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Abstract

In these notes we introduce and study Lagrange-Galerkin methods of order two.
We present algorithms to implement them efficiently, and develop an error analysis
that shows the different regimes of convergence of such methods.

1 INTRODUCTION

The design of efficient and accurate convection-diffusion algorithms is of significant impor-
tance in the computational fluid dynamics community, in particular, when the transport
terms of the equations describing the mathematical model become dominating with respect
to the diffusive ones. In this case there appear a large variety of spatio-temporal scales
that have to be properly resolved in order to obtain a numerical solution sufficiently close
to the exact one. To see this is so, we consider the prototype equation for the convection-
diffusion problem of a passive substance, the concentration of which is denoted by ¢ (z, ),
in a bounded domain D C R? with smooth boundary I":

%+u~Vc—VAc:f, in D x (0,7T)

C‘F =0
c(0) =co

where u is the velocity and v the diffusion coefficient. The dimensionless form of this

UL
equation contains the so-called Péclet number Pe defined as Pe = —, where U and L

v
represent characteristic velocity and length scales respectively. When Pe is large enough,
two sources of difficulty appear in the numerical treatment of this problem. The first one
arises from the fact that the diffusive term, vAc, may be considered as a perturbation
Jdc

e

to the convective one + u- Ve, in regions where ¢ (x,t) is smooth; so that, in these
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dc
regions the dynamics of the solution is mainly governed by % + u - Ve, which represents
the change of ¢ along the characteristic curves (or trajectories of the flow particles) of

the hyperbolic operator — + u - V. But the existence of boundary conditions to be

ot
15}
satisfied by ¢ (z,t) in all T x (0,7 is incompatible with the hyperbolic character of —: +

u - V¢; so that, the imposition of the boundary conditions on ¢ (x,¢) will lead to the
appearance of a region at the boundary where the solution has to accommodate to satisfy
the boundary conditions. This region is termed as boundary layer, and one can show
through perturbation analysis that the width of it is O(Pe @), 0 < o < 1. Therefore,
for high Péclet numbers the boundary layer is narrow and consequently the solution will
develop a strong gradient inside it. It is well known, see for instance [21], that numerical
methods based on Galerkin projection (either as finite elements, or as spectral methods,
or as hp finite elements) will develop spurious oscillations (Gibbs phenomenon), unless the
boundary layer is properly resolved, which will have a pernicious polluting effect on the
solution. A primary remedy for this consists of allocating a large number of elements in
the narrow boundary. This fact brings us to the second source that concerns with the size
of the time step At one has to choose for conventional time discretizations schemes of the
equation. At high Péclet numbers, time discretization explicit schemes are ruled out due
to the fact that the stability criterion of these schemes requires At to be so small that the
number of time steps needed to perform the simulation is very large, in particular, when
T is long. Other frequently used time schemes are the so called semi-implicit schemes
in which the diffusive terms are discretized implicitly and the convective terms are left
explicit. This discretization yields linear symmetric systems of algebraic equations which
are efficiently solved by the preconditioned conjugate gradient method or by multigrid
algorithms; however, it is subjected to the stability criterion of the form

AtDma>% [ul
0D ok 0< K <1,

hmin
where |u| denotes the modulus of the velocity vector and Ay, is the minimum diameter
of the mesh elements. Clearly, when Pe is large the size of At is also unreasonably small
in semi-implicit schemes. Therefore, at high Péclet numbers Pe it is convenient to use
implicit schemes which are unconditionally stable and do not link the size of At to huyin;
however, this requires the use of non-symmetric solvers which are less efficient than the
solvers for symmetric systems.

Considering that the Navier-Stokes equations can, roughly speaking, be viewed as non-
linear convection-diffusion equations, and given the industrial and scientific interest that
flows at high Reynolds numbers Re have (in Navier-Stokes equations Re plays the role
of Pe in convection-diffusion equations for a passive substance), many efforts have been
devoted to the development of numerical algorithms in the framework of the Galerkin
projection to overcome the drawbacks above described.

This development has followed different approaches, such as the Eulerian, the La-
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grangian and the Eulerian-Lagrangian ones. In the Eulerian approach one calculates mesh-
point values of ¢ at time instants t,, thus formulating the numerical method on a fixed
mesh but with the purpose of suppressing the wiggles in an efficient manner without dam-
aging the accuracy of the method. To this respect, we shall only refer to Petrov-Galerkin
methods such the SUPG (Stream-Upwind-Petrov-Galerkin) and Galerkin/least squares al-
gorithms developed by Hughes and coworkers [13], [19] for convection-diffusion problems
of a passive substance as well as the Navier-Stokes equations and conservation laws. This
is a general finite element method for problems with strong hyperbolic terms, including
compressible and incompressible flows, which has been developed by introducing two mod-
ifications to the conventional Galerkin method. The first one consists of modifying the test
functions along the streamlines of the flow to yield a least-square control of the residual
of the finite element solution. The second modification adds an artificial diffusion term
of strength Ch%RK, where hg is the local mesh size and Ry is the local finite element
residual in this method.

In the Lagrangian approach one attempts to devise a stable numerical method by
allowing the mesh to follow the trajectories of the flow. The problem now is that the
mesh undergoes large deformations, after a number of time steps, due to stretching and
shearing, and consequently some sort of remeshing has to be done in order to proceed with
the calculations. The latter may become a source of large errors.

In the Eulerian-Lagrangian approach the purpose is to get a method that combines
the good properties of both the Eulerian and Lagrangian approaches. There have been
various methods trying to do so, among them we shall cite the characteristics streamline
diffusion (hereafter, CSD), the backwards Lagrange-Galerkin or simply Lagrange-Galerkin
(LG) methods (also termed Characteristics Galerkin), the semi-Lagrangian methods, and
more recently a new class of LG methods proposed by M. Benitez in her excellent PhD.
thesis (2009) to integrate the convection-diffusion equations formulated in Lagrangian co-
ordinates, thus in this notes we term this latter LG methods as forward Lagrange-Galerkin
(FLG) methods to make clear that they integrate the equation forward in time along the
trajectories of the flow. The CSD method has been developed by [17], [18] and [20] and
intends to combine the good properties of both the Lagrangian methods and the streamline
diffusion method by orienting the space-time mesh along the characteristics in space-time,
yielding thus to a particular version of the streamline diffusion method. The Lagrange-
Galerkin and semi-Lagrangian methods approximate the material derivative

Dc_ac

E—a‘i’ﬂ‘vc

at each time step by a backwards in time discretization along the characteristics trajecto-
0
ries X (x,t,41;1) of the operator a—l—u- V, th <t <tpi1, [ being an integer that usually

takes the values 0 or 1. At ¢ =t,;1, X (x,tn+1;tn+1l: x € D. The diffusion terms are
implicitly discretized on the fixed mesh generated in D. The point here is how to evaluate
c(X (x,tnq1;t),t). One way is by L? projection onto the finite dimensional space associ-

ated with the fixed mesh, as the Lagrange-Galerkin method does, see [5], [6], [12], [23], [14]
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and [28] just to cite a few; another way is by polynomial interpolation projection of high
order as [10] and [16] propose. When the evaluation of ¢ (X (x,¢,41;t),t) is done by poly-
nomial interpolation projection the method is called semi-Lagrangian. The FLG methods
of [3], formulated in a finite element framework, integrate the Lagrangian formulation of
the convection-diffusion equation forward in time along the characteristics curves of the
transport operator, followed by the Galerkin projection onto the finite dimensional space
associated with the mesh defined in the space of material points or labels. The advantages
of LG or semi-Lagrangian methods are various. From a practical point of view we have the
following: (i) they allow a large time step without damaging the accuracy of the solution;
(ii) unlike the pure Lagrangian methods, they do not suffer from mesh-deformation, so
that no remeshing is needed; (iii) they yield algebraic symmetric systems of equations to
be solved. From a numerical analysis point of view, we shall show in these notes that the
constant C' that appears in the error estimates of the LG methods is much smaller than
the corresponding constant of the standard Galerkin methods and, what it is more impor-
tant, is uniformly bounded with respect to the values of v. To appreciate the relevance
of this behavior of C. we recall [24] that the error constant of standard Galerkin meth-
ods in convection-diffusion problems takes the form Cg ~ v~ exp(tmaxpyor) |ulv™?),
and is sharp because the Gibbs phenomenon, which appears in the boundary layers when
the mesh is coarse, grows exponentially. The v~ dependence of the constant Cg makes
the standard Galerkin methods be unreliable in convection dominated diffusion because
in such problems v < 1 and therefore Cg becomes very large. This does not happen
in LG methods because the dependence on v is uniformly bounded; however, this does
not mean that LG are free from the Gibbs phenomenon if the grid is coarse, but such
a phenomenon is well under control and so is its pollutant effect. The semi-Lagrangian
methods have been used in Meteorology for numerical weather prediction since the early
80’s of the past century, see [27], and from then on they have become the scheme for some
of the present generation of sophisticated weather prediction models such as HIRLAM.
Recently, in [9] the semi-Lagrangian has been combined with second order implicit-explicit
Runge-Kutta-Chebyshev schemes in a finite element framework to develop a time-space
adaptive algorithm for convection reaction-diffusion problems.
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PART I
LG method for linear convection equations

2 THE CONTINUUM PROBLEM

To introduce the idea of the LG method we consider the Cauchy problem for a linear
hyperbolic equation of first order

P
9 o uVe=0, z€RY t>0,

ot (2.1)
o(X,0) = (),
where ¢ : R x [0,7] — R, u: R? x [0,T] — R? is a vector-valued function and ¢°(z) has

compact support defined in a domain Dy cC R? Next, we introduce the characteristics
curves of the first order differential operator

0
& +U'V,

which are the solution (if it exists) of the system of ordinary differential equations

dX(w,s;t) w(X(z. s
PO (@, 55010, o

X(x,8;8) = .

The notation X (x,s;t) of the solution of (2.2) is used in order to make explicit its depen-
dence on the initial condition (x,s). Let ¢(X(x,s;t),t) denote the value of the variable ¢
at time ¢ on the curves X (z, s;t), the variation of ¢ along such curves is then given as

De(X (z,8;t),t)  0c(X(z,8;t),t)  dX(x,s;t)
oY) _ V(X (z,8:1),1) =
Dt at + dt VC( (‘7;7 S? )7 )
Oc(X(x,s:t),1)
ot
Hence, the Cauchy problem (2.1) can be written as an ordinary differential equation along
the characteristics curves, X (z,s;t), of the form

D
HC =0, X(z,51) €R% £ >0,
¢ (2.3)

(X (2,0;0),0) = (z)

Assuming that u € C([0, 7], WE*(R%)?) and °(z) is sufficiently smooth, problem (2.2)
has a unique solution and the solution of (2.3) is then given as

c(X(tt+71),t+71)=c(1). (2.4)

+u(X(z,s:t),t) - Ve(X(x, 8;t),1).
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3 FINITE ELEMENT FORMULATION OF THE
CONVENTIONAL LG METHOD

In the framework of finite elements, two approaches have been proposed to generate a time
marching algorithm to approximate the solution ¢(x,t). One of them is the so called LG
method introduced by Douglas and Russell (1982) and Pironneau (1982) and the second
one is the weak LG method proposed by Benqué et al. (1982). The realization of these
approaches requires the definition of a partition D, on a domain D C R? sufficiently large
such that Dy C D, if necessary D may vary with time ¢, and then the construction of a
finite element space V}, associated to Dj. Specifically, we consider that the closed region
D := D UOD is tessellated to produce a quasi-uniform regular partition D, composed by
simplexes with the property that if 9D is a curved boundary the elements adjacent to the
boundary will have at least one curved face (see [11] for the theory of curved elements),
whereas the elements in the interior of D will have plane faces. Given the integer NE > 1,

Ne
Dy, = {T] CD:DU&D_UT]},

=1

and there exist real constants ¢ > 0 and v > 0, such for all 5 the following quasi-uniformity
and regularity conditions, respectively, hold

h h;
— <vand - <o,
h; Pj

where h; :=diam(7}), p; := sup{diam(S), S is a ball contained in Tj} and h :=max(T}) is
the mesh size parameter in D;,. We associate with Dj, the conforming finite element spaces

Wh = {’Uh S CO(E) LU |Tj€ 1:)(Tj)7 VTJ S Dh},

‘/h = H(%(D) N W}H
with N
P(T) = {ple) : for 2 € Ty, p(x) = po Fy (@), b € Pu(T), |

where Pm(f) denotes the set of polynomials of degree < m defined on the simplex of
reference T, and F; : T — T is a mapping of class C™! when Tj is a curved element of
class m, otherwise it is an invertible affine mapping of the form

F;(@) =B,z +b;, B, € L(R?) and b; € R?. (3.1)

Also, we define a partition of the interval [0, 7] into subintervals I,, ;= [t,, t,41] of length
At =tp41 —t, for all m, 0 =1y < t; < ... <ty =T. The approximate solution c}(z) € V,
at time ¢, is given as

M
i) = Croy(w),
i=1
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where CI" := ¢}!(x;), x; being the i-th mesh-point in Dy, M denotes the number of mesh-
points of the partition Dy, and {¢,}}, is the set of global basis functions of V},. Denoting
by X" (x) : = Xp(,tns1;t,) an approximation to the foot at time t, (also known as
departure point) of the characteristic curve X (x,t,41;t), the conventional LG method
calculates the approximation ch (x) €V, as

[ ar@s o= [ goamwis e, (3.2)

whereas the weak LG method does
| ar@etads = [ G0qm @)edx;™ @) (33)

In matrix form the approximation ¢! (z) is calculated as

M[C"™'] =R (conventional LG),
N (3.4)
M[C""'] =R (weak LG),
where M iq the so called mass matrix, the elements m,; of which are given by m;; =
fD ¢i(2)d;(z)dx, i,5=1,2,..., M, and the M-dimensional vectors R := (71, ....,7y/)7 and

R := (7717 ..... ,7a)T, with r; and 7; being the right hand sides of (3.2) and (3.3) for the basis
function ¢;(X), respectively. The most crucial point in both approaches is the evaluation
of the integrals on the right hand sides, and consequently, the calculation of the departure
points. Hereafter, we shall only consider the LG method.

3.1 Calculation of the integrals in the conventional LG method

The evaluation of [, (X" (2))¢;(x)dz is usually done numerically by applying a
quadrature rule of high order to maintain both the stability and the accuracy of the method
when the integrals are calculated exactly, see Morton et al. (1988). Noting that we can
write

NE
/4mwwwmm=z/mmwmmmwmmj
D j=17T;

and considering that ¢ € V}, is expressed as

M

ch(@) =) Crop(a

k=1

we can write the restriction of ¢}(z) to the element T} as

7= Cilp#” (@),
=1
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where [(j) denotes ‘rhe (global) number of the node of the mesh D, that is the [-th node
of the element Tj, {gpl 1%, is the set of the local basis functions for the element 7} and ne
denotes the number of nodes defining 7). Then for each T} the integrals

R A

are evaluated by the formula
Zc" [ A OG @ne e (1 <p<ne)

here, cpl(i) is the I-th local basis function of the element T; where the point X;"""'(z) is
located. As it is customary in finite element practice, we make use of the reference element
T through the bijective transformation Fj : T — T}, to calculate such integrals; thus, we
set

OF,

F dz, (3.5)

/T oD (X (1)) () = / 30(@)3,@)

J

where @lm(i:\) = <pl(i>(X,’;‘"+] o Fj(%)), {$, 1y, denotes the set of basis function in T and
OF,
0T
purpose, we note that there exists one and only one z := X,’;*"H o F;(Z) € T; and one and
only one F;': Ty — T such that ¢\ (X" (2)) = o\ (X" o Fy(Z)) = 3,0 F, ' (2), then
we set go( )( ) = 3,0 F, ' (2). We apply a quadrature rule to approximate the integral over

> 0 is the determinant of the Jacobian of F;. We explain what is @li) (7). For this

T as follows:

OF, I

~(1) o~ k

|30 @2, | 52| 40 = meas(T) 3 w31 @), (7
g=1

where {w,} and {Z,} denote the sets of weights and points, respectively, of the quadrature
formula. Note that for z, € Tj = F};(Z,) and 2, € T = F, ' o X" 1(z,),

ne

X (g ZCl(l Xn Y ch )‘Pl (@) ch

Hence, an algorithmic presentation of the numerical procedure to compute the integrals at
any time instant ¢, and to calculate c"+1 is the following.

Algorithm 1 (Conventional LG algorithm)

Assume that u™ and ¢} are known, and let T, and w, be the quadrature points and
their associated weights of the reference element T. Then:
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(1) Calculate the mass matriz M.
(2) For j=1,2...NE
For g=1,2...nqp
(2.1) Calculate
zg = Fj(7).
(2.2) Calculate X;""*'(x,) by solving (2.2) with initial conditions x,.
(2.3) Find the element T containing the point X;""(x,) and calculate

2y =F 1o X" (z,).
(2.4) Calculate
XE" M (zg)) = D Clty@i(3,)-
1=1
(2.5) For p=1,...ne

(a) Calculate

ngp

meas(T5) Y woch (X" (20))2,(T,)-
g=1
(b) Assemble these values into the right hand side vector R™:= (r,...,r7%)7

(3) Calculate [C™ ] by solving (3.2).
(4) Define ¢ € Vj, as

M
1 1
Gl (a) =Y Cr ey (x).
i=1
Some remarks are now in order.

Remark 1. It is worth noting that in the evaluation of the integrals it is necessary to
solve ngp times the system (2.2) followed by the corresponding searching of the elements
containing the points X;""'(x,) and the calculation of ¢(Xp" " (x,)). As we will see
below, the theoretical analysis, supported by numerical experiments, shows that the error of
the LG method depends on the accuracy of the numerical solution of the system (2.2), then
it is wise to employ a numerical method of order > 2 to calculate the points X,?’"H(:rg).

Remark 2. The number of quadrature points, ngp, may be quite large, in particular, in
three dimensional problems, because the use of high order rules is recommended to maintain
the stability and convergence properties that the method possesses when the integrals are
calculated exactly.

Remark 3. Steps (2.2), (2.3) and (2.4) of this procedure may be time consuming if they
are not properly implemented, in particular, when the partition Dy, is unstructured as is
usual in finite element calculations.
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3.2 Calculation of the departure points X}’L"’"’H(

tion of the solution at them

z,) and interpola-

We focus on the realization of steps (2.2)-(2.4) of the LG algorithm. Several methods have
been proposed to calculate an approximate solution to (2.2), such as explicit Runge-Kutta
methods of order >2 or a fixed point implicit multi-step method of order 2. Here we shall
describe a Runge-Kutta method of order 3 and the fixed point implicit multi-step method.

The Runge-Kutta method of order 3

The algorithmic presentation of this method for the calculation of the departure points
X;Z’"H(.rg) is as follows.

Algorithm 2

Assuming that at time 1,11 we know u™*, then for each integration point x,, 1 < g <
nqp, calculate
Kl = u(xgp tn+l)7
K2 S u(xg — AtKh tn+1 — At)7

AtK AtK. At
K3:11($g— 1 1 _ 1 27tn+1_7 ; (3.6)
K K 4K
X'n,,n+1 X _ —At 71 72 73
h (2g) = 4 ( 6 + 6 + 6

In this algorithm the crucial steps are the calculations of Ki, Ky and K3 that have to be
done with care if we want to get an accurate result. For this purpose, we must notice that
in general the velocity u is not an analytical function, but a numerical solution provided
by an external source at the mesh points {x;} at time steps t,, n integer. Therefore,

At
u(s, 1 — 7) is an unknown as well as u(zgy, t,41) and u(z,—AtKy, t, 41 —At) because in

At
general the points z, and 2,—AtK; do not coincide with a mesh point. Thus, u(, tn+1_7)

is approximated by the interpolation formula

At 6u(-,t,p1)+6u(-,t,) —u(-t,_
s — ) = 00 ) 00 )~ ut )

ALK, ALK, At
1 fT,thf? are
calculated by finite element interpolation from the values of u(:,tn41), u(-, tnp1 — At)

and u(zgy,tyy1), u(zy — AtKy,t,r — At) and u | g —

t
and u (~,tn+1 - ?) , respectively, at the vertices of the elements where the points z,

ALK, ALK
x4y —AtK; and xyfilf 2

easy to search for the elements containing those points; however, in unstructured and/or

are located. In structured quadrilateral meshes it is very
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simplicial meshes this task is more complicated and should be done with much care, other-

wise the method may become inefficient. In Allievi and Bermejo (1997) a search-locate al-

ALK AtK
gorithm to identify the elements containing the points x4, v,—AtK; and x,— L 2

is described, and the finite element interpolations at them is performed. Such an algorlthm
uses the Newton method to invert the bijective map from the reference element into a given
mesh element together with a criterium to move from element to element in the mesh.

Remark 4. When n = 0, the calculation of X;""'(z,) by (3.6) is carried out by the
second order Runge-Kutta formula

K, K
XP N xy) = x, — At (71 + 72>

because the velocity is not defined at time t_;.

Remark 5. For all z,, the departure points XZ’"H(J:g) cannot leave the computational
domain through the solid boundaries because on such boundaries either u =0 oru-n =0,
n being the outwards normal at the boundary points, so that it can be proven that the tra-
jectories of (2.2) cannot cross the solid boundaries. However, in many cases, in particular
when At is not small enough, the numerical errors cause that the points x, — ALKy and

AtK, AtK,

Ty — 1 to be outside the computational domain when the points x4 are in
elements close to the solid boundaries of D. One way to correct this is to apply (3.6) for

AtK AtK.
such points x4 halving the time step until getting that v, — ALKy, xg — Tl -2 2

and X,?’”H(.rg) remain inside the computational domain; in doing so, the extrapolation

At
formulas to calculate the velocity u(-,t, + o ) k=0,1,2,...kynax, have to be corrected

accordingly. The search-locate algorithm of Allievi and Bermejo (1997) ascertains when a
point leaves the domain.

Remark 6. If the velocity u is not known at time t,,1, as it happens, for instance, when
LG methods are used to solve the time dependent incompressible Navier-Stokes equations,

then u(-,t,. ) is extrapolated by the third order formula

u( n+1) 3u( ) - 3u('7t7171) + u('7tn72)7

thus requiring to store the velocity values at time instants t,, t,_1 and t,_o. This fact
plus the accuracy problems sometimes involved in extrapolation formulas are the reasons
why some authors prefer to use a second order multi-step method, instead of the Runge-
Kutta methods of order higher than 2, to calculate the departure points when solving the
Navier-Stokes equations with first or second order in time LG methods.
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A fixed point implicit multi-step method of order 2

Since the solution of (2.2) for = z, can also be expressed by the formula

tnt1
X(xg7tn+1;tn) =Ty — / u(X(Ig7tn+1;t)7t)dt7
tn

then setting
ag =y — X(2g, tns1;tn)

and approximating the integral by the mid-point rule, we obtain a formula to approximate
ag up to order O(A#?) such as

At At
a!] = Atu(X(xgvtn+l;tn + 7)7tn + 7)
Moreover, using the second order approximations
At 1 1
X(:L'gv tag1;tn + 7) = 5(1‘9 + X(xg7tn+1;tn) =Ty — §Oég
and A ;

’ t" 5 /)75 7tn -5 ’7t7L— 5
u(-, +2) 2u( ) 211( 1)

we have that

3 1 1 1
ag = At (iu(xg — 5% tn) — §u(x_q — 5% tn,l)) .

This is an implicit equation the solution of which is calculated via the following fixed point
iterative procedure.

Algorithm 3

Given At , the integer number ky.x and the real number €, and assuming that u" and
u™ ! are known, then for each integration point zg, 1 < g < ngp, calculate

(1)

3 1
a(go) = At (iu(wg,tn) - iu(:tg,tn,l)) .

(2) For k=0,1,...,
3 1 1 1
aé’““) = At (iu(xg - EQE’M’ tn) — §u(a:g — iaék), tn,1)> .
The iterative procedure stops when k = kya.x or when the stopping criterium
’a§k+1) _ aék)‘
<e

o
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is satisfied.
(3) Set

n+1 k+1
X}Zm (xg):xy*a,E;Jr)-
Remark 7. It is easy to show that the above procedure converges if

At max |Vun(;p)‘ <2,
(z,tn)€B;x(0,T)

where Bj is a neighborhood of the point x, such that X,TLL’"H(xg) € B;.

Remark 8. At each iteration we have to identify the element that contains x, — %agk).
As in the Runge-Kutta method, this is done by the search-locate algorithm of Allievi and

Bermejo (1997).

Remark 9. If At is so large that either the iterative procedure does not converge or the
points leave the computational domain, then we successively halve m times At, thus yielding
the following adaptive iterative procedure.

Algorithm 4

Given At, the integer number k. and the real number e, assuming that u™ is known
and setting m=1, then for each integration point x4, 1 < g < ngp:
(1) Calculate
all) = 27 Atu(zg, ).

1
If x,— 5045,0) leaves the computational domain through a solid boundary, set m = m+1
and repeat (1).
(2) For k=0,1,..., kpa calculate

—m 1 At
O{<k+1) =2 +1Atu($g - iozék),tn+1 - 277_"1)

1
(a) If x4 — fozgo) leaves the computational domain through a solid boundary, set m =

m+ 1 and repeat (1).
(b) If k= ke and

’aélﬁ—l) _ aék)
- > ¢,
o
then set m = m+ 1 and repeat (1).
(c) If
’a§k+1) _ aék)‘
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stop the iterations.

(3) Set

2At At
Xh(xgatn-%—l; tny1 — W) =Ty — O‘ng) (tn+1 - ﬁ) :

(8) For l =m —1,..,1 calculate

RYAN
X (9697 tag1s o1 — o

At At
=Ty — 27 Atu (Xh ( n+17 tn+1 - ?) 7tn+1 - ?) .

2At

Note that when [ =1, X" (z,) = X, (xga b1 tnpr — o

). In the above formulas

At

(s tnyr = o) = (2—2"Mu(t,) — (1 =2l t, 1), 1 <k <m.

It can be shown that this iterative procedure converges if

At max  |[Vu'(z)| <2™.
(z,tn)€B; x(0,T)

4 A MODIFIED LG METHOD

As we said in the previous section, the conventional LG method (also the weak LG method)
requires high order quadrature rules and, consequently, the calculation of many departure
points per element. The latter calculation is time consuming, in particular in 3D problems
with simplicial meshes. To alleviate this issue, we have recently proposed [8] and [7] a mod-
ification of the conventional LG method that, while maintaining its order of convergence
when P, and P, elements are used, reduces significantly the CPU time of the method,
because the number of departure points to be calculated in every time step is equal to the
number of mesh nodes that are vertices of the mesh elements. The idea of the method,
which is graphically represented in Figure 1, can be explained as follows. At any time ¢,
we can construct an element 77" C D associated with the element T; of the partition
Dy, as follows: T]-"’"Jrl = {y = X;"""!(z), x € Tj}, so that Tj"’"Jrl = X""*1(T;); moreover,
it can be shown, D = Uj Tj"’"“. Next, we can also define a quasi-isometric map of class
Ok F]-”’"+1 T — Tj"’"Jrl such that for all 7 € T there is one and only one

y= an+1( ) Xnn+1 OF( ) X}TLLTL-H(T) (41)

Note that due to the properties of the maps an""H and Fj there exists (Ff‘"“)fl, In
relation with 77"

(X7 N aj), .., X" (@jar1)}, the latter are images of the vertices of T}, {a;1,. . ., @jas1 },

we consider the simplex fj"’"ﬂ, the vertices of which are the points
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J
T /
“, n w+1 — prntl oF 1
[
\
‘\‘ XrL n+1
\
T

n,n+1
T

Figure 1: The mappings for the formulation of the MLG method

and then define the invertible affine map, F” AR N TN’].”’"H as follows: for all 7 € T
there is one and only one

o Fn n+1( ) Bn n+1 bn n+1 Bn n+1 [,(Rd) and B;},n+1 c Rd. (42&)
Note that T" 1 is a linear approximation to ™ "1 and hence
nn+l _ Trmmntl
F =1F 7 (4.2h)

where T denotes the linear interpolant on T. At this point, it is important to remark that
at any time ¢,, for each Z € T, and consequently for each z € Tj, with = F;(Z), we
can associate two points, namely, the point y = F/""*'(%) = X} "H( ) € T+ and the

point § = Fn (7)) = F;”L“ o Fi'(z) € T" "H hereafter we shall use X”"H(:r) =
an i, Fr ( ) to denote y. The modified LG method consists of calculating ¢+ € V}, as

solution of

/D @)y (x)d = /D (X (2)) 6 (x)de (43)

Remark 10. For simplicity in the presentation of the developments that follow, we assume
that the boundary 0D is Lipschitz continuous and formed by plane faces (straight sides when
d=2). In case we allow curved boundary, there will be boundary elements Tf’"ﬂ having
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a curved face and, therefore, YNT’"H NoD # T;L’"H NOD; in such a case, we should extend
the functions defined on D by zero outside D if T’f’"“ N D is not included in D.

Looking at (4.3) we shall have to calculate integrals of the form

i) ; OF;
| &G @ e = [ 26,6 |5 @
T x
where % := F! F” "+t1(Z), T; being the element containing Fj"‘"“(f). Similarly as we

did in the standard LG method, the integrals over the element T are then approximated
by a high order quadrature rule as

OF; o =~
|22, | 52| 48 2 meas(T) - w37, @),
k=1

where Z, = F*

o E”'"H(/x\), and noting that we have to calculate now

pXp" (g qu Xyt @) = > Clto Bz
=1

instead of ¢(X™" ™ (z,)). The procedure to approximate the integrals at time ¢, in the
modified LG methods is as follows:

Algorithm 5 (Modified LG algorithm)

Assume that u™ and ¢} are known, and let T, and w, be the quadrature points and
their associated weights of the reference element T. Then:

(1) Calculate the mass matriz M.

(2) For j =1,2...NE

(2..1) Calculate the element T"’"H by solving (2.2) taking as initial conditions the
vertices {a;; }{_ 4L of the element T;.

(2.2) For k=1,2.

(a) Calculate
X (@) = B a4 6

(b) Find the element T, containing the point X™" () and calculate
= R ).
(¢) Calculate

X" (@) = > Crt i)

(3) For p=1,...ne
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(5.1) Calculate

ngp

meas(Tj) Y wrch (X" (24))B, (3

(5.2) Assemble these values into the right hand side column vector.
alculate ’ y solving (3.4).
4) Calcul C™ by solvi 3.4
(5) Define ¢ € Vi, as

M
att(a) =Y Crle(x).
=1

5 ANALYSIS OF LG METHODS FOR LINEAR CONVECTION
EQUATIONS

In this section we shall study the convergence of the LG methods. First, under the assump-
tion that the integrals are calculated exactly, we establish the L2-norm stability of the LG
methods. To make clear the steps of our analysis we assume that the departure points are
calculated exactly. Some preliminary results concerning the solution X (z,t,,1;t) of (2.2),
which are well known in the theory of ODE systems, are necessary in our developments.

Lemma 1. Assume that u € L™ (0, T; Wk(D)4), k > 1. Then for anyn, 0 <n < N—1,
there exists a unique solution t — X (x,tny1;t) (¢ € [ta-1,tn1[C [0,T]) of (2.2) such that
X (2, tpi1;t) € WEeo(0, T; Who (D)), Furthermore, let the multi-inder o € N, then for
all o, such that 1 <| a |< k, 09X;(z,t,41,t) € CO([0,T); L®(D x [0,7])), 1 <i <d.

Lemma 2. Suppose the assumptions of Lemma 1 hold true and u |sp= 0. For |s —t|
sufficiently small, © — X (z,s;t) defines a quasi-isometric map of class C*~Y of D onto
D with Jacobian determinant J(z, s;t) € C°([0,T]; L°°(D x [0,T])) satisfying

exp(—Cy|s —t|) < J(x,s;t) < exp(Cyls —t|), (5.1)

where C, = ||dival| o py oy

Moreover,
K o —y |<[ X(z,s1t) = X(y ;1) [S Ky |2 =y, (5.2)

where K, = exp(| s —t || Vu |0, wiee(pyyn))- | @ — b | denotes the Euclidean distance
between the points a, b € R. For a proof of (2) see Siili (1988).

We make the following hypothesis for the parameters At and h.

(H1) Given the parameters hy and Aty < 1 sufficiently small, 0 < h < hg and 0 <
At < Aty.
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5.1 Stability and convergence of the conventional LG method

To prove the stability in the L2-norm of the solution c’;“ obtained by the conventional LG
method, we assume that the integrals in (3.2) are calculated exactly. This assumption is
strong in the sense that is very difficult, and consequently computationally no competitive,
to calculate exactly the integral on the right hand side because the integrand is the product
of two continuous functions defined in two different meshes, so that, one has to resort to
quadrature rules of positive weights to calculate the integrals. While it is easy to calculate
exactly the left hand side integral because is the integral of polynomial functions defined
on the same mesh, the problem is that ¢f(X;”"*(z)) € W'(D), and hence for a given
h the integral on the right hand side can only be calculated exactly when the number of
quadrature points tend to infinite, as one can prove by applying Steinhaus-Banach theorem.

Lemma 3. Under the assumptions of Lemma 1, there exists a constant C independent of
At and h such that for all t,,

e oy < (1% €28 el gz - (53)
Proof: Multiplying by C*** on both sides of (3.2) and summing for i, we get

) e = [ aeeni@)g @

By Cauchy-Schwarz inequality it follows that

/D(CZJrl(z))Zd.rS/ (R (X (2)))? da.

D

Let y = X™"*1(z), the by virtue of Lemma 2 it follows that for At sufficiently small

[ e @) i < 0+ e [ Gwria

Making use of this inequality we obtain (5.3). Note that C; = C1(C,), where C, is the
constant of (5.1) which depends on divu. O

The remainder of this section is devoted to the analysis of the convergence. To do so, we
need to introduce the L:-projector P, : L?(D) — V,,, and assume that for all v € H™1(D)
there exists a constant K independent of A such that

Il = Pavll oy < KR4 o]

Hm+1(D)» S~ 0, 1, (5'4)

where HY(D) = L*(D). Furthermore, we recall that for all v, € V,, Py, = v, and
[P0l 2(py < VIl 2(py- We have the following result.
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Theorem 4. Let ¢ € C([0,7]; H"™ (D)) and the assumptions of Lemma 1 hold. Then
there ezists a constant C' independent of At and h such that

max, [[c(t,) — CZHLQ(D) < Kt HC”Lw(o,T;HmH(D)) +

5.5)
(Al ®
CKt min (1, i W el o o im0y -

Proof: Using the notation a™(x), and if confusion does not arise simply a”, to

denote a(x,t,) for a function a define in D x [0, 7], we have that for all n the global error
e"(z) = "(x) — cl(x) can be expressed as

" = (" = Buc") + (Puc” — ) = p"'(x) + O (2), (5.6)
where 6} (x) € V}, and p"(x) satisfies, by virtue of (5.4), the bound
o™ ey < KB [l | gonn iy - (5.7)
To estimate #; we make use of the property that for all v, € Vj,, P,v, = vy, and write
Oh(x) = Py ("(2) — cp(2)) = P ("o XM () — 71 o X1 (1))

so that
HHZ(‘T)HLZ(D) S ||(Cn_1 - CZ_l) o Xﬂ—]ﬂ(x)HLz(D) ’

arguing as in the stability proof and using (5.6) we have

HQZ(x)HLQ(D) < (1 + ClAt) (‘|pn71($)HLZ(D) + Hez_l(x)HLz(D)) .

Hence, bounding [|p"~" ()| 2(p) by (5.4) with s = 0 we obtain that
0% (@)l 12(py — ||92(‘T)||L2(D) =

tn hm+1

(1+ ClAt)KT ||CHzoo(Hm+1(D) + CiAt Z?:_f HQ;:L(I)HLZ(D) .

By virtue of Gronwall inequality and assuming that 6} (z) = 0,

tnhm+1
HQ;LL(I)”LZ(D) = CT HCHzoc(Hme) ) (5.8)

where C' = (1 + C1At)K exp(Cit,,). This estimate breaks down when At — 0 for a
fixed h. To get around this problem we use the facts that for all n, P,p" = 0, and
0 (z) = 0 (X" 1(z)), so that we can write that

Oh(w) = 037 (X)) + Py (97 o XM () — ()
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And from this expression it follows that
10 2oy < 057 X gy + 16" © X771 () = 577 @) gy -
As above,
1677 (X @) 2y < (4 CLAD (|07 @) 2 -

To estimate the second term we note that

b do(X (2, b t), b
,On_l(l') _ pn—l OXn_l’n(:L') :/ p( (Tvdtv )7 1)dt7
t

n—1

and by Cauchy-Schwarz inequality we get
) tn
= o X < At/ (X (2 s 1), £) - V(X (2 b £), £ 1),
tn—1

so that

t
n— n— n—1,n]|2 . .
" = p" o X[y < At/[)[ (X (2, t0;8),) - V(X (2, o3 ), 1) | dbdie <
n—1
2 b 2
At”u”Loo(O’T;D)d/tv /D|Vp(X(x,tn;t)7tn_1)\ dxdt < (setting y = X (x,t,;1))
n—1

tn
n\—1
Atl\ul\im«o,nxmd/ /D|Vp(y,tn_1)\2 (J4) " dydt < (by (5.1))
tn—1

2 o112
(1+ C1AYAL ||u||Loo((o,T)xD)d Vo 1||L2(D) )

where J"" denotes the Jacobian determinant of the mapping © — X (z,¢,;t). Collecting
these bounds and using (5.4) with s = 1 to bound HVﬂ"*lHiz(D), it follows that

||€Z”L2(D) - ||92HL2(D) < GiAt Ezlz_ll |9§1HL2(D) +

At [[all z(o,r)x Dyt
(1+ C1AHK ( . T) % pm+l ch_luHm“(D) .
Applying Gronwall inequality and taking 69 = 0, we obtain that

n tn [ Atlull e o.1)x e m
||6h||L2(D) < OE < h(( D) R HC||LOC<0,T;HW+1(D)> . (59)
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From (5.8) and (5.9) it follows that

n t, . At [[ull oo (o.r)x Dyt m
HQILHLZ(D) S CKt min <17 h(( 1xD) h + ||C||Loo(07T;H’m+1(D)) .
The result (5.5) follows from this bound together with (5.7). O

At HuHLOC((O,T)XD)d

Note that is the CFL number, so that according the result (5.5) LG

method converges suboptimally with order O(h™) at low CFL numbers, or in other words,

when At is much smaller than h; whereas for large CFL numbers, or equivalently, for At
m+1

larger than h, then convergence is of order O(

At )

5.2 Stability and convergence of the modified LG method

Our next concern is to study the stability and convergence of the modified LG method for
the linear convection equation. For this purpose we need some auxiliary results in relation
to the points )N(”’”“(x). For each j, 1 < 7 < NE, and for each time instant t,, let us
consider the mappings ]*:f’nﬂ and an’nﬂ.

Lemma 5. Let ¢ > 1 be an integer and let u € L>(0,T; WitL=(D)9). Then an,n+1 €
ot (f)d and there ezists a constant Cy independent of At and h such that for any n

HX"*"“(I) - X"’"“(ff)’ < CVR2 A [0 o o 117200 (D)) - (5.10)

Lo (D)

Proof:  Recalling the definitions of X™"*(z) and X™"*1(z), it is convenient to work
with the mappings an,n+1 and an’n+1 because for each Tj

@) — Fn n+1(l,) H

First, we show that F;”“Ll is of class Cq’l(f)d. Noting that F;" "H(E) = Xt o Fy(7)
and using the integral form of the solution of (2.2) we can erte

HXn,nJrl (.73) - )’En,nﬁ»l(x) H

(5.11)

Loo(Ty)¢ ‘ Loo(T)d

tnt1
Frm (@) = Bja 4 by - / WX (FS (@), tnss ), £)dt.
tn

Since u € L*°(0,T; Wth>°(D)?), then applying Lemma 1 it follows that F"’"+1 is of class

C?Y(T)?. By virtue of (4.2b) and noticing that I(B T+ b;) = B;Z + by, the application
of Bramble-Hilbert lemma yields

’ Fn n+1( ) Fn n+1 (I)H

IN

L= (1) ¢ " s =

tnt1
clf u<X<ﬂ<f>,tn+l;t>,t>dt\ |
tn

Wz,oo(f)d
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~

where [0[y5 o 7)a is the semi-norm and C = C’(f, ). In any interval [t,,, t,+1] we have that

for each j and t € [t,,t41), X (- tpqast) o Fj T — T;’nﬂ € D, so that making a change
of variable it is easy to see that

tnt1
/ WX (F(F)s by ), )it < CNR ([l e sty <
tn Wz,oc(f)d J

CLALR? [[all po (o 7w (Do) -
From this inequality and (5.11) the result follows. O

Lemma 6. Assume the hypotheses of the previous lemma hold true and let v € L*(0,T;
HY(D)). At any time t,, there exists a constant Cy independent of At and h, but dependent
on [0l oo (o 7200 (pyay s Such that

Proof: Let

VA @) N (X @) |, < ORATS e (512

L2(D

Ho(z) = aX™ ' + (1 —a) X" (z), 0<a<1,
then it follows that

(X0 () o (e o))

IN

i) = i) [ 9 @) do
0

J,

J

Hence

WX (@) — o (R e[ dy <

1
1/2 n,n+1 _ ynn+tl n 2
d HX (l’) X (I)HLW(ﬁ)d/O (/T] |VU (Ha(l‘)” dx) dor

From (5.10) it follows that

J,

J

’l)n(Xn’n+1(l')) _ Un()?n,n-#l(x))‘?dx <

2 n12
Ch*At? ||u||L°°(0,T;W2=°°(D)d) Vo ”(L?(T]))d :

Summing with respect to j on both sides we obtain the result. |
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Next, we prove a stability result in the L*norm for CZ()?"’”H(x)). To do so, we need
the inverse inequality

vahHLz(D) < Ch™t ”Uh”LZ(D) for all v, € Wy, (513)

This inequality holds true in our meshes D because we assume that they are quasi-
uniformly regular.

Lemma 7. There exist constants C3 and Cy independent of At and h such that for n =
1,2,....N,

(1 = CsAd) [kl 2y < < (L4 CAY) el 2y - (5.14)

X @)

L*(D)

Proof:  First, setting y = X™"*!(x) we have that
n n,n 2 n n,n —

[ laeem i@l s = [ i |omy

From Lemma 2 it follows the existence of constants K; = K;(C,) and K, = K5(C,,) such
that

(1= KA [l ooy < [Jen(X™" @) | oy < (14 K28) [l 2y - (5.15)
Next, noting that
GUXM (@) = (X (@) = (X (@) = (X (@)

it follows by virtue of (5.3) and (5.12) that

(X @)

sy S (L EAD I ) + Ceh* AL [V Rl gy

Using the inverse inequality (5.13) we have that Cyh?At HVCZ”(LZ(D))d < ChAt ”CZHLZ(D)?
hence, there exists a constant Cy = Ky + hC depending on divu, ||u||LDQ(0 T2 (pyay and
the constant of the inverse inequality such that

< (L4 CyAY) ||erll r2(py -
L2(D)_( + CiAt) [l |l 2y

G (@)

Analogously, setting
G (@) = R (@) — (R (@) - X @)))
we obtain that

G (@)

2 A @) s — [ @) (X @) |

Then, arguing as before we find a constant C3 = Ky + hC such that

L2(D

(1= C3A) [l 2py <

X (@)

L2(D)
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We are now in a position to establish the stability in the L2-norm of the solution
calculated by the modified .G method.

Lemma 8. Under the assumptions of Lemma 7 it follows that for all n =0,1,2...,

e o py < (14 Cart) il pap) - (5.16)
Proof: Multiplying by C’i"Jr1 on both sides of (4.3), summing for i, and applying
Cauchy-Schwarz inequality it readily follows that

il < R @), ) -
and from (5.14) the inequality (5.16) follows. O

Now, we proceed to prove the convergence of the method. We have the following result.

Theorem 9. Let ¢ € C([0,T); H"(D)) and the assumptions of Lemma 1 hold. Then
there exists a constant C' independent of At and h such that

max, [|c(t,) — CZ||L2(D) < Khmtt ||CHL°°(0,T;HW+1(D)) +

tn . At |[ull oo or1xpya \
CE min (17 A = hmtt ||C||L°°(07T;Hm+1(D)) + Ct,h? HVC||L<><>(0,T;L2(D)) :
(5.17)
Proof: As in the proof of Theorem 4 we have that for all n the global error ¢"(z) =

c"(z) — cf(x) can expressed as
e"(x) = (¢"(2) = Bac™(2)) + Puc(x) — i) = p"(2) + 05 ().

Since ¢"(z) = "1 (X" (z) and c}(z) = Phczfl()?"*l’"(x)), then a further decomposi-
tion of Pyc™(x) — Pycj(x) yields

Oi(w) = P (71 (X 10(@)) — 1 (X A0(a))) +
(5.18)
P (1 (Xt (@) = g (X))

Taking the L? norm on both sides of (5.18) and using the contractive property of P,
together with Lemmas 6 and 7 we have that

1050l 2(py < (1 + CaAL) (||pn71||L2(D) + HGZ_1||L2(D>) +

Coh? ALV gy -



LAGRANGE-GALERKIN METHODS FOR CONVECTION-DIFFUSION EQUATIONS 29

Hence, arguing as we did to estimate 6} in the conventional LG method, see (5.8), we have

m—+1
101l L2y < Clta—= llell oo o mm+1(py) +
At (5.19)
Ctah? | Vell oo rirms1 (D)) -
where C' = max ((1 + C4At) Ke4tn | Cgec“t"). This estimate, as it happens in the conven-
tional LG method, breaks down when At — 0 for a fixed h. To get an estimate when At

is much smaller than A we argue in the same fashion as in the conventional .G method;
thus, returning to (5.18), we can write

(@) = P (" (X710 (a)) — (X)) ) +
O (X (@) + P (pn o X (@) — g ()

Taking L2-norm on both sides of this inequality and using the same argument as above,
we get now that

1031 L2(py < (1+ CaAO) |05 oy ) + CohP ALV 12y +

o=t o X1 ) — o @) | oy

Hence, arguing similarly as we did to obtain (5.9) we have that

Lo, Hm+ (D)) T

At [[ul| d
n " ((0,T)x D) m
H9h||L2(D) < Cﬁ ( 7 - R le

(5.20)

Ctuh? IV ell oo o 7 5m+1(Dy) »

where C' = max ((1+ C4At) Ke%in Coe). From (5.19), (5.20) and (5.7) the result
follows. O

6 NUMERICAL TESTS

To test the performance of the LG methods we run typical model problems of different
degrees of difficulty, ranging from smooth solutions everywhere to solutions with strong
discontinuities. The numerical examples have been run using P, and P, elements, though
we shall only present the results corresponding to P elements because the results with P;
elements yield similar conclusions.
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6.1 Example 1. Rotating cylinder

The first example consists of simulating the time evolution of an initial condition repre-

1
sented by a circular cylinder of radius —, in a fixed rotating velocity field defined on an

elliptical domain D of semi-axes a = 1.5 and b = 1.0. The initial value problem is:

P
8—:+u~vc:o in D x (0,77,

1, if ze(x;—0.75)%+a3 < &,
() =

0, otherwise,

with velocity u = (=25, 21). Note that the exact solution of this problem is the initial
condition transported by the velocity field along the trajectories, which are ellipses, thus

c(z,t) = "(2°)

with
x1(t) = 29 cos(v/2t) + ng sin(v/2t),
(6.1)
To(t) = —29v/2sin(v/2t) + 29 cos(v/2t).

This means that the initial cylinder, as it rotates, changes the shape from circular,
when /2t = nm, n = 0,1,2,.., to elliptical, when /2t = g—l— nm, n = 0,1,.... Note
that the solution changes its shape with time, but the triangles keep their sides straight,
though they stretch and shorten maintaining constant the values of their areas, because
the velocity field is a time independent linear function of the space coordinates.

We now present the numerical results obtained with P, elements. The results of the
modified LG method (SLG in the figures) are compared with those obtained by the conven-
tional LG method (in both methods the integrals are approximated by Hammer’s quadra-
ture rule of 7 points) and the semi-Lagrangian (SL) scheme, which uses interpolatory
projection instead of the L? projection. The interpolatory projection is performed with
finite element interpolation. Figure 2 shows the evolution in time of [ cj'dz, [ (c})*dz, the
L?norm error and the profile of the cylinder at the cross-section z, = 0 after 5 revolu-
tions. In the cross-section, the profile of the exact solution is represented by the dashed
line while the profiles of the numerical approximations are represented by continuous lines
as indicated in the figure. Tt is clear from the panels of this figure that the behavior of the
modified LG method is practically the same as the one of the conventional LG method, and
both perform better than the SL scheme with quadratic interpolation. It is worth noticing
that the errors of the different numerical methods experience an exponential increase at
the first few time steps and then they grow much more slowly, although the slope of the
SL error is higher than the slope of the modified LG and conventional LG errors.

We show in Table 1 the variation of the L?-norm error as a function of h, while main-
taining constant the time step At = V2t and in Table 2 the L2-norm error in terms of the

80 7
variation of the time step At when the numerical solution is calculated in a very fine mesh.
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Figure 2: Results with P, elements for the Example 1.
U (c— Ch)2 da:] ok ‘ SL Interpolation || LG method || SLG method
N elements = 1.606 0.184 0.132 0.132
N elements = 6.424 0.128 0.091 0.091
N elements = 25.696 0.090 0.064 0.064
Table 1: L%-error after 400 time steps as function of A when At = V2T iy a mesh of

80
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quadratic triangles for the Example 1.

In both tables the errors are calculated after 5 revolutions. We must say that in all
the results presented above, the feet of the characteristics have been calculated using the
analytical velocity in order to remove the error committed in the case they were approxi-
mated by solving (2.2) numerically, as it should be done in a more general setting because,
in general, the velocity is known at the mesh points and in a discrete set of time instants
{t,,}. This numerical approximation would yield an error that has to be added to the error
of the method estimated in the previous section. However, to illustrate the influence that
the approximation of the feet of the characteristics has on the global error of the method,
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[f (c — cn)?dx]"* | SL Interpolation || LG method | SLG method
At = +/21/40 0.082 0.059 0.059
At = +/21/80 0.090 0.064 0.064
At = \/27/160 0.101 0.068 0.068

Table 2: L2-error after 5 revolutions as function of At in a mesh of 25696 quadratic triangles
for the Example 1 when the feet of the characteristics are calculated exactly. The first row
results correspond to 200 time steps, the second row results to 400 time steps and the third
row results to 800 time steps.

we repeat the experiments of Table 2 but when the feet of the characteristics are calculated
by solving (2.2) numerically with a second order method. These results are shown in Table
3.

[f (¢ — en)?dx]"* | SL Interpolation || LG method | SLG method
At = +/21/40 0.155 0.170 0.170
At = +/27/80 0.095 0.076 0.076
At = /27/160 0.101 0.068 0.068

Table 3: L2-error after 5 revolutions as function of At in a mesh of 25696 quadratic triangles
for the Example 1 when the feet of the characteristics are approximated by a second order
in time numerical method.

By comparing Tables 2 and 3 we see that for At sufficiently small (At = % in this
example) the approximation of the feet of the characteristics by a second order method

has a small influence on the global error.

CPU time 5 rev ‘ SL Interpolation ‘ LG method ‘ SLG method ‘
analytical velocity 20.3 71.2 58.1
velocity at the nodes of
the mesh at every time step

376.6 681.7 206.3

Table 4: CPU time in seconds for 5 revolutions in a mesh of 6424 quadratic triangles and
At = % for the Example 1.

Now, we evaluate the CPU time needed for each method to calculate the solution. First
of all, we must say that although for this example equation (2.2) is an autonomous system,
so that we could have calculated the feet of the characteristics once and for all at the
first time step, we have chosen to calculate them at every time step considering that in a
more general problem, for example when the velocity is also time dependent, the feet of
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the characteristics must be calculated every time step. Table 4 shows the CPU time spent
for each method to calculate the solution after 5 revolutions in a mesh of 6424 triangles
with a time step At = %. In the first row it is shown the CPU time when the feet of
the characteristics are calculated using the analytical velocity, in the second row the CPU
time corresponds to the case when the feet are calculated by the second order method of
Algorithm 3 with the values of the velocity known at the mesh points and time instants
tn, tpo—1. In both cases, either analytical formula or numerical method, it is necessary to
use a search-locate algorithm to identify the triangles where the feet of the characteristics
are located at each time instant ¢,. For this purpose, we use the search-locate algorithm
of Allievi and Bermejo (1997) specifically designed for unstructured meshes.

According to the results of this table, it is clear that the methods spent most of the CPU
time in calculating (approximating) and locating the departure points. This is the reason
why the modified LG method performs better than the conventional LG method as far as
the expenditure of CPU time concerns; for we should recall that in the modified LG method
we only need to calculate the feet of the characteristics corresponding to the vertices of the
elements, whereas in the conventional LG method one has to compute for each element of
the mesh the feet of the characteristics that correspond to quadrature points. Moreover,
and at least for this example, we also notice that the modified LG method may perform
better, in terms of CPU time, than the conventional SL with quadratic interpolation,
because for the latter method the number of feet of the characteristics we need to calculate
at each time step is near twice as much as for the modified LG method. Clearly, the LG
methods are more accurate than the conventional SL finite element interpolation method.

6.2 Example 2. Rotating Gaussian bell

This example, with a sufficiently smooth initial condition, has been chosen with the main
purpose of testing the error estimate of Theorems 4 and 9. Thus, with both the same
domain D and the same rotating velocity, u = (—2x2,2;) of the previous example, we
consider the initial condition

A(x) = exp (25 [(ml - i)Q + 23

that represents a Gaussian bell with center at (0.75,0). We present results of this test with
P; elements. The quadrature rule for either modified or conventional LG methods, in both
P, and P; elements, is Hammer 7 points.

We show in Figure 3 the time evolution of [ cfdx, [ (¢})?dz, the L?-norm error and
the profile of the Gaussian bell at the cross section xo = 0 after 5 revolutions. The exact
solution is represented by the dashed line whereas the numerical solutions are represented
by the full lines as indicated in the figure of the cross-section. It is clear from the figure
that the behavior of the modified LG scheme is practically the same as the conventional
LG method, and both perform better than the SL scheme with quadratic interpolation.
This fact is also confirmed by Tables 5 and 6, where, in Table 5, we show the variation of
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Figure 3: Results with P, elements for the Example 2.

[ (c— cn)’ dx]| 1z ‘ SL Interpolation | LG method || SLG method
N elements = 1.606 4.53-1072 3.71-1073 3.71-10°3
N elements = 6.424 4.63-1073 4.43-1071 4.43-10%
N elements = 25.696 3.24-1074 4.71-107° 4.71-107°

Table 5: L%error as function of h when At = % in a mesh of quadratic triangles for the
Example 2.

the L2-norm error as a function of A while maintaining constant the time step At = %,
and in Table 6 the L2-norm error in terms of the variation of the time step At when the
numerical solution is calculated in a very fine mesh. We must say that in all the results
presented above, the feet of the characteristics have been calculated using the analytical
velocity. Since for this example the velocity vector is a linear function that does not

depend on time, then the triangles Tjn‘n+1 are straight, so that F}'(z) = ﬁf(fﬁ), and,

therefore, HX"*"“(&:) — Xt (z) = 0; this means that the term A? is absent in

Lo (RQ)Q
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the error estimate. By inspection of Table 5 we notice the following: (1) modified LG
error— conventional LG error, and this error is much smaller than SL error. (2) When we
move down from hy (first row in the table) to hy = hy/2 (second row) and to hg = hy/4
(third row) we see that the errors are ey < (ha/hi)%e; and ez < (hz/hs)3es, €; being
the error of i-th row after 5 revolutions. Since hy = 0.1284, hy = 0.0640, hz = 0.032 and
At = % = 0.0555, these results confirm the estimate of Theorems 4 and 9. Turning the
attention to Table 6, we notice that the error (in each method) increases when At decreases
as predicted by the error analysis. An optimal error estimate At should be of the order of

h.

[ (c— cn)? dx]| 1z ‘ SL Interpolation ‘ LG method ‘ SLG method
At = /27/40 1.44-10* 4.75-107° 4.75-107°
At =+/27/80 3.24-107* 4.71-107° 4.71-10°°
At = \/571’/160 9.25-1074 1.05-107* 1.05-1074

Table 6:

L2-error as function of At in a mesh of 25696 quadratic triangles for Example 2.
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PART II

LG method for convection-diffusion equations

7 THE CONTINUUM PROBLEM

We shall study second order in time LG methods to calculate the numerical solution of
convection-diffusion equations. Specifically, we consider the model problem

@—i—u Ve=V - (v(z,t)Ve) + f(z,t) in D x(0,T),

ot
e(a,t) =0, (z,1) €D x (0,T), 1)
c(z,0)="(z), ze€D,
where D is an open bounded domain of R? (d = 2 or 3) with a Lipschitz continuous
boundary 9D, ¢ : D x [0,T) — R, u: D x (0,T) — R? is a vector-valued function that
represents a flow velocity and v(z,t) is a symmetric positive definite matrix of diffusion

coefficients such that for all ¢, the ratio sc = ~™ is moderate, with Apax and Ay, denoting

the largest and smallest eigenvalues of V(x,ngl)n respectively. u(z,t) € L®(D x (0,7]),
|u(x,t)] > A, and for simplicity we shall consider that u(x,t) = 0 on (z,t) € 9D X
(0,7]. If in addition, we assume that the coefficients v;;(x,t) of the matrix v(x,t) are in
L>(D x (0,T]), f € L*(D x (0,T]) and ® € L*(D), then it can be shown that (7.1) has a
unique weak solution ¢ € L*(0,T; H}(D)) N C([0,T); L*(D)), % € L*(0,T; H (D)) that
satisfies for each v € H}(D) a.e. time 0 <t < T,

<%:,u> +a(t;c,v) = (f,v), (7.2)

c(z,0) = (),

where a (t;+,-) : H} (D) x H}(D) — R is a continuous coercive bilinear form defined as

a(t;c,v) = /Dy(x,t)Vc - Vudz, (7.3)

(-,) denotes the duality pairing for HJ and its dual H~', and (-,-) is the usual inner
product in L?(D). To calculate numerically the weak solution by LG methods, the interval
[0,77] is divided into subintervals [t,_1,t,], n = 1,2,--- N, of length At, = t, — t,1

D S
such that 0 = tg < t; < --- < ty = T, and the total derivative FC is discretized along

the characteristic curves X (x,%,11;t). To motivate the LG methods we shall study to
solve (7.1), we consider for each interval [t,,t,.1] the following mappings. (1) For = € D,
and t € [tn,tny1], © — X(x,tp41,1), where X(x,tn41,t) is the unique solution of (2.2),
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and it is proven that X (z,t,,1;t) € D because the velocity u vanishes on I'. (2) Setting
y = X(x,t,41,t), the inverse map of X is the mapping y — Y (y,t;t,41) = @ with the

dY (g, titun) _ (X
o =u(z,t). Let F(x,t,1q;t) = e

and J be its determinant, we have that F(z,t,.1;t,+1) = I (the unit matrix ) and J = 1.
Introducing the change of variables c(z,t) = ¢(Y (y,t;t,11),t) = ¢(y,t) we can easily
compute, see [3],

condition Y (y, t,;tni1) = y. Note that

oe(y,t)  Oc  To
Eram a—l—u-vzc, V.c=F'V,z,

1
div, (v(z,t)V.c) = jdivy (JF~'0(y,t) F~TV,0),

so that the partial differential equation of (7.1 ) can be recast as

oc(y,t) 1

o~ 74 (JF'D(y, t) F7'V,0)— f(y,t) in D X (tn, tys1] (7.4a)
or equivalently
1 _
%gj’ H_ G(y,t) in D X (tp,ta1]; Gly,t) = jdivy (JF'(y,t) F'Ve)—f(y,t).

7.4b
Discretizing in time (7.4b) by the Backwards Differentiation Formula of order 1 (BDl(fl) it)
follows the equation
!
noting that (1) for t = t,44, E(yvtn+1) = C(Y(y7 tn+1§tn+1)atn+1) = C(‘T>tn+l)7 J =1,
F =1, f(y,tny1) = f(z,tny1), and (2) for t = t,, e(y,t,) = c(Y (W, tn;tni1),tn) =
(X (z,tpyi1;tn), tn), it follows that

C(:L‘, tn+1) - C(X(‘L: tn+1§ tn)~, tn)
At
This is the first order in time LG method proposed by Douglas and Russell (1982) and

Pironneau (1982). A second order scheme proposed by Ewing and Russell (1981) is ob-
tained by discretizing in time (7.4b) by the BDF of order 2 (BDF2), thus we have

= divy (V(x, tps1)Vac(x, o) + f(2,tn11) - (7.5)

3¢(y, tns1) — 4c(y, tn) + ¢y, tn1)
oAt

= G(ya tn+1)7
or equivalently

36(:1;7 tn+1) - 4C(X(.T, tn+1; tn)> tn) + C(X(.’L’, tn+1; tn71)7 tnfl)
2At (7.6)
divg (V(2, bty 1) Vac(@, tygr) + f(2, Trga).
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Another second order scheme proposed by Bermiidez et al. (2006) is obtained by discretiz-
ing (7.4b) by the trapezoidal rule:

6(1/7 tn+1) B E(U7 tn)
At

1
this yields

oz, tnpr) — c(X(, tnga; tn) tn)
At

= %divz(y(m, toi1)Vae(x, thi)+
(7.8)
11
J2
For the same accuracy, the latter scheme is more computationally expensive than (7.6)
because the Jacobians at the points X (x,¢,1;%,) plus the calculation of the right hand
side integrals have to be performed every time step. Another second order scheme of the
same type has also been proposed by Rui and Tabata (2002). In what follows we shall focus
on the LG-BDF2 methods because in terms of accuracy versus CPU time and computer
storage they are better than the other ones.

1
divy (JF_lﬁ(% tn) F_TvyE(yv tn) + g(f(xv tn+1) + f(X(iC, tn-%—l; tn)v tn)

8 AUXILIARY RESULTS

We recall in this section some results concerning the approximation properties of the finite
element spaces and the convergence properties of the operators I, : C(D) — W), and
Ry, : HY(D) — Vj,. In the error estimates there will be multiplying constants, independent
of the mesh parameter, that we denote by C and are different from place to place

Let h be the mesh parameter such that given hg sufficiently small 0 < h < hg < 1, then
there exists a constant C such that for u € H*™(D) N H(D), 1 < s <m,

nf {llu = enllgag) + IV @ = )l < OBl oy (8:1)

For the Lagrange interpolation operator I, : C(D) — W, we have that for u €
H*Y(D), s>1,
lu = Inull 2y + R IV (= Tnu) |2y < Ol oy - (8.2)

Finally, we shall consider the elliptic projector operator R; : Hi — Vj, defined in
relation with the hilinear form a(t;u,v), then for u € L*(0,T; H}(D) N H*T'(D)) with
uw(0) € Hi (D) N H**Y(D), Ryu is the solution of the problem

a(t; Ryu,vp) = a(t,u,vy), for all v, € Vi, (8.3)

Let p := u — Rpu, then under proper regularity assumptions the following estimates
hold:

HPHLZ(D) +h ||VP||L2(D) < Ch**H|u Hs+1(D) (8.4a)
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and
1ol 2oy + 219y < B lulzgess oy + el gess | (8.4b)

0
where p, stands for 8—? and the constant C' in (8.4a) and (8.4b) is of the form C =

Ww x Cp, with Cp being a generic positive approximation constant.
0

9 THE CONVENTIONAL AND MODIFIED LG-BDF2
METHODS

LG-BDF2 method
For n=1,...,N —1, given c} and cz_l, find c;‘“ € Vi, such that for all v, € Vj,

1
5 (3™ —Ach (X (@) + 7 (X (@), ) +
(9.1a)
Ata"“ (CZ+17 Uh) _ At(fn'H, Uh),
and for n =1, let ¢ = R, (z) €V}, find c} € V), such that for all v, €V,
(ch — (X® ), vr) + At (ch 1) = (71, vn). (9.1b)

Here a"*Y(c} ", vy,) and at(c},vy) are shorthand notations for the bilinear forms a(t,1;
n+

o) and a(ty;ch,vy) respectively.

Remark 11. Noting that X"~ 1""Y(2) is the shorthand notation for X (x, ty,1;ty_1), which
is solution of (2.2) at time t,_i, then it is easy to see, setting y = X™"*'(z), that
Xn—l,n+1($) — Xn—l,n ° Xn,n-%—l(x) — Xn—l,n(y).

Remark 12. The calculation of c;:“ by (9.1a) requires the solution of a symmetric linear
system, which, in general, is very well conditioned. This is one of the properties that make
appealing LG methods for convection diffusion equations.

The calculation of ¢} by the conventional LG-BDF2 method consists of the following
steps:

Step 1 Calculate the integrals (cf(X™"*(z),vy,) and (¢3(X" 2" (x),v;) by using
Algorithm 1 of Part 1

Step 2 Calculate the term a"*'(c}*!, v)) to produce the stiffness S. If the diffusion v
were independent of ¢, this step would be done once and for all at the initial step.

Step 3 Solve the system

(3M+2A¢S) [C™*!] = R™.
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As we have studied in Part I, a crucial step of these methods is the computation of
the terms (c(X™"*(z)),vy) and (¢}~ (X"~ 1" (z)), v,), this is the reason why we have
devised the modified LG-BDF2 methods in order to calculate such terms in a more efficient
manner, but without injuring the order of convergence of the conventional LG methods.

Modified LG-BDF2 method
Forn=1,...,N —1, given ¢} and ¢} €V,

1 - -
5 (3Rt = 4ep(Xmi (@) + 20 (P10 (@), ) +
(9.2a)
Atant! (CZJrlv Uh) — At(f’fl+17 Uh),
and for n =1, given ¢) = Ry,°, find c}, € V}, such that for all v, € V),
(ch = eR(XO@)), vn) + Atal (), v0) = (1", vn). (9.2)

The only difference about the implementation of conventional and modified LG-BDF2
methods is in Step 1. In the modified LG-BDF2 method this step is performed by using
Algorithm 2 of Part 1.

10 ANALYSIS OF THE LG METHODS FOR LINEAR
CONVECTION-DIFFUSION EQUATIONS

In this section we study the convergence of the LG methods presented in these notes
for convection-diffusion problems. We describe a general methodology which allows us
to show the existence of a convergence regime depending on both the character of the
equations and the magnitude of the CFL number. If the problem is diffusion dominated,
then the convergence of LG methods in the L2-norm is optimal; however if the character is
convection dominated, then at small CFLL. numbers the space convergence of these methods
is suboptimal.

To keep the limits of the length of these notes, we shall only analyze the modified
LG methods because their analysis is more involved, however, the same technique, with
obvious changes, is applied to the conventional LG methods.

First, we establish a stability result.

Lemma 10. Assuming that u € L*°(0,T; W%(D)%), then there exists a positive constant
K independent of At and h such that for alln = 1,2,..., N, the solution CZH calculated
by (9.2a) satisfies

N
[ P (}|02I|L2<D> 28 ||f"|L2<D>> : (10.1)
n=1
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Proof: To simplify the writing of the formulae that follow we introduce further
notation: let b"(-) denote a generic function at time instant ¢,, then we set
= bn(x)7 ’l;*n — brz()?n,n+l(1.))’ i bn(xn,n{»l(x))’
g**nfl — bnfl()’Z'nfl,n+1(x))7 b**n 1 bn I(Xn 1n+1( ))’

Zlbn+1 — vt —p and ZanJrl — pntl _ el

Then, recasting the first term of (9.2a) as

1 1
5 (BCZJrl _ 4C +’&‘**TL 1 vh) 5 (BCZJrl 4C + C**n 1,vh) _
N *77 1 ~kn—1 sk —1
206" — ¢ on) + 5(0}1 —" ) =

_ 1
<2Alcz+1 — §A202+1,vh> —

*n 1 sxn—1

1 kKN —
2(02" Ch 7vh) + §(Ch " — Gy Uh)?
and using the relations

208t ) = Ay |

,H”imj) + HZIC:

,HH;(D) for il =1 or 2,

it follows by setting v, = ;™ in (9.2a) that

AN n N 2 n
Bl ey + 1B ™ oy = 782 ek iz =

AN LT 2 n n n _
TR [ ) + Atam (Ve Vet ) = (10.2)
1
At(f}rlz-%—l n+l)+2(ch _Ch ,CZ_H) i(ggm—l C;*n 1 CZ+1).

Next, we bound the terms A, ||CZ
of (5.15) it is easy to show that

HH;(D)’ A, ”CZHH;(D) and HZZC’;“H;(D). Making use

Z1 HC’Z-'—lHig(D) > A1 ||CZ+1H12(D) - KQAt ||CZ||§,2(D) )

similarly,

A, HCZHHLZ <Ay HCZHHH (D) +2K,A8 HCZ 1”L2(D) )
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then, substituting these inequalities in (10.2) we obtain that

n 1 n N 2 1 n
Ay JrlHLZ o ZAZ ChHH;(D) + HAlChHHH(D) T4 HAZ +1HLZ’(D +
Ata™ (Ve Vet < AL(f et + KAt (||chHL2 o+l 1||L2(D ) + (10.3)
2T — it ) — @G — e,

where K15 = max(2K1, K5). To bound ”ZQCZHH;(D) in this expression, we note that

AN _n 2 N 2 *70 **M
HA2ch+1HL2(D) <2 HAlChHHLZ(D) +2 Hch ~Ch 1H1:2(1)) )
making the change y = X™"*1(z) and recalling Remark 11, we have that

/‘(‘h y) — (X ‘Z‘J”’"+1’71dy§ (by 5.15)
(14 KAt ||ep = e lHLZ(D) =
1Ba6q 2y + Fost (16 R + ek 2acoy)-

where Ky = Ky(1 + K,At); hence

-1
Ch ”L2(D )

8o Gy < 2 (B2 g+ 1Ba6i ") + 2Ba (el +

Therefore, we have:

Iy~ n 2 ]' n N nl||?
1B o) = 7 1B oy = 5 ([Baci oy — [B1cI)
(10.4)

1—
Rt (Il + ™).

~ 1
It remains to bound the term 2(¢;" — ™, ¢ ™) — —(¢7 1 — ¢ ™) in (10.3). By
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virtue of Lemma 6 and using the inverse inequality (5.13), we have that

<

\m—%ww<W*WWww

~ 1 kN — *kN—
] e P o PR

205h ALl el p2py + e 1HL2 HChHHH(D =

2050t ([ 2y + ™ 72y ) + Cohbt [l [y -

Substituting (10.4) and (10.5) in (10.3) and summing from n =1 to N — 1, we obtain

3
S (A0 iy = 322 e ) = 51

2

h L) " 3 e 1||L2(D) -

Ch

2
1 llenllz2(py + 1 (A

and
1 g2 1w ng1gp2
(nalc;lnm - B ) 2

72 (HAI 7LHHH(D

i) — 3R S0 (1o + o) =

1/, — _
9 (HAIC}];/H;(D) - HAlcllz”;(D)) KQAtZ (HChHLQ(D e 1HL2 D))

Hence, we have:

1/2
0

2, 4 . 1w
e ey + 5 1BaeiIl nmmm+m St Ve ™ ey < 3 e+

220 +

4At
by + 5 1)+ 250 ST I g ™ gy + OO SN e

where C' = 8/3K 5+ 4/3K, +7Csh. Let m be such that i | 2 py = maxo<n<n I}l 12y
then

1
mi2 mi2
llh HL?(D) < 3 (H('h ||L2(D) + HC}LHLQ oy HC}LHLQ(D)) +

4At
= S I o) Nl ooy + CAE NS 6+ oy Nl 2o
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whence 1
HC;]:[HLQ(D) < 3 (HC}ILHLZ(D) + HC}OLHLZ(D)) +
28 S I ey + OB [ o
since ||cfY 2y < il z2(py - Applying Gronwall inequality the result (10.1) follows with
K = exp(CT). O

Next, we estimate the error of the method in the L?norm. To do so, we set for each n

cn+1 CZJrl ( n+l R}Lcn+1) + (Rhanrl o czﬁ»l) = pn+1 4 62+1. (106)

As we see below, we need estimates of the term p™ — p™(X™"*1(x)) which are established
in the following lemma that is an extension of Lemma 1 in [14].

Lemma 11. For all n, p" — p"(X™"T!(z)) satisfies the following bounds:
(4)

o™ = " (X" @D 1y < Kalst 1072 (10.7a)
(#) 1
Hpn - pn(Xn,n+ (x))HLz(D) < K5At vanHLz(D) ’ (107b)
(© 1
107 = X @) oy < Ko 17200 (10.70)

where
Ky = ||“||Loc(o,T;L°°(D)d)) + G Ko (1 + KA,

K5 = (1+ K2Ab) [ull po oz oy - (10.8)

Ko =1+ (1+ K3At)
and H='(D) denotes the dual space of H}(D).

Proof: (A) For completeness of these notes we shall write the proof (10.7a), which is
inspired in the proof of Lemma 1 in [14]. Setting y = X"™"*!(z) and denoting by X~ n+1( )

. . —n,n+1
the inverse of X™"+1(.) ie., X o Xl (x) =,

(X (g = su o () — pt (X (e r)dz |,
I = )y = s (16l [ (0701 = g0 ) i)

(10.9)
changing variables and taking into account that (J"’”“)_1 <1+ K)At we have that
Jp (" prX N (@) d(x)de < [, p" () (x)da—
nn+1 n —~~n,n+1
Jor( (¥))dy — KA [, p"()$(X 7 (y))dy <

Jpe" () (¢(y) = o(X" T (y)) dy — Kt [, " ()o (X" () dy.
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To proceed further we need to estimate ¢(y) — ¢(7n’n+1 (y)). In doing so, we note that for

——n,n+1

O<a<l yla)=ay—(1—a)X
D into D (see |28]) and

(y) defines a quasi-isometric homeomorphism from

moreover, by the definition of X™"*!(z) it follows that

et tny1 . .
y—X (y) =— w(X (2, tpy1;t), t)dt;
tn

hence

H¢ ﬂm“(y)’

With these considerations in mind it follows that

o) < At|[ul| oo, poe(py2) 1Vl L2y -

n ——n,n+1 n
/D o) (6ly) — o (X" (1) dy] < At |[ull e oizizoe o) 19" 20 191y o -

On the other hand, we have that

o= L@ ay = [ ot i <

(1+ KAL) [ 16(2)* do = (1 + KrAt) H¢||2LZ(D) ;

ﬂ'L n+1

[+

so that, denoting by C), the constant of the Poincaré inequality,

Ko | [ 0" )6 (X (0))dy| < Kol 10 | o(F" ()]

L2(D)
AtC Ko (1 + KAL) [10"] 12(p) 191113 )
Collecting these bounds in (10.9) yields

Hpn . pn(Xn’nH(-T)) < AtK, ||pn||L2(D) )

(P

where
Ky = ||“||Lw(o,T;L°°(D)d) + CpI(1 + KR A).

(B) Now, we recast p" — p"(X""+1(x)) as

bt do(X (2, ty1;t), tn
pn(x) —pn(Xn’n+l(x)) :/ 10( ( +1 ) )dt,
t

dt

n
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and by Cauchy-Schwarz inequality we get
L 9 tnt1 )
|p" = pM (X" (2)|” < At/ [W(X (2, tng1;t),t) - V(X (2t t), tn)| dL,
tn
so that

tnt1
7 7 n,n 2
I = X @) gy < A [ [ Xt 0,0) - T oty 0,8) e <
tn
2 frt 2
Al [ [ 9P tysrit) ) dede < Getting y = X(a.t150)
tn

tnt1
i1y —1 .
At HuHioo((o,T)de/t /D IVo(y, o) (J5" ) dydt < (by virtue of (5.15))

2 2
(1 + Ko A AL [l e 0,0y pye 1V O™ 72y -

Then, setting
Ks = (14 K2At) [[ull oo o 7,100 (D))
the result follows.
(C) Now, we estimate [|p" — p"(X™" ()|l 12(p) a8
0" = P (X™™ (@) 2py < 10" 12py + 1P (X (@) 20y <
(by (5.15)) (2 + KAL) [|p™ r2py = Ko 10"l 12(p) -

where
}{6 ::2 +—]¥é£§t
O

We are now in a condition to establish the theorem on the convergence of modified LG
methods.

Theorem 12. Assuming c(z,t) is sufficiently smooth and u € (0, T; W>>(D)?), then for
the solution ¢} calculated by (9.2a) it holds that

2“1/2 ) o o
le — ch||loo(07T;L2<D)) < <C+ F A7 min (D:hDQAt,DgAt)) Bihmti4

Lz(O,tl;LZ(D))>) 7

(10.10)

D3 D2
F | Boh™ + TV2R2 By + At? H—f + H—j
D\l 2o ri2my 11 D
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where By = [¢]| oo mimms1(pyys Bz = el zo.rmmsi oy + el 2o gomerpyy » £ = 3(1+
2K At)ep exp(BT) max(1.5C, 2v/2(1 + Ch™), 1) with B = ; + % + 10C2h + 2K5(1 +

KyAt) + max(2K,.K3), €1 is a positive constant independent of vo and

5 v -1/2
Ep = Imax. (811/2, \/; (!'51 + 27[(/)2> ) 5

5
B 5 L+ gKZAt _ ||uHL°°(D><(O,T))d
N NPT R h
and
Dy = R i ||uHL°°(D><(0,T))d CpK5(1 + KyAt)
=&
vo (1+2K,At) l[tll Lo (D x (0,792
Proof: Noticing that p"*! is bounded by (8.4a), we have to estimate }*'. To do

so, we decompose the first term of (9.2a) as we did above in the analysis of stability and
subtract from the resulting expression the equation for the elliptic projection of c(z,t,41)

onto Vj,
a"H(Rhc"H, Uh) — an+1 (Cn—}—l7 vh) —

Dc
(fm+ o) — (Hf |tn+1,vh) , for all v, € V),

to obtain for n =1,2,...

1
3 (392+1 —40;" + 9,’;*"71, Uh) + Ata"“(ﬁzﬂ, vp) = (W ), (10.11)

6
where w™ ™t =37 w!*!, and

Wit = At (30”+1 — e + et De >

2L " gl
wy ™ = _% (3"t —dp" + "),
witt =2(F" = p™) +2(¢" =T,
n+l _ _1 (ﬁ**"*l -

**n—l) **xn—1 *ﬂ«*n—l) )

p —%(C —c

1
wg+1 = _9 (pn _ p*n) + 5 (pnfl _ ,0**”71) 7
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and
sxn—1

— 1 ~
wptt = <26~ 6,) + 56 =0, ).
Setting v, = A7 in (10.11) and operating in the same way as in the stability proof, taking

HH(QLHH(D) =0, yields,

IO + S0 S V0 2y < 7 1608 o+

3 2
4 ”9’11HL2(D)

- _
5 B0 ey + S5 (S, 00 ) +
(10.12)

N—
Zn:ll

(400 =8y = 03 =)0

+ (2K 12 + Kp) ALY ||9n+1||L2(D

Next, we have to estimate the terms on the right hand side and then use the same argument
as we did at the end of the stability proof. Thus, applying a Taylor expansion with integral
remainder along the characteristic curves we have that

||w1 +1HL2 < \/gAto/z

then using the Cauchy-Schwarz and elementary inequalities we obtain

Atf ’ eAt
N + 5 1027 122 ) - 10.13
)| 5E L2(tn1tns1:L2(D)) H HLZ(D) ( )

D3¢
Dt3

b
L2(tp—1,tnt+1;L%(D))

| (w?+1 924»1

’Dt

To bound the term |(w§+l GZH)‘ we note that by virtue of Cauchy-Schwarz inequality

(w5 0] < s | gy 165 | oy

then using the elementary inequality we have that

7 7 7 71— 2
Hw2+1|| . H9n+1H . At 3P H—p P p ! Ats H9n+1H .
L(D) o) =g P A A o) x(
Noting that
2 t 2 t
pn+1 _ pn 9 n+1 9 n+1 9
HSAt o) Nl : pedt| dr < At ), HPtHL2(D) dt
n __ n—l1 2
and similarly for F =P , we finally have the inequality
At 12D)

18 € 2
n n+1 2 n+1
|(’LU2+1, 9h+ )‘ S g Hpt||L2(tn71,tn+1;L2(D)) + aAt H9h+ HLQ(D) . (1014)
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To estimate ‘ (w e

follows that

§+1,92+1)| and ’ 92“)‘ we use conveniently Lemma 6 and then it

™ )]+ [ 0] < < 7+

o ) (10.15)
t
%hﬁl (HVCHL‘X’(O,T;LZ(D)) + ||vp||L°°(O,T;L2(D))) :
By Lemma 6 we find that
(a0 =) w0t =8| <
(10.16)

AACoh (10710 + 1107 (2 ) + 28Ch 051 12

To estimate |(wy™", 65|

(A)

we make use of Lema 11 and have the following estimates:

|(wg+1’92‘+1){ < 3AtK, (HpHLw(O’T;LZ(D))) HHZHHH(g(m <

- (10.17a)
N v 1112
o Aol ooy + ANV ) + 57 AR [,
(B)
| (w3, 00 )| < Ko A Vol g o.2,2000 105 | 2y <
KQAt N (10.17b)
E s
||VP||LDO(0TL2(D)) H@ HHU (D)’
where K7 = 3 [|ul| oo (p (o.7y)a (1 + 2K2A0).
(©)
(w5 00| < Ksllpll e oziz2op 100 | 2 ) <
K2At H N LALL H9n+1|| (10.17C)
At Lo 0,1:02(D)) L2(D)”

3
where Kg = 5(1+ gKQAt).
Substituting the estimates (10.13)-(10.16) and (10.17a) into (10.12), summing from
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n=0to N — 1, and setting T'= NAt and ¢; = ¢ we have the following bound:

3 1 _ 3 1,—

10y < L e+ 2 D+ [ +
D3c||?
Dt?

At*

581

*9 l ||2
+ P . +
L2(0,T;L2(D)) 8¢eq L2 O.TsL2(D))

(10.18)

4 2
ECQQT (“VCHLOO(O,T;LZ(D)GI) + HV/’HLOO(O,T;Lz(D)d)) hi4

9

2 N n|(|2
ZTJOKZ oIz 0,702y + ALB 0o 103 22y »

where B = g1 + % + 10Cyh + 2K 15 + K is a positive constant. Now, using the same

argument as in the stability proof and applying Gronwall inequality it follows that:

(4)

_ 9 .
Hef’VHLZ(D) S Avk Aot Ag+Agexp BT) + %T1/2K4C]L o HCHLOO(O,T;Hm+1(D))' (10.19a)

If we use the bounds (10.17b) or (10.17c), respectively, instead of the bound (10.17a) we
obtain

(B)

10 1| 2y < A1+ A2+ As + Ay + exp(BT)T 2K Ch™ el poe o g grmin (10.19b)

(D))~

(©)

T1/2
) S Al + AQ —+ A3 —+ A4 + eXp(BT)iKgch"H»l HCHLO“(O,T;H7"'+1(D)) 5 (1019(’)

ol -

2(D

where the constant £ of the inequalities (10.13)-(10.15) is now, taking as ¢ another constant

_ _ s _ _

€9, such that B =¢; + % +10Coh + 2K 15+ K9 = 552+ 10C5h 4+ 2K 15 + K, so that,
2 ) Ly -

2= ¢ (61 + %) Let (F1, F2) = (g 1/2,52 1/2)exp(BT), the other constants are given
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by the formulae

3 _
A = espB1) (5 10+ 1510 )

_ 2 || D3
E AN

3v2

A2,

L2(0,T;L2(D))

(237 A3) = (F17 FQ) hm+l7

C (Nellpaoamss oy + el oo ramss o))

(Ag, Ag) = (F1, F2)2V/2C,T"? (HVC”LOO(O,T;L?(D)) +Cnm |\C||Loo(o,T;Hm+1(D))) h?.

_ _ 3 _
Hence, setting e); = max(s; 1/2, €5 1/2) and considering that — ||9,1LHL2(D) + ”AIQ}LHL2(D) <
5 " 9 D?%c .
—Cpmt Hc||L2(0 tyEm1(p)) T At? || — , there exists a constant
2 o Dt | 12 0,00502(0))

3v2C

F =3(1 + 2K,At)e p exp(BT') max( . 2V2C,(1 + Ch™), 1)

such that

N
Heh ”Lz(D) < F (HCHLZ(O,T;Herl(D)) + Hct||L2(0,T;H"L+1(D))) hm+1+

D?c
FA#? —
g

D3C FT1/2 h2
L2(0,t1;L2(D)) " D2 " HCHLOQ(O’T;HmH(D» "
5013

L2(0,T;L2(D))
T1/2 - o
a A7 min (D1, DAt DgAt) pmt HCHLDC(O,T;HM‘H(D)) ,
(10.20)
where 5
D — §1 + §K2At B ||UHLoo(Dx(o,T))d
P31 2KAT h
and
- 12 |1 HuHLao(Dx(o,T))d CpKs(1 4 KAL)
D3 =& —_— 1
vo (14 2K>At) lall oo (px 0,7y
Then substituting (10.20) into (10.6) and using (8.4a) ends the proof. O

hlull ;e ;
Remark 13. Defining the local Péclet number as Pe = M, we can write
_ Vo
Ds as

1/2
Dy = CPeM? ("1”L°°<D<0T>>)
h bl
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where the constant C' is given by

1 CoKo(1 + KyAt)
C =2 L+ '
(1 4+ 2K,5A¢) < HuHLoo(wa,T))d

HUHLOO(Dx(o,T))d
hC? ’

Thus, when =S 1, or equivalently when the local Péclet number Pe >

we have that tth error is
O(max(h™ + h?) + At?),
5h

when At < At~ ———————
3ull ooy (o1

, whereas for At large, i.e., At > Atc the error is

hm+1

At

O(max(( + h%), At?)).

In both cases the constants of the error do not depend on l/al and therefore, when vy — 0

) D .
the error tends to that of the pure convective problem. However, when =< 1, e,
2

ull; 02} 2
Pe < 7H I h(g;(o,T))d or 0< ! < Vo,
D, 1 h i
we have that for At sufficiently small, i.e., At < =— = — = Atp,
Dy O\ Pe ||uHL°<’(D><(O,T))d

the error is

O(max((h™ ™ + h?), At?)),

and the constants of the error are multiplied by Val/z, which in general is not that large
because this case corresponds to diffusion dominated problems. Finally, for At > Atp, the
error is —

m

O(max(( A7

+ h2), At)).

As a final remark we should add the following.

Remark 14. The term O(h%) which appears in Theorem 12 is specific of the modified
LG method; thus, Theorem 12 without such a term is the estimate for the error of the
conventional LG method, and therefore, the above remarks are also valid for this method.

11 NUMERICAL TESTS

We test the performance of the modified LG method as well as the validity of the theoretical
convergence results of Theorem 12. To this end we consider the model problem (7.1)
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in the whole space R® and ¢ > 0, with data f(z,t) = 0, v(z,t) = vy, velocity vector
u(z,t) = (—w9,21,0) and initial condition

(1 +0.25)2+x22+x§}7 (11.1)

c(w,0) = exp {— .

k)

where oy = 0.08. It is known that the analytical solution is given by

B ol ’ o] (T1(t) + 0.25)% + T3(t) + 73(1)
cla,t) = (\/m> p{ 3 } (11.2)

90
where T (t) = 1 cost + xgsint, To(t) = —xysint + x5 cost and Z3(t) = x3. Our numerical
test consists of solving the model problem (7.1), the analytical solution of which is (11.2),
in the bounded region D := [~0.9,0.9]% x [-0.3,0.3] and time interval I := [0, 27] with the
same data as in the problem formulated in the whole of R?, but with boundary conditions
given by (11.2) when (z,t) € 9D x [0,2n]. We calculate the numerical solution in a
family of meshes (D),); formed by tetrahedra and P, conforming finite element spaces V),
with different time steps At;. The values of h; and At vary according to the relations

1
(hj, Aty) = —Q(hj,hAtk,l), j=1,2,...,and k = 1,2,.... The integrals are calculated

by the Gauss-Legendre quadrature rules of order 6 presented in [25], these quadrature
rules have positive weights. Table 7 shows the main features of the meshes employed in
the numerical tests.

Mesh | Elements | Vertices | Nodes h
1 2565 660 4302 | 0.169705627
2 6320 1463 9995 0.12
3 17623 3718 26528 | 0.084852814
4 51268 10106 | 74479 0.06
5 141530 26619 | 200647 | 0.042426407
6 415405 75320 | 578044 0.03

Table 7: Features of the meshes used in the experiments

The results we show below have been obtained by the modified LG-BDF2 method with
the diffusion coefficients vy = 1072, 1073, 107%, and 107°; the solution of (2.2) taking as
initial condition the vertices of the tetrahedra is calculated by a Runge-Kutta method of
order 3 combined with the search-locate algorithm of [1]; so that the error committed in
the calculation of the feet of the characteristics is negligible when compared with the error
of the method. We must also say that we could calculate once and for all the feet of the
characteristics because the velocity vector does not depend on time; however, when we
compare the performances of the modified and conventional LG methods, see Figure 7, we
calculate the solution of (2.2) every time step in order to compute the CPU time of each
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method. For the values of h used in the experiments the values of vy = 107* and 107°
yield high local Péclet numbers; so that, according to Theorem 12 the behavior of the

error corresponds to the case ELEEN 1, except possibly for vy = 1073, and certainly for
2
vy = 1072, these two values of diffusion coefficients yield low local Péclet numbers, and

consequently, the error behavior for them corresponds to the case L3 - 1. We show in

2
e, t) = en(, D)l 12 ()

lle(z, D)l L2
At (or equivalently the number of time steps) with A = 0.03. We observe in Figure 4 that

, as a function of

Figures 4 and 5 the variation of the relative error,

h3
when At is large enough, i.e., At > Atc the error is O(mam((E + h?), At?)), however

when At < At the error remains almost constant as At decreases, this indicates that the
error does not depend on At as Theorem 12 predicts, actually the error is O(h?).

Figure 5 shows the relative error behavior for vy = 107* (upper) and vo = 107* (lower).

For such values of vq the ratio D3 -1 and consequently we observe in the graphs that

when At is sufficiently large, or e(iuivalently, when the number of time steps is less than
10, the convergence is O(mam((hzrl +h?), At?)); however, when 0.1 < At the convergence
is given by O(maz((h™*! + h?), At?)), this means that when 0.1 < At < h the error is
O(At?), and when At < h, i.e., when the number of time steps is larger than, say, ~ 30 the
error is O(h?). We further observe in Figure 4 and the upper panel of Figure 5 that when
At is so small that the CFL number is < 1 the error increases slowly. We attribute this
increase to the possible existence of instabilities at CFL < 1 in the LG methods when the
integrals [, ¢ji(X™" ! (x))vy,(2)dz are approximated by Gaussian quadrature rules instead
of being calculated exactly, see [22]. Tt occurs that if the diffusion is sufficiently large then
it kills the instability, as happens when vy = 1072; but when the diffusion is sufficiently
small the instability does not die out and will grow slowly, and eventually the calculations
may blow up after many time steps. To ascertain that this phenomena may be present at
low CFL numbers when the diffusion coefficient are very small, we repeat the numerical
experiments with vq = 107* using a Gauss-Legendre quadrature of order 8. We observe
in Figure 6 that this quadrature rule delays the appearance of the instability and this is
weaker than the one which appears when the integrals are calculated by the quadrature
rule of order 6. Next, we compare in Figure 7 the conventional LG-BDF2 and the modified
LG-BDF2 methods showing the variation of the relative error as a function of h for a time
step At = 0.063. We see that both methods converge with the same order.

As for the CPU time, the modified LG-BDF2 method needs 20 minutes and 3 seconds,
whereas the LG-BDF2 methods needs 56 minutes and 27 seconds, to complete 100 time
steps in the mesh number 6, i.e., h = 0.03.
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Relative error

N: Number of time steps

Relative error

N: Number of time steps

Figure 4: Variation of the relative error as a function of At for h = 0.03 and vg =1 x 107°
(upper) and v =1 x 107 (lower).

12 CONCLUSIONS

(1) The LG methods are powerful tools to solve convection dominated-diffusion equations
if they are implemented properly, because they require the use of high order quadrature
rules in order to be stable and accurate. One of the main points of these notes has been
the presentation of algorithms to achieve an efficient implementation of LG methods. In
this way, we have introduced a modified .G method that combined with conforming P,
and P, finite elements is as accurate as the conventional LG methods, but it is much more
efficient because it has to calculate less departure points. Numerical experiments in 3D
problems show that the new methods might be 3 times faster than the conventional LG
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Relative error

—&— MLG, v=1x1072
10°H — - y=CN
—F— y=CIN?

10" 10°

10°
N: Number of time steps
N: Number of time steps

Figure 5: Variation of the relative error as a function of At for h = 0.03 and vy = 1 x 1073
(upper) and vy = 1 x 1072 (lower).

Relative error

—&—MLG, v=1x10"* F(6) Nw
——MLG, v=1x10"* F(g) T

10°H — = y=Cm R N
——yon -

10' 107
N: Number of ime steps

Figure 6: Comparison of the results obtained with Gauss-Legendre quadrature rules of
order 8 and 6 when vy = 1074

methods.

(2) The error analysis of LG methods for convection-diffusion problems shows that the
error constants are uniformly bounded in relation with the diffusion coefficient vq, this
means that when this coefficient goes to zero the constants remains bounded and the error

tends to the error of the pure convection problem.
272

(3) Our study reveals the following scenario: (a) when vy <
h
K—————— the convergence is of the form O(maz((h™ + h?),At?)), ¢ = 1 or 2
HuHLw(Dx(O,T))d
depending on the order of the method, here C' is a bounded constant depending on
292

and At < At, =

| D] HUHZ;(DX(O,T))d and K is another constant close to 1; (b) when vy < and
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Relative error

—&—SLG, v=1x10"
MSLG, v=1x10"
100 - y:o/n2
o y=Om

Figure 7: Variation of relative error of LG-BDF2(LG) and modfied LG-BDF2 (MLG)
methods as a function of h for At = 0.063 an v =1 x 1073

m+1

At

At > Ate, that is when At is large enough, the error is O(max(( + k%), A%); (c)

1/2
C?h? 1 2
when vy > 5 and At < Atp = — (VO> the convergence is now of the

2
c HuHLOO(Dx(O,T))d
272

and At > Atp the method

form O(max((h™! + h?), At9)); finally (d) when vy >

hm+1

,h?), A?)). Since the term O(h?) is specific of the modified

LG methods, then examining back the proofs of our error analysis we can conclude that
the conventional LG methods have the same error behavior as the modified LG methods
but without the term h%. Consequently, we can say that our convergence result extends the
convergence results of [14] and [23] establishing the regime of the validity of such results.

converges with as O(max(
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