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ABSTRACT

This work describes the growth of filamentous fungi in biofilters for the degradation of hydrophobic

VOCs. The study system was n-hexane and the fungus Fusarium solani B1. The system is

mathematically described and the main physical, kinetic data and morphological parameters of

aerial hyphae were obtained by independent experiments for model validation. The model proposed

in this study describes the increase in the transport area by the growth of the filamentous cylindrical

mycelia and its relation with n-hexane elimination in quasi -stationary state in a biofilter. The

model describing fungal growth includes Monod-Haldane kinetic and hyphal elongation and

ramification. The reduction in the permeability caused by mycelial growth was further related to

pressure drop by Darcy’s equation. The model was verified with biofiltration experiments using

perlite as support and gaseous n-hexane as substrate.

1 INTRODUCTION

Biofiltration is one of the main techniques for the control of volatile organic compounds

(VOCs) present in low concentrations in industrial gaseous emissions. The high flow-

rate of such emissions means that the investment and operating costs for conventional

systems are high. In these systems, microorganisms fixed in a solid support oxidise

the VOCs, principally to CO
2
 and water.
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Due to the complexity of the system, resulting from its inherent heterogeneity

and the diversity of the microbial populations which may become established, biofilters

are difficult to model. The modelling of these systems involves physical and

biochemical steps, liquid flow and diffusion, the properties of the microbial community

and the solid support, prediction of the area and active thickness of the biofilm, etc

(Bibeau et al., 2000). One of the main considerations when modelling biofilters is the

assumption that the biomass and the liquid film which surrounds it form a single

pseudo-homogeneous phase known as the biofilm.

Ottengraf and van der Oever (1983) developed a solution to analyse the

concentration profile in the biofilm and throughout the biofilter column to obtain the

quantity of contaminant biodegraded in the biofilter, using first order and order zero

growth kinetics.

Shareefdeen and Baltzis (1994) developed a model for a fixed bed biofilter

with transitory state operation for the treatment of toluene, implementing mass balances

in the biofilm, the gas phase and the solid support, and using a Monod microbial

growth kinetic. Hodge and Devinny (1995) and Jorio et al. (2003) developed a model

using four different types of support material, to describe the mass transfer between

the air phase and solid/water, the biodegradation of the substrate, CO
2
 production and

changes in the pH as a result of CO
2
 accumulation. They also assumed that the filter

medium and the distribution and density of the biomass in the biofilm is homogeneous

and that the adsorption is reversible. The same assumptions are made by Deshusses et

al. (1995), using a Monod type growth kinetic, with competitive inhibition for a mixture

of methyl isobutyl ketone and methyl ethyl ketone.

The mathematical model to describe the biofiltration of mixtures of hydrophilic

and hydrophobic compounds used by Mohseni and Allen (2000) is based on the

biophysical model proposed by Ottengraf and van den Oever (1983) for a VOC. The

steady state model was developed considering the biofilm as an organic matrix and

using Monod growth kinetics with inhibition.

Iliuta and Laranchi (2004) describe the growth of the biofilm and its effect on

the aerodynamics and clogging of the biofilter. The model considers a uni-directional

flow based on the volumetric average of the balance of mass, momentum and species,

linked to the conventional equations for diffusion/reaction in biological systems.

Spigno et al. (2003) made a simple, steady state, axial dispersion model to

evaluate the n-hexane elimination in a biofilter using the fungus Aspergillus niger.

This model makes the same assumptions as those used for microbial consortia or

bacterial biofilters, working with a constant, homogeneous fungus biofilm. The balance

in the biological phase included a Monod type biodegradation with substrate inhibition.

In general, it may be observed that the models which have been developed are

based on the structure of a biofilm as a pseudo-homogeneous phase. However in the

case of aerial biofilms, as those generated by filamentous fungi, this definition is not
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readily applicable. Although good results are obtained, they do not provide good

information on the actual phenomena occurring in the inter-particular spaces of the

biofilter and the growth characteristics of the fungus inside the biofilter. The objective

of this work is to describe the growth of the filamentous fungi on a biofilters for the

degradation of hydrophobic VOCs. The study system was n-hexane, as a model

substrate and the fungus Fusarium solani B1.

2 MATHEMATICAL MODEL

2.1 DEFINITION OF THE SYSTEM

The model proposed in this study describes the increase in the transport area by

the growth of the filamentous cylindrical mycelia and its relation with n-hexane

elimination in quasi -stationary state in a biofilter. To mathematically describe the

system, we considered four processes: (1) mass transfer of VOCs in the bulk gas, (2)

mass transfer of VOCs into the gas layer around the mycelium, (3) mass transfer and

reaction of the nitrogen source through the elongating mycelia, (4) and the kinetic of

mycelial growth. Processes (2) and (3) include movable boundary conditions to account

for the mycelial growth. The model describing fungal growth includes Monod-Haldane

kinetic (Shuler et al., 2003) and their elongation and ramification and is further related

to macroscopic parameters such as pressure drop. The basic concept of the model

develop was obtained using the Figure 1.

2.2 MECHANISM OF GROWTH

The biomass and total length were determinate considering the principal hyphae

and the branching.

(1)

2.3 MASS BALANCE IN THE BIOFILTER

Unidirectional gas flow was considered:

(2)

MODELING OF A FUNGAL BIOFILTER FOR THE ABATEMENT OF HYDROPHOBIC VOCs
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Figure 1. Schematic representation of growth.

Axial boundary condition that consider the continuity of flux to the right of

z = 0  and  z = H  (Illiuta and Larachi, 2004).

(3)

(4)

To determine the flow regime around the hyphae, the criterion reported by

Slattery (1999) was used and found that it can be considered creeping flow (Reynolds

number around hyphae of 0.002).
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(5)

The boundary conditions incorporate the interaction in the gas-hyphae inter-

phase.

(6)

(7)

(8)

(9)

In the development of the mass balance of the nitrogen source, diffusion and

reaction throughout hyphae were considered.

(10)
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The boundary condition and the initial condition for this equation are:

(11)

(12)

(13)

2.4 EFFECT OF THE GROWTH ON THE PRESSURE DROP

The pressure drop was evaluated as a function of the reduction in the

permeability caused by mycelial growth in the bioreactor and the Darcy´s equation.

3 MATERIALS AND METHODS

3.1 MICROORGANISMS AND INOCULUM

Fusarium sp. was isolated as described by Arriaga and Revah (2005a). Its

preservation, cultivation conditions and spore production was similar to reported for

García-Peña et al. (2001). The biofilter was inoculated with a mineral medium solution

and 2×107 spores mL-1.

3.2 CARBON SOURCES AND MINERAL MEDIUM

The carbon source used was n-hexane (Baker, 98.5%). The mineral medium

for fungi maintenance and cultivation was reported previously by Arriaga and Revah

(2005a).

3.3 BIOFILTER SYSTEM

The gas-phase biofilter consisted of a 1 m cylindrical glass column with inner

diameter of 0.07 m, incubated at 30(±3)°C. The biofilter was packed with 250 g of
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perlite (bed void fraction of 68% and particle size of 3.4 – 4.8 mm) mixed with the

mineral medium and the spore solution. Hexane-saturated air was mixed with moistened

air and introduced at the top of the biofilter with a flow rate of 1.2 L min-1, with a

residence time of 1.3 min, to reach an inlet n-hexane load of 325 g m-3 h-1.

3.4 ANALYTICAL METHODS

Hexane concentration in biofilter system were measured with FID-GC and CO
2

production by TCD-GC. The biomass in the perlite was measured as volatile solids

with a thermogravimetric analyzer. Measurements were done in triplicate. The pressure

drop was measured online by using pressure transducer with a data acquisition system

online.

4 RESULTS AND DISCUSSION

4.1 VALIDATION OF THE MATHEMATICAL MODEL

The Figure 2 and 3 shows the comparisons between the experimental results

obtained in biofilter and model simulation. For the model simulation the data shown

in Table 1 were used.

4.1.1 ELIMINATION CAPACITY (EC)

Figure 2 compares the experimental data and the mathematical model for

different cellular yield coefficients. In biological systems, when growth is uncoupled

with the energy metabolism, the constant cellular yield for growth does not represent

the reality of biomass production. This can be one of the explanations of the greater

EC observed in Figure 2 with respect to the model prediction for low values of cellular

yield (0.1 g-1g-1) when the growth in the fungi starts, existing differences of 2% between

the experimental data and the model. Similarly it is possible to explain the low EC

obtained with the simulation during the latency stage, greater cellular yield coefficients

(0.8 g-1 g-1), existing differences of 12% between the experimental data and the model.

In general, it is possible to observe an average deviation between the model

and the experimental data for the EC of 7%.

4.1.2 PRESSURE DROP

The Figure 3 shows the comparison of the experimental results of the pressure

drop (ΔP) in the biofilter and the model simulation. The Figure 3 shows that in the

first days of operation, before obtaining an important biomass growth, the ΔP

determined by the model was in average 11% lower than experimental data, presumably

due to the static liquid present in the bed, necessary to maintain the humidity of the

biofilter, which was not considered in the model. On the other hand, it is possible to

MODELING OF A FUNGAL BIOFILTER FOR THE ABATEMENT OF HYDROPHOBIC VOCs



102

observe that for the ΔP simulated after 30 days operation was obtained an average

deviation of the experimental data of 3%.

Table 1.

Parameters used in simulations.

Parameter Value Unit Reference

Kinetic parameter

K
AH

1.9 g m-3 [1]

K
NH

500 g m-3 [1]

K
I

30.1 g m-3 [1]

m
C

1.51×10-4 g g h-1 [1]

μ
max

0.0518 h-1 [1]

Y
N

2.546 g g-1 [2]

Y
A

0.824 g g-1 [2]

Morphological parameters

λ 0.35 —- [2]

γ 2.47 —- [2]

d
h

2.10 μm [2]

L
av

280.1 μm [2]

L
max,m

1477 μm [2]

L
max,B

452.1 μm [2]

L
C

665.6 μm [2]

L
o

8.34 μm [2]

N
TB

7.0 —- [2]

N
0

1.0×104 —- [2]

ρ
h

1.1×10-9 mg μm-3 [3]

Physical-chemical parameters

H 1.0 m —-

ε
R (initial)

0.685 m3 m-3 —-

d
p

0.004 m —-

D
g

0.029 m2 h-1 —-

v
g

48.91 m h-1 —-

ρ
g

1160 g m-3 [4]

μ
g

64.98 g m-1 h-1 [4]

D
NH

5.7×10-6 m2 h-1 —-

D
Dz

0.079 m2 h-1 —-

k
g

36.56 m h-1 —-

HPC 0.20 —- [1]

[1] Vergara-Fernández et al. (2006), [2] Vergara-Fernández, (2007), [3] López-Isunza et al. (1997),

[4] Hartmans y Tramper (1991).
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Figure 3. Experimental evolution of the pressure drop in the biofilter and model prediction.

(•) Experimental data and (–) simulation.

Figure 2. Experimental EC and model simulation. (•) Experimental results and (–) simulation.

Variation of the EC simulation for a range of cellular yield in F. solani  between 0.1 and 0.8 g-1g-1.
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5 CONCLUSIONS

Growth of fungi and n-hexane elimination was modeled in biofiltration systems

connecting a growth model based on microscopic parameters and the different mass

balances describing the main transport phenomena occurring inside a biofilter. The

independent evaluation of the parameters allowed a small deviation with experimental

data below 10% for the elimination capacity and the pressure drop.

6 NOMENCLATURE

a
v

: Specific area, [L2/L3]

C
Ab

: n-hexane concentration in the bulk, [M/L3]

C
AG

: n-hexane concentration in the gas film, [M/L3]

C
AH

: Extra-cellular COV concentration, [M/L3]

C
NH

: Nitrogen source concentration in the hyphae, [M/L3]

C
NL

: Nitrogen source concentration in liquid, [M/L3]

d
h

: Average diameter of the hyphae, [L]

D
Dz

: Axial dispersión coefficient, [L2/T]

D
g

: n-hexane diffusivity, [L2/T]

D
NH

: Nitrogen source diffusivity in the hyphae, [L2/T]

H : Biofilter height, [L]

k
g

: Mass transfer coefficient of gas, [1/T]

K
AH

: Affinity constant of n-hexane, [M/L3]

K
NH

: Affinity constant of nitrogen, [M/L3]

K
I

: Inhibition constant, [M/L3]

K
eq1

: Equilibrium constant of n-hexane/hyphae

K
eq2

: Equilibrium constant of nitrogen source/hyphae

L
av

: Average length of the hyphae, [L]

L
max,m

: Average maximum distal length of the individual hyphae, [L]

L
max,B

: Average maximum distal length of the branching, [L]

L
h

: Individual total length of hyphae, [L]

L
h,Total

: Total length of the hyphae, [L]

m
C

: Cellular maintenance coefficient, [1/T]

N
TB

: Branching number in individual hyphae

N
0

: Initial number spores

V
R

: Reactor total volume, [L3]

V
E

: Total volume of the support, [L3]

v
g

: Average lineal rate of the gaseous phase, [L/T]

υ
g

: Gas film rate, [L/T]

ALBERTO VERGARA-FERNÁNDEZ AND SERGIO REVAH



105

X
h,Total

: Total biomass, [M]

Y
A

: n-hexane cellular yield, [M/M]

Y
N

: Nitrogen source cellular yield, [M/M]

Symbols

ρ
h

: Hyphae density, [M/L3] [1.1´10-9 mg.μm-3]

μ : Growth specific rate, [1/T]

μ
max

: Maximum growth specific rate, [1/T]

ϕ : Branching frequency, [1/T]

δ
g

: Thickness of the gas film, [L]

ε
R

: Bed void fraction

γ : Branching proportionality constant

β : Principal hyphae fraction
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