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Abstract
In this lecture first we review the general theory of splitting algoritmhs and thus we
apply this concept to the construction of a multilayer convection-diffusion model and
its numerical approximation based on a combination of the Adaptive Finite Element
Method with characteristics in the horizontal directions and Finite Differences in the
vertical direction.

1 GENERAL SPLITTING ALGORITMS OF EVOLUTION
EQUATIONS

For a complete study of these methods see [1]. For a brief introduction see [2]. Let consider
equations of evolution of the following general form

My A = f (1.1)

dt
u(0) = ug (1.2)

where u is a d—dimensional vector, M is a positive definite symmetric matrix and A is
a function (non necessary linear) from R? into R?. In the following we endow R? with
the following energy inner product (Mu,v) for every u,v € R% with its associated norm
ull = (Mu,u)"2,

An unconditionally stable algorithm for equation (1.1)-(1.2) is given by a family of
functions F(7) : R — R?, 7> 0, satisfying
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1. consistency:

lim MM = —Au forevery wu€ R®. (1.3)

7—0 T

We will consider in the following methods of at least order one, that is, verifying
F(ru=u+1MY(=A(u) + f) + O(r?) (1.4)
2. unconditional stability:
[|[F(T)u — F(t)v|| < |lu —v|| forevery wu,v€ R, 7>0. (1.5)
When the mapping F(7) is linear, the stability condition (1.5) reduces to
[|[F(T)u|| < |[ul| forevery wue€ R®. (1.6)
Ezamples

1. The Euler implicit algorithm is

n+l _ ,n
MU u + Aun+1 _ fn+1 (1 7)
T
uO = Ug; (18)
in that case
F(ryu=(M+71A)"u (1.9)

and the solution at time step n + 1 is given as a function of " by
utt = (M + 1A (M TA) T (1.10)
The Euler method is consistent of order one as it is easy to verify.

2. The Crank-Nicolson scheme is

n+l _ . n 1 1
ME—— 4+ S (A 4+ Au") = (" + ) (1.11)
T
u® =g ; (1.12)
we have 1 1
F(t)u= (M + 5TA)_I(]V[ — gTA)u (1.13)

which is a second order algorithm.
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In a variety of environmental problems and continuous mechanics the operator A and
the source term f admit an additive decomposition

A=3V4, =3l (1.14)

We are concerned with algorithms that exploit the additive form of A and f. Let
F;,i = 1,...,N denote stable algorithms consistent with M and A;. The corresponding
splitting algorithm then takes the form

F(1) = Fx(7)Fx_1(7).. Fy (1) = I Fy(7) . (1.15)

In other words, the algorithm F(7) amounts to applying the individual algorithms
F;(T) consecutively to the solution vector, taking the result from each one as the initial
conditions for the next algorithm. We have,

Proposition

The algorithm (1.15) is consistent with M and A and is unconditionally stable if the
individual algorithms are.

Proof: The consistency of the individuals operators F;(7) implies

Fi(t)u=u+ 1M (—Ai(u) + fi) + O(7%), i=1,..,N.
Taken the product of Fi(7) and Fy(7) and retaining terms up to second order we obtain

By(r)Fi(r)u = F(7)(Fi(r)u)
Fi(t)u — TM_lAQ(Fl (T)u) + TM™ o + 0(72)
= u—7TM YA + A)(u) + TM(fy + fo) + O(7%).

Proceeding by induction it is readily shown that

F(rju = (L F(r)u=u— M (SLA)u+ M (SL, fi) + O()
= u—TM TA(u) +TM T f +O(7?).

Proposition: The algorithm (1.15) is unconditionally stable if all the individual algo-
rithms are.

Proof: It follows from the definition of unconditional stability (1.6) that for every
u,v € R¥and 7> 0

||E(r)u = F(7)ol| (L, F(7))u — (T, Fi(r)ol|
|1 Ex () (I Fy(m))u = P (7) (I Fy (7))o

(L Fy(r)u — (I Fy ()l

IN
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Proceeding by induction one finds
|F(T)u = F(7)v]] < [lu—wvlf. (1.16)

|

Remark: Although the algortihms corresponding to F;(7) are second order accurate,

the splitting algorithm (1.15) is not ([2]). Using a a double pass procedure the second order
accuracy can be recovered, i.e.,

NIEL R 7). (117)

1
—T

F(r)u = (ML i

2 A MULTILAYER CONVECTION-DIFFUSION MODEL:
PRELIMINARIES

In the following we deal with the mathematical model of a convection-diffusion process in
a three dimensional domain characterized as corresponding to a zone where the surface is
not necessarily flat. Let w C R? be a two dimensional normalized bounded and connected
domain representing the projection of the three—dimensional ground surface, x = (1, z2)
be any of its points and 7 be the time. We use small letters for the two—dimensional
problem, and capital letters for the three dimensional problem.

Let us consider the three dimensional domain Q = {(z,2) : * € w, h(z) < z < §}
representing the studied air layer. Let § be the height of the domain 2 and assume that
the height h(x) of the surface at point x is smaller than . In this section, we denote by
an index , the bi-dimensional operators and by the index . the operators concerning the
vertical component. We note the air velocity U = (Uy, Us, Us). We distinguish the vertical
velocity from the horizontal one denoting W = U, V = (Uy, Us).

3 THE CONVECTION-DIFFUSION MODEL

The convection diffusion equation governing the dispersion of pollutant in the atmo-
sphere is

ou ou 0, Ou
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In order the problem to be well defined we have to add boundary and initial condition. We
assume that the air is initially clean, that is © = 0 at time ¢ = 0. The following boundary
conditions will be assumed

—kyyVur = [V]tu. (3.2)

3.1 Change of coordinates

We make a change of coordinates in order to transform the domain into a cuboid. The
new coordinates will be

T t
§ =z
’[7 =
¢ = z—=h(zy).
By straightforward computations for any function ¢ = ¢(t, x,y, z) we have
9 _ 09
ot or

¢ ¢ Oh O
O o6 0z ¢
o o9  0h0g
Jy oy dyoC

9 _ 99
dz  oC’
Then the convection term becomes
oh Oh Ou
UVu = VVeu+ (W — Vigs Vzay) o
and the diffusion term is
=V(kVu) = — Ve (keyVeyu)

9 oh., Oh o Ou
e (et ka5 + k(50 57)
o O 0hou 0 @@)

26" "9z 0¢” " oc oz o€

o  Ohdu. O . 0Ohdu

+ a*n(kﬁnaiyaig) + (97C( 5"87/8777) :

(3.3)
Consequently the equations in the transformed domain are analogous to (3.1) and (3.2)
replacing W by W — 1,22 — VQ and k. by (k¢ + ke, (22)? + kgn(ah) ) plus the terms with
crossed derivatives in (3.3). In the following we use the notation z, y and z for the new
coordinates instead of &, 7, ¢
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4 NUMERICAL METHOD

4.1 A Finite Element - Characteristic - Finite Difference method

Let A} be a Finite Element approximation of the operator —V(k,, V) in the layer [ and at
the time ¢,, and we note u} the solution in this level at this time. We use a two dimensional
Finite Element method in each level combined with the Characteristic method. In the
vertical direction we approximate the convection term with an upwind first order scheme
and the diffusion term with a secod order Finite Differences scheme. The crossed derivatives
are approximated using prisms with triangular section, which is equivalent to use triangular
finite elements in the horizontal direction and finite differences in the vertical direction.
Let @ be any of the horizontal sections of the cuboid. We denote B; and (] the matrices
defined by the coefficients

B OhOp;  OhOy;
(Br)ij = /@kzy(%% + 873/373/)%)’ (4.1)
_ O0hdp; | Oh g

A one step Euler implicit method

Given a time step At, and an interval length Az in the vertical direction,

For each layer [ =1,..., L
wt —ap W 1 1 W 1 1
AT E( o —Uyﬂ)—g(uﬁ:ﬁ — )
—u 2 —

(Az)?
1 , 1 ,

+ EBI(U;LE -y + Ecl(u?ﬁl —u™)

{if(l==1)4+ "} = o+ (4.3)

+ At + k,

where W," = max{0, W;} and W,” = max{0, —W,}, and @} is given by @' = ul 0 X™ where
X™(x) = X(x;t") is the solution at time ¢" of the final value problem

dx
X(z, ") =z (4.5)

In the former scheme all the levels are coupled, in consequence it is not very suitable
from a practical point of view. Next we consider a splitting method where the problem
can be solved at each level separately.
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Splitting Method

67

Forl=1,... L
n+1/4 —n
u, —u
4 —t AL L=0 (4.6)
up Yy . M( w22
At Az =1
nt1/2 | ntl/2
1 ngiy2 Uy Y
AT 4k,
+ D) lul + (AZ)2
1 n+1/2 1 n+1/2
+ E(_Bl ) + @(—Cl“z:/ )
N n 1 s
{if (l==1)+ "/} = 5f +1/2 (4.7)
Forl=1L,..1
u T g _ %(unw/zx gy
At Azt =1
1 » e LR T
ZA n+ kz l I+1
+ 2 l“z + (AZ)2
1 n+3/4 1 n+3/4
g (B 4 g (Co )
{if(l==1)+ """} = 3/ +3/4 (4.8)
uiH gt/
a0 (4.9)
Remark The term (I == 1)\u"*! represents the eventual absortion by the terrain and it

appears only in the surface level (I = 1).

Justification of the splitting method

In order to simplify, we consider the former problem without convection terms and without
crossed derivatives. The discrete equations can be written using matricial notation as

follows:

du

il +Au+Tu=f,

where

(4.10)



68 LUIS FERRAGUT

Uy
u = uy
ur,
A 0
A=| 0o 4 o
0 .. Ag
2 —1 0
1 2 -1
TG
0 0 .. -1

1 0 0
1 -1 1 0
T (A2
0 0 -1
and
1 -1 0
0 1 -1
U= !
(Az)?
0 0 0

Finally the splitting algorithm is

n+1/2 _ 1
A + 514un+1/2 _'_L,un+1/2

un+1 o un+1/2

At

n

u u

1
4 514u71,+1 4 Uu'n+1

—_

DN — DO

fn+1/2

fn,+l

(4.11)

(4.12)

(4.13)
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Figure 1: velocity field

5 NUMERICAL RESULTS

The following results correspond to the orography in an area near Cofrentes (a small town
in central Spain) and a typical wind field shown in Figure 1. The wind field has been
computed at five different levels. The wind field in the figure corresponds to the wind field
at the surface level. The wind model and its numerical solution is described in [3], [4] and
[5].

We assume that at a given time a certain amount of pollutant is released to the atmo-
sphere taking place at the ground surface, according to the expression (gaussian emission)

F(t,7) = ae (520 o~ (X101 {0)H(X1]=[1])2)/(26)

where
e { is the time in seconds
e ¢ = 100 is a pre-exponential factor.
e b =100 is the standar deviation of the gaussian distribution
e ¢ = 300 is the half life time of the emision in seconds
e X = [500,4500]" is the point where the emision takes place.
The other physical values are:
e Horizontal diffusion coefficient, k,, = 107!

o Vertical diffusion coefficient, k, = 1073
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Figure 2: Concentration in the first level at different time steps

e Absortion coefficient in the surface level, A\ = 0.001

Figure 2 shows the concentration at the first level at the initial time then after 10, 20
and 30 time steps respectively.

Figure 3 shows the concentration at the third level after 10, 20, 30 and 40 time steps
respectively.

Figure 4 shows the concentration at the fifth level after 10, 20, 30 and 40 time steps
respectively.
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Figure 3: Concentration in the third level at different time steps
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Figure 4: Concentration in the fifth level at different time steps
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