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Abstract The present paper is dedicated to the cherished memory of Professor José 
Mira Mira, who prematurely passed away on August 13, 2008. In view of his deep 
scientific interests and professional expertise in bridging natural versus mechanical 
computation methods, we offer some remarks on the concepts of uncertainty, prob-
ability and functionality with special reference to two areas of particular current 
interest to researchers in the areas of computational biology and bioinformatics. 
Preliminarily, a sketch of undergraduate and graduate curricula in Computer Sci-
ence at Federico II Naples University is provided.

Figure 1. José Mira Mira.
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1. Introduction

Particularly appropriate to the topic of the present Meeting are the contributions 
of Professor Mira Mira both to Science and to his long, dedicated teaching. Among 
his numerous works, I would like to point out those in [11]and [12] co-authored 
by Ana E. Delgado, in which the areas of artificial intelligence and neuronal mod-
eling in brain dynamics are approached with unsurpassed mastery. What, of course, 
cannot be reflected in their writing, is the enthusiasm and the conveyed strength of 
José’s delivered talks directed to a highly competent audience in the occasion of his 
invited participation in the BIOCOMP2002 and BIOCOMP2005 International 
Conferences.

2. Informatics curricula in our Faculty

As specified by the national guidelines for all Italian state universities, the under-
graduate curriculum in Informatics consists of a 3-year study program. It has the 
following aims: (i) to provide solid bases in the mathematical and informatics re-
lated areas; (ii) to offer know-how and technologies adequate to handle design, 
development and management of information systems; (iii) to realize a versatile 
cultural formation that would help to catch up in real time with the rapid evolution 
of informatics technologies; (iv) to pay particular attention to questions related 
to programming languages, to internet-related technologies, to date bases and to 
operating systems; (v) to dedicate time and teaching assistance to experiment plan-
ning and laboratory work; (vi) to guarantee opportunities for stages in companies 
in the area of computer science and technology in order to gain work experiences 
and in view of possibly interesting future employment occasions. More detailed 
information on the offered courses and on teaching staff can be found at http://
informatica.dsf.unina.it/index.php.

A master course in Informatics is also offered. This consists of a 2-year program 
focusing on a technical and scientific formation that should allow to obtain jobs 
in the area of informatics technologies, with ability to catch up with the innova-
tions in this area and with the skill to implement them in order to solve complex 
problems of current interest and to contribute to technological and scientific in-
novation.
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Among the numerous existing graduate programs at Federico II Naples University, 
here we limit ourselves to sketch some of the essential features of one of them, that 
since the very first inception in 1982 has been chaired by the author of the present 
paper. The official name of this program is Research Doctorate in Computation and 
Informatics Sciences (REDCIS). A brief outline of a newly established doctorate 
program in Computational Biology and Bioinformatics will also be provided.

Note that the Research Doctorate is the highest university degree which can be 
achieved in Italy in a particular subject. It is the equivalent of Doctor of Philosophy 
(Ph.D.) of Anglo-Saxon tradition. The main goal of our Research Doctorate pro-
gramme is to teach the methods of pure or applied scientific research in the context 
of the particular chosen area.

REDCIS aims at training researchers who have an in-depth and integrated knowl-
edge of essential tools and a basic cognizance of a wide range of mathematical and 
informatics disciplines. At the same time they should possess the ability to formal-
ize problems in different applicable contexts and construct and analyze suitable 
mathematical models which require the use of numerical and data processing so-
phisticated techniques. In addition, a solid knowledge is required in the areas of 
probability, mathematical statistics and related applications. Therefore, those wish-
ing to obtain this Degree will need to absorb different fundamental methodologies 
of applied mathematics and informatics as well as other methodologies pertaining 
to ancillary specialization areas.

All graduate students are expected to develop an aptitude in translating the reali-
ties of a concrete problem into mathematical models and to possess an excellent 
familiarity with those aspects of Informatics regarding methods and tools enabling 
to solve problems through the use of computers.

Furthermore, they will have to acquire, through analyses of meaningful sample 
problems, the tools and techniques necessary for solving realistic problems of dif-
ferent types in their entirety.

A period of basic overall training is followed, and partly complemented by, a period 
of progressive development which guides the students towards autonomous skills 
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of actuation and concludes with a thesis proposal in one of the areas of the train-
ing program. The enrolled student will have to demonstrate that by the end of the 
training program he/she is able to carry out autonomously and efficiently high level
research projects.

REDCIS has always been regarded with great interest and high expectations by 
young graduates in the fields of Mathematics, Informatics, Physics and Engineer-
ing. The increasing involvement in ad-vanced research goes along diversified cur-
ricular directions (mathematical informatics, numerical analysis and optimiza-
tion, applied analysis, mathematical physics). It should be highlighted that from 
the time of its inception, all Research Doctors have obtained rewarding jobs in 
universities, scientific institutions and in public and private enterprises, often even 
before the conclusion of their doctorate studies. The experience gained over the 
quarter of century of existence of this Doctorate curriculum has amply demon-
strated that there are numerous and diversified productive and service sectors into 
which the recipients of this Doctorate have found employment. In fact, graduates 
of REDCIS are characterized as belonging to the managerial stratum, not only in 
the sphere of universities and public and private research bodies but also in sectors 
of public intervention with a potentially high demand for employment such as the 
management of environmental resources, planning and optimization of transport 
networks, informatics and telematic systems, optimization of combustion systems, 
management of resources and environmental control, processing of tele-tracking 
data, numerical applications in meteorology and diffusion of pollutants and design 
and development of technical informatics services. The interest of public research 
bodies in programs of this nature has been often stated both by scientific organs 
of the Italian National Research Council and by the management of the Council 
itself, even to the extent of granting special admission scholarships. The European 
Union has also shown interest by making concrete contributions in the form of 
financial resources and the allocation of study grants.

REDCIS is open to those graduates who owing a degree in Mathematics, Phys-
ics, Informatics, etc., or an equivalent qualification obtained at a foreign univer-
sity, possess a sufficient basic knowledge in mathematical disciplines. This require-
ment is assessed by the entrance examination Committee. The doctorate course 
lasts three years and includes several training pathways which have been specifically 
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tailored to the participants and which are firmly centered in the fields of applied 
mathematics and informatics. A period of basic overall training is followed, and 
partly complemented by, a period of progressive development which guides the 
participants towards autonomous skills of actuation and concludes with a thesis 
proposal in one of the areas of the training program.

During the first year, the participants follow courses and seminars directed toward 
research and take related examinations. In order to be able to continue following 
the doctorate program, the participants, at the end of the first year or on another 
date established by the Teaching Board, must take and pass a qualifying exam.

During the second year, complementing the completion of their training through 
courses and seminars, the participants usually is expected to begin personalized 
work which is designed to lead them towards a proposal for a research topic which, 
usually at the end of the second year, is discussed and defended by the participants 
with the Teaching Board as well as with experts who may be designated by the 
Teaching Board. Following a successful conclusion, the Teaching Board formally 
approves the dissertation topic and nominates the Research Director.

Finally, it must be underlined that students of this Doctorate are strongly encour-
aged to spend a period of the three-year course in qualified scientific institutions 
both in Italy and abroad.

The Research Doctorate in Computational Biology and Bioinformatics (RDCBB), 
we point out that this has been conceived as a very wide interdisciplinary program, 
directed not only to graduates of Science and Engineering Faculties, but also to 
talented young people from the areas of biology and medicine. A full description 
can be found at

www1.na.infn.it/dottorat/PhDBioinformatica/index-en.htm.

Here, we limit ourselves to mentioning that its aim is to train young researchers in 
the fields of computational biology and bioinformatics, by merging research ac-
tivities and expertises on the usage of information technologies and of chemical, 
physical and mathematical modeling in biology and medicine. The educational 
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programme is, for this reason, interdisciplinary and involves the competences of a 
wide number of departments of Federico II Naples University. Bioinformatics con-
cerns the collection, storing, maintenance, dissemination and mining of biological 
data, mainly of molecular kind, by using methods developed in different research 
fields (mathematics, computer science, biology, medicine, physics, chemistry, engi-
neering) with the goal to provide an interpretation key of biological phenomena. 
Computational Biology is aimed, also starting from a direct analysis of experimen-
tal results, to understand the structure and the function of biomolecules, and the 
relations among them both at molecular and cellular level. This discipline concerns 
even more complex systems, by studying the interactions between organisms and 
environment by means of the application of computational tools and the imple-
mentation of mathematical modeling. Such models can be used to test the biologi-
cal systems in biotech and medical applications.

Among the main research subjects of RDCBB rank: storage, maintenance, organi-
zation and use of genetic data associated to normal and pathological traits; devel-
opment of bioinformatical tools (software, hardware, algorithms) for the organiza-
tion and the analysis of biological and bio-medical data, of specialized, integrated 
databases and of software for DNA and protein sequence analysis; set-up of meth-
ods for information retrieval and integration of heterogeneous bio-medical data 
and development of standards for biological and bio-medical data interchange; 
prediction of genes and other functional regions in DNA and proteins; simula-
tion of metabolic and cellular processes; pattern formation and selforganization 
modeling; statistical approaches in bioinformatics; simulation of complex biologi-
cal system dynamics, of evolutionary systems and artificial life.

3. Historical remarks

As is well-known, what nowadays we call Informatics is a field that stems its roots 
in some of the pioneering works by a number of mentors that I feel appropriate to 
mention here. Indeed, they have played a significant role in determining my own 
background and in orienting my research interests towards the field in which I still 
work. All this, however, with the proviso that, due to lack of space, I purposely skip 
over most of those whose names are indelibly carved on the pillars of that magnifi-
cent temple hosting informatics and all closely related subjects.
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Here, I wish to pay my tribute to Eduardo R. Caianiello (left of Fig. 2) under whom 
I graduated and who first directed my interests towards the new area of Cyber-
netics. Through his kind encouragement and his multifaceted relationships with 
mathematicians, engineers, physicists and biologists crowding the scientific pano-
rama at that time, I was able to meet and enjoy lectures and discussions by people 
such as Norbert Wiener (right of Fig. 2), Warren McCulloch (Fig. 3), Gordon Pask 
(left of Fig. 4) and Ross Ashby (right of Fig. 4), just to mention a few.1

The subject of my talk today is centered on the notion of “uncertainty” and of vari-
ous possible interpretation of it. Of course, the pathway of the scientist is paved by 
uncertainties of a variegated nature. The transition from a cloud of uncertainty to 
well defined conclusive remarks is what scientific research is all about. Without the 
claim of being exhaustive, hereafter I shall briefly outline some examples showing 
different possible types of uncertainty.

Figure 2. Eduardo R. Caianiello (left) and Norbert Wiener.

1  The three photos in which McCulloch appears have been taken from [13]. It is interesting to take 
note that the young man (center of photo on the right of Fig. 3), delivered yesterday the introduc-
tory talk in this Workshop and is with us today.
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Figure 3. Warren S. McCulloch (left), with Walter Pitts (center), with Roberto Moreno 
Díaz Sr. and Louis Sutro.

Figure 4. Gordon Pask (left) and Ross Ashby.
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3.1 Uncertainty by complexity

In everyday’s life we face events that take place in very restricted ranges of lengths, 
masses and times. It is thus inconceivable, on the grounds of sole human experi-
ence, the “perception” of lengths (see table 1) ranging from the distance 2 x 1022 m 
of the closest nebula, Andromeda, to 5 x 10ˉ11 m, the radius of hydrogen atom.

Table 1. Lengths (m).

Distance of closest nebula (Andromeda) 2 x 1022

Radius of our galaxy 6 x 1019

Distance of closest star (Alfa Centauri) 4:3 x 1016

Mean radius of Pluto’s orbit 5:9 x 1012

Radius of Sun 6:9 x 108

Height of Mount Everest 8:9 x 103

Man’s mean height 1:8 x 100

Thickness of an overhead transparency sheet 1 x 10-4

Size of the Polio virus 1:2 x 10-8

Radius of Hydrogen atom 5 x 10-11

Effective radius of proton 1:2 x 10-15

What about masses ? In this case we face values that, expressed in kilograms, to our 
dismay have order of magnitudes ranging between 1041 to about 10ˉ30. (See table 
2.) Similar is the situation concerning the dimension “time” and our total inability 
to “metabolize” the duration of the life of an elementary particle (for instance of 
the order of 10ˉ14 seconds) or 1018 seconds, expressing the estimated age of the 
Universe. (See table 3.)
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Table 2. Masses (Kg)

Our galaxy 2.2 x 1041

Sun 2 x 1030

Earth 6 x 1024

Luna 7.4 x 1022

Water of all Oceans 1.4 x 1021

Cruise liner 7.2 x 107

Elephant 4.5 x 103

Man 7.3 x 101

One grape 3 x 10-3

Grane of dust 2.3 x 10-10

Virus 6.7 x 10-13

Penicillin molecule 5 x 10-17

U238 atom 4 x 10-25

Electron 9.1 x 10-31

 

Table 3. Times (s)

Age of Universe 1.0 x 1018

Age of Earth 1.3 x 1017

Age of Cheope’s pyramid 1.5 x 1011

Mean life of a person 2.0 x 109

Earth’s revolution period (1 year) 3.1 x 107

Earth’s rotation period (1 day) 8.6 x 104

Neutron’s mean life 7.0 x 102

Heart beat period 8.0 x 10-1

Tuning fork’s period (A, La) 2.3 x 10-3

Muon’s mean life 2.2 x 10-6

Microwave oscillation period (3cm) 1.0 x 10-10

Mean life of neutral pion 2.2 x 10-16

Oscillation period of a 1 - MeV  γ ray 4.0 x 10-21
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The above remarks stress that we are able to get the feelings of physical dimen-
sions in a very restricted ranges of values. Still, all quantities mentioned above are 
uniquely and precisely expressed by exact numbers. However, the amount of im-
mediately perceivable information conveyed to us by such numbers is extremely 
poor or, equivalently, extremely large is the amount of uncertainty carried by them. 
Another quite surprising discovery takes place when we refer to the well-known 
notion of n! and look at the growth of it as n moderately increases. Indeed, 2! = 2, 
4! = 24, 7! = 5040, and so on. However, already 9! is close to a half million, 13! 
is over six billions and 20! is greater than a billion of billions. (See Table 4, remind-
ing us of a “Christmas Tree”, and Table 5 in which, as customary, for instance the 
notation e + 118 indicates that the number 7:156945···365 must be multiplied 
by 10118 to yield 80!)

Note that from the view point of the numerical representation everything is precise 
and uniquely determined. Still, the “information content” of the above numbers 
fades away as far as our pesonal perception is concerned.

Hence, a kind of “uncertainty by dimension” is seen to emerge, despite the absolute 
absence of uncertainty by “representation”. This is, in my view, one of those cases 
falling within the more general area of what I like to call “uncertainty by complex-
ity”. By such wordings I refer to those situations that, though precisely described in 
quantitative terms, do not yield any directly perceivable information. Some other 
examples will be provided hereafter.

3.2 The Ornstein-Uhlenbeck process

As is well-known, in 1828 in the “Philosophical Transactions” ( [1]) appeared a 
paper by Robert Brown (see Fig. 5) in which the existence of a very peculiar and 
unsuspected type of motion of particles in water, discovered the year before, was 
described.

The first explanation of the physical origin of such a motion, ever since denominat-
ed “Brownian motion” was proposed by Einstein in 1905. Successively, refinements 
of Einstein’s theory were obtained by several mathematicians and physicists. Here 
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we limit ourselves to referring to the work by G.E. Ornstein ed L.S. Uhlenbeck. In 
it, a mathematical model was proposed according to which the particles underlying 
Brownian motion were viewed as subject to a stochastic diffusion process such that 
the density U(x, t) of particles at each point x and at each instant t was assumed to 
satisfy the following

                 Table 4. Factorial

						             Table 5. Factorial

                                                                            

0! 1

1! 1

2! 2

3! 6

4! 24

5! 120

6! 720

7! 5040

8! 40.820

9! 362.880

10! 3628.800

11! 39.916.800

12! 479.001.600

13! 6.227.020.800

14! 87.178.291.200
15! 1.307.674.368.000 

n! = 1 · 2 · 3 ····· n

                        

20! 2,432902008176640e+018

30! 2,652528598121927e+032

40! 8,159152832478897e+047

50! 3,041409320171298e+064

60! 8,320987112741137e+081

70! 1,197857166996979e+100

80! 7,156945704626365e+118

90! 1,485715964481719e+138

100! 9,332621544394454e+157

150! 5,713383956446549e+262

170! 7,257415615307826e+306
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Figure 5. Front page of the article containing the description of the observations by 
Robert Brown privately communicated in 1827.
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equation:

                                           (1)

with , , and  suitable parameters. Despite the simplicity of this equation, unsus-
pected mathematical difficulties arise when one asks for some closely related ques-
tions. For instance, when for the first time a particle will reach a specified point 

 starting from a given position . (The so-called first-passagetime problem) The 
quantitative answer to such a simply stated question is very complicated. It is in-
deed possible to prove that the Laplace transform of the associated density func-
tion  is given by

          (2)

in which  denotes the parabolic cylinder function defined as follows:

where

are Kummer and Euler gamma functions, respectively. We are thus facing a problem 
that is formally solved once the function  has been obtained as the inverse 
of the above Laplace transform. However, this is not feasible. The apparent simplic-
ity of formula (1) is indeed a carrier of absolutely no information in the sense that, 
though rigorously exact, it does not yield any hint that would help to guess outlook 
and features of the desired density . Neither, more helpful appear to be the 
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exact expressions of the moments of the first passage time obtained from (2), as 
shown by the expressions of the first three moments:

 (3)

                                             (4)

           

 (5)

                   

where we have set
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and also

Equation (3) yields the mean value of the first passage time, from (3)and (4) one 
obtains the variance Var , and , finally, (5) allows to calculate the 
asymmetry coefficient   . We stress that we are again 
facing exact expressions whose inspection does not provide any sort of useful or 
understandable information. In conclusion, we are offered here one more instance 
of “uncertainty by complexity ”.

4. Uncertainty by representation

Consider the sequence 

                    (6)

Can it be viewed as a “random” sequence of decimal digits? Probably YES, since all 
digits from 0 to 9 are involved and no clear evident presence of regularities emerges. 
A similar remark also holds for the sequence of binary numbers

                    (7)

whereas the sequences

                    (8)
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and

                      (9)

evidently exhibit regularity features so that for both of them it would be unreasona-
ble to talk about randomness whatever meaning one may wish to associate to such 
a word. Actually, (6) is the sequence of the  digits of the decimal representation 
of p2, in the positions from the tenth to the thirtieth after dot ( =1.414213562
3730950488016887242096980785696. . . ), while (7) is extracted from the binary 
representation of . However, (6) and (7), quite independently of their origin, 
could as well be viewed as generated via 21 independent throws of a hypothetical 
12-faceted “die” (better, by a regular dodecahedral “die” with a suitable interpreta-
tion of the 12 possible results of each throw), just alike sequences (8) and (9). In 
other words, each one of the above sequences could well be viewed as generated by 
the outcomes of 21 throws of this hypothetical dodecahedric die, so that each of 
such sequence would have probability 10-21 of occurrence. Neither a slightly biased 
die would significantly change such probabilities. In conclusion, there is no way to 
establish a priori, by looking at these sequences, whether they have been generated 
by throwing a die, whether the die was biased or whether the successive throws were 
independent.

Common sense suggests that it should be reasonable to identify “randomness” with 
the absence of regularities. With this in mind, one could then again ask whether 
the mathematical object consisting of the sequence (6) of the decimal digits that 
provide the decimal representation of  is a good candidate to be viewed as ran-
dom, or not.

The fact is that here we are meeting what I feel reasonable to call “uncertainty by 
representation”. This appears even more clearly justified after noting that a different 
type of representation may destroy the irregularity or the assumed randomness of 
a sequence of numbers. This is for instance highlighted by the specific case of p2. 
Indeed, a well-known theorem states that the square root of an integer number 
admits a continuous fraction representation consisting of a sequence of integers , 

, ,..., that is periodical after the first term:
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In the case of  one has:

so that the corresponding representative sequence is

in which no longer elements of irregularity or randomness are present. 
Out of the many interesting problems concerning the level of irregularity of certain 
ubiquitous mathematicalconstants we mention the following: To establish which 
of the trascendental numbers

should be considered as “most random”. In this respect, various computations  
( [10]) have indicated that for instance “  is more “random than ”
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5. Determinism and uncertainty

Consider a population of individuals characterized by discrete reproduction times 
, , ... that, after the choice of a suitable “clock” we shall identify with the instants 

, , .... Let 0 denote the initial observation time and let  be the number of indi-
viduals present at time . The simplest, somewhat unrealistic, well-known math-
ematical model for the population growth is

                                            (9)

where  denotes the initial number of individuals in the population. Note that 
(10) can equivalently be written as

                                                      (10)

where    denotes the constant population growth rate.

Figure 6. Plots of  ,  (left) and of 
(initial value hardly visible here).

Such a model (Malthusian growth) implies that the population size exponentially 
increases as the number of generations increases. However, in any real situation the 
limitation of environmental resources available to the population, as well as compe-
tition, predation, accumulation of toxic substances, etc., limit the growth process, 
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so that the number of individuals sharing the habitat cannot exceed a value, say 
, depending on the considered species and on the environmental characteristi-

cs. The above equation should consequently be modified. For instance, we may set

                                             (12)

implying a linear decrease of the growth rate   as  
approaches .
As is customary, it is convenient to normalize the involved quantities in a way to be 
able to refer to the finite interval (0, 1) by setting 

                                         (13)

Hence,

Figure 7. Plot of  (initial value hardly visible here).

                                    (14)

is now the transformed growth equation in which the environmental “carrying ca-
pacity” is unit. Making use of (13), or graphically as sketched in Fig. 8, after spe-
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cifying the initial value , one can iteratively calculate the successive 
(normalized) population sizes:

                                                (15)

Figure 8. Geometrical method for determining the population sizes.

Hence, the obtained values , ,... are the (normalized) number of individuals pre-
sent in generations 1, 2, ... starting from  initially present individuals. Note that 
equation (14) admits the equilibrium point . It is interesting to monitor 
the behavior of  for some values of . For instance,  implies that the equili-
brium point is 0, so that the population monotonically goes to extinction (left of 
Fig. 6). For , the population decreases towards the equilibrium point  
via damped oscillations (right of Fig. 6). Similarly one can monitor the time course 
of the population size for other values of parameter . It is interesting to point out 
in this respect that a new, surprising kind of behavior emerges for certain choices of 

. For instance, , as  increases  tends to the equilibrium point  
in a sort of “chaotic” way, in the sense that the sequence of values , , ... appears to 
be really random, as shown by Fig. 7. By inspection of such a figure, it is for instance 
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impossible to establish whether the observed values are the result of a stochastic 
process or if, as we know, they have been obtained via an equation describing the 
rigorously deterministic evolution of a system. 

In conclusion, this is an example showing the existence of situations in which “un-
certainty” is a consequence, so to say, of the very nature of certain solutions of equa-
tions derived to describe the evolution of systems subject to strictly deterministic 
laws (see also [7]).

6. Probabilistic certainty

Quite natural is to view as uncertain the possible outcomes or results generated 
in a probabilistic context. Are we sure about the occurrence of an event such as 
the outcome of the throw of a die, or the draw of a card from a well shuffled deck? 
Of course no, as these are situations governed by the “empirical law of large num-
bers”. Still, against intuition, the uncertainty level of certain random phenomena 
can progressively fade out, to lead eventually to situations of “practical” certainty. 
A first, simple example is provided by the so-called problem of the birthdays coin-
cidence: What is the probability  that all of  ( ) randomly chosen persons 
have different birthdays? A simple argument, under the reasonable equal probabil-
ity assumption, yields (here we do not consider leap years):

                                        (16)

Hence, the probability  that at least 2 of the  persons have the same birthday is 
.
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Table 6. Probabilities of birthdays coincidence. For 60 persons this exceeds 99%

Table 6 indicates that in the case of only 50 persons the probability of coincidence 
is over 97%, while it exceeds 99% in the case of 60 persons. (Neither these prob-
abilities would change much if someone lies about his birthday!) Fig. 6 is an illumi-
nating plot of such probability of coincidence.

Figure 9. Plot of the probability of birthdays coincidence as a function of the number of 
persons.
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Quite interesting is also the following example: What is the probability  that by 
inserting at random  letters directed to different people into as many pre-addressed 
envelops, at least one of them is delivered to the right person? Against intuition, it can 
be shown that the highest uncertainty level (0:5 corresponding to the case of only 
2 letters) is slightly reduced in the case of 3 letters, and that not much is gained in 
randomness as the number of letters progressively increases. Indeed, there results

with

Table 7. indicates the rapid stabilization of the values of  as  increases.

Table 7. Table of coincidences

We are thus facing two situations in which practical certainties emerge in contexts 
regulated by purely random laws ( ).

One more example showing that sure results may emerge out of situations char-
acterized by intrinsic uncertainty is the so-called Parrondo paradox, that can be 
stated as follows: The participation of a player to a game consisting of two alternate 
individually losing games can turn out to be winning (surely quite in contrast to in-
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tuition!). 2 To sketch this paradox, let us assume that a player possessing an initial 
capital  (in arbitrary currency units) plays a game consisting of two randomly 
alternating games  e . For simplicity, we assume that each game consists of flip-
ping an unfair coin with the following rule: The payoff is 1 if the outcome is Head, 
and -1 (namely the player loses 1) if the outcome is Tail. In addition, again for sim-
plicity, we assume that the two games are played in succession in random order, as 
determined by a generator of random numbers uniformly distributed in (0; 1).We 
shall arrange things in such a way that  are the prob-
abilities of playing games  and , respectively.

Assume now that games  and  are characterized as follows.

game 
Let

be the probabilities of Head and Tail, respectively, where  denotes a suitably 
chosen positive real number.

game 
This, in turn, consists of two alternating games that are specified as follows. 
Let  be the the player’s capital at the time of -th repetition of the game; 
then, Head and Tail probabilities are taken according to the following recipe: 
If  mod  then,

                                     (17)

2  Hereafter we refer to losing and winning games on the average.
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If, instead,  mod , then

                                          (18)

Let us separately analyze the features of games  and .

game 
In the presence of Game  alone, . To be specific, as an example let 
us set  and let us denote by  ( , , ...) the player’s capital at the -th 
bet. This is a random variable whose probability distribution is:

It is easy to calculate the average payoff:

                                                         (19)

and to realize that  satisfies

                                                     (20)

Hence,  can be viewed as a random walk starting at . The average capital at
-th bet is thus:

                                   (21)

where use of (19) and of (20) has been made. In conclusion, Game  produces 
steady losses in time, i.e. it is is a losing game.
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game 
In the presence of Game  alone,  . Hence, rules (17)and (18) must 
be applied. Set again , . Then, for , ,... there results:

Hence,

 

It is not difficult to convince oneself that capital  can now be expressed as

To obtain its mean, the probabilities of { } for  , ,  must be cal-
culated. To this purpose, we must resort to some technicalities, and formalize our 
problem into mathematical terms by introducing a 3-state Markov chain, with 
states 0, 1, 2 representing the classes   mod ,  mod  and 

 mod , respectively. By virtue of (17) e (18), the corresponding transi-
tion probabilities are seen to satisfy

(22)
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or, explicitly:

               (23)

Since the maximum modulus eigenvalue of the transition matrix is 1, the stationary 
distribution exists. Hence, setting , , , system 
(23) becomes

                        (24)

whose solution is:

                                              (25)

During its evolution, the Markov chain converges to the three stationary states 
characterized by the probabilities (25). Therefore, one must expect that the average 
capital decreases roughly in a linear fashion as the number of iteration of Game  
increases:

  (26)

In conclusion, in the long run  is a losing game.

To summarize, when individually considered, both  and  are losing games.
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Let us now go back to the initial problem, namely to the global game consisting of a 
random switching of games  and . We can again resort to a 3-state Markov chain 
with states ,  and , whose transition matrix  is

The (existing) stationary distribution , ,  is ob-
tained by solving

                                                 (27)

after specifying  . As a concrete case, let us make games  and  equally likely by 
setting   , . Then, 

Recalling (19) and (22), the capital at the  bet can be represented as follows:

Thus, for  there holds:

This result is surprisingly in contrast with intuition, and thus paradoxical, in that 
the random alternation of the two considered individually losing games has led us 
to an overall winning game. Once again, a deterministic result (the average win) has 
stemmed out of a strictly random context. In other words, out of the uncertainty of 
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the results of each of the two games, a result that can be called “sure” has emerged: 
The increase of the average capital as the number of bets increases.

7. Uncertainty by structure

It is not difficult to find situations from the realm of computational biology and 
bioinformatics that immediately exhibit behaviors characterized by high uncer-
tainty levels. Two specific and fascinating examples are offered by the structures 
and working mechanisms finalized to accomplish functions that are essential for a 
large part of living organisms, synthesized by the two words “brain” and “muscles”: 
Thinking processes and ability to move. Hereafter, we shall provide a bird’s eye view 
of some of the surprising features that characterize the above-mentioned functions 
in a general uncertainty context.

7.1  Uncertainty by structure

As is well-known, nervous systems are made of a large number of cells, the neurons, 
interconnected in a way to form structurally very complicated networks whose 
detailed “cartography” is still far from having been specified. The electric signals 
that travel in these networks are the carriers of the information that neurons send 
off, receive and process. They are ultimately responsible for the so-called “thinking 
processes” and for the reactions of organisms to the stimulations received from the 
environment.

Human nervous system includes some ten billion neurons, essentially located on 
a surface of about 1200 cm2 (the brain cortex) wrapping a mass (encephalus) oc-
cupying a volume of about 1 liter, which implies a neuronal density of 107 cm-3. A 
few more data: the volume of a neuron is about 10-7 cm3, and is accompanied by 
a large variety of shapes; the “transmission line ” (axon) that carries information 
from a neuron to other elements of the network, whose length varies between some 
tenth of a micron to about 1 meter, allows for electric signals propagation speeds 
ranging between 0.6 to 120 m/s; the neuron’s body (soma) out of which the axon 
stems, though exhibiting a large variety of forms, has linear dimensions of the order 
of ten microns. Finally, during its activity a neuron can be thought of as a “physical 
gadget” having the power of 1 billionth watts.
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Figure 10. Different types of neurons. On the left a pyramidal cell and a cell of Martinotti 
in the cortex cerebri are depicted. Note the typical dendritic arborizations of the neuron 
on the right (Purkinje cell in the cortex cerebelli).

Fig. 10 shows in a pictorial way two different types of neurons in the brain (left) 
and in the cerebellum. It indicates the large degree of variability especially in the 
shapes of somas and of the dendritic arborizations; these act as “antennas” able to 
receive signals from other elements of the net. Fig. 11 is a sketch of a pair of inter-
connected neurons including some self-explained terminological indications. 

Figure 11. Some details of a pair of neurons.
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Immagine now of interconnecting these 10 billion neurons to “construct” the net-
work representing the nervous system, as pictorially shown by Fig. 12. We ask our-
selves: How many distinct nets can be obtained with these neurons? We remark 
that in the case of only 100 neurons one obtains 2100, namely about 1030, distinct 
networks. If one wished to label each of them with a speed of 10 billion nets per 
second, the necessary time to accomplish this job would be 1020 seconds, which is 
about one thousand times longer than the estimated age of the Universe!

We are thus facing enormously and incredibly complex systems escaping any pos-
sibility of accurate descriptions, characterized by a large variability of shapes and by 
very small components.

In conclusion, in order to understand and to mimic the dynamics of such a system 
it would be necessary to write down and solve an astronomical number of coupled 
equations (for instance one equation for the description of the activity of each neu-
ron); in addition, one should attain a detailed specification of network, which is far 
from being feasible on the grounds of the currently available neuroanatomic data.

This is a suggestive example of what I feel appropriate to denominate “uncertainty 
by structure”.

To pinpoint the above remarks by an example, let us implement a classical approach 
by which the neuron is represented as a linear threshold element (see Fig. 13). It is 
thus a system having a certain number n of input lines along which travel signals 
, , ...,  incoming from other neurons or from the environment. These signals, 
due to the synapses ,  ..., , by some biochemical processes
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Figure 12. Representation of a fragment of neuronal net.

Figure 13. A neuron viewed as a linear threshold element.

are changed into excitatory and inhibitory signals , ,...,  that, acting 
on the cell body, are summed up to yield the total stimulation . If 
this exceeds a characteristic value (the neuron’s “firing threshold”) the neuron re-
leases an output signal  that, in turn, by traveling along the axon will reach the 
synaptic branches of other neurons, including, possibly, itself. If, instead, the total  
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stimulation is less than the threshold value, no output is produced by the neuron. 
In mathematical terms, we can thus write:

where  denotes Heaviside unit step function:

With such a background, let us refer to a net made out with such neurons that, as 
shown in [9], we shall represent by the diagram of Fig. 14. In such a net there are 
four input neurons , , ,  (neurons

Figure 14. An example of a small neural network: input neurons are denoted by
’s, output neurons by ’s. The remaining neurons are the so-called internal or central neu-

rons.

affected by environmental stimulations) and three output neurons , , , rep-
resenting, for instance, neurons acting on the motor system of the organism. The 
signals coming from input neurons generate the responses of the organism: these 
consist of the signals produced by the output neurons under the effect of the activi-
ties of the “central” neurons (seven neurons in Fig. 14). Under the further simpli-
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fication that the net’s evolution is synchronous in the sense that there exists a sort 
of internal clock by virtue of which time consists of a discrete sequence , , ... , 

, ... of instants, the description of the network’s dynamics requires to solve the 
highly nonlinear system of the  +  equations

that has been written down including the specification of the different types of neu-
rons: input neurons ( ), ( , , ... , ), internal neurons ( ), ( , , ... , );and 
output neurons ( ), (  , , ... , ): Coupling coefficients are indicated as follows: 

 (internal neuron  - internal neuron ),  (internal neuron  - input neuron ), 
 (output neuron  - central neuron ) and  (output neuron  - input neuron 

). It is easy to guess what kind of difficulties would be met when realistically dealing 
with networks comprising thousand or million neurons. In addition, if time is for 
instance measured in multiples of the “synaptic delay”  , the equations describing 
the evolution of an “autonomous network” (namely a network without input and 
output neurons) should be written in the following form: 

where  denote the coupling coefficients (generally time-dependent in order to 
be able to account for phenomena such as “adaptation” or “learning”). Note that 
the delays between the release of a signal and its effect on the neuron on which 
it impinges, due to the different fibres lengths, are considered. The above-written 
equations thus assume that the simplifying assumption of “adiabatic approxima-
tion” has been made( ) and that the signal transmission is instantaneous, 
the only present delay being the synaptic delay  .
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Without elaborating further on the structural uncertainty that stems out of brain-
related mathematical considerations, a few remarks are in order on non-structural, 
but rather dynamical, aspects that contribute to increase even more the level of 
uncertainty related to such an area.

Nervous systems are prime examples of systems with collective dynamics. Even at 
the most primitive levels there are sensory-motor interactions and the higher one 
goes on the evolutionary ladder, the more one finds cell assemblies and regions 
tuned to circumscribed functions which must interact dynamically in a collective 
fashion in order to subserve the identity or one-ness of the organism. Thus, while 
there are universal features in nervous systems, different species have evolved differ-
ent solutions which are best adapted to their ecological niche. We emphasize that 
the brain is a prototype of collective dynamical systems: Cooperation and com-
petition occurring at different levels of neural organization, from molecules via 
neurons, synapses, neural networks to neural centers, are the key driving forces of 
brain dynamics. Studying such collective dynamical aspects of the spatio-temporal 
activity of single neurons, neural networks and neural systems, and their role in 
neural information processing, has attracted a lot of attention also in recent years. 
We expect contributions now not only for understanding the normal operation of 
specific neural systems, but also new and better mathematical models of neurologi-
cal and psychiatric disorders, and models to foster brain-inspired computation and 
robotics. From a macroscopic, phenomenological level of study, one should also be 
able to pass to the consideration of subtended multiple microscopic phenomena.

In short, a brain should be viewed as organized into successive hierarchical levels 
ranging from the microscopic level (molecules, receptors, ion channels, synapses) 
to macroscopic level (nuclei, cortical areas, neuronal networks), and vice versa. The 
kind of possible inferences when passing in a “topdown” strategy to each successive 
level, namely moving from the macroscopic towards the microscopic, or vice versa 
by implementing a “bottomup” approach, are a fundamental matter for the study 
of complex biological systems, such as the brain.

From the above consideration, it clear emerges a picture that leads one to realize 
that neuronal transmission and brain function involve independent and/or coordi-
nated activities of numerous agents, among which are ion channels and ion pumps. 
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Axonal and cytoplasmic transports of proteins and other classes of molecules are 
mostly directional, and rapid beyond passive diffusion. All these processes require 
input and usage of energy and are thus, performed and controlled by molecular mo-
tors. Just as a human being is made up of billions of interacting cells, each individual 
cell consists of billions of interacting molecules. Our aim is to understand biological 
processes also at the level of individual molecular interactions. Biological systems 
consist of large molecules like proteins and DNA and also small molecules that act 
as substrates and signals to drive and control the cellular processes. The activity of 
healthy and diseased cells is determined by complex interactions between these dif-
ferent molecules. Some molecules can cause illness whereas others (e.g. therapeutic 
drugs) can cure. A study of molecules in isolation is mandatory in order to be able 
to understand the basic mechanisms of disease as well as of normal function. In 
such a context, the two main research themes are cell motility and cell signaling.

Hereafter we shall outline some facts concerning muscle contraction, which is, 
among other things, also propedeutic to the locomotion, as a second example in 
which uncertainty originates from the complexity of the involved structures and 
from the context in which they operate. Figures 15 and 16 show the essentials of 
the levels of structural organization in a typical skeleton muscle and the innerva-
tion of some muscle fibres by a single motor nerve. It must be emphasized that the 
ability to move is a feature

Figure 15. Sketch of the innervation of several muscle fibres by a single motor nerve to 
form a motor unit.
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common to cells. Evolutionary processes gave origin to a variety of proteins able to 
generate forces and motion. Right this is the main role of protein motors that are 
essential for life: In their absence all cellular transports would indeed come to an 
irremediable stop and thus lead any organism to death.

Figure 16. Levels of structural organization in a typical vertebrate skeletal muscle.

These proteins can be looked at as nanomotors that make use of the chemical en-
ergy released by a “fuel molecule” (ATP) to produce mechanical work. These mo-
tors are of two types: linear (myosins, kinesins, dineins) and rotating (flagellar mo-
tors in bacteria, ATPase). Linear motors produce sliding along specific filaments in 
specified directions; they are involved in muscles contractions and in transporta-
tion of materials in cells via idrolization of ATP with ensuing energy transfer due 
to the release of phosphor anions.

The forthcoming considerations concern the sliding process of Myosin II (a protein 
belonging to the so-called myosin family) over an actin filament. They are meant to 
offer some details on the way in which these protein motors transform into force, 
movement and mechanical work the chemical energy provided by ATP. Such “slid-
ing machines” transform the input flux (consisting of free chemical energy and hy-
drolized ATP molecules) into the output flux in the form of the force necessary to 
determine the sliding process. Here the main questions are to establish (a) whether 
input and output of these molecular machines are rigidly coupled, and (b) whether 
a chemical reaction at the input always produces a unit of mechanical movement 
at the output.
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The a priori difficulty in finding sure answers to these questions is due to the very 
context in which molecular motors operate: displacements, energies and times 
of the order of nanometers (1 nm = 10-9 m), piconewtons (1 pN = 10-12 N) and 
milliseconds (1 ms = 10-3 s). In short, the overall sliding consists of a sequence of 
steps, as sketched in the top of Fig. 19. The length, roughly constant, of a each step 
is equal to the distance (5:5 nm) between each pair of consecutive actin mono-
mers. Under low load condition applied to an end point of the myosin consisting 
of a characteristic “head”, most steps occur in the same direction, that we shall call 
“forward direction”, and only a small fraction of them (about 10%) take place in 
the opposite, or “backward” direction. It is conceivable that, due the presence of 
some intermediate processes, a “loose coupling theory ” is appropriate to explain 
the observed inputoutput relation. According to F. Oosawa (see Fig. 17), who was 
the first sustainer of the loose coupling theory and the responsible of the first ex-
perimental evidence of the bidirectional motion of the myosin, the available free 
energy is not significantly greater of the energy (  pN nm) of the thermal 
bath in which the sliding process takes place. Indeed, this molecular motor operates 
in the water at room temperature, and its structural units are not rigid and are sen-
sible to thermal fluctuations. Actually, it appears that living cells have “discovered” 
a way to efficiently convert into movements small quantities of chemical energy via 
a mechanism that fruitfully harness the forces originated by the thermal molecular
agitation.

Figure 17. F. Oosawa.
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The final confirmation of the initially very controversial two-directional feature of 
the actin-myosin sliding process is a recent discovery due to T. Yanagida (v. Fig. 18) 
that was made available world wide by an article on an issue of Nature ( [8]) whose 
front page shows Yanagida next to the title “Swimming against the tide”. 3

Figure 18. Front page of Nature, Vol. 408, pp. 764-766, (2000).

The extremely high uncertainty level that is exhibited by the operating modalities 
of so much complex structures appears to be further emphasized when one realizes 
that certain macroscopically very simple and familiar acts are in fact the final result 
of a myriad of synergetically cooperating mechanisms. For instance, in order to ge-
nerate a force of 10 N, such as the one necessary to hold a 10 Kg heavy object in 
equilibrium against gravity, some 10 trillions of simultaneously working molecular 
motors of the kind described above are necessary.

This is a paradigmatic examples pinpointing the unexpected degree of com-
plexities of structures and related operating mechanisms that emerge when 

3  The author has had the privilege of collaborating with Yanagida and his team thanks to an in-
ternational cooperation program between the Japan Science and Technology Corporation and 
Frederic II Naples University. (Seehttp://www.jst.go.jp/icorp/english/past proj/single-e.html).
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universally familiar actions, such as thought processes or mechanical move-
ments, are considered in connection with their ultimately underlying micro-
scopic processes.

Figure 19. Some records and a sketch of the motion of a single myosin head in a hypo-
thetic washboard-type potential.

We conclude this bird’s eye view of the acto-myosin motor by briefly outlining a simple 
phenomenological model, originally proposed in [2], that is able to provide a quantitative 
description of the available experimental data and that is in agreement with the loose cou-
pling assumption. The basic idea is to describe the myosin sliding over the actin filament as 
the motion along an axis of a Brownian particle in a highly viscous fluid. Under reasonable 
assumptions, supported by physical and dimensional considerations, after denoting by  
the position of the particle, and assuming that its mass is such that the inertial term can be 
disregarded, one is led to the following equation of motion:

                                    (28)
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where

                            (29)

the other parameters ( , , , ) being suitably specified (see [2]). In this equa-
tion, ( ) denotes a delta-correlated stationary Gaussian process with zero mean 
that synthesizes the effects of the collisions suffered by the particle from the mol-
ecules of the liquid in which the sliding phenomenon takes place. Note that Eq. 
(28) contains a periodic potential whose period equals that of the distance between 
the pairs of consecutive actin monomers, as well as the term -  whose role is to 
tilt this potential. Actually, such a tilting is ultimately responsible for the privileged 
direction of the observed sliding steps. In successive papers ( [14], [3], and [4]) the 
possible origins of such a tilted potential have been investigated, and in all cases 
Brownian motors have been suggested that are able to harness and efficiently use 
a part of the energy provided by the underlying thermal bath. In particular, in [5] 
a model has been constructed that has yielded a very satisfactory agreement with 
the essential dynamical and energetic characteristics that experimental evidence has 
disclosed. 

Summing up, a picture has emerged in which very accurate predictions of the fea-
tures of the actinmyosin molecular motor have been possible despite the very high 
level of structural and dynamical uncertainty. Particularly significant has been the 
discovery that functionally efficient and reliable molecular motors can be thought 
of, that take advantage of the chaotic features of the environment in which they 
operate. This leads one to re-consider the role of noise in such a “wet” environment: 
instead of being a disturbing agent for the accomplishment of certain tasks, in some 
cases, such as the presently outlined one, noise can appear to be a powerful and 
useful cooperating agent.
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