before computing
the Cholesky factor.
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4 NUMERICAL EXAMPLES

4.1 Example 1: Effect of a topography and of a temperature gra-
dient
In this section we consider the effect of two hills on the wind, as well as the effect of the

temperature gradient in a square of 6 by 6 kilometers. The ground height and ground
temperature are shown on Figure 1.

uuuuuuuuuuuuuuuuuuuuuuuuuuuuu

Figure 1: Ground height and ground temperature (Example 1)

The wind velocity is supposed to be known (by experimental measurements) at four
points of horizontal coordinates = = (1.,1.), (5.,1.), (5.,5.), (1.,5.) and of height z =
0.1 + h(z), with the same value V(z, z) = (2.,0.) and we take o = 0.001.

Figure 2 shows the computed adjoint state and potential, and Figure 3 shows the
computed velocity module and wind field on the ground surface, that is for z = h(z). As
expected, the wind is deflected by hills and it converges in the hot region.

4.2 Real data for Example 2

We have considered a simulation using realistic wind data that have been supplied by
Desarrollos Edlicos S.A. (DESA), in several measurement points for an episode along
March 21, 2003, see [7].

The studied three-dimensional domain 2 is located near Lugo, Spain, at 43N of lati-
tude and it is horizontally limited by four points of UTM coordinates (609980, 4799020),
(626000,4799020), (626000, 4813040) and (609980, 4813040), respectively. The upper
boundary A of Q has been taken at a height 6 = 1080 m. A digital elevation map
was provided by DESA on a quadrilateral grid of element size 20 x 20 m. The X axis
corresponds to East direction and the Y one to North. Thus, we are working with a region
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Figure 3: Velocity module and wind field (Example 1)

of 16020 x 14020 m. The minimum and maximum terrain heights are 420 m and 1020 m,
respectively. Figure 4 represents a color map of the heights of the terrain.

Wind has been measured every 10 minute at 5 stations which are plotted on Figure
4: from North to South, we find E208, E212, E242, E206 and E283. At stations E208
and E212; the wind was measured at two different heights. Their coordinates are given in
Table 1.

Roughness is an essential factor on the characteristics of the resulting wind profile. In
this case, the roughness length values are 0.03 m, 0.05 m, 0.08 m, 0.3 m and 0.8 m.
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Figure 4: Terrain heights and stations: From North to South E208, E212, E242, E206 and
E283

Station UTM-E UTM-N Height
E206 615396 4805218 924.8
E208 616917 4807256 945.0
E212 617423 4806382  895.0
E242 618290 4806136  873.2
E283 617473 4804111  849.0

Table 1: Coordinates of stations (in meters)

4.3 Example 2: Wind computation for the above real data

We procede in three steps:
e First, we estimate the main parameters of our optimal control wind model.

e We compute the wind with our model using data of input stations E206, E208 and
E212.

e Finally, we compare the computed wind to the measured wind at control stations
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E242 and E283 (Table 2). They are also compared at input stations (Table 3) but
this is less significant since, there, the computed wind is optimized to be close to
data.

We propose a quadratic adjustment of the friction coefficient in terms of the roughness
of the terrain, i.e., ( = ag + a12¢ + agzg. We have used a standard genetic algorithm code
(pgapack library), with string real coding, based on the model developed by Levine [8]
to look for optimal values of these quadratic adjustment parameters ag,a; and as. We
search for the optimum of the linear parameter ag in [1,10], the first order parameter a; in
[0,5] and the second order parameter ay in [—0.05,0.05]. The values of the coefficients a;
slightly depend on the meteorological conditions, which means that the friction coefficient
depends slightly on the solution. Typical values of the coefficients are ag = 3, a; = 0.5
and ap = —0.01 showing in practice a linear dependence of the friction coefficient with the
roughness.

We have computed the wind every 10 minutes throughout the day with our optimal
control model for the above adjusted parameters, using wind data only at stations E206,
E208 and E212 (input stations). The data at the two other stations, E242 and E283 ( control
stations), are not used as input; they are used to control the efficiency of our model. The
measured and the computed wind velocities at these control stations are shown in Figures
5 and 6. The estimation of the parameters a; has been carried out only once each hour
(24 computations along the day) using the first experimental wind measurements that are
available at the begining of each hour.

T T T 1
Measured wind

20 3-D Computed wind ------ B
2.5-D Computed wind

0 P S S S
00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 00:00

time

Figure 5: Comparison of measured and computed wind velocities at control station E242

In order to compare our model (called 2.5-D model) with classical wind adjustment
models, these figures include the wind velocities computed by the three-dimensional mass
consistent model (3-D model) described in [7].
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Figure 6: Comparison of measured and computed wind velocities at control station E283

Errors of the computed winds with respect to the measured winds at control stations
are given in Table 2. Remark that the present 2.5-D model provides better results at the
control station E242 which is close to the input stations (see Figure 4). On the contrary,
the 3-D model is more accurate at the control station E283 which is far from the input
stations. This error can be explained by the fact that the hypothesis of the 2.5-D model
are broken by the more rugged terrain at the station E283 (we can see on Figure 4 that
the level set lines are streched close to E283).

Stations and Average Average % Maximum Minimum Model
control points measured computed average  absolute absolute
wind wind error error error
E242 (40 m) 8.40 10.69 27.24% 5.09 0.09 3-D
8.40 8.49 1.05 % 2.54 0.01 2.5-D
E283 (49 m) 13.62 12.95 4.94 % 3.04 0.02 3-D
13.62 7.73 43.28 % 9.88 1.34 2.5-D

Table 2: Error at control stations

Errors at input stations are given in Table 3. As expected, average errors are small.
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