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Resumo
En 1948, o traballo de Shannon titulado ”A mathematical theory of communication”

revolucionou por completo a forma de entender o problema de transmitir información de xeito

fiable. Shannon demostrou que un sistema de comunicación é capaz de transmitir cunha

probabilidade de erro arbitrariamente baixa sempre que a taxa de transmisión se manteña

por debaixo dun certo lı́mite. Ademais, probou que unha separación entre a codificación de

fonte e de canle é a estratexia óptima para acadar os lı́mites teóricos. Estas ideas inspiraron o

desenrolo de toda unha teorı́a da comunicación dixital centrada na construcción de esquemas de

codificación cada vez máis sofisticados. Esto fixo que, dende ese momento, a maior parte dos

sistemas de comunicación foran deseñados seguindo unha aproximación dixital e de acordo ao

principio de separación, mentres que outras alternativas foron relegadas a un segundo plano.

Sen embargo, nestos derradeiros anos, os sistemas de comunicación baseados nunha

optimización conxunta da codificación de fonte e canle despertou de novo o interese dos

investigadores, especialmente no caso da transmisión de sinais analóxicos. Esta estratexia –

coñecida en inglés como analog Joint Source Coding (JSCC)– tamén é capaz de aproximar

os lı́mites teóricos mentres proporciona certas vantaxes con respecto aos sistemas dixitais

convencionais como, por exemplo, unha alta taxa de transmisión, baixa complexidade, mı́nimo

retardo e capacidade do sistema para adaptarse a entornos variantes en tempo sen necesidade de

ter que rediseñalo por completo. Deste xeito, estas atractivas propiedades fan que a estratexia

JSCC sexa especialmente axeitada para aplicacións en tempo real con fortes restriccións de

complexidade e/ou retardo ası́ como para a transmisión de datos a alta velocidade a través de

canles sen fı́os.

Ata o de agora, a investigación nesta área centrouse principalmente na avaliación de

diferentes sistemas JSCC analóxicos deseñados para a transmisión de fontes Gaussianas sobre

canles AWGN. Sen embargo, o comportamento desta estratexia en entornos máis realistas

como, por exemplo, implementacións prácticas sobre canles reais sen fı́os, aı́nda non se estudou

en profundidade. O obxetivo desta tese é determinar a viabilidade do esquema JSCC analóxico

no contexto das comunicacións sen fı́os. Para levar a cabo esta tarefa, varios sistemas JSCC

analóxicos son especı́ficamente deseñados para permitir a transmisión de sı́mbolos continuos

en amplitude e discretos en tempo a través de canles sen fı́os, intentando preservar na medida

do posible as propiedades descritas anteriormente para o caso de canles AWGN.

A aplicación da estratexia JSCC en canles sen fı́os representa unha serie de importantes
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desafı́os para o deseño destos sistemas analóxicos. Por unha banda, o sistema JSCC analóxico

débese adaptar constantemente ás flutuacións do canle debido aos desvaecementos para

conseguir que o seu rendemento se aproxime á solución de compromiso distorsión-custo.

Afortunadamente, este proceso non supón redeseñar por completo o sistema xa que chega con

actualizar os parámetros do codificador segundo as condicións reais do canle. Por outra banda,

as comunicacións sen fı́os sufren os efectos nocivos da dispersión do retardo causado pola

propagación do multicamiño dos sinais transmitidos. Os actuais estándares de comunicación

sen fı́os soen empregar unha serie de técnicas de transmisión para combater estes efectos e

explotar a ganancia de diversidade que proporciona o canle, como o uso de múltiples antenas

tanto no transmisor como no receptor ou dun esquema de modulación ortogonal. A integración

da estratexia JSCC e destas técnicas conleva cambios substanciais no esquema inicial –sobre

todo no deseño da operación de decodificación– para preservar a baixa complexidade e retardo

do modelo de comunicación resultante. Por último, a aplicación desta estratexia en entornos

reais tamén conleva ter que afrontar algúns problemas adicionais na práctica que non se atopan

nun escenario simulado.



Resumen
En 1948, el trabajo de Shannon titulado ”A mathematical theory of communication”

revolucionó por completo la manera de entender el problema de transmitir información de

forma fiable. Shannon demostró que un sistema de comunicación es capaz de transmitir con

probabilidad de error arbitrariamente baja siempre que la tasa de transmisión se mantenga por

debajo de un cierto lı́mite. Además, postuló que unha separación entre la codificación de funte

y de canal es la estrategia óptima para alcanzar los lı́mites teóricos. Estas ideas inspiraron

el desarrollo de toda unha teorı́a de la comunicación digital centrada en la construcción de

esquemas de codificación cada vez más sofisticados. Esto provocó que, a partir de ese momento,

la mayor parte de los sistemas de comunicación se diseñasen siguiendo unha aproximación

digital y de acuerdo al principio de separación, mientras que otras alternativas fueron relegadas

a un segundo plano.

Sin embargo, en estos últimos años, los sistemas de comunicación basados en la

optimización conjunta de la codificación de fuente y canal han despertado de nuevo el interés

de los investigadores, especialmente en el caso de transmisión de señales analógicas. Esta

estrategia –conocida en inglés como analog Joint Source Coding (JSCC)– también es capaz de

aproximarse a los lı́mites teóricos, mientras ofrece ciertas ventajas con respecto a los sistemas

digitales convencionales como, por ejemplo, una alta tasa de transmisión, baja complejidad,

mı́nimo retardo y capacidad del sistema para adaptarse a entornos variantes en tiempo sin

necesidade de rediseñarlo por completo. De esta forma, estas atractivas propiedades hacen

que la estrategia JSCC sea especialmente adecuada para aplicaciones en tiempo real con fuertes

restricciones de complejidad y/o retardo ası́ como para la transmisión de datos a alta velocidad

a través de canales inalámbricos.

Hasta ahora, la investigación en este área se ha centrado principalmente en la evaluación

de diferentes sistemas JSCC analógicos diseñados para transmitir fuentes Gaussianas sobre

canales AWGN. Sin embargo, el comportamiento de esta estrategia en entornos más realistas

como, por ejemplo, su implementación práctica sobre canales inalámbricos reales, aún non se ha

estudiado en detalle. El objectivo de esta tesis es determinar la viabilidade del esquema JSCC

analógico en el contexto de las comunicaciones inalámbricas. Para llevar a cabo esta tarea,

varios sistemas JSCC analógicos son especı́ficamente diseñados para permitir la transmisión

de sı́mbolos continuos en amplitud y discretos en tiempo a través de canales inalámbricos,

intentando preservar las propiedades descritas anteriormente para el caso de canales AWGN.
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La aplicación de la estrategia JSCC en canales inalámbricos representa unha serie de

importantes desafı́os a la hora de diseñar estos sistemas analógicos. Por un lado, el sistema

JSCC analógico debe adaptarse constantemente a las fluctuaciones del canal para conseguir que

su rendimiento se aproxime a la solución de compromiso distorsión-coste. Afortunadamente,

este proceso no supone rediseñar por completo el sistema, pues basta con actualizar los

parámetros del codificador según las condiciones del canal en cada instante. Por otro lado, las

comunicaciones inalámbricas sufren los efectos adversos de la dispersión del retardo causado

por la propagación del multicamino de las señales transmitidas. Los actuales estándares de

comunicación inalámbrica utilizan habitualmente unha serie de técnicas de transmisión para

combatir estos efectos y explotar la ganancia de diversidad proporcionada por el canal, como el

uso de múltiples antenas tanto en el transmisor como el receptor o de un esquema de modulación

ortogonal. Integrar la estrategia JSCC junto con estas técnicas impone substanciales cambios en

el esquema inicial –sobre todo en el diseño de la operación de decodificación– para preservar la

baja complexidad y retardo del modelo de comunicación resultante. Por último, la aplicación

de esta estrategia en entornos reales también conlleva ciertos problemas en la práctica que non

se encuentran en un escenario simulado.



Abstract
In 1948, the Shannon’s work titled ”A mathematical theory of communication” completely

revolutionized the way to understand the problem of the reliable communications. He showed

that any communications system is able to transmit with an arbitrarily low error probability

as long as the transmission rate is kept below a certain limit. The separation between the

source and channel coding was also shown as the optimal strategy to achieve the theoretical

limits. Those ideas inspire the development of a whole digital communication theory focused

on building more and more sophisticated coding schemes. It leads to most of communication

systems were designed according to a digital approach and the separation principle from that

moment, whereas other alternatives were set aside.

However, in the last years, communication systems based on a jointly optimization of the

source and channel encoder has aroused the interest of the researchers again, specially in the

case of the transmission of analog signals. This strategy –referred to as analog Joint Source

Channel Coding (JSCC)– has been also shown to approach the theoretical limits and provides

certain advantages with respect to the conventional digital systems, such as high transmission

rate, low complexity, almost zero delay and the ability of the system to adapt to time-varying

environments without a full redesign. Thus, these appealing properties of the JSCC approach

make it specially suitable for both real-time applications with severe requirements on the

complexity and/or delay and the transmission of data at high rate over wireless channels.

So far, the research on this area mainly focused on the design and evaluation of

different analog JSCC systems for the transmission of Gaussian sources over Additive White

Gaussian Noise (AWGN) channels. However, the behavior of this strategy on more realistic

environments, such as practical implementations over real wireless channels, has not been

deeply studied yet. The objective of this thesis is to evaluate the feasibility of the analog JSCC

technique in the context of the wireless communications. For that purpose, several analog JSCC

systems are specifically designed for the transmission of discrete-time continuous-amplitude

samples over wireless channels, with the aim of preserving the desirable properties described

for the case of AWGN channels.

The application of the JSCC strategy on wireless channels represents a series of important

challenges for the design of these analog systems. On one hand, the analog JSCC scheme must

be constantly adapted to the fluctuations of the wireless channel for the performance approaches

the optimal distortion-cost tradeoff. Fortunately, this procedure does not involve a full redesign
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of the system since it is just enough to update the encoder parameters according to the actual

channel conditions. On the other hand, the wireless communications undergo the undesirable

effects of the delay spread caused by the multipath propagation of the transmitted signals. In

the current wireless standards, different transmission techniques are usually employed in order

to combat such effects and exploit the diversity gain provided by the channel, such as the use of

multiples antennas both at the transmitter and the receiver as well as of a multicarrier modulation

scheme. The integration of the analog JSCC strategy together with these techniques leads

to make substantive modifications on the initial configuration –specially in the design of the

decoding operation– to preserve the low complexity and delay of the resulting communication

model. Finally, the practical implementation of the analog JSCC on real wireless environment

also leads to deal with some additional problems that are not encountered in a simulation

scenario.
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Chapter 1

Introduction

The aim of any communication system is to provide a reliable transmission of the relevant

information from a source to a destination according to certain power and bandwidth constraints

and specific quality parameters. In 1948, Shannon presented an outstanding work [108] where

a general information theory is built on the concepts of information entropy and channel

capacity. Using this theory, Shannon laid the main foundations for the designing of efficient

communication schemes and determined the theoretical limits for a reliable transmission given

a certain source-channel pair.

In order to achieve these limits, Shannon designed a transmission strategy based on the

separation between source compression and channel coding. This strategy is referred to as the

separation principle in the literature and it has been shown to be optimum for both lossless

compression [108], and lossy compression of analog sources [12]. Also, the fact that we can

perform source coding independently of the channel coding greatly simplifies the design of the

communication system since we can optimize both encoders separately.

Figure 1.1 shows the block diagram of a SSCC communication system. In such system, a

source encoder generates a minimum representation of the original information by means of

entropy coding (bandwidth compression). The lowest rate at which a source can be compressed

without loss of information is called the entropy. Next, the channel encoder modifies the rate at

the output of the source encoder according to the channel properties and bandwidth constraints

(bandwidth expansion). In general, this operation consists in adding redundancy to protect the

source information against the distortion introduced by the channel. If the channel capacity,

C, is larger than the source entropy, H , a error-free transmission of the source information is

possible by using an appropriate capacity-approaching channel coding method such as Turbo

codes or Low Density Parity Check (LDPC) codes.

Unfortunately, the optimality of the separation principle is held on the assumption of

infinite complexity and infinite delay. The optimal bounds defined by Shannon can be only

achieved if the corresponding encoders are designed assuming an infinite block length. In
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Figure 1.1: Block diagram of a SSCC system.

practice, suboptimal SSCC schemes based on the use of capacity-achieving codes are actually

considered. However, these codes approach the theoretical performance closely only if a large

block length is employed, incurring long delays and high complexity. Hence, the suitability

of the separation principle for the design of practical communication systems with severe

constraints on delay and/or complexity is not clear. For example, real-time systems transmitting

multimedia contents at high rates or control applications on sensor networks represent a hard

challenge when they are addressed from this perspective. Moreover, in the context of sensor

networks, where a distributed system must transmit correlated sources over a Multiple Access

Channel (MAC), it has been shown that SSCC is not the optimal strategy [71, 82].

The separation principle states a separate design of the source and channel encoders

according to source and channel properties such as distortion rate or channel capacity. In

the case of digital systems, these codes are specifically optimized to eliminate all transmission

errors for a certain Signal-to-Noise Ratio (SNR) value. Nevertheless, when the SNR falls below

such threshold value, the channel code is generally unable to correct the transmission errors. It

is hence impossible to recover the source information since the source decoder breaks down

under the presence of too many erroneous bits. On the other hand, when the SNR is high, less

redundant bits are necessary in the channel encoder and more bits could be allocated to the

source encoder in order to reduce source distortion.

Thus, the utility of the separation principle is rather questionable when considering the

transmission over time-varying channels such as those encountered in wireless communications.

Wireless channels suffer from fading caused by multipath propagation which makes the received

SNR fluctuate continuously over time. In this case, adaptive tandem systems with separate

source and channel coding can be used to cope with time fluctuations of wireless channels. The

basic premise is to continuously adapt the source distortion and the channel rate according to

the instantaneous channel capacity. Notice, however, the design of an adaptive tandem system

based on the separation principle is rather difficult because it is necessary to fully redesign either

the source or the channel encoder whenever either the distortion rate or the channel rate change.

Traditional communication systems are generally designed following a digital approach

for both discrete and continuous sources. Most of the physical phenomena -such as sound,

speech or images- are described by analog signals and, therefore, continuous-time continuous-

amplitude sources must be actually sent. However, digital systems require discrete-time

discrete-amplitude samples as input, in such a manner that the original analog signals must
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be first discretized and later quantized. It is well known that a signal with bandwidth B Hz can

be discretized and recovered at the receptor without loss if at least 2B samples per second are

used [87]-. Nevertheless, quantization is not an invertible operation and, therefore, an analog

signal cannot be perfectly recovered after the quantization step since a certain amount of the

source information is permanently removed. As a consequence, the quantization operation

induces a floor effect on the performance of digital systems since it saturates once the SNR

exceeds a certain threshold value directly related to the quantization error. Hence, for digital

systems perform close to their theoretical limit, high complexity quantization methods as Vector

Quantization (VQ) should be used.

1.1 Joint Source Channel Coding

Recently, a new approach consisting in the analog transmission of discrete-time continuous-

amplitude samples has been proposed as an appealing alternative to the traditional design of

digital systems, specially when analog sources must be transmitted at high rates and severe

delay constraints are imposed.

As mentioned, the separation principle was presented as the optimal strategy for the design

of communication systems in order to achieve the theoretical limits predicted by Shannon [108].

Near-optimal high-complexity SSCC schemes are actually employed, attaining a performance

quite close to the optimal –but not the optimal–. Hence, other low complexity suboptimal

schemes, which do not necessarily follow the separation principle, can be designed to attain a

similar or even better performance than of that conventional SSCC systems in certain situations.

These schemes merge the source and channel coding into a single operation that directly maps

the source space into the corresponding channel space. Thus, the source and channel encoders

are jointly optimized in one single step in such a manner that the overall system complexity

is drastically reduced. Figure 1.2 shows the block diagram of a Joint Source Channel Coding

(JSCC) system.

In the literature, there exists several examples of digital systems that employ some type

of JSCC strategy. For example, unequal error protection [89] is used to adjust the encoder

parameters of some audio/speech codecs. Another representative example is [24], where a

joint source and channel trellis was specifically designed for the encoder operation. Another

traditional JSCC approach consists in performing data compression by using a vector quantizer

followed by an index assignment where the quantizer outputs are directly mapped to a set of

codewords according to a certain ordering criterion. This assignment is usually designed to

protect the more sensitive information against the channel noise [28, 112].

Hybrid digital-analog (HDA) schemes has been also considered for both compression and

expansion of analog sources [22, 67, 114]. These systems are designed with the aim of
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Figure 1.2: Block diagram of a JSCC system.

exploiting the advantages of both the analog and digital schemes. Thus, such systems try

to combine the robustness of the digital schemes against the channel interferences with the

graceful degradation and low complexity/delay of the analog approach. For that reason, a part of

the information is transmitted following the traditional digital approach –quantization, channel

encoding and modulation– whereas less sensitive data is normally sent using analog JSCC. An

usual strategy employed for this type of systems consists in applying VQ to obtain the sequence

of discrete samples that will be sent by mean of the digital subsystem whereas the quantization

error is also transmitted using the analog block of the HDA system [22, 98, 113].

A joint optimization of the source-channel encoder pair was first proposed by Farvardin

in [29] in order to minimize the overall distortion. The resulting algorithm is commonly

referred to as Channel Optimized Vector Quantizer (COVQ). Later, Fuldsheth also addresses

this optimization problem including a transmitted power constraint [38, 39]. The resulting

discrete mappings –which are called Power Constrained Channel Optimized Vector Quantizer

(PCCOVQ)– split the source space into a set of partitions, and determine the correspondence

between the source symbols and the associated codewords that minimizes the distortion.

In general, when analog signals are considered to be transmitted, a certain level of distortion

is tolerated by the end user. In this case, for a lossy source-channel communication system to

be optimal, the source distortion and the channel cost should lie on the optimal distortion-

cost tradeoff curve. An example of an optimal system is the direct transmission of discrete-

time uncoded Gaussian samples over Additive White Gaussian Noise (AWGN) channels when

source and channel have the same bandwidth [44]. In this case, such an optimality is motivated

by the fact that the Gaussian sources are probabilistically matched to the AWGN channel. This

idea is further explored in [43] where a set of necessary and sufficient conditions for any time

memoryless point-to-point communication system to be optimal is provided. These conditions

are satisfied not only by digital systems designed according to the separation principle but also

by analog JSCC systems for which the complexity and delay can be reduced to the minimum

while approaching the optimal distortion-cost tradeoff.

1.2 Shannon-Kotel’nikov Mappings

Analog JSCC is a recent topic in the communication field. However, its origin dates back

to the late 1940s when Shannon [109] and Kotel’nikov [66] individually stated a geometrical

interpretation of the communication process.
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In [109], Shannon presented a geometrical representation of the discrete-time messages to

be transmitted and the channel signals on two separated vector spaces, namely message and

signal space, whose dimensions are defined by the source entropy and the channel bandwidth,

respectively. According to this approach, a message corresponds to a point on the message

space and a channel signal is in turn represented by a point on the signal space. Thus, the

transmitter must establish a correspondence between the points in the two spaces by using a

specific mapping. In a similar way, the receiver has to map the received signal back into the

message space. Additionally, Shannon proposed a non-linear mapping based on geometric

curves for bandwidth expansion which could be used for bandwidth reduction too. About the

same time, Kotel’nikov developed a similar theory for bandwidth expansion in his doctoral

dissertation [66] –dating back to 1947, although his work was not translated to English until

twelve years later– where he proposed the same type of geometrical structures.

According to the Shannon and Kotel’nikov geometrical interpretation , the source and

channel of an analog JSCC system can be represented by aN -dimensional and aK-dimensional

space, respectively, and the coding operation consists in directly mapping the elements of the

source space into the channel space. Notice that N < K implies bandwidth expansion whereas

N > K corresponds to a bandwidth reduction or compression. In [72], an example of linear

mapping based on Block Pulse-Amplitude Modulation (BPAM) is presented for both bandwidth

reduction and bandwidth expansion, although these systems attain a performance rather far

away from the theoretical limits, specially for medium and high SNRs.

Nevertheless, these inspiring ideas were completely eclipsed by the digital communication

theory focused on building more and more sophisticated channel coding schemes to achieve the

Shannon limits. Fortunately, Chung [20] and Ramstad [94] rediscovered the use of continuous

non-linear mappings based on geometric curves for the transmission of discrete-time analog

samples using a JSCC strategy. In fact, it was Ramstad in [94] who first proposed the

name Shannon mappings referred to such continuous non-linear mappings after discovering

Shannon’s work. Later, Kotel’nikov’s theory was come to light and the name Shannon-

Kotel’nikov mappings was commonly agreed for non-linear mappings based on geometric

curves.

Several authors [9, 32, 50, 51, 55] have recently delved into the use of Shannon-Kotel’nikov

mappings for analog point-to-point communications. In addition, [10, 63] have also applied

analog mappings on distributed systems in the context of sensor networks where a low delay is

essential for network control applications. In general, these mappings preserve complexity and

delay at the minimum and can be used for either bandwidth reduction or bandwidth expansion.

However, the performance of analog JSCC systems is closer to the optimal distortion-cost curve

as long as such non-linear mappings are used for bandwidth reduction. This is because in the

case of bandwidth expansion it is not possible to envisage a mapping that efficiently fills the

entire channel space without simultaneously creating multiple neighbors that are far away in
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the source space [51]. For bandwidth expansion, alternative non-linear mappings have been

considered, such as spherical codes [135], analog codes based on both chaotic systems [19],

and orthogonal polynomials [128]. These mappings have obtained promising results although,

unfortunately, their performance continues rather far away from the optimal bounds.

Notice that Shannon-Kotel’nikov mappings are closely related to the aforementioned

PCCOVQ codes developed by Fuldsheth [39]. In the case of PCCOVQ codes, a discrete

representation of the source space is directly mapped into a certain channel codebook that can

be interpreted as a discrete set of representation vectors placed on a continuous curve on the

source space. Thus, if we consider an enough large number of vectors, PCCOVQ scheme

actually approximates a continuous non-linear mapping. However, the PCCOVQ complexity

greatly increases as the number of representation vectors becomes larger, whereas Shannon-

kotel’nikov mappings always preserve low complexity at the encoding operation.

1.3 Motivation

In the literature, most works focus on the design and evaluation of different analog JSCC

systems over AWGN channels. In these works, analog JSCC has been widely proved to achieve

a near-optimal performance at high rates with low complexity and an almost negligible delay

when it is employed for the compression of Gaussian sources to be transmitted over AWGN

channels. In addition, several works [51, 94] have shown that analog JSCC provides a graceful

degradation and improvement for imperfect Channel State Information (CSI) at the transmitter.

Practical implementations using Shannon-Kotel’nikov mappings have been also developed in

[54, 94] but AWGN channels are always assumed.

The behavior of analog JSCC on more realistic environments, such as wireless

communications, has not been deeply studied yet. An exception is [23] that considers a

two-user single-antenna scenario under simulated flat fading Rayleigh channels. For that

reason, an interesting open area of research is the design of more complex analog JSCC

systems combined with advanced transmission techniques –such as the use of Multiple Input

Multiple Output (MIMO) schemes or Orthogonal Frequency-Division Multiplexing (OFDM)–

usually employed in the current wireless transmission models. Notice that MIMO-OFDM

is the transmission method commonly adopted by the last generation of broadband wireless

communication systems due to its ability to achieve large spectral efficiencies while enabling

low-complexity equalization of frequency selective channels. Another potential application of

the analog JSCC techniques is the transmission of analog data on a multiuser scenario such

as cellular communications or sensor networks, where tight constraints on delay and power

consumption are usually imposed, and the information is also required to be simultaneously

transmitted at high data rates.
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If the analog JSCC strategy based on Shannon-Kotel’nikov mappings is also shown to

preserve the appealing properties observed in the case of AWGN channels –near-optimal

performance, low complexity, spectral efficiency, robustness–, when it is applied on more real

conditions, we will have a powerful tool for multiple applications such as, for example, real-

time transmission over wireless communications. An additional benefit of this transmission

scheme is that the source information is represented by continuous-amplitude samples, the

channel symbols are sent through analog signals and the processing at the transmitter (and

the receiver) does not involve an intermediate digital representation. Thus, the proposed JSCC

system is purely analog. On the other hand, we think it is essential to prove the feasibility of

analog JSCC on real applications and, for that purpose, the performance of the analog JSCC

systems need to be assessed on real scenarios using real channels, instead of the traditional

synthetically-generated channels employed so far.

In addition, previous work in the literature merely compare the performance of analog JSCC

systems with respect to the optimal bounds and/or other similar JSCC schemes. Nevertheless, a

more interesting comparison would be between these analog schemes and the traditional digital

systems based on the separation principle in order to decide which is more suitable for a given

scenario. Notice that such transmission strategies represent completely opposite philosophies

and it is not straightforward to accomplish a fair comparison in terms of complexity and

transmission rate.

1.4 Thesis Overview

The rest of the thesis is organized as follows. In Chapter 2, we describe a general analog JSCC

system that uses a particular Shannon-Kotel’nikov mapping consisting of a doubly intertwined

Archimedes’ spiral. The basic concepts of the non-linear analog mappings are reviewed and the

encoding operation by Archimedes’ spiral is explained in detail. The decoding operation at the

receiver is also addressed and we present a novel two-step decoding method which achieves a

near-optimal performance while maintaining a low complexity. Finally, the relation between the

coding parameters at the transmitter and the resulting distortion is analyzed in order to optimize

the system performance.

A fair comparison between the analog JSCC scheme described in Chapter 2 and a digital

Bit Interleaved Coded Modulation (BICM) system is carried out in Chapter 3. Both schemes

are optimally designed for the transmission of discrete-time continuous-amplitude sources over

AWGN channels at the same rate. The simulation results obtained for both cases are compared

to each other and with respect to the optimal bound.

As already mentioned, the performance of analog JSCC techniques has been only evaluated

under simulated conditions. In Chapter 4, we describe a software-defined radio implementation
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of an analog JSCC wireless transmission system making use of a wireless testbed developed at

the University of A Coruña. We use the developed scheme to assess the actual performance of

the proposed analog JSCC system in a real indoor environment.

Chapter 5 is dedicated to study the feasibility of the analog JSCC scheme over Multiple

Input Multiple Output (MIMO) fading channels. The design proposed in Chapter 2 is expanded

to the MIMO case so that the receiver structure is simplified by splitting the decoding operation

in two steps: a linear detector is first used to transform the MIMO channel into several parallel

Single Input Single Output (SISO) channels and a bank of conventional Maximum Likelihood

(ML) SISO decoders is then used to recover the transmitted source samples. In addition,

Decision Feedback (DF) detection rather than linear detection as the first stage of our receiver

is considered.

The transmission of analog JSCC samples using Orthogonal Frequency-Division

Multiplexing (OFDM) modulation and MIMO systems over frequency selective fading channels

is addressed in Chapter 6. In such conditions, the optimization of the encoder parameters

significantly impacts on the system performance. Three different alternatives for system

optimization are studied: non-adaptive coding, adaptive coding, and adaptive coding using a

linear precoder designed according to the Minimum Mean Squared Error (MMSE) criterion.

The application of analog JSCC techniques to multiuser communications is addressed in

Chapter 7. There exists a large number of wireless communication that cannot be directly

modeled as point-to-point links between transmitters and receivers such as, for instance, cellular

communications. In particular, we focus on the transmission of independent analog information

over a Multiple Access Channel (MAC) in the context of the uplink of cellular communications.

In a MAC scenario, it is necessary to design a channel access scheme to allow multiple users

to send their information to the centralized receiver over the same channel, since the signal of

one user interferes with the data transmitted by the rest of users. We show that it is possible to

approach the optimal performance of MAC systems using the analog JSCC mappings proposed

for point- to-point communications if the channel access schemes are properly designed.

Finally, Chapter 8 is devoted to the conclusions and future work.

8



Chapter 2

Analog Joint Source Channel Coding

The transmission of continuous sources using analog Joint Source Channel Coding (JSCC) is

addressed in this chapter. Analog JSCC has recently arisen as a zero-delay low complexity

alternative to conventional digital systems. This strategy based on the joint optimization of

the source and channel encoders has been proved to closely approach the theoretical limits

providing high transmission rates with a significant lower complexity and delay than that

of the digital systems. In addition, it shows a graceful degradation at low Signal-to-Noise

Ratios (SNRs) and removes the floor effect of the digital systems at high SNRs.

At the beginning of this chapter, we derive the theoretical limits for the transmission of

discrete-time analog signals using the fundamental concepts of Information Theory. Then, we

describe in detail the main ideas of the JSCC techniques employed along this thesis. This

novel transmission strategy is based on the use of continuous curves, known as Shannon-

Kotel’nikov mappings, which are presented from a geometrical perspective. This approach

allows us to explain how their topological properties make them suitable for analog JSCC.

Although Shannon-Kotel’nikov mappings can be employed for either bandwidth expansion or

compression, we will focus on the 2:1 bandwidth reduction case, where the coding operation is

carried out by a doubly intertwined Archimedes’ spiral.

Next, we turn out our attention to the decoding operation. In the literature, two different

methods are usually employed in order to recover the original signal from the symbols corrupted

by Gaussian noise: MMSE and ML decoding. The first contribution of this thesis is the

design of a two-step receiver structure which achieves a near-optimal performance while a low

complexity is preserved. The proposed receiver is based on the separation between the detection

and decoding stages and it provides the same performance to that of the quasi-optimal MMSE

decoder with a significant lower complexity.

Finally, the overall distortion we can expect after decoding the received signal is analytically

determined under certain assumptions. This information can be exploited to determine the

encoder parameters that optimize the overall system performance for a specific SNR. We also
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Source Transmitter Channel Receiver Destination

Figure 2.1: Block diagram of a general communication system.

show that the performance of the analog JSCC system can be improved if the initial assumptions

are disregarded and the optimal values for the encoder parameters are calculated by computer

simulations.

2.1 Transmission of Analog Signals

Most physical phenomena -such as sound, speech or images- are naturally modeled by analog

signals. The information transmitted by such signals is usually represented by continuous-time

continuous-amplitude functions. It is well known that the Nyquist Theorem [87] proves that

any analog signal with bandwidth B Hz can be perfectly recovered (without errors) if sampled

at a frequency rate greater than or equal to 2B Hz. Therefore, assuming Nyquist frequency and

an ideal Nyquist channel, we can disregard the sampling operation and directly consider the

transmission of discrete-time continuous-amplitude samples.

A communication system is designed to reliably transmit the information produced by

a given source to the destination through a specific medium which can be either a noisy

or a noiseless channel. Figure 2.1 shows the general block diagram of a point-to point

communication system. Basically, a source generates a sequence of analog samples to be

sent to the destination. These source samples are transformed by the transmitter in some

way, producing a suitable signal to be sent over the channel. Finally, the received signal

is employed by the receiver to recover the transmitted information. From these basic ideas,

Shannon developed a complete mathematical theory [108], known as Information Theory,

where the communication problem is modeled as a statistical process and the information

produced by the source can be represented as a random variable measured according to its

probability distribution using the concept of entropy.

This theory was brilliantly used by Shannon to prove that splitting source and channel

coding is optimum for a lossless transmission over an Additive White Gaussian Noise (AWGN)

channel. This strategy is known as the separation principle and is widely used in the design of

digital communication systems. In this approach, a source encoder first generates a minimum

representation of the original signal. The redundant information is removed and thus the

source information is compressed down to its ultimate entropy limit. Next, the channel encoder

modifies the data rate at the output of the source encoder according to the channel constraints.

Lossless compression of discrete-time analog sources is generally not feasible since a

10



2.1. Transmission of Analog Signals

continuous-amplitude alphabet normally represents an infinite amount of information and,

therefore, the source information needs to be discretized by a quantizer prior to source encoding.

The lossy transmission of continuous information was addressed by Shannon in [110], where a

theory for source coding according to a certain fidelity criterion was introduced. This theory is

referred to as rate distortion theory and is based on compressing the source down to a certain

rate given by the rate distortion function R(D). This function determines the minimum rate

at which the source data must be transmitted to achieve a given distortion target, D, usually

measured in terms of Mean Square Error (MSE). Thus, for continuous sources, the distortion

D allowed between the original information and the recovered information determines the rate

distortion function, R(D).

In addition, the separation principle was also shown to be optimum by Berger [12] for lossy

compression of discrete-time analog sources. Hence, it is necessary to reach a tradeoff between

the distortion rate,R(D), at the output of the source encoder and the channel capacity if we want

to ensure an error-free transmission of analog sources. We will expand this idea in Section 2.1.3.

2.1.1 Channel Capacity

In Information Theory, the entropy is a measure of the uncertainty in a random variable and can

be used to define the quantity of relevant information produced by a source. When considering

analog signals, it is helpful to introduce the concept of differential entropy of a continuous

random variable X with probability density function p(x), which is given by

H(X) = −
∫
X

p(x) logb p(x) dx = −E{logb p(x)}, (2.1)

where E[·] denotes mathematical expectation. The logarithm base b determines the entropy

measurement unit. If we choose b = 2 (the most usual), the entropy is expressed in bits whereas

when using natural logarithms the entropy is measured in nats. Unless otherwise specified, we

will assume b = 2 from now on and, hence, all the entropies will be measured in bits.

Extending the concept of entropy, we can define the joint entropy H(X, Y ) for a pair of

random variables (X, Y ) with a joint probability distribution p(x, y) as

H(X, Y ) = −
∫
X

∫
Y

p(x, y) log p(x, y) dx = −E{log p(x, y)}. (2.2)

In similar way, given two random variables (X, Y ), not necessarily dependent, we define

the conditional entropy H(X|Y ) of X with respect to Y as

H(X|Y ) = −
∫
X

p(x)

∫
Y

p(y|x) log p(y|x) dx

= −
∫
X

∫
Y

p(x, y) log p(y|x) dx (2.3)

= −E{log p(y|x)}. (2.4)

11



2. Analog Joint Source Channel Coding

The conditional entropy measures the average uncertainty in X when Y is known. Notice

that, if X and Y are independent, H(X|Y ) = H(X) since the knowledge of Y does not reduce

any uncertainty in X .

From the conditional entropy H(X|Y ), we can determine how much uncertainty in X is

reduced due to the knowledge of Y or, equivalently, the amount of information disclosed by Y

about X . In Information Theory, this concept is known as the mutual information between two

random variables X and Y , and it is mathematically defined as

I(X;Y ) =

∫
X

∫
Y

p(x, y) log

(
p(x, y)

(p(x)p(y)

)
dx

= E
{

log

(
p(x, y)

p(x)p(y)

)}
. (2.5)

Notice from Equation (2.5) that the mutual information can be interpreted as the expected

logarithm of the likelihood ratio between the joint distribution p(x, y) and the product

distribution p(x)p(y).

Logically, I(X;Y ) = H(X) − H(X|Y ), since the amount of information that Y contains

about X is measured as the total uncertainty in X minus the remaining uncertainty in X after Y

is known. If the variable Y does not provide any information about X , i.e. H(X|Y ) = H(X)

and the mutual information I(X;Y ) = H(X)−H(X) = 0. On the other hand, if X and Y are

identical, it can be easily seen that the conditional entropy is zero and the mutual information

equals the entropy of X , i.e. I(X;Y ) = H(X).

Shannon defined the capacity of a given channel as the maximum amount of information

that can be conveyed through it with an arbitrarily low error probability [108]. Let us consider

a communication system transmitting a sequence of source symbols over a memoryless noisy

channel (see Figure 2.1). If X and Y are a pair of random variables that represent the input and

output channel, respectively, and the channel input-output relationship is characterized by the

conditional distribution function p(y|x), the capacity of such a channel is given by

C = max
p(x)

I(X;Y ), (2.6)

where the maximum is taken over all the possible distributions of the input X . The channel

capacity is usually measured in bit per channel use as long as the logarithm base is 2.

In general, it is difficult to find a closed form expression for the capacity of an arbitrary

channel. A simple example, usually employed in the literature, is the memoryless Gaussian

channel where a sequence of channel symbols, whose average power is σ2
c , are corrupted

by zero-mean Gaussian noise with variance σ2
n. In this case, it can be shown that the input

distribution that maximizes the mutual information for this channel is the Gaussian distribution

[108], and that the capacity associated to it is given by

C = log

(
1 +

σ2
c

σ2
n

)
, (2.7)
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where σ2
c/σ

2
n is the Channel Signal-to-Noise Ratio (CSNR) and is usually measured in dB.

2.1.2 Rate Distortion Function

The main concepts corresponding to the rate distortion theory are revisited in this section.

A more complete description can be found in [21]. As already commented, analog signals

have an infinite information content so a lossless compression of this type of sources is not

possible. The continuous-amplitude source samples must be first discretized by using a scalar

or a vector quantizer and, next, we can employ some source coding scheme to remove the

redundant information of the discrete version.

After revisiting the source-coding problem, Shannon built an elegant theory, referred to

as rate distortion theory [110], for lossy transmission of data following a certain fidelity

criterion, which is conventionally defined in terms of the distortion between the original and

the compressed information. Given a distortion target, Shannon’s theory provides a tool to find

the minimum rate at which a source should be transmitted (reproduced) to achieve the specified

level of distortion after recovering the information. The rate distortion theory can be applied to

both discrete and continuous random variables. Notice that the lossless compression case is a

special case of the rate distortion theory applied to a discrete source with zero distortion.

Obviously, we first need to define the fidelity criterion, namely a way to asses the distortion

between two elements. A distortion measure is a bijective function d : XN × X̂N → R+

from the set of source-compressed signal pairs into the set of non-negative real numbers. The

distortion d(x, x̂) is hence a measure of the cost of representing the symbol vector x by another

vector x̂.

The most commonly used distortion metric is the Mean Squared Error (MSE), in such

a manner that the distortion is defined as the expected value of the square of the difference

between the source signal x and the recovered (compressed) signal x̂. Therefore, if the original

and reconstructed signals are given by vectors with components xi and x̂i, i = 1, . . . , N ,

respectively, the MSE is calculated as

d(x, x̂) = E
(
‖x− x̂‖2

)
' 1

N

N∑
i=1

|xi − x̂i|2 . (2.8)

Notice that the MSE is a simple way to measure the distortion although in some applications

is questionable because it does not take into account the human perception of analog signals.

Several alternatives have been proposed although, at present, there is no real alternative to using

the MSE as the distortion measure.

Let us now address the source coding problem from the traditional point of view of

Information Theory. An input signal (source) is disturbed by a noisy channel (source coding)

to produce an output signal (compressed) which is a distorted version of the original signal. In
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2. Analog Joint Source Channel Coding

this context, the rate distortion function for a source X can be obtained solving the following

minimization problem

R(D) = min
Q(X̂|X)

I(X; X̂) subject to d(Q) ≤ D, (2.9)

where Q(X̂|X), called a test channel or test system, is the conditional probability distribution

of the output X̂ given the input X; d(Q) and D represent the average distortion and the desired

distortion target (both measured in terms of MSE), respectively; and I(X; X̂) is the mutual

information between the variables X and X̂ . Thus, the rate distortion function can be also

interpreted as the minimum channel capacity required to attain a particular level of distortion

for a given source.

The rate distortion function measures the average amount of information that each sample

must contain when compressing the source X to satisfy the distortion constraint. Thus, we

can reformulate the source coding problem with fidelity criterion in the following way: a

memoryless source X can be encoded at rate Rc, achieving a distortion not exceeding D as

long as Rc > R(D). Conversely, for any code with rate Rc < R(D), the distortion necessarily

exceeds D. If the base of the logarithms involved in the calculation of the mutual information

is 2, the rate distortion function, R(D) is expressed as number of bits per data sample.

As in the case of channel capacity, it is difficult to find closed form expressions for this

bound. However, for a memoryless Gaussian source in which the samples are independent and

identically distributed (i.i.d) and, using MSE as distortion measure, the rate distortion function

is given by

RG(D) = max

[
0, log

(
σ2
x

D

)]
, (2.10)

where σ2
x is the source signal power, D is the distortion and the quotient σ2

x/D is known as

Signal-to-Distortion Ratio (SDR). It is important to note that the performance of an analog

transmission system is commonly measured in terms of SDR expressed in dB, i.e

SDR(dB) = 10 log10

(
σ2
x

D

)
= 10 log10

(
σ2
x

MSE

)
. (2.11)

It may not be possible to obtain an analytical solution for the minimization problem given

by Equation (2.9). In that case, we can calculate a lower bound for the rate distortion function

of a memoryless source as long as the MSE is used as the distortion measure. This lower bound,

known also as Shannon bound [110], can be computed as

RS(D) ≥ H(X)−HG(D), (2.12)

where H(X) and HG(D) are the entropy of the source and the entropy of a Gaussian random

variable with variance D, respectively. For example, let us consider the case of a Laplacian
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source with probability density function

f(x) =
1

2b
exp

(
−|x− µ|

b

)
,

where µ is the mean and b is a scale factor. In this case, it is not possible to obtain a closed

form expression for the rate distortion function, but we can calculate the Shannon lower bound.

In order to simplify the mathematical operations, natural logarithm is now assumed, and, thus,

H(D) and H(X) are actually expressed in nats. The differential entropy for a Gaussian source

with variance D is

HG(D) = log(
√

2πeD),

and, in the case of Laplacian sources, it is given by

HL(X) = 1 + log(2b).

Applying the logarithm properties and taking into account that the variance of a Laplacian

distribution is σ2
x = 2b2, this expression can be rewritten as

HL(X) =
1

2
log(2σ2

xe
2).

Now, applying directly Equation (2.12) for calculating the Shannon lower bound, we obtain the

expression

RL(D) ≥ HL(X)−HG(D) =
1

2
log(2σ2

xe
2)− 1

2
log(2πeD).

Using again the logarithm properties and simplifying the common factors in the quotient,

the lower bound for the rate distortion function of a Laplacian source is finally defined by

RL(D) ≥ 1

2
log

(
2σ2

xe
2

2πeD

)
=

1

2
log

(
σ2
x

D

e

π

)
. (2.13)

As observed, the rate distortion function for Laplacian source is given by the Gaussian

bound, RG(D), multiplied by a factor c = e/π. Since c < 1, the number of necessary bits to

achieve a given distortion in the case of Laplacian sources is actually lower than for Gaussian

sources, i.e. RL(D) < RG(D). In general, it is known that coding a Gaussian source requires

the greatest number of bits for any given distortion.

The Shannon lower bound is asymptotically tight in the low distortion regime for a wide type

of sources. Otherwise, the solution can be found using the Blahut-Arimoto algorithm [11, 15],

an elegant iterative method for numerically obtaining rate distortion functions of arbitrary finite

alphabet sources.
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2. Analog Joint Source Channel Coding

2.1.3 Optimum Performance Theoretically Attainable (OPTA)

The separation principle devised by Shannon is also optimum for lossy transmission of analog

sources [12]. Therefore, the optimal strategy to send an analog source over a noisy channel is to

separately perform source and channel coding. According to this result, it is easy to realize that

there must exist some relationship between the rate distortion function and the channel capacity

since both of them are used to measure the same characteristic -amount of information- in source

compression and channel coding, respectively. Remember that the rate distortion function

determines the minimum number of bits that must be employed to encode an analog source

attaining a certain distortion whereas the channel capacity represents the maximum number of

bits that can be transmitted over the channel without errors.

Let us consider an uncorrelated source that is transmitted over a memoryless noisy channel,

with capacity C, according to a certain fidelity criterion defined by a distortion level D, which

uniquely determines the rate distortion R(D). In this case, the source can be recovered at the

receiver with the expected distortion D as long as R(D) ≤ C. Conversely, distortion D is

unattainable if R(D) > C since the channel does not allow an error-free transmission of the

information at rate R(D).

Logically, the ideal situation is given when the source encoder generates the information at

the same rate as the channel can transmit it, i.e. R(D) = C. From this equality we can derive

the optimal upper bound for the lossy transmission of analog sources, known as the Optimum

Performance Theoretically Attainable (OPTA). Since the performance of analog transmission

systems is usually assessed in terms of the distortion between the source and the recovered

signals, we can equate the rate distortion function and the channel capacity, and determine

the optimal performance of the transmission system as the minimum attainable distortion for a

given CSNR.

Let us illustrate the OPTA calculation for the particular case of Gaussian sources and an

AWGN channel. In general, the source bandwidth and the channel bandwidth could not the

same, so it is more convenient to consider rate per time unit rather than rate per symbol. Thus,

if the bandwidth of a Gaussian source is N , i.e. the source produces N samples per second,

its rate is actually given by NRG(D) bits per second. Likewise, if the bandwidth channel is

K, we can transmit K symbols per second, which gives us a capacity of KC bits per second.

Equating the rate distortion function given by Equation (2.10) and the channel capacity given

by Equation (2.7), multiplied by the corresponding bandwidth factors, N and K, respectively,

we obtain

N log

(
σ2
x

D

)
= K log

(
1 +

σ2
c

σ2
n

)
.
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Solving this equation with respect to the SDR, the OPTA is given by

σ2
x

D
=

(
1 +

σ2
c

σ2
n

)K
N

, (2.14)

where K/N defines the relationship between the source and channel bandwidth. If K > N ,

redundant information can be added for error control. If K < N , the bandwidth and thus the

source information has to be reduced by some sort of lossy compression before transmission.

Notice that the SDR = σ2
x/D is straightforwardly determined by the inverse of the distortion

so it attains its maximum value when the distortion D is minimum. Therefore, the maximum

attainable SDR, given by Equation (2.14), is an adequate measure of the optimal upper bound

for the transmission of analog sources. In this case, the OPTA in dB can be calculated as

OPTA(dB) = 10 log10({1 + CSNR}
K
N ). (2.15)

A similar approach can be followed for the transmission of Laplacian sources over an

AWGN channel. Equating the lower bound calculated in the previous section for the rate

distortion function of a Laplacian source (see Equation (2.13)) and the capacity of an AWGN

channel given by Equation (2.7), we obtain

N log

(
c
σ2
x

D

)
≤ K log

(
1 +

σ2
c

σ2
n

)
,

where c = e/π. Solving again the equation with respect to the SDR, a lower bound for the

OPTA is determined as
σ2
x

Dt

≤
(

1 +
σ2
c

σ2
n

)cK
N

. (2.16)

Notice that this expression is closely related to the bound obtained for Gaussian sources since

the only difference between both equations is the constant c = e/π multiplying the bandwidth

rate in the exponent. Thereby, the OPTA expressed in dB for Laplacian sources is defined by

OPTA(dB) ≤ 10 log10({1 + CSNR}c
K
N ). (2.17)

The procedure for the OPTA calculation can be extended to other types of sources and

channels as we will see, for example, in the case of Multiple Input Multiple Output (MIMO)

systems.

2.2 Analog Joint Source Channel Coding

We focus on a point-to-point communication system performing a lossy transmission of

uncorrelated continuous sources over a memoryless channel. Henceforth, this system model

will be assumed along this thesis unless the opposite is explicitly specified. The optimal
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performance (OPTA) of this type of systems can be theoretically attained if source and channel

coding are separately tackled. As previously explained, this strategy is known as Separate

Source and Channel Coding (SSCC).

Unfortunately, the optimal distortion-cost tradeoff can be only approached closely if sources

are compressed using powerful quantization and encoding methods, and the resulting data is

transmitted using capacity-approaching channel codes such as Turbo Codes or Low Density

Parity Check (LDPC). The utilization of capacity-achieving digital source and channel codes

requires significant delay and high computational complexity. Thus, the separation principle

does not seem a good choice if we aim to design practical communication systems with severe

constraints on delay and/or complexity.

The separation principle allows to separately design the source and channel encoder

according to certain properties like distortion rate and CSNR. Nevertheless, if any one of those

properties change, it is necessary to completely redesign both encoders. Thus, the utility of

the separation principle is rather questionable when considering the transmission over time-

varying channels such as those encountered in wireless communications. Moreover, when the

information about the channel conditions is not available or is inaccurate at the transmitter,

the design of the encoders will not be adequate and hence the system performance completely

degrade.

In addition, communication systems are traditionally designed following a digital approach

for both discrete and continuous sources. When the system inputs are analog signals, the source

information must be discretized and quantized. The quantization is not an invertible operation so

a certain quantization error is always generated, inducing a floor effect since the digital system

performance saturates as long as the CSNR exceeds a certain threshold value determined by the

quantization error.

These drawbacks can be virtually solved if we consider another approach consisting

in jointly designing the source and channel encoders. This strategy does not follow the

separation principle and is referred to as Joint Source Channel Coding (JSCC). An analog

JSCC system directly transforms continuous-amplitude source samples into channel symbols

to be transmitted, using some type of continuous mapping. In general, Shannon-Kotel’nikov

mappings, based on parametrized geometric curves, are assumed for the encoding operation

(see Section 2.2.1).

Analog JSCC systems have been shown to be a low complexity alternative for the

transmission of analog sources at high rates with an almost negligible delay. Also, they are

characterized by its robustness against varying channel conditions and graceful degradation

for imperfect Channel State Information (CSI) at the transmitter. Moreover, the easily-updated

structure of a JSCC scheme allows us to continuously adapt the system as the channel conditions

change.

At this point, the really interesting question is whether low complexity analog JSCC systems
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can closely approach or even improve the performance attained for suboptimal SSCC schemes

using finite and affordable block lengths when, for example, tight restrictions on delay are

imposed. We try to respond this question for wireless channels along the thesis.

2.2.1 Shannon-Kotel’nikov Mappings

Let N and K be the source and channel bandwidth, respectively. According to the geometrical

interpretation proposed by Shannon [109], assuming Nyquist sampling and an ideal Nyquist

channel, a source vector of N samples can be spatially represented as a specific point on the

N -dimensional source space and, similarly, a vector of K channel symbols corresponds to a

point on the K-dimensional channel space. Mathematically, a source vector x ∈ RN contains

N source samples, x = {xn}Nn=1, which represent the coordinate values of the vector on the

N -dimensional source space. In the same way, a channel vector s ∈ RK consists of K channel

symbols, s = {sk}Kk=1, which are the coordinates of s on the K-dimensional channel space. A

function M(·) : RN → RK that establishes a correspondence between the points in the source

space and the points in the channel space is known as a mapping, i.e. s = M(x).

When N 6= K, this mapping involves either a bandwidth reduction if N > K or a

bandwidth expansion if N < K. In the first case, the operator M projects the source points

onto a lower dimensional subspace and therefore, for practical mappings, it is not invertible

and a lossy compression is inevitable. For mappings without dimension change (N = K)

and mappings with dimension increase, (N < K), where the source vectors are mapped onto

a higher dimensional space, they can be made invertible so that it is possible to completely

recover the source information.

From this geometrical interpretation of a communication system, we can define Shannon-

Kotel’nikov1 mappings as the set of continuous non-linear source-channel mappings based on

geometric curves. A first example is the mapping shown in Figure 2.2, which was suggested

by Shannon in [109] for a 1:2 dimensional increase but can be employed for a reciprocal

dimensional reduction. If used for bandwidth expansion, the length of the rope along the curve

from some reference point (origin) to the selected point, represents the source sample amplitude

and the two coordinates of the selected point on the bidimensional space correspond to the

two channel symbols. Reciprocally, when used for bandwidth reduction, the two coordinates

represent the source sample pair that is mapped to the closest point on the curve and the length

along the curve to this point will be the channel symbol amplitude.

Nevertheless, according to the topological theory, it is not possible to map a region of

1Kotel’nikov developed a similar theory for bandwidth expansion systems in his doctoral dissertation [66]
employing the same type of geometric structures. This work dates back to 1947, although it was not translated
to English until twelve years later. For that reason, the name Shannon-Kotel’nikov mappings is used to designate
non-linear mappings based on these type of geometric structures
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Figure 2.2: Mapping suggested by Shannon for 1:2 bandwidth expansion.

higher dimension into a lower dimension continuously using space filling curves in the presence

of noise. Hence, Shannon’s mappings necessarily involve a certain loss in the compression

process, which is directly related to the way how the curve fills the bidimensional space. If

the rope is very stretched along the source space, the curve can almost completely fill such a

region minimizing the loss induced by the mapping operation. Unfortunately, stretching the

curve implies that the horizontal lines get closer each other and a side effect, called threshold

effect by Shannon [109], can turn up when the channel noise disturbs the channel symbols.

When the noise level is below a certain value, the received symbols are only moved along the

curve and, therefore, the receiver can recover the transmitted source symbol with a fairly small

error. However, if the channel noise reaches a certain level, there is a probability of crossing to

a neighbouring line (threshold effect) and the source symbols cannot be recovered because the

error is too large. This effect is inherent to all non-linear Shannon-Kotel’nikov mappings.

Notice that Shannon-Kotel’nikov mappings perform a memoryless JSCC where a point on

the N -dimensional source space is directly projected onto the K-dimensional channel space by

a mapping operation in contrast to the conventional channel coding where long blocks of source

samples are used to built the channel signals incurring on long delays and high complexity.

2.2.2 Bandwidth Compression

Shannon-Kotel’nikov mappings closely approach the theoretical limits when employed for

bandwidth compression but are not suitable for bandwidth expansion since it is difficult to

find non-linear mappings that efficiently fill the channel space without simultaneously creating

multiple neighbours that are far away in the source space, hence causing the threshold effect

predicted by Shannon. For this reason, in this thesis we will focus on analog JSCC for
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dimension reduction by using Shannon-Kotel’nikov mappings. In particular, we will mainly

study the 2:1 compression case.

If we aim to represent a 2-D space (a plane) by a one-dimensional continuous curve, the

subspace generated by the curve must satisfy certain topological properties in order to ensure

an effective representation of the source samples on the channel space [73, 94]:

• The mapping should cover the entire space in such a way that a point on the source space

is mapped to the closest point on the channel space.

• The most likely source symbols should be mapped into channel symbols with lower

amplitudes to minimize the transmission power.

• If two points are close in the channel space, they should be mapped back into two points

that are close in the source space too. The opposite is not necessary, so two source samples

that are close can be mapped to completely different regions in the channel space.

According to these requirements, it can be concluded that the non-linear mapping proposed

by Shannon (see Figure 2.2) works quite well for 2:1 bandwidth reduction if we have uniformly

distributed sources. However, for another types of source distributions which commonly model

natural phenomena, such as Gaussian or Laplacian, we must devise other continuous curves

whose topological properties fit better.

For example, non-linear mapping for 2:1 compression of Gaussian sources over AWGN

channels have been widely studied in several works [20, 50, 94] where it is suggested a

particular type of parametrized space-filling continuous curve which consists of a doubly

intertwined Archimedes’ spiral, as shown in Figure 2.3.

This mapping based on spiral-like curves highly resembles the optimal Power Constrained

Channel Optimized Vector Quantizer (PCCOVQ) developed by Fuldsheth [39] for a 2:1

compression rate. Indeed, connecting the adjacent representation vectors in a codebook, we

obtain a non-linear continuous curve that, for moderate to high CSNR, is very similar to the

spiral-like curve employed for the 2:1 compression case. Also, recently, Akyol et al. [9] have

analytically calculated optimal mappings for different bandwidth expansion/compression rates

assuming Gaussian sources and Gaussian channels. For a 2:1 compression rate, they have

obtained a spiral-like curve that closely approaches the double Archimedes’ spiral. Obviously,

both arguments support the use of the double Archimedes’ spiral for 2:1 analog JSCC since it

achieves a performance very close to the optimal one and can be mathematically defined by a

closed form, hence simplifying the mapping operation.

This kind of non-linear mappings have been extended for higher compression rates [32]

by using more complex structures -called hypersurfaces- as, for example, the ball of yarn

for a 3:1 bandwidth compression. These multidimensional structures generally attain a good
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Figure 2.3: Continuous like-spiral curve proposed for 2:1 bandwidth reduction.

performance although they tend to get away from the optimal limits as the compression rate

grows.

In addition, a deformed version of the double Archimedes’ spiral was proposed in [49] for

2:1 compression of Laplacian sources. Nevertheless, it is shown in [55] that if the encoder

parameters are properly chosen, a simple spiral-like curve performs as well as the deformed

one.

2.3 System Description

In this section, we describe the basic structure of an analog JSCC system employed for the

discrete-time continuous-amplitude transmission of source samples over an AWGN channel. As

previously explained, we focus on analog JSCC for bandwidth reduction since these schemes

have been shown to closely approach the theoretical limits (specially in the 2:1 case) and they

achieve high transmission rates allowing a better usage of the radio spectrum. Figure 2.4 shows

the block diagram of an analog JSCC system performing a N :1 bandwidth compression. This

system is entirely analog and comprises two main elements:

• An analog encoder that maps a source sample vector into one channel symbol by

using a suitable non-linear mapping, namely a one-dimensional parametric space-filling

continuous curve.

• An analog decoder that is the device responsible for recovering the transmitted source

symbols from the received symbols.
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N:1 encoder

Decoder

Figure 2.4: Block diagram of a bandwidth reduction N:1 analog JSCC system over AWGN channels.

Thus, an N :1 analog encoder generates a sequence of channel symbols that is sent over an

AWGN channel represented by a zero-mean Gaussian random variable n with variance σ2
n, i.e.

n ∼ N (0, σ2
n). At the receiver, the analog decoder calculates an estimate of the transmitted

source symbols from the received symbols.

2.3.1 Analog Encoder

At the transmitter, an N :1 analog encoder performs a lossy compression transforming N

independent and identically distributed (i.i.d.) analog source samples into one channel symbol,

which is directly transmitted without any explicit error control mechanism. As shown in

Figure 2.4, the encoding procedure actually consists of two separated operations: the mapping

function Mδ(·) and an invertible function Tα(·), termed stretching function [51].

The mapping operation is defined as a function Mδ(x) : RN → R, where δ is a parameter

that determines how the one-dimensional continuous curve fills the source space. This function

implements the dimension reduction, translating the N source samples to a single value in two

steps:

• A non-invertible approximation operation where the elements of the N -dimensional

source space are restricted to the subspace SZ generated by the one-dimensional

continuous curve. Geometrically, the N source samples are packed into a source vector

x = (x1, x2, . . . , xN),x ∈ RN , whose components represent the coordinates of a specific

point on the source space. This point x is projected onto the closest point -according to

Euclidean distance- on the space-filling curve, z = (z1, z2, . . . , zN), z ∈ SZ .

• A dimension changing operation that maps the approximation point z from the N -

dimensional subspace to the one-dimensional channel space. Thus, a lower dimensional

representation of the points in SZ is determined according to a certain curve parameter

θ. This parameter defines how the distance from any point on the curve to the origin is

measured. We can choose, for example, the rope length along the curve or the angle from

the origin (radial distance).

The mapping function can be thus mathematically defined asMδ(x) = θ. Notice that, in this

case, the intermediate representation of the source vector x is a continuous subspace generated
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by the employed curve, unlike PCCOVQ mappings where a discrete subset of representation

vectors is considered.

The stretching function Tα(θ) : R→ R is a bijective function operating on the values θ at the

mapping operation output, being α the stretching factor. We can change the parameter space

distribution to protect the channel symbols against the noise by selecting a proper stretching

factor according to the source distribution. For example, choosing α = 1, the noise is linearly

distributed over the whole parameter space, actually corrupting the lower amplitude channel

symbols in a higher proportion. This effect is usually undesirable.

The curve parameter δ and the stretching factor α provide a certain degree of flexibility

since they can be jointly optimized at the encoder with the aim of improving the overall system

performance.

Finally, the channel symbols s = Tα(θ) are normalized by a factor γ to ensure the average

transmitted power satisfies the power constraint, i.e. E[|s|2] ≤ PT , where E[·] represents the

mathematical expectation and PT is the total power available at the transmitter .

2.3.1.1 N:K Analog Encoder

In general, we are interested in achieving any compression rate between N :1 and 1:1 with

the aim of adapting the transmission rate of analog JSCC systems depending on the channel

conditions. However, the analog JSCC scheme introduced in the previous section (see

Figure 2.4), which maps N source samples into the closest point of a one-dimensional curve,

only providesN :1 rates,N ∈ N. This system is not very flexible but, fortunately, it can be easily

extended by combining an N :1 compression scheme and a 1:1 transmission system as shown

in [55]. It is worth remembering that, as commented in Chapter 1, the direct transmission

of discrete-time uncoded Gaussian samples over an AWGN channel is optimal [44] when the

source and the channel have the same bandwidth, i.e. 1:1.

Figure 2.5 shows the block diagram of an analog JSCC system whose encoder performs

a N :K bandwidth compression. For that, c1 source symbols are directly transmitted by a 1:1

uncoded system whereas c2 symbols are encoded into c2/N channel symbols using an N :1

analog encoder. Thus, c1 + c2 = N source symbols are transformed into (c1 + c2/N) = K

channel symbols to be transmitted over the AWGN channel. By properly choosing c1 and c2,

any compression ratio between 1:1 and N :1 can be achieved.

Since the average power consumed for transmitting one channel symbol is constrained to

PT , the total available power for transmitting all c1 + c2 source symbols is (c1 + c2/N)PT .

However, the transmission power used for each subsystem can be efficiently distributed as long

as the total power constraint is satisfied. Therefore, we can add a power allocation module at

the encoder that determines how much power should be employed by each subsystem in order

to improve the overall system performance.
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Figure 2.5: Block diagram of a bandwidth compression N:K analog JSCC system over AWGN channel.

Let p ∈ (0, 1) be the fraction of the power spent on sending the uncoded symbols and 1− p
the fraction of power for the transmission of the compressed symbols. It is proved in [55] that

the optimal value for p, which optimizes the overall performance of the N :K analog JSCC

system, can be obtained by solving the following minimization problem

popt = arg min
p

(
c1

1 + (Nc1+c2)p
Nc1σ2

n

+
c2

[1 + (Nc1+c2)(1−p)
c2σ2

n
](1/N)G

)
, (2.18)

where G represents the gap between the real performance and the theoretical limit. Let a = c1,

b = (Nc1 + c2)/(Nc1σ
2
n), c = c2/G and d = (Nc1 + c2)/(c2σ

2
n). If we define the auxiliary

function F (p) as

F (p) =
a

1 + bp
+

c

1 + d(1− p)1/N

Equation (2.18) can be rewritten as follows

popt = arg min{F (p)}.

Calculating the first-order derivative of F (p) with respect to p and equating the result to zero,

we obtain
dF (p)

dp
=

ab

(1 + bp)2
+

cd

N [1 + d(1− p)]N+1/N
= 0. (2.19)

Notice that dF (p)
dp

is a continuous and monotone increasing function for all p ∈ (0, 1). Also, it

is easy to check that dF (0)
dp

< 0 and dF (1)
dp

> 0, so there must exist a point p0 ∈ (0, 1) such that
dF (p0)
dp

= 0. Taking the second-order derivative of F (p) yields

dF 2(p)

dp
=

2ab2

(1 + bp)3
+

(N + 1)cd2

N2[1 + d(1− p)]2N+1/N
. (2.20)

Since a, b, c and d are all greater than zero, then for p0 ∈ (0, 1), dF 2(p0)
dp

≥ 0 , which

means F (p) achieves a minimum at p = p0, i.e. popt = p0. Once popt has been calculated, it is

straightforward to readjust the power allocated to each subsystem.
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2.3.1.2 Archimedes’ Spiral

In the previous section, a general description for the N :K analog encoder based on Shannon-

Kotel’nikov mappings has been given. As mentioned before, the performance of analog JSCC

systems closely approaches the OPTA for N = 2, but it tends to move away as we increase the

compression rate since it is more complicated to find a one-dimensional continuous curve that

fills high dimensional spaces efficiently. Hence, we will focus on 2:1 analog JSCC.

At this point, the first and more important question should be what type of Shannon-

Kotel’nikov mapping is optimal for the case of a compression with rate 2:1 or, equivalently,

what mapping provides the best performance. In Section 2.2.2, we brought forward that several

works [20, 50, 94] had suggested the use of a doubly intertwined parametrized Archimedes’

spiral for Gaussian sources over AWGN channels. In this case, any point on the Archimedes’

spiral can be mathematically defined by
z1 = sign(θ)

δ

π
θ sin θ

z2 =
δ

π
θ cos θ for θ ∈ <,

(2.21)

where δ is the distance between two neighbouring spiral arms and θ is the angle from the origin

to the point on the curve z = (z1, z2),x ∈ R2.

At first glance, the Archimedes’ spiral seems a suitable mapping for Gaussian or Laplacian

source distributions according to their topological properties. The Archimedes’ spiral properly

covers the source space on R2 and, also, it can be made as dense as we want by decreasing

the parameter δ. At the limiting situation δ → 0, this like-spiral curve would fill the

whole source space continuously. In addition, the most probable samples of a Gaussian or

Laplacian distribution are around zero, so they are mapped into points close to the origin, which

corresponds to lower amplitude channel symbols. Finally, two neighbouring points in the spiral

are mapped back to two points close in the source space. Another important aspect of the double

spiral is that it covers the plane in a symmetric fashion for both the negative and positive channel

amplitudes, which implies that the channel representation is symmetric.

The use of Archimedes’ spiral is also supported by the fact that it can be interpreted as a

continuous version of the optimal PCCOVQ developed by Fuldsheth [39] for a 2:1 compression

rate. Moreover, a spiral-like curve that quite resembles Archimedes’ spirals has been shown in

[9] to be the optimal mapping for the 2:1 compression of Gaussian sources. In summary, the

mapping based on the doubly intertwined Archimedes’ spiral closely approaches the optimal

performance for Gaussian sources and it can be also mathematically described in a closed form

using Equation (2.21), hence simplifying the encoding operation.

Particularizing for N = 2, we can simplify the notation in Section 2.3.1 as follows:

• Two discrete-time continuous-amplitude source symbols correspond to a certain point on
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Figure 2.6: Analog mapping based on the use of the doubly intertwined Archimedes’ spiral.

the source space, x = (x1, x2),x ∈ R2.

• Any point on the spiral z = (z1, z2), z ∈ Sz, can be expressed as a function of its angle

with respect to the origin by

zδ(θ) =

(
sign(θ)

δ

π
θ sin θ,

δ

π
θ cos θ

)
. (2.22)

• The mapping operation, Mδ(x) : R2 → R, provides the angle θ̂ corresponding to the

point on the spiral that minimizes the Euclidean distance with respect to the source point

x, i.e.

θ̂ = Mδ(x) = arg min
θ
‖x− zδ(θ)‖2. (2.23)

Figure 2.6 visualizes this mapping operation graphically. A coarse search is done first

to determine which spiral arm the projection falls into, using the position information of the

source point x = (x1, x2). Then, x is projected on the point where the imaginary straight line

from the origin to the point x and the spiral arm intersect. A more refined search can be then

made around this coarse point to determine the real closest point, zδ(θ̂). Finally, the dimension

reduction operation is carried out by selecting the angle θ̂ from the origin to this point.

After obtaining the compressed samples, the next step is to apply the stretching function

Tα(·). In [20, 50, 51], the invertible function

Tα(θ̂) = sign(θ̂)|θ̂|α (2.24)
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with α = 2 was proposed. It is alleged that when using a square function, and if the channel

symbol is modified at a constant rate, the corresponding point will be moved on the spiral

at constant rate too, providing signal-independent noise [51]. In addition, the channel inputs

approximate a Laplacian distribution, thus simplifying the distortion analysis and enabling

the analytical calculation of the optimal value for δ. As will see in Section 2.3.4, the system

performance can be improved if the optimal values for the parameters δ and α are specifically

determined for each CSNR value.

Prior to be transmitted, the channel symbols must be normalized by a factor
√
γ ensuring

that the average transmitted power satisfies the power constraint. Thus, the symbol sent over

the channel is constructed as

s =
Tα(Mδ(x))
√
γ

=
s̃
√
γ
, (2.25)

where s̃ represents the unnormalized channel symbols at the output of the analog encoder.

2.3.2 Analog Decoder

In this section, we will introduce the other important device of the analog system presented in

Section 2.3: the analog decoder responsible for recovering the original signal corrupted by a

noisy channel. The analog decoder should revert the sequence of the operations performed by

the mapping operation, namely the approximation step and the dimension changing operation.

Assuming an AWGN channel, the received symbol is given by

y = s+ n, (2.26)

where n ∼ N (0, σ2
n) is a real-valued zero-mean Gaussian random variable that represents the

channel noise. In the noiseless case, the received symbol actually corresponds to a certain point

on the source space, y = (y1, y2, . . . , yN) after it is mapped back onto N -dimensional space,

undoing the dimension change. Nevertheless, this point does not necessarily belong to the spiral

defined by Equation (2.22) when the coded symbol is transmitted over a noisy channel due to

the distortion introduced by the channel.

Therefore, the analog decoder has to calculate an estimate x̂ of the transmitted source

symbol x from the noisy observation y. Since the system performance is maximized as the

distortion between source and decoded symbols is minimized, it is sensible to consider an

Minimum Mean Square Error (MMSE) strategy as the optimal method for decoding the received

symbols.

In [55] it is proposed a quasi-optimal MMSE scheme that, given an observation y, calculates
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the point x̂ on the N-dimensional source space that minimizes the MSE with respect to y, i.e.

x̂MMSE = E [x|y] =

∫
x p(x|y)dx

=
1

p(y)

∫
x p(y|x)p(x)dx. (2.27)

Unfortunately, calculating x̂MMSE is not straightforward. Indeed, since the conditional

probability, p(y|x), involves the mapping function Mδ(·), which is discontinuous and highly

non-linear, the integral in Equation (2.27) can only be solved numerically. Therefore, we

first need to discretize the set of all possible source values, in such a manner that the N -

dimensional source space is represented by a mesh of discrete points. If L discrete-points

are selected for each source dimension, the discretized version of the source space is given

by xd = {x11, . . . , x1L; . . . ;xNL} and hence we have to calculate LN values for p(x) and

p(y|x) and then compute the integral in Equation (2.27). As the number of discrete points L is

reduced, the decoding performance is quickly degraded, so we have to choose large values of L

for MMSE decoding to perform close to the theoretical limits.

Notice that p(xd) can be directly obtained from the Probability Density Function (PDF) of

the source distribution, whereas we need to determine the probability of the received symbol

y with respect to the LN mapped values Tα(Mδ(xd)) in order to obtain a discretized version

of p(y|x). Since p(xd) and Tα(Mδ(xd)) do not depend on the received symbol, they can be

precalculated once off-line and the results stored at the decoder. Despite that, we have to

calculate LN probabilities and compute a sum of LN terms for each received symbol, which

negatively impacts on the decoding complexity.

A low complexity alternative is Maximum Likelihood (ML) decoding, mostly employed in

the literature [20, 51]. This decoding method consists in selecting the symbol on the channel

space that maximizes the likelihood function p(y|x). Notice that, unlike the MMSE approach,

the set of usable received symbols is just restricted to the channel space. Thus, the ML decoder

first projects the N -dimensional point corresponding to the received symbol y on the one-

dimensional continuous curve used for the encoding operation, and then the resulting point

is mapped back into the source space in order to obtain the ML estimate.

Mathematically, the ML estimate x̂ML of the transmitted source symbol x is calculated as

the tuple (x̂1, x̂2, . . . , x̂N) that belongs to the non-linear curve and maximizes the likelihood

function p(y|x), i.e.

x̂ML = arg max
x∈ curve

p(y|x) = {x|x ∈ curve and x = Mδ

(
Tα(
√
γ y)−1

)
}. (2.28)

As mentioned, the received symbol y is decoded as the point on the curve that minimizes the

Euclidean distance with respect to the point obtained after applying the inverse of the stretching

function Tα(·) to the denormalized version of y. To compute the closest point x on the curve,

the mapping function Mδ(·) is conveniently employed.
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Figure 2.7: Example of ML and MMSE decoding for N = 2 and Archimedes’ spiral.

Particularizing to the case N = 2, when the Archimedes’ spiral is considered, the

transmitted symbol is given by Equation (2.25). Therefore, ML decoding is equivalent to first

applying the inverse function T−1α (·) to the observation y after de-normalization and then find

an estimate θ̃ of the transmitted angle θ̂ = Mδ(x), i.e.

θ̃ = T−1α (
√
γy) = sign(y)|√γ y|−α. (2.29)

We finally obtain the point on the spiral corresponding to θ̃ as x̂ML = (x̂1, x̂2) = zδ(θ̃). Notice

that the overall decoder complexity is extremely low since the two decoding steps previously

described only involve simple mathematical operations. Analog JSCC over an AWGN channel

with ML decoding is analyzed in [20, 50, 51], where it is shown that its performance is close

to the OPTA limit for medium and high CSNRs but it significantly degrades when we consider

low CSNR values given that the ML approximation becomes more inaccurate as the noise level

increases.

Figure 2.7 shows an example where a received symbol is decoded following the MMSE

or the ML criterion for the particular case of N = 2 and the Archimedes’ spiral. The

stretching step and its inverse operation are disregarded for clarity. The point xMMSE is a spatial

representation of the value calculated according to the integral defined in Equation (2.27). As

can be observed, this point does not belong to the Archimedes’ spiral unlike in the ML case.
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MMSE
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Figure 2.8: Block diagram of the proposed two-stage decoding scheme.

2.3.3 Proposed Decoding Method

In the previous section, we have studied two different approaches for decoding the received

symbols. In summary, ML decoding provides a low complexity solution that achieves a good

performance for high CSNR, but it tends to move away from the optimal limit as we decrease

the CSNR value. On the other hand, MMSE decoding closely approaches the OPTA in the

whole CSNR range but its complexity is considerably higher than that of ML and, therefore,

this alternative goes against the philosophy of zero-delay and low complexity in which analog

JSCC is supported. Obviously, the ideal option would be to find a low complexity and zero-

delay decoding method whose performance always remains close to the theoretical limit for any

CSNR value.

The reason why ML decoding performance degrades at low CSNRs is because it produces

estimates of the source symbols directly from the received symbols. When the channel noise is

high, the received symbols are severely distorted and shifted along the curve so the estimates

produced by the ML decoder are far from the source symbols.

Intuitively, it should be possible to improve the ML estimates if the received symbols

are previously filtered to reduce the distortion introduced by the channel into the transmitted

symbols. For this reason, we propose a two-stage decoding approach in such a manner that an

MMSE filter is placed prior to ML decoding with the aim of minimizing the MSE between the

transmitted and filtered symbols. Figure 2.8 shows the block diagram of the proposed decoding

scheme.

A similar idea has been discussed in [34] by Forney who showed that MMSE estimation

is instrumental for achieving the capacity of AWGN channels but in the context of digital

communications using lattice-type coding.

In the case of AWGN channels, the linear MMSE estimate of the transmitted symbol s is

given by

ŝ =
y

1 + σ2
n

, (2.30)

where y is the received symbol and σ2
n is the noise variance. Thus, the received symbols are

filtered employing the MMSE detector according to Equation (2.30) in a first stage. Next, ML

decoding is applied to the linear filter output ŝ and an estimate of the transmitted source symbols

is obtained. This two-step decoding strategy resembles the one used in coded-modulated digital

systems that makes use of separate detection and decoding stages.

Notice that when transmitting over AWGN channels, the complexity of MMSE filtering is
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Figure 2.9: Performance of the 2:1 analog JSCC system when using the two-stage decoding for Gaussian

sources.

minimum, since it simply consists on the multiplication of the received symbols and a number

that depends on σ2
n. For high CSNRs, this number is close to one and the influence of the

MMSE filter is small. However, for low CSNR values the impact of this filtering is significant.

Figures 2.9 and 2.10 show the performance of the analog JSCC system considering the two-

stage decoding for the case of Gaussian and Laplacian sources, respectively. As observed,

the performance curves corresponding to the proposed decoding scheme and the optimal

MMSE decoding almost overlap in both cases with a constant gap (about 1.5 dB) with

respect to the OPTA for all CSNR values. Also, the proposed solution outperforms ML

decoding at low CSNR values (i.e. below 15 dB) with similar complexity. The OPTA bound

is calculated according to Equation (2.15) and Equation (2.17) for Gaussian and Laplacian

sources, respectively.

According to these results, it is possible to assert that we have devised a low complexity

decoding method for analog JSCC which provides a performance very close to that of the

optimal solution. This new approach not only represents an interesting contribution to design

near-optimal analog JSCC schemes for the AWGN case, but also will be a fundamental strategy

to preserve low complexity and low delay when the decoding operation is implemented on more

complex transmission models, such as MIMO systems.
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Figure 2.10: Performance of the 2:1 analog JSCC system when using the two-stage decoding for

Laplacian sources.

2.3.4 Distortion Analysis and Parameter Optimization

At this point, we certainly know that the set of Archimedes’ spirals is the ideal candidate for

properly filling a 2-D space when we have source distributions whose most likely symbols are

placed close to the plane origin, such as Gaussian and Laplacian sources. However, the specific

shape of these spiral-like curves exclusively depends on the distance between two adjacent

arms, namely, it is determined by the parameter δ. Logically, as δ is lower, the distance between

neighbouring arms is smaller and the spiral becomes denser, reaching the limit point when

δ → 0, where the 2-D space would be filled continuously. Conversely, as δ becomes larger, the

spiral arms get further away and the spiral becomes more sparse.

At first sight, the 2-D source space is filled more efficiently by choosing the δ value as

low as possible, minimizing the approximation error when the source points are projected

onto the spiral. Unfortunately, as the separation between the spiral arms is made smaller,

channel symbols corresponding to different spiral arms are closer on the channel space, so

the probability of crossing to a neighbouring arm when they are corrupted by noise (threshold

effect), is inevitably increased. Thus, as shown in Figure 2.11, there are two different

contributions to the overall distortion of the received symbols:

• The approximation distortion, Dr, induced by the impossibility of finding a continuous

representation of a 2-D space by a one-dimensional curve. This contribution is smaller as
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Figure 2.11: Distortion components when using the Archimedes’ spiral and ML decoding.

we make the spiral denser.

• The noise distortion, Dn, caused by transmitting over a noisy channel that disturbs

the symbols. The channel noise moves the transmitted symbol along the spiral but, if

the noise reaches a level beyond a certain threshold value, the symbol can cross to a

neighbouring arm. This effect becomes more probable as the spiral is denser.

Both distortion components need to be balanced in order to reduce the overall distortion

between source and received symbols. Chung [20] and Hekland [50, 51] stated a minimization

problem to find the δ value that minimizes the distortion as follows

δopt = arg min
δ

[Dt(δ)] s.t. E[|s|2] ≤ PT , (2.31)

where Dt(δ) is the overall distortion of the received symbols when using δ at the coding

operation and E[|s|2] ≤ PT is the power constraint. The distortion per source symbol after

decoding the received symbols is defined as

Dt(δ, σn) = Dr(δ) +Dn(δ, σn) =
E‖x− x̂2‖

2
,

where x and x̂ are the source and decoded vectors, respectively. As long as it is assumed

that the spiral is sufficiently dense at the origin, so that the average error on the projection

step is approximately equal for the two source samples, the total distortion can be decomposed

in two orthogonal components: a radial component (the approximation error), Dr(δ), and an
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angular component (the noise distortion), Dn(δ, σn). Notice that this assumption only holds on

the high CSNR region. In this situation, the approximation error can be approximated by the

quantization error incurred by a standard scalar quantizer, i.e.

Dr(δ) ≈
1

2

δ2

12
.

Dr(δ) represents the approximation error per source symbol, so the quantization error must be

divided by 2 since we actually project two source symbols.

On the other hand, the noise distortion is more complicated to calculate since it depends on

the channel input distribution fs(·) and the noise variance σ2
n. When the noise contribution is

small (high CSNR) and employing ML decoding, the received symbols are given by

z(s+ n) ≈ z(s) + z′(s)n,

where z defines the points on the spiral in Equation (2.22), and the last term is the noise

contribution to the overall distortion. Thus, the average noise distortion can be expressed [51]

as

ε2 =
σ2
n

2

∫
Sz

‖z′(s)‖2fs(s) ds. (2.32)

Remember that the transmitted symbols are given by Equation (2.25) and, therefore, fs(·)
is a function of δ and α parameters. Again, assuming that the spiral is dense enough to

cover the entire space (high CSNR) such that the approximation error can be disregarded, and

assuming the stretching function as the square of the angle θ, the channel input distribution fs(·)
approaches a zero-mean Laplacian with variance

σ2
s = 2(2a

π2

δ2
σ2
x),

where σ2
x is the source variance. The noise distortion can be hence calculated according to

Equation (2.32) as

Dn(δ, σn) =
1

2

(
σ2
s

PT
σ2
n

)
=

8(aπ2σ2
xσn)2

2δ2PT
,

and the overall distortion is given by

Dt(δ, σn) = Dr(δ) +Dn(δ, σn) =
δ2

24
+

8(aπ2σ2
xσn)2

2δ2Pt
. (2.33)

Once the overall distortion is explicitly determined as a function of the parameter δ, we can

obtain the optimal δ that minimizes the distortion between the source and the decoded symbols

for different σ2
n and CSNRs values.

This approach has a series of inherent limitations because we actually calculate an

approximation for the total distortion considering a set of assumptions that only hold for high

CSNR, ML decoding and α = 2. Otherwise, this approximation can be rather inaccurate.
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CSNR (dB) 0 1 2 3 4 5 6 7 8 9 10 11 12

δ 9.8 8.0 5.6 5.0 4.2 4.0 3.9 3.7 3.6 3.4 3.2 3.1 3.0

γ 0.1 0.11 0.12 0.14 0.16 0.2 0.6 1.2 1.9 2.5 3.0 3.3 3.5

CSNR (dB) 13 14 15 16 17 18 19 20 21 22 23 24 25

δ 2.9 2.7 2.5 2.3 2.2 2.1 2.0 1.8 1.7 1.5 1.4 1.3 1.2

γ 3.9 4.7 5.7 7.1 7.9 8,9 10.0 13.1 15.1 20.5 24.5 29.7 35.3

CSNR (dB) 26 27 28 29 30 31 32 33 34 35 36 37 38

δ 1.1 1.0 0.9 0.8 0.8 0.8 0.7 0.7 0.6 0.6 0.5 0.5 0.4

γ 45 56 74 99 99 99 140 140 209 209 333 333 588

Table 2.1: Optimal values for δ and γ for 2:1 analog JSCC and Gaussian sources.

CSNR (dB) 0 1 2 3 4 5 6 7 8 9 10 11 12

δ 12.0 11.0 10.2 9.5 8.6 6.5 5.8 4.7 4.2 3.7 3.2 3.1 3.0

γ 0.08 0.1 0.14 0.16 0.23 0.5 0.7 1.26 1.7 2.4 3.5 3.8 4.13

CSNR (dB) 13 14 15 16 17 18 19 20 21 22 23 24 25

δ 2.9 2.7 2.5 2.3 2.1 1.9 1.7 1.5 1.5 1.4 1.3 1.2 1.2

γ 4.5 5.4 6.55 8.1 10.2 13.1 17.3 23.6 23.6 28.2 34 41.6 41.6

CSNR (dB) 26 27 28 29 30 31 32 33 34 35 36 37 38

δ 1.1 1.0 0.9 0.8 0.8 0.8 0.7 0.7 0.6 0.6 0.5 0.5 0.4

γ 51.9 66 86.4 116 116 116 164 164 244 244 387 387 674

Table 2.2: Optimal values for δ and γ for 2:1 analog JSCC and Laplacian sources.

In addition, as shown in Section 2.3.2, MMSE decoding involves numerical integration in

Equation (2.27), making it cumbersome to analytically derive a closed-form expression for the

distortion function with respect to δ. Therefore, the only feasible alternative is to numerically

find the tuple (δ, α) that optimizes the system performance by simulation as shown in [55].

We have empirically determined through off-line computer simulations that using α = 1.3

provides a good performance over AWGN channels and a wide range of CSNR and δ values.

Thus, optimal α values are always around 1.3 for the range of evaluated CSNRs [0-40 dB]

and small variations on such a value slightly impact on the overall system performance. For

this reason, we have decided to select α = 1.3, and hence the optimization procedure can

be restricted to find the optimal value for δ parameter, whose influence on the performance is

more critical. The second row of Tables (2.1) and (2.2) corresponds to the best values of the
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parameter δ for Gaussian and Laplacian sources, respectively. These values were found via

computer simulations for a 2:1 compression rate, α = 1.3 and for a range of CSNR values

between 0 and 40 dB. Concretely, optimum δ values were determined by exhaustive search over

the range 0 < δ < 12 using a 0.1 step-size.

Another important issue regarding the optimization of the analog JSCC scheme is the

normalization of the channel symbols. The normalization factor, γ, actually corresponds to the

mean square value of the symbols at the output of the analog encoder, i.e. γ = E[|s̃|2]. However,

the statistical description of s̃ is extremely difficult to characterize and strongly depends on the

source distribution and the encoder parameter δ. We can overcome this limitation if the mean

square value of s̃ for a given source distribution and a set of δ values is also determined off-

line, via computer simulations. The third row of Tables (2.1) and (2.2) shows the values of γ

obtained for Gaussian and Laplacian sources, respectively, and for the corresponding δ values

resulting from the aforementioned encoding optimization.

2.4 Conclusions

In this chapter, we have reviewed the transmission of discrete-time continuous-amplitude

samples over AWGN channels using analog JSCC. The use of this strategy allows to drastically

reduce the complexity and the delay of the capacity-achieving digital SSCC systems by

optimizing the source and channel encoders jointly in one single step. In addition, analog

JSCC has been recently shown to approach the theoretical limits when employing for bandwidth

compression.

We have described the different components of the considered analog JSCC system along

this chapter. On one hand, the encoding operation at the transmitter consists in a non-

linear continuous mapping based on the use of space-filling curves (Shannon-Kotel’nikov

mappings), namely we focus on the doubly intertwined Archimedes’ spiral for the case of a

2:1 compression. On the other hand, the decoding operation is carried out at the receiver in

order to recover the transmitted source samples corrupted by channel noise. After evaluating

the decoding methods considered for analog JSCC until now in the literature, we have designed

an alternative two-stage receiver structure based on the splitting between the detection and

decoding operations. This strategy has been shown to achieve a near-optimal performance

while preserving low complexity. For that reason, the proposed two-stage decoding scheme

constitutes an important contribution to the design of efficient analog JSCC systems and also

represents a fundamental strategy to preserve low complexity and delay when the decoding

operation is implemented on more complex transmission models such as, for example, MIMO

schemes.

The performance of the analog communication systems is directly related to the distortion
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2. Analog Joint Source Channel Coding

between the source and decoded symbols. As seen, such a distortion is caused by the

compression operation and the channel noise and it can be mathematically determined under

certain assumptions. However, we also show that the overall performance of the analog JSCC

system can be improved if such assumptions are disregarded and the optimal values for the

encoder parameters are calculated by computer simulations.
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Chapter 3

Comparison between Analog JSCC and
Digital Systems

In previous chapters, analog Joint Source Channel Coding (JSCC) has been presented as

an appealing alternative to conventional digital systems under certain circumstances such as

high transmission rate requirements, delay/complexity constraints (real time systems) or time-

varying environments (wireless channels). However, if we want to consider analog JSCC as

a real alternative in the aforementioned scenarios, it is essential to compare the performance

of this scheme with that of a purely digital one at the same transmission rate with similar

complexity. We follow the traditional approach for the design of digital systems when the source

information to be transmitted are analog data: quantization of the analog source, entropy coding

devoted to remove the redundant information and channel coding to protect the binary symbols

against the channel noise. Thereby, according to the complexity, delay and transmission rate

restrictions, we design an optimal low complexity digital system where each step is individually

optimized following the separation principle stated by Shannon. Finally, the performance of

both approaches are compared to each other and with respect to the optimal bounds for the

transmission of analog sources –modeled as Gaussian or Laplacian distributions– over an

Additive White Gaussian Noise (AWGN) channel.

3.1 Digital BICM Systems

Trellis Coded Modulation (TCM) [127] and Bit Interleaved Coded Modulation (BICM)

[16, 141] are the two most prominent examples of digital transmission schemes using coded

modulation. TCM combines encoding and modulation in a single operation in such a manner

that the coded bits are mapped into a single constellation with the aim of maximizing the

Euclidean distance between any two different signals of the constellation. On the other hand,

the design of BICM systems is based on the individual optimization of an encoder and a
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Figure 3.1: Block diagram of Bit Interleaved Coded Modulation (BICM) systems over AWGN channels.

modulator, separated by a bit interleaver. Both models are capable of approaching the Shannon

capacity limit over an AWGN channel. However, in this thesis, we have chosen BICM as the

representative capacity-approaching digital transmission scheme because of its simplicity and

lower complexity.

Figure 3.1 shows the block diagram of the BICM digital system that we will use to compare

with the analog system described in Chapter 2. We assume a discrete-time source that produces

Gaussian or Laplacian independent and identically distributed (i.i.d.) real-valued symbols Xa.

These continuous symbols are first mapped to a discrete set of values using an optimumN -level

scalar quantizer, Q(N). Both the quantization levels and the partition regions can be obtained

using the well-known Lloyd-Max algorithm [75, 81]. Although better performance could be

obtained if Vector Quantization (VQ) is considered, we discarded this possibility to preserve

the overall quantization complexity at a low level.

Next, the discrete-time discrete-amplitude symbols at the quantizer output are converted

into a binary representation using a suitable source encoder. Again, among the many existing

source encoding methods, we decided to use Huffman encoding because it is a simple algorithm

that approaches the source entropy. The input alphabet to the Huffman encoder is made up of

the Q-levels of the scalar quantizer, i.e. no grouping is performed prior to the encoding. The

average length of the Huffman codewords used to represent each source sample will be denoted

by Lm.

The output bit sequence is encoded with a capacity-approaching channel encoder prior to

transmission. The rate of the channel encoder will be denoted by Rc and, as explained later,

its value must be selected to ensure that the transmission rate of the digital system is equal

to the rate achieved when employing the analog JSCC scheme. Notice that this value will also

depend on the average length of the source codewords and on the number of bits per transmitted

symbol used for signaling. Due to their low encoding and decoding complexity, we decided to

use Irregular Repeat Accumulate (IRA) codes [60]. In order to approach the channel capacity,

IRA codes have to be properly optimized for each specific rate,Rc. In our case, the optimization

operation was carried out by EXtrinsic Information Transfer (EXIT) analysis [123].
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3.1. Digital BICM Systems

Finally, the channel coded bits are modulated using a real-valued M -Pulse Amplitude

Modulation (PAM) constellation. Notice that an interleaver between the channel encoder and

the modulator is not strictly necessary since we are transmitting over an AWGN channel. A

one-dimensional PAM constellation has been chosen to keep the same signaling as the analog

system in Chapter 2 where real-valued analog coded symbols are transmitted. The constellation

size M limits the maximum attainable data rate over the channel. We chose the value M = 256

which allows the transmission of a maximum of 8 bits per channel use, a transmission rate high

enough for the comparison with the analog system. Higher values of M could be used but they

yield to extremely complex PAM constellations that are not feasible in practice.

At the receiver, an optimum detector calculates the Log-Likelihood Ratio (LLR) values

of the transmitted bits and passes them to the sum-product IRA decoding algorithm. After a

maximum number of decoding iterations, the resulting bits are hard-decoded and dequantized

to the corresponding levels.

In the following sections we will explain in detail the main components of the BICM digital

system presented in this section: scalar quantizer, source encoder, channel encoder andM -PAM

modulator.

3.1.1 Scalar Quantization

An analog signal is usually represented by a continuous function, x(t), which describes the

behavior of a physical phenomenon on the domain t, usually the time domain. The function

domain and the amplitude range of x(t) is continuous and, therefore, the information carried by

an analog signal is actually infinite. Nevertheless, the digital systems only can convey a certain

finite amount of binary information. Thus, we inevitably need to discretize both the domain and

range of the function x(t) in order to obtain a discrete-time discrete-amplitude version of the

analog signal as input to the digital system.

A discrete-time version x(n) is obtained from the continuous original signal by a sampling

operation. As mentioned in Chapter 2, assuming Nyquist sampling and an ideal Nyquist

channel, it is possible to represent an analog signal by a finite number of discrete samples, in

such a manner that the original signal can be perfectly reconstructed from the discrete version.

Thus, the sampling operation does not entail any sort of error or distortion. Hence, we omit this

step and directly focus on the transmission of continuous-amplitude samples.

Prior to generating the digital representation of the analog signal, the amplitude range must

be also discretized by the quantization operation. In general, a quantizer maps an infinite set

of input amplitudes to a finite subset of output values suitable to be digitalized. Unfortunately,

the quantization operation removes certain amount of relevant information in the input signal,

making its recovering impossible. The distortion between the original and reconstructed signals

is referred to as quantization error.
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3. Comparison between Analog JSCC and Digital Systems

Figure 3.2: Example of non uniform scalar quantization of a Gaussian source.

If the source generates a sequence of continuous samples, x = {x1, x2, ..., xi}, the quantizer

must produce a sequence with the corresponding discrete values, y = {y1, y2, ..., yi}. There

exists two main approaches to perform the corresponding mapping operation. Firstly, each

input sample is independently mapped to one output value, i.e., Q : X → Y . In this case, Q

is called scalar quantizer since one single sample of the source signal is quantized at each time.

The second alternative is to consider a N -vector quantizer [46, 74], where a vector of N input

samples is mapped to an output vector of M components, i.e., Q : XN → Y M , N > M . Thus,

a vector quantizer encodes N -component vectors from a continuous multidimensional space

into a finite set of representative M -component vectors (codebooks) from a discrete subspace

of lower dimension.

Remember that we are interested in designing an optimal low complexity digital system in

order to fairly compare it to the analog JSCC scheme proposed in Chapter 2. However, the

complexity of the optimal vector quantizer significantly increases as N becomes larger, since a

discretization of the N -dimensional space –defined by the probability density function (pdf) of

the source– is required. Hence, its complexity is much higher than that of the scalar quantizer

even for small values of N . According to complexity/delay constraints, we decided to rule out

vector quantization and focus on the scalar case. Also, this decision is supported by the fact that

vector quantization improves only slightly -in term of distortion- the performance of the scalar

quantization for small values of N .

Let QN be an N -level scalar quantizer that defines a partition of the amplitude range

of the source signal. Thus, the range of x(n) is divided in N disjoint intervals (or bins),

Ti = (ti−1, ti], i = 1, . . . , N , each one represented by a single value, yi, i = 1, . . . , N . Hence
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3.1. Digital BICM Systems

QN maps the set of all input amplitudes falling into the same interval i to the same output value,

yi, which is the representative point of the interval, i.e.

QN(x) = yi, ti−1 < x ≤ ti. (3.1)

In this case, the quantization error is determined by the the distortion between the original

and quantized signals, measured commonly according to the Mean Square Error (MSE) metric,

i.e

D(QN) = E
[∣∣x−QN(x)

∣∣2] =
N∑
i=1

∫ ti

ti−1
|x− yi|2p(x)dx, (3.2)

where p(x) is the pdf of the source signal, x(n).

At the receiver, a similar mapping has to be applied to reconstruct a discrete version of the

original signal. Thus, each received sample z is remapped to the representative point of the

interval in which the sample z fall into

x̂ = QN(z) = yi, ti−1 < z ≤ ti. (3.3)

Logically, assuming error-free transmission, the distortion between the recovered and

original signals will be equal to the quantization error. The quantization error is directly related

to the interval sizes, li = (ti− ti−1), i = 1, . . . , N , and the probability distribution of the source,

p(x). If all bins have the same size, we have a simple uniform scalar quantizer. Otherwise, the

quantizer is called non uniform, and the interval limits ti and the representative points yi for

each interval must be determined in order to minimize the distortion between the original and

quantized signals. For non uniform distributions, such as Gaussian and Laplacian sources, using

an uniform scalar quantizer is not recommended since the quantization error is much lower, for

the same N value, if we choose an optimal non uniform quantizer. Notice that a quantizer is

optimal in the sense that no other one results in a lower distortion assuming the same number

of levels.

LLoyd [75] and Max [81] independently proposed an algorithm, known in the literature

as the LLoyd-Max’s algorithm, to compute optimum scalar quantizers for a certain source

distribution using MSE as distortion measure. Given a certain number of levels N , the

LLoyd-Max’s algorithm calculates the intervals and representative points of the quantizer that

minimize the quantization error using the statistical properties of the input signal. LLoyd and

Max proved that the optimum interval limits are the midpoints of the interval between two

neighbouring representation points and, at the same time, the representation points are the

centroid of the probability density function in the corresponding interval. Using these two

simple conditions, an iterative algorithm can be formulated to jointly determine the interval

limits and the representative points.

This algorithm is widely used in practice because it can be easily implemented. However,

it usually converges slowly and, due to limitations in numerical precision, it may not converge.
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Therefore, in real applications, Lloyd-Max’s algorithm is interrupted once the partition is good

enough. The convergence of this iterative algorithm has been widely studied in the literature

[31, 86, 138] and, in general, it is closely related to the initial partition of the signal range so it

is fundamental to select the initial intervals carefully.

We will focus on the quantization of Gaussian and Laplacian sources due to the importance

of these distributions in real applications, such as image compression or speech transmission,

beyond their theoretical significance. Max calculated the optimum quantizers for a Gaussian

source with unit standard deviation and zero mean for different number of levels in [81]. In

addition, the expected average distortion and the entropy of the quantized source is computed.

For Laplacian sources, the optimum scalar quantizer for any number of levels can be easily

obtained running the Lloyd-Max algorithm, and the distortion and the entropy can be calculated

from Equations (3.2) and (2.1), respectively. Notice that the entropy equation must be

particularized for discrete sources.

Logically, as the number of levels becomes larger, the distortion between the original

and quantized signal lowers, since the input samples are more tightly represented by the

representative point of the corresponding interval. Conversely, the entropy of the quantized

source increases since a higher number of bits are required to represent the information at the

quantizer output. Thus, there is a tradeoff between the resulting signal quality and the amount

of data needed to represent each sample.

3.1.2 Source Coding

After the quantization operation, the analog source signal is represented by a finite sequence

of discrete symbols. The next step in a digital system consists of obtaining the most efficient

digital representation of such symbols. This task is carried out by the source encoder, which

defines a reversible mapping of sequences of discrete source symbols into sequences of

codewords. Source coding is also referred to as noiseless coding since it does not involve loss of

information or entropy coding since, if the original signal contains certain statistical properties

or dependencies, they can be exploited for data compression.

The source message at the encoder input, s(L) = {s0, . . . , sL−1}, comprises L source

symbols that belong to a discrete alphabet A = {a0, . . . , aM−1}. The encoder output is

represented by a finite set of codewords, which are actually a sequence of binary symbols (bits)

of the alphabet B = {0, 1}. Thus, the lossless coding transforms the source message s(L) into a

sequence b(K) = {b0, ..., bK−1} of K bits.

In practical coding algorithms, the input message s(L) is often split into blocks s(N) =

{sn, . . . , sn+N−1} of N symbols, with 1 ≤ N ≤ L, and a codeword b(l)(s(N)) = {b0, . . . , bl−1}
of l bits is assigned to each of these blocks s(N). The length l of a codeword b(l)(s(N)) depends

on the symbol block s(N). The codeword sequence b(K) that represents the message s(L) is
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obtained by concatenating the codewords b(l)(s(N)) associated to each symbol block s(N). Thus,

a source encoder can be described by the following operation

b(l) = γ(s(N)),

which specifies a mapping from the set of finite length symbol blocks to the set of finite length

binary codewords. The decoder mapping

s(N) = γ−1
(
b(l)
)

= γ−1
(
γ
(
s(N)

))
is the inverse of the encoder mapping γ.

Depending on whether the number N of symbols in the block s(N) and the number l of

bits for the associated codewords are fixed or variable, the following types of encoders can be

defined:

• Fixed-to-fixed coding: a fixed number of symbols, N , is mapped to fixed-length

codewords of size l.

• Fixed-to-variable coding: a fixed number of symbols is mapped to variable-length

codewords. A well-known method for designing fixed-to-variable mappings is the

Huffman algorithm.

• Variable-to-fixed coding: a variable number of symbols is mapped to fixed-length

codewords. Tunstall codes [103, 126] are a representative example of this type of source

coding.

• Variable-to-variable coding: a variable number of symbols is mapped to variable-length

codewords. Arithmetic coding is a typical example for this type of lossless source coding.

In this thesis, we will focus on the source encoders that assign a variable-length codeword

to each symbol si, i = 1, . . . , L − 1 of an input message s(L). The symbols si obtained after

the quantization operation are assumed to be characterized by the random variable S, which

takes values of a finite symbol alphabet A = {a0, ..., aM−1} with a probability mass function

p(ai) = P (S = ai). The source code associates each symbol ai of the alphabet A to a binary

codeword bi = {bi0, . . . , bil(ai)−1} of length l(ai) ≥ 1. According to this statement, our purpose

is to build a lossless source code that minimizes the average codeword length given by

Lm(S) = E[l(S)] =
M−1∑
i=0

p(ai)l(ai), (3.4)

while ensuring that each message s(L) can be uniquely decodable from its coded representation

b(K). A code is said to be uniquely decodable if and only if each valid coded representation b(K)
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Figure 3.3: Example of a Huffman code for an input alphabet S = {A,B,C,D,E} with probability

mass function p(S) = {0.05, 0.06, 0.12, 0.25, 052}. The average length of the code is 1.82

and the entropy of the source is 1.8173.

of a finite number K of bits can be produced by only one possible sequence of source symbols

s(L). A necessary condition for uniquely decodable codes is given by the Kraft inequality [68]
M−1∑
i=0

2−l(ai) ≤ 1. (3.5)

A code will be also instantaneously decodable if each output symbol can be rightly decoded

after the bits of its corresponding codeword are received. Using the Kraft inequality and the

expression for the average codeword length Lm given by Equation (3.4), it is straightforward to

prove that

Lm ≥ H(S), (3.6)

where H(S) is the entropy of the discrete source S. In addition, the redundancy of the code is

given by the difference between the source entropy and the average length of such a code.

To design an optimal uniquely decodable code, i.e. a code that achieves the minimum

average codeword length, it is necessary to consider the prefix codes. A code is said to be

a prefix code if no codeword for an alphabet symbol represents the codeword or a prefix of

the codeword for any other alphabet symbol. An optimal prefix code must have the following

properties:

• For any symbol pair ai, aj ∈ A with p(ai) > p(aj), the associated codeword lengths

satisfy l(ai) ≤ l(aj).

• There are always two codewords that have the maximum codeword length and differ only

in the final bit.

Logically, both conditions are simultaneously fulfilled if the two codewords with the

maximum length that differ only in the final bit are assigned to the two symbols ai and aj
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with the smallest probabilities. Using this condition, an iterative algorithm was developed and

shown to be optimal by Huffman in [56]. The Huffman algorithm is based on the construction

of a binary code tree for a given alphabet A with a probability mass function p(A) and can be

summarized in the following steps:

• Select the two symbols ai and aj with the smallest probabilities and create a parent node

for the nodes that represent these two symbols in the binary code tree.

• Replace the symbols ai and aj by a new symbol with an associated probability given by

p(ai) + p(aj).

• If more than one symbol remains, repeat the two previous steps.

• Convert the resulting binary code tree into a prefix code.

An example of a Huffmman code built using this procedure is shown in Figure 3.3. It is

known that scalar Huffman codes achieve the smallest average codeword length among all

uniquely decodable codes that assign a separate codeword to each symbol of an alphabet.

However, if the source is correlated, i.e, there are strong dependencies between the symbols,

they can be very inefficient. In this case, Huffman codes can be extended to assign a codeword

to a block of two or more successive symbols. They are referred to as block Huffman codes

or vector Huffman codes. In this thesis, we employ optimal scalar Huffman codes for the

source coding operation since the information transmitted by the digital system is assumed to

be uncorrelated.

3.1.3 Channel Coding

The aim of channel coding is to achieve error-free transmission (or with a small probability of

error) by protecting the source messages against the channel noise. On the transmitter side,

a certain amount of redundancy is cleverly added to the bitstream generated by the source

encoder so that the receiver can detect and correct the transmission errors. This operation hence

guarantees a high reliability of the transmitted information. Furthermore, it is possible to cancel

out the effect of the interference from external sources which could not be managed by simply

increasing the transmit power.

In Chapter 2, we introduced the channel coding theorem stated by Shannon in 1948 [108].

According to this theorem, each channel can be numerically described by its capacity which

determines the highest transmission rate at which the information can be sent over such a

channel for achieving an error-free transmission. Thus, the channel properties do not restrict

the quality of the transmission but only the throughput. By using a proper coding scheme, the

channel capacity can be asymptotically achieved assuming infinite block length (large blocks in

practice).
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Channel coding can be formally defined as a mapping that converts an input message into

a sequence of codewords that belongs to the channel alphabet. Notice that the message at

the channel encoder input corresponds to the bitstream generated by the source encoder from

the source information after quantization and compression operations. Depending on the way

of generating the channel codewords from the input message, there are two main classes of

channel codes:

• Block codes segment the source bitstream into blocks of K bits. Each block is then

mapped into a codeword of N bits (N > K) on the vector subspace generated by code.

The extra N −K check bits provide the required error protection.

• Convolutional Codes are a particular type of codes with memory where a message is

not coded block by block, but it is continuously processed by the encoder to generate

the associated codeword. They use a memory register for generating the codeword at

each time instant as function of the source message and the register state. The name

of convolutional codes come from the fact that the output bitstreams are essentially the

convolution of the input bitstream and the code coefficients.

Both types of codes can closely approach the theoretical limits given by the channel capacity

as long as they are optimally designed but, as already mentioned in Section 3.1, in this chapter

we will focus on block codes because of their larger simplicity and lower complexity.

A (N,K) block code defines a mapping between eachK-bit block bj of the source message,

b = {b1b2 . . . bM}, and its corresponding N -length codeword, cj, j = 1, . . . , 2K . The number of

possible codewords is 2N whereas the number of different input blocks is given by 2K , K < N ,

so the number of useful codewords is also 2K . That is, the set of all valid codewords forms a

vector subspace inside the N -dimensional codeword space. This mapping is required to be

• unique and injective: two different information blocks are mapped to two different

codewords;

• time-invariant: the assignment scheme does not change over a period of time;

• memoryless: each information block only influences one codeword, and each codeword

is influenced by only one information block.

A linear block code can be precisely defined by a particular K × N matrix, called

the generator matrix of the code, G. The codeword associated to an input message bi is

straightforwardly obtained using the generator matrix as cj = GT bj . In addition, given that

the columns of the matrix G generate a vector subspace of the N -dimensional space defined by

the set of all possible codewords, there must exist other (N − K) × N matrix H whose right

null space is equivalent to the subspace generated by the set of valid codewords. In other words,
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for any codeword cj , we have Hcj = 0. Such matrix H is commonly known as the parity check

matrix of the code and satisfies the condition HGT = 0.

If the message bi is placed in the firstK bits of the associated codeword,Gwill have the form

[I|P ] and essentially N −K redundant bits are added to the message. These redundant bits are

referred to as the parity check bits and the coding scheme is called systematic. Systematic codes

are more convenient since after correcting the channel errors at the decoder, we can extract the

source message directly from the decoded codeword. For non-systematic coding, we need an

extra step to translate the corrected codeword to the actual message.

Assuming that the source encoder generates messages at an average bit rate of ns bits per

second and the channel encoder maps each K-bit message into a N -bit codeword, then the

(N,K) code rate will be

nc =
N

K
ns =

1

Rc

ns. (3.7)

At the receiver, the channel decoder is the device responsible for the detection of bit errors

on the received messages from the channel and (if possible) correcting those errors. There are

two basic schemes of error-control coding which depend on the requirements of the tolerable

end-to-end delay and whether a feedback channel is available:

• Automatic-Repeat-Request (ARQ): If the channel decoder performs error detection,

errors can be detected and a feedback channel from the channel decoder to the channel

encoder can be used to control the retransmission of the codeword until it is received

without detectable errors.

• Forward Error Correction (FEC): If the channel decoder performs error correction then

errors are not only detected but the incorrect bits can be also identified and corrected.

The main advantage of ARQ techniques is that error detection needs less redundancy.

However, erroneous messages need to be transmitted repeatedly until they are received without

errors and, therefore, the delay can become large. Thus, the throughput with the ARQ strategy

basically depends on the quality of the channel. Since the analog JSCC strategy ensures a low

delay transmission, we focus on FEC techniques using a particular class of block code: Irregular

Repeat-Accumulate (IRA) codes.

3.1.3.1 A Historical Perspective

The beginning of channel coding theory dates back to 1948, when Shannon formulated his

famous channel coding theorem [108]. From that moment, a long journey with the aim of

designing capacity-achieving codes started and continues to the present. Shortly after Shannon’s

work, Richard Hamming and Marcel Golay independently proposed the first practical codes,

known in the literature as Hamming codes [45, 48].
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In 1955, convolutional codes were first introduced by Elias [25] as an alternative to block

codes. Later, Wozencraft and Reiffen [137], Fano [27] and Massey [80] stated different

sequential decoding algorithms for convolutional codes. Finally, in 1967, Viterbi [132]

managed to design an efficient decoding algorithm to obtain a Maximum Likelihood (ML)

estimate of the transmitted sequence. Such algorithm is relatively easy to implement for

convolutional codes with short constraint length.

Other coding schemes, such as BCH (Bose-Chaudhuri-Hocquenghem) or Reed-Solomon,

were also proposed but none of them were able to approach the theoretical limit with a

reasonable encoding and decoding complexity. In 1993, Berrou et al. presented the Turbo

codes [13] that completely revolutionized the coding theory. The basic principle of these codes

is the iterative decoding of concatenated components that exchange information (called extrinsic

information) based on soft decisions about the transmitted bits. This idea is referred to as the

turbo principle.

The generalization of this idea led in 1995 to the rediscovery almost simultaneously of the

Low Density Parity Check (LDPC) codes by Mackay [77, 78] and Spielman [111, 115]. These

codes were first proposed in the 60s by Gallager [40] but both its coding scheme and its A

Posteriori Probability (APP) decoding algorithm were largely forgotten for more than 30 years

because they were too complex for the technology of that time.

LDPC codes are linear block codes with a sparse parity check matrix that outperform Turbo

codes with a smaller decoding complexity. They can be represented by a Tanner graph or

factor graph [118] where the relations between the variables and check nodes are graphically

shown. The decoding operation is based on the Belief Propagation (BP) algorithm - or also

Sum-Product Algorithm (SPA)- which is an iterative algorithm that efficiently computes the

marginal distribution of a single variable from the joint distribution of multiple variables.

However, due to the fact that the generator matrix of general LDPC codes is not sparse,

their encoding complexity can be rather high. Low Density Generator Matrix (LDGM) codes

are a particular case of LDPC codes whose generator matrix is sparse, making a lower encoding

complexity possible. However, except for the case of very high rate codes, they have a non-

zero error probability that is independent of the code block length. More recently, IRA codes,

consisting of the serial concatenation of a LDGM code and an accumulator, have been proposed

[60, 123]. IRA codes are able to get close to the performance of LDPC codes with an encoding

complexity similar to that of LDGM codes.

3.1.3.2 Irregular Repeat-Accumulate Codes

Repeat Accumulate (RA) codes consist of the serial concatenation of a repetition code, a bit

interleaver and a set of parity checks (i.e. an LDGM code), and an accumulator. RA codes are

usually systematic, so the parity accumulated bits are appended to the uncoded bits to obtain
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Figure 3.4: Example of factor graph for a systematic IRA code.

the final coded sequence. As occurs with LDPC and LDGM codes, we can use a factor graph

[118] to represent RA codes and apply the BP algorithm to decode them. In case the graph is

irregular, the code is usually named Irregular Repeat-Accumulate (IRA) code.

Figure 3.4 shows the factor graph for a (N,K) systematic IRA code with a degree profile

given by the parameters (du,1, . . . , du,n, df ), where du,i ≥ 0,
∑

i du,i = 1 and df is a positive

integer. We can distinguish three kind of nodes in the factor graph: K systematic or information

nodes, N − K accumulator or parity nodes and L check nodes. Each check node is exactly

connected to df information nodes whereas du,i specifies the fraction of information nodes

connected to i check nodes. The connection pattern is specifically determined by an interleaver.

In general, the relation between check and parity nodes follows a zig-zag pattern as can be

observed in Figure 3.4.

The particular structure of this type of linear codes simplifies the encoding operation since

the modulo-2 sum of the values pi corresponding to the parity nodes connected to a specific

check node and such a node must be zero. Applying this condition, N −K parity bits can be

easily obtained by the recursive equation

cK+1 = p1

cK+i = cK+i−1 + pi,

for i = 2, . . . , ...N −K. We can build the codeword simply by appending the obtained parity

bits to the information bits, i.e. c = [u1 . . . uK ; cK+1 . . . cN−K ].

The decoding operation for IRA codes is carried out by using the SPA, which is an iterative

procedure based on message passing between the different nodes of the factor graph. For codes
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represented by factor graphs, the SPA can be interpreted as a particularization of the powerful

BP algorithm proposed by Pearl [90] to efficiently compute the marginal distribution out of

the joint distribution of multiple variables. Since the unknown variables are binary, the actual

messages are initially calculated from the Log-Likelihood Ratio (LLR) of each coded bit ci,

defined as

Lch,i = log
p(x|ci = 1)

p(x|ci = 0)
(3.8)

and then passed to the decoder. Next, an iterative decoding is started where the check and

variables nodes exchange information (soft decisions) until they reach the stopping criterion.

In a similar way to LDPC codes, this class of codes also needs to be optimized in order

to approach the theoretical limits. In this context, the optimization of IRA codes implies to

obtain the degree profile that achieves the best performance for a particular channel. Two basic

techniques have been proposed for the design of LDPC and IRA codes: Density Evolution (DE)

[96] and EXtrinsic Information Transfer (EXIT) charts [122].

Density Evolution (DE) is an optimization method based on studying the variation of the

pdf of the messages between variable and check nodes in the factor graph of a code. EXIT

charts are based on tracking the extrinsic information exchanged between the components of an

iterative decoder. Instead of tracking the probability density function (pdf) of the messages, a

representative value is used to simplify the problem and effectively capture the most relevant

information about the decoding process: the bitwise mutual information between the messages

and the codeword [121]. Thus, EXIT charts provide a graphical representation of the code

convergence.

3.2 Design of Digital BICM Systems

In the 2:1 analog JSCC transmission system described in Chapter 2, two source samples are

encoded into one channel symbol and transmitted in each channel use. Logically, the digital

system employed to perform the comparison with the analog scheme must be designed to

transmit the same amount of information per channel use.

In the digital system, each source sample is quantized with an N -level scalar quantizer and

represented by a codeword whose average length is Lm. Thus, 2Lm bits are used to represent

the two source samples at the output of the source encoder. The digital system is designed in

such a way that the information rate is less than the channel capacity so that no errors occur

during the transmission. Thus, the Signal-to-Distortion Ratio (SDR) is just determined by the

quantization error that is directly related to the number of quantization levels, N .

When transmitting over an AWGN channel, the Channel Signal-to-Noise Ratio (CSNR)

should be high enough in order to ensure that the channel capacity is higher than the information

rate. Two different expressions of the AWGN channel capacity will be conveniently used:
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the unconstrained channel capacity that assumes Gaussian input symbols and the constrained

channel capacity that takes into account that the channel symbols are modulated with a PAM

constellation. Thus, we have to calculate the minimum CSNR necessary to achieve an error-

free transmission according to the unconstrained and constrained capacity limits, which are

well-known for the AWGN channel. Notice that the minimum CSNR necessary to achieve the

constrained channel capacity is slightly higher than that of the unconstrained one because we

use a PAM constellation whereas the mutual information over an AWGN channel is actually

maximized when the input is Gaussian.

If the digital system uses a M = 256 PAM constellation, 8 bits per channel use can be

employed to transmit the two source symbols. Hence, if 2Lm < 8, an error-free transmission

of the uncoded bits over an AWGN channel is possible as long as the CSNR is high enough.

Moreover, there is room enough to introduce redundant channel bits that are essential to achieve

the channel capacity. In order to preserve the same number of channel uses as in the analog

JSCC scheme, the information rate must satisfy the constraint 2Lm/Rc = 8. According to this

condition, the design of the digital system can be summarized in the following steps:

• We select the number of levels for the scalar quantizer and calculate the average length of

the associated Huffman code, Lm.

• From Lm we can straightforwardly determine the channel code rate as Rc = Lm/4.

Next, a channel encoder, with rate Rc, capable of approaching the capacity of an AWGN

channel should be designed. Such a channel encoder can be optimized using EXIT

analysis. In particular, we have optimized IRA codes for certain rates and obtained their

threshold values, i.e., the minimum CSNR necessary for the IRA codes to correct all

channel errors. These threshold values are slightly higher than those obtained from the

channel capacity because practical IRA codes always incur in some performance losses.

• We can finally determine the expected SDR for the corresponding CSNR value at which

the IRA code designed in the previous step is able to correct all transmission errors. The

SDR values depend on the distortion between the source and decoded signals, which is

given by the quantization error or, equivalently, by the number of levels employed at the

scalar quantizer.

This design procedure implies that in the digital transmission system a different channel

encoder should be used each time the target SDR is changed. For example, if we need to attain

a higher SDR (lower distortion), the number of quantization levelsN must be increased in order

to minimize the distortion (error quantization) and, as consequence, the channel code rate Rc

will be larger and, logically, the CSNR that guarantees an error-free transmission will be also

higher.
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Unconstrained Constrained IRA

Q SDR (dB) Entropy Lm Code Rate Capacity (dB) Capacity (dB) Threshold

2 4.397 1.000 1.000 0.250 11.76 12.51 13.01

3 7.208 1.536 1.541 0.385 18.49 19.65

4 9.300 1.911 1.980 0.495 23.82 25.15 25.78

5 10.972 2.203 2.213 0.553 26.63 28.01

6 12.367 2.443 2.477 0.619 29.82 31.28 32.65

7 13.565 2.647 2.688 0.672 32.36 33.82

8 14.617 2.825 2.880 0.721 34.69 36.17

9 15.552 2.983 3.033 0.758 36.52 38.02

10 16.396 3.125 3.166 0.792 38.13 39.63 40.40

11 17.162 3.253 3.282 0.821 39.53 41.04

12 17.867 3.372 3.391 0.848 40.83 42.36

13 18.520 3.481 3.508 0.877 42.25 43.76

14 19.090 3.582 3.622 0.905 43.62 45.14

15 19.694 3.677 3.722 0.931 44.82 46.39 46.81

16 20.224 3.765 3.805 0.951 45.76 47.53

17 20.725 3.849 3.895 0.974 46.90 49.03

18 21.199 3.928 3.977 0.994 47.89 51.36

Table 3.1: Parameters of a 2:1 digital BICM system with Gaussian sources, scalar quantization, Huffman

source coding, IRA channel coding and 256-PAM modulation.

Tables 3.1 and 3.2 show the parameters of the resulting BICM digital transmission systems

designed for Gaussian and Laplacian sources, respectively. The first column of Tables 3.1

and 3.2 contains the number of scalar quantization levels,Q. The second column is the expected

SDR provided by the optimum MSE Lloyd-Max scalar quantizer, calculated as the inverse of

the quantization error. The third column shows the average length values obtained when the

sources are Huffman encoded while the fourth column is the channel encoder rate allowed by

the 256-PAM modulator. The fifth and sixth columns are the minimum CSNR necessary to

achieve the unconstrained and constrained channel capacity, respectively. Finally, the seventh

column shows the threshold values obtained when using a practical IRA code.

Other BICM digital transmission systems could be designed with different modulation levels

and channel code rates, specially for the case of low number of quantization levels, Q. For

instance, if a M = 64 PAM constellation is used, information transfer is feasible as long as
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Unconstrained Constrained IRA

Q SDR (dB) Entropy Lm Code Rate Capacity (dB) Capacity (dB) Threshold

2 3.010 1.000 1.000 0.250 11.76 12.51 13.01

3 5.780 1.317 1.368 0.342 16.37 17.42

4 7.540 1.728 1.805 0.451 21.71 22.97

5 9.215 1.946 1.996 0.499 24.02 25.31 26.29

6 10.464 2.207 2.291 0.573 27.58 28.97

7 11.669 2.374 2.427 0.607 29.22 30.67

8 12.638 2.565 2.607 0.652 31.39 32.86 33.02

9 13.581 2.701 2.749 0.687 33.01 34.56

10 14.372 2.852 2.882 0.721 34.70 36.18

11 15.145 2.966 3.017 0.754 36.33 37.81

12 15.815 3.091 3.142 0.785 37.83 39.35

13 16.471 3.189 3.221 0.805 38.79 40.30 41.04

14 17.051 3.295 3.349 0.837 40.33 41.84

15 17.621 3.382 3.431 0.858 41.31 42.84

16 18.132 3.474 3.512 0.878 42.29 43.81

17 18.636 3.552 3.578 0.894 43.08 44.61

18 19.093 3.634 3.666 0.916 44.15 45.68

19 19.545 3.704 3.736 0.934 44.99 46.54

20 19.959 3.777 3.804 0.951 45.80 47.50 48.41

Table 3.2: Parameters of a 2:1 digital BICM system with Laplacian sources, scalar quantization, Huffman

source coding, IRA channel coding and 256-PAM modulation.
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Figure 3.5: Performance comparison of 2:1 analog JSCC and digital 256-PAM schemes for Gaussian

sources.

2Lm < 6. This channel information rate limit forces the maximum achievable SDR value to be

14.617 dB (Q = 8) for Gaussian sources and 14.372 dB (Q = 10) for Laplacian sources. In

addition, the rate of the channel encoder should be changed now to Rc = Lm/3. Nevertheless,

since the constrained capacities for 64 and 256 PAM are very similar in the low CSNR regime,

the results are almost identical to those in Tables 3.1 and 3.2. The same is true for M = 16

PAM. On the other hand, higher values of Q would lead to better performance only for very

high CSNR, but not for the CSNR range considered for the comparison with the analog JSCC

scheme.

3.3 System Comparison

Figures 3.5 and 3.6 show the SDR versus CSNR performance points that were obtained for the

analog JSCC scheme and the digital system described in the previous sections. Figure 3.5

is for the case of Gaussian distributed sources while Figure 3.6 is for the Laplacian case.

The different points represent the performance of the analog system, the theoretical limit of

a digital system that utilizes scalar quantization and has the same number of channel uses as the

analog system (i.e., the ultimate limit with scalar quantization using perfect source and channel
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Figure 3.6: Performance comparison of 2:1 analog JSCC and digital 256-PAM schemes for Laplacian

sources.

coding and optimal signaling), and the performance of a BICM digital system that utilizes

scalar quantization and has the same number of channel uses as the analog system when i)

Huffman coding and Gaussian signaling are employed, ii) Huffman coding and PAM signaling

are used, and iii) the most realistic scenario in which a Huffman code, a PAM constellation

and a practical IRA channel encoder are utilized. The performance curves corresponding to

the analog JSCC scheme are calculated according to the system design explained in Chapter 2,

including the proposed low complexity two-step receiver and an appropriate optimization of the

encoder parameters. The OPTA curves have also been included as a benchmark.

From Figures 3.5 and 3.6, it is clear that the performance of the analog JSCC system

is significantly better than that of the digital BICM systems, even when optimal (Gaussian)

signaling is used. For Gaussian sources, the difference in performance is about 5 dB when

considering 256-PAM constellations (3 dB when using Gaussian modulations) for CSNR values

above 20 dB. For Laplacian sources, differences are particularly remarkable in the low CSNR

regime where the analog JSCC outperforms the BICM digital system about 6 dB for PAM and

5 dB for Gaussian modulations. Differences are smaller at high CSNR values although still

important (2− 3 dB for the more realistic case of using PAM).

It is worth to notice that the superior performance of the analog JSCC system is achieved
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with extremely low complexity (the encoding and decoding is carried out at symbol level)

that is independent of the target SDR and/or the CSNR. Furthermore, not only is the resulting

complexity of the digital BICM systems higher, but also the digital design must change radically

when the operating conditions vary. Vector quantization can be considered in order to improve

the performance of the digital BICM system but this would be only accomplished at the cost of

an even greater increase in complexity.

3.4 Conclusions

For analog JSCC can be actually considered a practical alternative to conventional digital

systems, it is important to assess the performance of both approaches under similar transmission

conditions. In this chapter, we have carried out a fair comparison between the analog JSCC

system described in Chapter 2 and a digital SSCC scheme that is conveniently designed to

achieve the same transmission rate as that of the analog system. In particular, Bit-Interleaved

Coded Modulation (BICM) systems has been selected because of its simplicity and lower

complexity with respect to other digital approaches. Such a scheme consists of an optimum

scalar quantizer, a Huffman source encoder, an optimized IRA channel encoder and a 256-PAM

modulator.

The results of the computer simulations show that the analog JSCC system outperforms the

considered digital systems for the whole SNR region with a significantly lower encoding and

decoding complexity. Thereby, we have validated that analog JSCC is an adequate strategy

for the transmission of analog sources when it is necessary to achieve high transmission rates

while preserving low complexity and delay. On the other hand, the analog JSCC scheme

can be constantly adapted to the channel conditions in a time-varying scenario by optimizing

the encoder parameters whereas the digital BICM system should be completely redesigned

whenever the channel varies in order to update its different components to the new conditions.
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Chapter 4

Experimental Evaluation of Analog JSCC
in Indoor Environments

As shown in Chapter 2, analog Joint Source Channel Coding (JSCC) has been proved to closely

approach the Optimum Performance Theoretically Attainable (OPTA) for the transmission of

analog sources over Additive White Gaussian Noise (AWGN) channels on simulated scenarios.

Moreover, this coding strategy represents a better solution than the traditional design of the

digital systems on such scenarios and under certain premises, as seen in Chapter 3. However,

the behavior of analog schemes designed according to this approach has not been deeply studied

yet on more complex and realistic environments, such as wireless systems.

The GTEC research group at the University of A Coruña has developed a hardware

testbed that provides a useful tool to experimentally evaluate the performance of wireless

communication systems in realistic scenarios at a reasonable effort. We have employed it with

the aim of evaluating the feasibility of analog JSCC schemes on real wireless environments and

corroborating the promising results obtained over simulated AWGN channels. In this chapter,

we describe the software-defined radio implementation of a practical wireless communication

system using analog JSCC and will measure its performance in a representative indoor scenario.

In addition, such performance is compared to the results obtained for the simulated AWGN case

and to the OPTA limit.

When carrying measurements over the software-defined radio testbed, we have addressed

some problems that analog compression schemes pose in practice. First, the Peak-to-Average

Power Ratio (PAPR) of the transmitted signal can be very high, so careful normalization

of the transmitted samples is required to prevent performance degradation due to Digital-

to-Analog Converter (DAC)/Analog-to-Digital Converter (ADC) limited resolution. Second,

the analog mappings used to encode the source samples are parametrized depending on the

Channel Signal-to-Noise Ratio (CSNR) value, so it was necessary to implement a closed-loop

system. Although an open-loop system would be much simpler to implement, it would limit the
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Figure 4.1: Picture of the GTEC MIMO Testbed.

attainable performance.

4.1 Testbed Description

In this section, we introduce a brief hardware description of the testbed (see figure Figure 4.1)

developed by research members of the Grupo de Tecnologı́a Electrónica y Comunicaciones

(GTEC) at the University of A Coruña, named GTEC MIMO testbed.

In this context, a testbed can be defined as a hardware implementation for wireless

communication systems, offering real-time transmission capabilities while the data is usually

generated and post-processed off-line. The general idea of a testbed is to implement in real-

time only those operations needed to transmit the signals through the wireless channel and

acquire them for off-line evaluation or signal processing later using some type of additional

software (in a high level programming language such as MATLAB). Hence, a testbed allows

us to experimentally evaluate the performance of wireless communication systems on realistic

scenarios with an affordable complexity and effort.

Figure 4.2 shows the block diagram of the main hardware components of a traditional

testbed. As observed, the connection between the hardware and software parts is established

by a main bus that allows the data to be transferred from the host -where additional software is

running- to the testbed hardware and vice-versa. Thus, it is possible to send samples coming

directly from the main bus, process them in baseband by using the DSPs and FPGAs, convert

them into the analog domain using the DACs and, finally, up convert them to the desired carrier

RF using the RF front-ends. At the receiver side, the signals are down converted by the RF

front-ends, converted to the digital domain by the ADCs and sent to the host through the main

bus.

In our particular case, the GTEC MIMO testbed basically consists of several transmit and

receive nodes, externally controlled by standard Transmission Control Protocol (TCP) socket
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Figure 4.3: Picture of a transmit node of the GTEC MIMO Testbed.

connections. Both transmit and receive testbed nodes are equipped with a Quad Dual-Band

front-end from Lyrtech, Inc [2](see Figure 4.3). The Radio Frequency (RF) front-end is

equipped with up to eight antennas that are connected to four direct conversion transceivers by

means of an antenna switch. The front-end is based on Maxim [3] MAX2829 chip (also found

in front-ends like Ettus [1] XCVR2450 or Sundance [4] SMT911). It supports both up and down

conversion operations from either a 2.4 to 2.5 GHz band or a 4.9 to 5.875 GHz band. The front-

end also incorporates a programmable variable attenuator to control the transmit power. The

attenuation ranges from 0 to 31 dB in 1 dB steps, while the maximum transmit power declared

by Lyrtech is 25 dBm per transceiver.

The baseband hardware of all testbed nodes is based on Commercial Off-The-Shelf (COTS)

components from Sundance Multiprocessor [4] (see Figure 4.3). More specifically, each

transmit node is based on the SMT8036E kit, containing four DACs that generate Intermediate

Frequency (IF) signals that fed the RF front-end only through the I branch. Given that an IF

signal is provided to a direct conversion front-end, we obtain at the output of the front-end the

desired signal plus an undesired replica which is removed at the receiver by shifting the RF
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carrier frequency and by adequate filtering in the digital domain.

Both transmit and receive nodes are supplied with real-time buffers where the signals to be

sent to the DACs as well as the signals acquired by the ADCs are stored. The use of such buffers

is crucial since it makes the transmission and acquisition of the signals in real-time possible,

while the signal generation and processing can be accomplished off-line by the host PC.

Additionally, the baseband hardware and RF front-ends of all nodes need to be synchronized

both in time and in frequency. This critical operation is carried out by means of two mechanisms

ensuring a right synchronization both at the transmitter and receiver:

• At the transmitter side, a hardware trigger is attached to each one of the DACs and real-

time buffers. Prior to begining the data transmission, this trigger is activated (this action

can be started by the user from the high-level Application Program Interface (API) in

MATLAB) in such a manner that all buffers and DACs are notified and the node starts to

transmit simultaneously.

• Similarly, when the receiver node is triggered -simultaneously with the transmitters or in

a different step- all ADCs start to acquire the data from real-time buffers at the same time.

• For the frequency synchronization, the same common external 40 MHz reference

oscillator is utilized by all nodes. At each node, a three-way splitter is used to provide the

clock signal to the DACs (or the ADCs) and the RF front-end. This scheme guarantees

the frequency synchronization of all nodes except for the frequency shift between the

transmit RF front-ends and the receive RF front-end.

The hardware of the testbed is also complemented with a distributed multilayer software

architecture based on the software defined radio concept [83, 97], and specifically designed to

simplify the interaction of the users with the testbed hardware [30, 41, 42].

4.2 General Procedure for Data Transmission

Once the hardware module of the testbed has been described, we will explain in this section the

set of operations needed for transmitting a sequence of samples from a transmit node to a receive

node by using the hardware platform GTEC MIMO testbed. Figures 4.4 and 4.5 show the block

diagram of one transmit node and one receive node, respectively, including the software and

hardware elements utilized for data transmission.

Once the discrete-time complex-valued sequences to be transmitted have been generated,

the resulting symbols are processed as follows (see Figure 4.4):

• Each data frame is constructed from a sequence of source symbols. In the case of analog

JSCC, the symbols to be transmitted by the testbed are the coded samples at the analog

encoder output and, therefore, no other coding operation is required.

62



4.2. General Procedure for Data Transmission

src TX
encoder S/P

pulse-shape

pulse-shape

e j2πfIF[n]

Norm

D/A

I/Q modj

IF
Quantization

40 Msample/s
@ 16 bit

fRF

PA

RF front-end

IF

RT
bu�er

Real-time processing

Figure 4.4: Block diagram of hardware and software elements at the transmitter.
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Figure 4.5: Block diagram of hardware and software elements at the receiver.

• A Pseudo-Noise (PN) sequence is added to the data frame as a preamble for

synchronization together with a silence that will be used at the receiver to estimate the

noise power spectral density. The complete frame structure is plotted in Figure 4.6.

• The symbol sequence is then up-sampled by a factor of Ts. For analog JSCC

transmissions, we considered a specific factor Ts = 20, so that each analog coded symbol

is represented by 20 samples.

• The next step consists of a pulse-shape filtering using a squared root-raised cosine filter

with 20 % roll-off. Consequently, given that the sampling frequency of the DACs is set

to 40 MHz, the resulting signal bandwidth is 2.24 MHz, which leads –according to our

tests– to a frequency-flat channel response. Note that the DACs implement an internal

interpolating filter that improves the signal quality at the output, resulting in an actual

sample rate of 160 Msamples/s.

• The resulting signals are I/Q modulated to obtain a passband signal at a carrier frequency

of fIF MHz (in our setup this frequency is fIF = 5 MHz).

• In order to satisfy the transmit power constraint, the I/Q signals generated in the previous

step must be properly normalized.

63



4. Experimental Evaluation of Analog JSCC in Indoor Environments

PN (preamble) training sequence (pilot symbols)
50119 4000 (per TX antenna)

4.19 ms

Figure 4.6: Frame structure used to transmit the source symbols.

• Since the resolution of the DACs is 16 bits, the signals are properly quantized to obtain

16-bit integer values for each sample.

• The resulting data is stored off-line in the buffers available at the transmit nodes of the

testbed.

• Once all symbols are stored in the real-time buffers, all transmitters switch on the trigger

used for synchronization at the same time and then all buffers are read simultaneously,

cyclically, and in real-time by the corresponding DACs which generate a signal at the IF.

• The resulting analog signals are sent to the RF front-end to be transmitted at the desired

RF center frequency. In our measurements for the experimental evaluation of the analog

JSCC scheme, we specifically employed the center frequency of 5.605 GHz.

After the transmit node is triggered, the corresponding RF signals -generated by the RF

front-end- are sent in real-time by the active transmit antennas through the real wireless channel

between the transmit and receive nodes. Once the receive nodes are also triggered, the following

steps are carried out to recover the sequence of transmitted samples (see Figure 4.5):

• Initially, the RF front-end acquires the signals received by the selected antennas (up

to four) and down-converts them to the baseband, generating the corresponding analog

passband signals.

• Such IF signals are then digitized by the ADCs by sampling at 40 MHz, and they are

stored in the real-time buffers available at the receive nodes. Given that the signals are

transmitted cyclically and, in order to guarantee that a whole frame is received, twice the

length of the transmit frame is acquired and stored.

• The signals are properly scaled according to the 14 bits ADC resolution. Notice that this

factor is constant during the whole measurement, hence not affecting the properties of the

channel.

• Next, the acquired signals are filtered using a custom-designed passband filter that

eliminates all undesired replicas of the signals induced by the up-conversion to RF.

• Afterwards, time and frequency synchronization are carried out making use of the known

preamble inserted into the data frames by the transmitter.
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• Once the acquired frames are correctly synchronized, the resulting signals are I/Q

demodulated and filtered again (matched filter) and, as a result, discrete-time, complex-

valued observations with Ts samples per symbol are obtained. After filtering, the signals

are decimated.

• Instantaneous receive power as well as instantaneous power spectral density of the noise

are estimated making use of the silence inserted in the transmitted frame.

• Finally, the frame is properly disassembled, and the corresponding observations are then

sent to the channel estimator and the channel equalizer.

• The raw acquired signals, the discrete-time complex-valued observations (including those

observed during the silence) as well as the estimated channel coefficients are then stored

for subsequent evaluation.

4.3 Experimental Measurements

As mentioned at the beginning of this chapter, the GTEC MIMO testbed can be employed to

evaluate the actual performance of the analog JSCC transmission scheme in a realistic scenario,

namely an indoor environment (an office). For that purpose, we consider the transmission of

sequences of discrete-time continuous-amplitude source symbols, which are first compressed

using theN :K analog encoder based on the Archimedes’ spiral described in Chapter 2 and then

sent over a real wireless channel following the procedure explained in Section 4.2. Finally, the

distortion between the original source samples and the recovered symbols from the received

sequence is computed.

Thus, the mean performance in terms of Signal-to-Distortion Ratio (SDR) with respect to

CSNR of the analog JSCC system is experimentally measured in the aforementioned scenario

using the testbed. The measured results are compared to both the OPTA and the results

attained from simulations over the AWGN channel, shown in Section 2.3.3. Remember

that three different methods can be employed to decode the received symbols: Maximum

Likelihood (ML), Minimum Mean Square Error (MMSE) and our two-step approach (MMSE

linear filtering + ML decoding). Nevertheless, since the two-step decoding strategy provides a

virtually equal performance to that of MMSE decoder and similar complexity to ML, it will be

the only considered method.

In addition, three different compression rates are evaluated: 2:1, 10:6 and 10:9. In the case of

rates different to 2:1, it is possible to consider two schemes: one where the transmit power is not

optimally redistributed between coded and uncoded symbols, and another one where the power

allocation module -described in Section 2.3.1.1- is used to allocate the appropriate amount of

power for both coded and uncoded symbols.
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4.3.1 Closed-Loop Setup

The experimental measurements have been carried out for a narrowband single-antenna

configuration for simplicity reasons. An interesting feature of our experimental setup is that

all signal processing operations were implemented in MATLAB. According to the philosophy

of experimental measurements with testbeds, the data to be transmitted is generated off-line,

sent in real-time over a real wireless channel and the received signals are stored in the buffers

available at the receiver. The obtained measurement data is then transferred to the host for

later off-line evaluation and processing. Unrealistic results would be obtained if the real-time

channel is replaced with a simulated channel whose coefficients were obtained from a channel

sounder, since the possible hardware impairments could not be detected.

Given the specific properties of the signals obtained after the analog JSCC (e.g. the high

PAPR) it is very important to carry out experiments over the hardware testbed to take into

account the effects of the ADCs, DACs and transmit amplifier. In addition, it is also important

to determine the range of values at the analog encoder output in order to avoid clipping caused

by the DAC while, at the same time, the whole available dynamic range is used.

Another particular feature of the analog JSCC scheme is the importance of selecting an

optimum value for the encoder parameter δ, which depends on the actual CSNR and the input

distribution. Wireless channels suffer from fading caused by multipath propagation which

makes the received CSNR fluctuate continuously over time and, therefore, the δ value must

be continuously adapted. Therefore, it is necessary to implement a feedback channel from the

receiver to the transmitter, constructing a closed-loop setup. Thus, the CSNR is estimated at

the receiver side and sent through a feedback channel to the transmitter to select the optimum

δ value using Table 2.1 for the case of Gaussian sources. In this case, we implemented such

feedback channel by means of an Ethernet network connection.

4.3.2 A Typical Indoor Environment

Figure 4.7 shows the indoor scenario employed to experimentally measure the performance of

the analog JSCC system. As observed, the plan corresponds to an office inside an university

building. The transmit antennas are placed on a table adjacent to a WiFi access point of the

public wireless network at the University of A Coruña. The receive antennas are placed on

a table used by one of the employees in the office, thus emulating the actual position that a

desktop or laptop computer would occupy. The transmit and receive antennas are at a distance

of approximately 9 m with direct line-of-sight.

In order to incorporate more realism into the measurements, we use standard rod antennas

(see 4.1) with a gain of 3 dBi. These antennas are similar to those employed in WiFi access

points that operate at 5 GHz.
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Figure 4.7: Plan of the second floor of the CITIC building and localization of the transmit and receive

nodes.

4.3.3 Quantization of the Transmitted Signals

As explained in Section 4.3.1, one of the main hindrances of the analog JSCC systems

implemented on the software-defined radio testbed is the potentially high PAPR that the

transmitted signals can attain. We need to ensure that every generated sequence has the same

mean power value with the aim of avoiding accuracy loss in the measurements. This constraint

is guaranteed by means of the following procedures:

• The channel symbols obtained at the output of the analog encoder are normalized to

ensure that the whole sequence –including the uncoded symbols– always has a mean

power equal to one. This is done independently of the rate and the utilized power

allocation scheme.

• After the channel symbols are converted to discrete IF signals, they have to be quantized

according to the 16 bits resolution of the DAC. Given the high PAPR of the resulting

signals, we have determined by computer simulations the maximum absolute value that

a channel symbol can reach for all possible compression rates and power allocation

schemes considered. In particular, we have observed that the largest PAPR value is

approximately equal to 8.8 for Gaussian sources. Once we know this value, it is easy

to compute the maximum scale factor for every generated sequence, ensuring that no

clipping effects are introduced and, at the same time, the whole available dynamic range

is used.
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4.3.4 Measurement Procedure

The source samples are transmitted over the wireless channel according to the following steps:

• Prior to beginning the data transmission, the current CSNR is estimated at the receiver –

using the previous transmitted frame – and sent to the transmitter through the feedback

channel implemented in the closed-loop setup.

• The analog encoder selects the optimum δ value for the estimated CSNR by using a

look-up table (see Table 2.1) previously stored at the transmitter. Such value is then

used to encode two Gaussian samples into the corresponding channel symbol. The

wireless channel is described by complex-valued coefficients so it is necessary to perform

a complex interleaving where two real-valued channel symbols are merged into one

complex-valued symbol. Thus, each pair of real-valued channel symbols is mapped into

a complex I/Q symbol.

• Each sequence of complex-valued channel symbols is normalized to ensure a transmit

power value equal to one. This normalization factor must be available at the receiver to

perform the inverse operation before decoding.

• Next, the resulting sequence is pulse-shape filtered, scaled and I/Q modulated.

• The transmit frame is assembled. In addition to the encoded signal, a preamble and

a training sequence (pilots) is included. They are needed for time and frequency

synchronization, and to equalize the channel at the receiver, respectively.

• The assembled frame is then transmitted over the wireless channel.

• The received frame is disassembled and the channel is estimated from the training

sequence using a simple Least Squares (LS) algorithm. Then, the CSNR is also estimated

and fed back to the transmitter. In order to guarantee the accuracy of the CSNR

estimation, the receiver actually estimates the noise power spectral density during the

time intervals when no signals are transmitted.

• Finally, the operations executed at the transmitter are inverted and the observed sequence

is stored for subsequent evaluation. In particular, the calculation of the distortion between

the original and received symbols is performed.

All transmitted frames share the same structure: a Pseudo Noise (PN) sequence comprising

100 symbols (preamble), 16 pilot symbols, and 7200 source symbols that are encoded according

to one of the possible rates considered, i.e. 2:1, 10:6, or 10:9. This frame structure resembles

the one shown in Figure 4.6 but is adapted to the particular case of analog JSCC in an indoor

scenario.
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Source Coded Uncoded Total I/Q Frame Transfer rate

Rate symbols symbols symbols symbols duration (ms) (symbol/s)

2:1 7200 3600 0 1800 0.9 8 · 106

10:6 7200 2880 1440 2160 1.1 6.55 · 106

10:9 7200 720 5760 3240 1.6 4.5 · 106

Table 4.1: Transfer rates according to the code rate. Frame overheads are not included.

As mentioned in Section 4.2, we use a symbol period of Ts = 20 samples per symbol,

with the sampling frequency of both the DAC and the ADC fixed to 40 MSPS (Megasamples

per second). The symbols are pulse-shape filtered using a squared root raised cosine filter

with 20 % of roll-off, hence resulting in an occupied bandwidth of 2.4 MHz at the carrier

frequency of 5.605 GHz. Table 4.1 shows the corresponding transfer rate for the three different

compression rates (i.e. 2:1, 10:6 and 10:9) and the number of coded and uncoded symbols (i.e.

the channel symbols) obtained when 7200 source symbols are used. Additionally, the number

of I/Q symbols that compose the transmit frame and the frame duration are indicated. Notice

that Table 4.1 does not include the overheads due to preamble and pilot symbols.

4.4 Results

In this section, we focus on the transmission of discrete-time Gaussian samples over the indoor

wireless channel described in Section 4.3.2 by using the GTEC MIMO testbed. The results

obtained after the experimental measurement are presented and compared with respect to the

performance attained for the analog JSCC system on the simulated AWGN case, and to the

theoretical limit (OPTA). In both scenarios –simulated AWGN channel and real wireless

channel-, the analog JSCC scheme uses the N :K analog encoder based on the Archimedes’

spiral (Section 2.3.1.1) and the two-stage method proposed for decoding the received symbols

(Section 2.3.3). Three different compression rates are assessed: 2:1, 10:6 and 10:9. In turn, for

the 10:6 and the 10:9 cases, two different schemes are considered. The first one transmits the

whole sequence –i.e. coded and uncoded symbols– with the same mean power value, while the

second one uses the power allocation module. In total, five different schemes are measured. In

order to get smooth curves of SDR, each scheme is measured at different transmit power values

to obtain different CSNR values. We repeated the experiments 100 times, which resulted in

approximately 6000 different realizations.

Notice that, in order to achieve low CSNR values (≈ 5 dB) while keeping the complexity of

the synchronization tasks in reasonable terms, we boost the preamble such that the mean power
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Figure 4.8: Performance of the 2:1 analog JSCC scheme over the simulated AWGN channel and on the

real indoor scenario.

of the acquired preamble is significantly larger than that of the rest of the frame.

Figures 4.8–4.10 show the results obtained for the compression rates 2:1, 10:6, and 10:9,

respectively. The abscissas and the ordinates axes correspond to the CSNR and the SDR values

expressed in decibels (dB), respectively. In the 2:1 case there is no possibility of including a

power allocation scheme because all transmitted symbols are actually coded symbols.

Figures 4.8–4.10 clearly show that the measurement curves perfectly match the simulated

ones for CSNR values below 20 dB. When the CSNR is greater than 20 dB, the SDR curves

exhibit saturation effects. Such effects are mainly caused by the limited number of resolution

bits of the DAC (16 bits in this case) and also by the high PAPR of the transmitted signals.

Looking at Table 4.1, and at the graphs mentioned above, it is interesting to see how the SDR

increases as the transfer rate decreases.

4.5 Conclusions

In this chapter we have described a software-defined radio implementation of a practical

wireless communication system that uses analog JSCC. As shown in Chapter 3, the

performance of a digital system is below that of an analog JSCC scheme with lower complexity

and negligible delay for compression rates beyond 1:1 and AWGN channel. However, these
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Figure 4.9: Performance of the 10:6 analog JSCC scheme: simulated SDR with and without power

allocation (PA), and measured SDR with and without power allocation (PA).

results were obtained using computer simulations and no feasibility studies of the analog JSCC

on realistic scenarios (e.g. real wireless channels) have been undertook so far. We consider

essential to address the experimental evaluation of analog JSCC transmission schemes on real

environments and, for that reason, we have carried out closed-loop narrowband single-antenna

measurements in a typical and very realistic indoor scenario, which has forced us to deal with

some practical problems of analog JSCC that are not encountered in simulation scenarios (e.g.

high PAPR of the resulting signals or feedback channel implementation).

Fortunately, the performance measured using the GTEC MIMO testbed for the three

evaluated compression rates confirms the results previously obtained by simulation over the

AWGN channel. Both SDR curves -on simulated and real scenario- perfectly match for CSNR

values below 20 dB and hence the feasibility of this type of analog compression schemes in real

environments is clearly demonstrated. Thus, the results shown along this chapter, together with

the conclusions derived by the comparison study in Chapter 3, lay solid foundations for our

further research and the application of analog JSCC techniques on wireless communications.
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Figure 4.10: Performance of the 10:9 analog JSCC scheme: simulated SDR with and without power

allocation (PA), and measured SDR with and without power allocation (PA).
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Chapter 5

Analog JSCC over MIMO Channels

Over the last two decades, the demand of reliable high-speed transmissions over wireless

channels has exponentially grown in order to support a wide range of applications like voice,

images or video. In the context of wireless communications, unlike other communication

models, a transmitted radio signal usually propagates through several different paths before it

reaches the receiver (multipath propagation). As a result, a superposition of multiple attenuated

copies of the transmitted signal with different delays and phase shifts is received incurring

a severe performance degradation. This is commonly referred to as fading. In addition, the

available bandwidth is often a scarce resource which must be efficiently allotted with the aim

of providing a high spectral efficiency.

At the end of the 1990s, pioneering works in Bell Labs [35, 36, 119, 120] first showed that

the use of multiple antennas at both link ends of a communication system leads to a substantial

increase in the channel capacities, which immediately translates to higher data throughput

without any extra bandwidth or transmission power requirements. Systems employing multiple

antennas at both transmission and reception are referred to as Multiple Input Multiple Output

(MIMO) systems in the literature and they have been also proved to achieve a considerably

larger capacity than that of conventional single-antenna systems [120].

MIMO systems are also able to combat the harmful effects of the channel fading by

combining the multiple realizations of the signal received trough different paths. Indeed, this

strategy exploits the independent fading experienced by the signal paths corresponding to the

different antennas at the receiver (diversity) to provide a significant improvement of the system

performance, known as diversity gain.

These appealing properties have motivated the MIMO strategy to be adopted as the

transmission scheme by the last generation of wireless communication standards such as IEEE

802.11 (Wi-Fi), IEEE 802.16 (WiMAX) or 3rd Group Partnership Project (3GPP). For all

those reasons, we consider interesting to assess the performance of analog Joint Source Channel

Coding (JSCC) schemes over MIMO scenarios, since the characteristics of this technique -high
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S/P P/S

Figure 5.1: Block diagram of a MIMO system with nT transmit and nR receive antennas.

transmission rate, low complexity, negligible delay- makes it specially suitable to support the

increasing requirements of the current wireless services.

In this chapter, we study the feasibility of analog JSCC MIMO transmissions over fading

channels. First, a review of the Optimum Performance Theoretically Attainable (OPTA) limit is

required to define the optimal performance for the considered communication model. We then

extend the low complexity two-stage receiver structure stated in Chapter 2, in such manner that

a linear detector is first used to transform the MIMO channel into several parallel Single Input

Single Output (SISO) channels. Then, a bank of conventional Maximum Likelihood (ML)

SISO decoders is employed to recover the transmitted source samples. We also examine the

performance of a Decision Feedback (DF) MIMO detector [84, 100] as the first stage of our

receiver. Finally, we explore the case where the channel is perfectly known at the transmitter

suggesting the use of linear Minimum Mean Square Error (MMSE) precoding techniques in

order to improve the overall performance of the analog JSCC MIMO systems.

5.1 Description of a MIMO Communication System

We focus on a single-user communication model and consider a point-to-point transmission

scheme where the transmitter is equipped with nT antennas and the receiver with nR antennas.

Figure 5.1 shows the block diagram of such MIMO system. We assume that the bandwidth of

the transmitted signal is small enough so that we can disregard the InterSymbol Interference

(ISI). This narrowband model results in a frequency-flat channel and, therefore, each signal

path can be represented by a complex-valued gain coefficient. If the channel is frequency-

selective, Orthogonal Frequency-Division Multiplexing (OFDM) modulation can be employed

to transform the MIMO channel into a set of parallel frequency-flat MIMO channels, as we will

see in the ensuing chapter.

In this model, a set of nT complex-valued signals {s1, . . . , snT
} is spatially multiplexed over
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the nT transmit antennas and sent over a wireless channel. If hij represents the complex-valued

fading coefficient corresponding to the path between the transmit antenna j and the receive

antenna i, the received signal at antenna i can be expressed as

yi =

nT∑
j=1

hijsj + ni,

where ni is the additive spatially white thermal noise. This linear relation can be rewritten in

matrix notation as

y = Hs + n, (5.1)

with y = [y1, . . . , ynR
]T , s = [s1, . . . , snT

]T ,n = [n1, . . . , nnR
]T and

H =


h11 h12 · · · h1nT

h21 h22 · · · h2nT

...
... . . . ...

hnR1 hnR2 · · · hnRnT


Notice that y ∈ CnR is a vector comprising the received values, s ∈ CnT is a vector

containing the transmitted values, n ∈ CnR represents the noise vector and H ∈ CnR×nT is the

channel response matrix. Along this chapter, the hij coefficients are assumed to be statistically

independent. In practice, the channel coefficients hij are usually correlated because of the

propagation environment, the polarization of the antenna elements and the spacing between

them.

The symbols to be transmitted, s, are normalized in order to satisfy the transmit power

constraint, i.e. tr(Cs) ≤ PT , where Cs is the covariance matrix of the transmitted symbols, PT
is the total power available at the transmitter and tr(·) represents the trace operator. Initially, we

address the case where the Channel State Information (CSI) is not available at the transmitter

side, i.e. the channel H is unknown prior to transmission. In this case, it makes sense to

distribute the available power uniformly among the transmit antennas so that the radiated power

at each antenna will be PT/nT . If the symbols are assumed to be also spatially white, the

covariance matrix Cs can be expressed as

Cs = E[ssH ] =
PT
nT

InT
, (5.2)

where E[·] represents the statistical expectation, the super index H is the Hermitian operator

and InT
is the nT -dimensional identity matrix. On the other hand, the thermal noise is

modeled as a complex-valued zero-mean circularly-symmetric Gaussian random variable, i.e.

n ∼ NC(0, σ2
nI). Hence, the noise covariance matrix is given by

Cn = E[nnH ] = σ2
nInR

, (5.3)

where InR
is the nR-dimensional identity matrix.
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5.2 OPTA for Analog MIMO Systems

In Chapter 2 we derived a theoretical performance upper bound, referred to as OPTA, for the

transmission of discrete-time analog symbols over a point-to-point communication system in

a single-antenna scenario. This limit was calculated equating the rate distortion function of

a given source and the capacity of the memoryless channel over which the source signals

are transmitted. In the case of MIMO schemes, the OPTA can be similarly obtained by

simply replacing the Additive White Gaussian Noise (AWGN) channel capacity with the proper

expression for the MIMO capacity.

5.2.1 Channel Known at the Receiver

We consider the MIMO transmission model described in the previous section by Equation (5.1)

with perfect CSI at the receiver. This situation is the classical case analyzed in the literature,

where the channel H is assumed to be perfectly estimated at the receiver and unknown at the

transmitter. The channel knowledge can be acquired by using some type of estimation method

like training and tracking [95], blind estimation [85, 124] or any other technique, although an

accurate channel estimation can be difficult in time-varying environments.

The capacity of the MIMO channel is defined equivalently to the AWGN case (see

Equation (2.6)), i.e.

C = max
p(s)

I(s; y). (5.4)

Remember that the mutual information between two random variables can be rewritten in terms

of the entropy as

I(s; y) = H(y)−H(y|s), (5.5)

where H(y) is the entropy of the received information and H(y|s) denotes the conditional

entropy of y with respect to s. Because y is linearly determined by the MIMO transmission

model, we can express the second term as H(y|s) = H(n|s). Moreover, the noise n and the

transmit vector s are assumed to be statistically independent, so we can further write

H(y|s) = H(n|s) = H(n)

and, therefore, Equation (5.5) is given by

I(s; y) = H(y)−H(n). (5.6)

Telatar [120] showed that, when the noise is described by a zero-mean circularly-symmetric

complex-valued Gaussian random variable, the mutual information given by Equation (5.6) is

maximized if y is also a zero-mean circularly-symmetric complex-valued Gaussian. In such a

case, the entropies H(y) and H(n) can be evaluated [21] as

I(s; y) = log [det (πeCy)]− log [det (πeCn)] , (5.7)
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where Cy and Cn represent the covariance matrix of the received signal, y, and the noise, n,

respectively. The covariance matrix Cy is defined as

Cy = E[yyH ] = HE[ssH ]HH + E[nnH ] = HCsH
H + Cn. (5.8)

Hence, substituting Equation (5.8) into Equation (5.7), the mutual information results in

I(s; y) = log[det (πeCy)]− log[det (πeCn)]

= log[det
(
πeHCsH

H + Cn

)
]− log[det (πeCn)]

= log[det
(
(HCsH

H + Cn)(Cn)−1
)
]

= log[det
(
HCsH

H(Cn)−1 + InR

)
]. (5.9)

Remember that Cs and Cn are given by Equation (5.2) and Equation (5.3), respectively, so the

expression for MIMO capacity finally becomes

C(H,CSNR) = max
p(s)

I(s; y) = max
p(s)

log

[
det

(
InR

+
CSNR
nT

HHH

)]
, (5.10)

where CSNR = PT/σ
2
n is the Channel Signal-to-Noise Ratio. For a fading channel, the

matrix H is random and, therefore, the corresponding channel capacity C is also a random

variable. However, if we assume that the channel realizations are described by a Wide Sense

Stationary (WSS) stochastic process, we can calculate the associated ergodic capacity as the

expectation over all realizations of the random variable H, i.e.

CE(CSNR) = EH

[
log det

(
InR

+
CSNR
nT

HHH

)]
. (5.11)

Once the MIMO capacity is known, we can easily calculate the OPTA of an analog MIMO

transmission system using the following equality

2NnTR(D) = KCE(CSNR), (5.12)

where R(D) is the rate distortion function of the analog source while N and K represent the

bandwidth of the source and the channel, respectively. Like the case of single-antenna systems,

this equation comes from equating the rate distortion function and the channel capacity but now

the number of real-valued source symbols transmitted per channel use is actually (2nTN)/K.

For the particular case of Gaussian sources and Mean Square Error (MSE) as distortion metric,

the rate distortion function is given by Equation (2.10) and, therefore, the OPTA of a generic

analog MIMO nT × nR system can be obtained from

2NnT
1

2
log (SDRopt) = KCE(CSNR), (5.13)
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computing the optimal Signal-to-Distortion Ratio (SDR) as a function of the CSNR, i.e.

OPTA = SDRopt = exp

(
K

NnT
CE(CSNR)

)
(5.14)

Equivalently, the OPTA for Laplacian sources can be obtained using the lower bound given

by Equation (2.13) for the rate distortion function, R(D), i.e.

OPTA = SDRopt ≤
π

e
exp

(
K

NnT
CE(CSNR)

)
(5.15)

5.2.2 Channel Known at the Transmitter and Receiver

Let us now obtain the OPTA bound for analog JSCC MIMO systems when CSI is also available

at the transmitter. In this case, the transmission system must be supplied with a feedback

channel which trough the channel estimation is sent from the receiver to the transmitter. Notice

that this situation is practically feasible as long as the coherence time of the channel is larger

than the feedback channel rate or, equivalently, if the wireless channel varies slowly enough in

time.

For digital MIMO systems, the channel information at the transmitter can be exploited

to optimally allocate the available power among the transmit antennas using the well-known

water-filling algorithm [21]. This strategy has been shown to be optimal for this type of

communications because it maximizes the system capacity. In our case, given that the

performance of analog JSCC systems is measured in terms of distortion between the source

and the received symbols, we propose to use the channel knowledge for designing an optimal

linear precoder according to the MMSE criterion [53, 61], as we will see in Section 5.3.3. The

OPTA for an analog JSCC MIMO system with a linear MMSE precoder P can be calculated

according to Equation (5.12) using the capacity of the equivalent channel HP given by

CE(CSNR) = EH

[
log det

(
InR

+
CSNR
nT

HPPHHH

)]
. (5.16)

The use of a linear precoder not only allows to exploit the channel knowledge at the

transmitter, but also makes the separation of the data streams corresponding to different transmit

antennas at the receiver possible when nT > nR. In this case, since the actual number of channel

symbols transmitted per channel use is now limited by the number of receive antennas, nR, the

equality in Equation (5.12) becomes

2NnRR(D) = KCE(CSNR). (5.17)

5.3 Analog JSCC over MIMO Channels

In this section we focus on the design of analog JSCC schemes for MIMO wireless channels

with nT transmit and nR receive antennas. The source symbols are first spatially multiplexed
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over the nT transmit antennas. At each transmit antenna i, i = 1, · · · , nT , a vector xi of

N analog source symbols is then encoded into one channel symbol si using the N :1 analog

encoder described in Chapter 2. Notice that bandwidth reduction in this system setup is equal

to NnT and, therefore, significant bandwidth reductions can be achieved when using multiple

transmit antennas.

Initially, we assume that the channel is perfectly known at the receiver but unknown at the

transmitter. Hence, the available power PT is uniformly distributed among the nT transmit

antennas, so the radiated power at each antenna is PT/nT . The resulting channel symbols must

be normalized to satisfy the power constraint using a factor γi, which can be different at each

transmit antenna i. Then, the normalized symbols are sent over a frequency-flat MIMO fading

channel. Thus, the observed symbols at the MIMO channel output are given by

y = Hs + n, (5.18)

where s, y and n are the vectors that represent the analog channel symbols, the received symbols

and the additive thermal noise, respectively.

As already commented, the performance of analog systems increases as the MSE between

the source and decoded symbols decreases, hence the optimum receiver is the known MMSE

receiver [55], which for this particular channel model is given by

x̂MMSE = E [x|y] =

∫
x p(x|y)dx

=
1

p(y)

∫
x p(y|x)p(x)dx, (5.19)

where x represents the vector with theNnT source samples. Like in the single-antenna case, the

conditional probability p(y|x) depends on the mapping function Mδ(·). Hence, the integral in

Equation (5.19) can only be calculated numerically because Mδ(·) is discontinuous and highly

non-linear. The complexity of the MMSE detector could become extremely high even for a

small number of antennas, since it would involve the discretization of an NnT dimensional

space.

As an alternative, we can extend the two-stage receiver described for SISO channels (see

Section 2.3.3) to the MIMO case. Instead of directly calculating an MMSE estimate of the

source symbols, we first obtain an estimate of the channel symbols transmitted from each

antenna using a conventional MIMO detector, and then proceed to the ML decoding of the

estimated channel symbols. In this work we will study two MIMO detectors: the MMSE linear

detector and the MMSE Decision Feedback (DF) detector with ordering. The basic premise

of these two detectors is to perform a spatial filtering of the observations to cancel the spatial

interferences transforming the MIMO channel into nT parallel SISO channels. Thereby, the

analog JSCC encoding and decoding procedures can be applied straightforwardly.
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5. Analog JSCC over MIMO Channels

Figure 5.2: Analog MIMO JSCC system with MMSE linear detection.

Another important issue regarding the design of analog JSCC schemes is the optimization

of the parameter δ at the MIMO transmitter. It is important to note that, like the normalization

factors γi, the value of the parameter δ can be different at each transmit antenna i. As explained

in Section 2.3.4, the overall performance of the analog scheme can be substantially improved if

the δi values are properly optimized depending on the actual CSNR. In a MIMO transmission

system, the CSNR at reception can be generally computed as

CSNR(H) =
tr
(
HCsH

H
)

tr (Cn)
=
PT tr

(
HHH

)
nT nR σ2

n

.

If the MIMO fading channels are normalized so that EH

[
tr
(
HHH

)]
= nTnR, the average

CSNR is PT/σ2
n. Unfortunately, the instantaneous CSNR continuously fluctuates over time

when we are transmitting over fading channels. In that case, the optimal cost-distortion tradeoff

can be closely approached if the parameters δi are continuously adapted to the channel variations

by using the proper CSNR values to select the optimal analog encoders in the look-up Tables 2.1

or 2.2. Given that we assume that the channel is unknown at the transmitter side, it is necessary

to estimate the actual CSNR value at the receiver and send it to the transmitter over a feedback

channel. Notice that in such a case the coherence time of the channel must be larger than the

feedback delay.

5.3.1 MIMO Decoding with MMSE Linear Detection

Figure 5.2 shows the block diagram of an analog JSCC MIMO transmission system with linear

MMSE detection. The MMSE filter that minimizes the MSE between the channel symbol vector

s and the estimated symbol vector ŝ = Wy is given by

WMMSE =
(
HHH + ρInT

)−1
HH , (5.20)

where ρ = (nTσ
2
n)/PT . The filter WMMSE does not completely cancel the spatial interference of

the MIMO channel, i.e. at ŝi the desired symbol si is corrupted by thermal noise and a residual
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spatial interference from symbols transmitted over other antennas. Considering this residual

spatial interference as Gaussian noise that adds to the thermal noise, it is shown in [133] that

the equivalent CSNR at each output of the linear MMSE receiver can be computed as

CSNRi =
µ2
i

µi − µ2
i

=
µi

1− µi
, i = 1, . . . , nT , (5.21)

where µi = (WMMSEH)ii. Thus, the equivalent channel that comprises the concatenation

of the MIMO channel and the linear MMSE receiver can be interpreted as a set of SISO

parallel channels, each with an equivalent CSNR given by Equation (5.21). Each entry of

the estimated symbol vector can be decoded independently using the analog JSCC decoding

approach explained in Section 2.3.3.

It should be noticed that linear MMSE detection is optimum only when the channel symbols

are Gaussian [64], which is not the case. Indeed, even when the sources are Gaussian, the

analog JSCC mapping consists in a non-linear transformation that produces non-Gaussian

channel symbols. It is possible to formulate the optimum non-linear MMSE detector, but this

requires knowledge of the channel symbols probability p(s) and the calculation of an integral

similar to that in Equation (5.19). Notice the extraordinary complexity of the optimum non-

linear MMSE detector. Firstly, p(s) has to be discretized and estimated using Monte Carlo

methods since it is not possible, in general, to find an analytical expression for p(s). When

considering fading channels, knowledge of p(s) is particularly difficult since it depends on the

analog JSCC parameters which in turn change with the CSNR. Moreover, the non-linear MMSE

detection integral has to be computed numerically which requires a refined discretization of

p(s) to approach optimality. In the ensuing subsection we investigate the utilization of a non-

linear receiving structure for analog JSCC over MIMO channels that, although suboptimal,

outperforms linear MMSE detection while keeping complexity at a low level.

5.3.2 MIMO Decoding with Decision Feedback Detection

Figure 5.3 plots the block diagram of an analog JSCC MIMO transmission system with a

Decision Feedback (DF) receiver. Both the Feed Forward (FF) and the Feed Backward (FB)

filters are optimized according to the MMSE criterion. The FF filter is obtained from the

Cholesky factorization of

HHH + ρInT
= LH∆L,

where L is an nT×nT lower triangular matrix and ∆ is an nT×nT diagonal matrix. If we define

the whitening filter BH = ∆−1L−H , the FF filter is the product of the matched and whitening

filters, i.e. WDF
MMSE = BHHH . Hence the overall response of the FF filter and the channel is

WDF
MMSEH = L− ρ∆−1L−H . (5.22)
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Figure 5.3: Analog MIMO JSCC system with Decision Feedback detection.

In order to simplify the derivation of the DF receiver, we will assume that there are no

decoding errors. Under this assumption, the spatially causal component of the interference

in Equation (5.22) can be successively removed with the FB filter (L − InT
) without altering

the noise statistics at the decoder inputs. An advantage of analog JSCC is that there is no delay

in the encoding and re-encoding steps which significantly simplifies the implementation of DF

MIMO receivers.

Similarly to the case of linear detection, we assume the instantaneous CSNR at the filter

output is known at the transmitter thanks to the existence of a feedback channel (see Figure 5.3).

This allows the continuous update of the δi parameter according to the look-up Tables 2.1 or

2.2. It can be shown (see Appendix A) that Equation (5.21) is also valid in this case to calculate

the CSNR value of each equivalent SISO channel with

µi =
(
BHHHH− L + InT

)
ii

=
(
InT
− ρ∆−1L−H

)
ii
. (5.23)

Notice that decoding ordering is important and significantly impacts on the performance of

DF MIMO receivers [37]. Ordering can be interpreted as a permutation of the columns of the

MIMO channel matrix, i.e. H̄ = HP, where P is a permutation matrix. Conversely to [37], the

optimum ordering in our case is the one that minimizes the MSE at the decoder inputs, i.e.

MSE = ρ tr
(
∆−1

(
InT
− ρL−HL−1∆−1

))
≈ ρ tr

(
∆−1

)
, (5.24)

where the approximation holds when σ2
n � 1. Thus, the optimum ordering is given by

Popt = arg min
P

ρ tr
(
∆̄−1

)
, (5.25)
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where ∆̄ results from the Cholesky factorization of H̄HH̄ + ρInT
. This optimization problem

can be readily solved by searching over the nT ! possible permutation matrices and selecting the

one that minimizes the MSE cost function given by Equation (5.24). This ordering procedure

is specially adequate for high CSNRs (σ2
n � 1) but, in practice, computer simulations have

shown that, in the medium and low CSNR regime, the same ordering results are obtained when

considering either the exact or the approximate expression in Equation (5.24).

5.3.3 Linear MMSE Precoding

If CSI is assumed to be also available at transmission, further performance improvements can be

attained if channel symbols are precoded prior to their transmission over the MIMO channel. In

conventional digital systems, it is well-known that the water-filling algorithm [21] optimally

distributes the available power among the transmit antennas in order to maximize the data

throughput. As previously mentioned, the water-filling solution is not necessarily the optimal

strategy for power allocation in analog JSCC systems since the objective is to minimize the

signal distortion. For that reason, we propose to jointly calculate the linear transmit and receive

filters that optimize the system performance [52, 88, 104]. Specifically, we opt to design the

linear precoder and its corresponding detector following the MMSE criterion and according to

a transmit power constraint, as shown in [53, 105]. Notice that this approach is more suitable

for our analog JSCC MIMO model since the overall performance is directly determined from

the MSE between the source and decoded symbols.

Let P be the linear precoder and W the linear detector, respectively. The channel symbol

estimates obtained at the detector output are given by

ŝ = W(HPs + n)

and, thus, the error vector between the estimated and transmitted symbols can be computed as

e = ‖s− ŝ‖ = ‖s−W(HPs + n)‖. (5.26)

The linear MMSE precoder and detector are obtained after solving the following constrained

optimization problem

arg min
P,W

E[tr(eeH)] s.t. tr(PPH) ≤ PT, (5.27)

where PT is the total power available at the transmitter. Substituting the error expression given

by Equation (5.26) into Equation (5.27), we obtain the following expression for the MSE

ξ = E[tr(eeH)] = E
[
tr{(s−W[HPs + n])(s−W[HPs + n])H}

]
= E[tr{(ssH)− (WHPssH)− (WnsH)− (ssHPHHHWH)+

+ (WHPssHPHHHWH) + (WnnHWH)}].
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Due to the linear nature of the expectation operator, we can split the previous expression

in its individual terms. In addition, the resulting equation can be simplified given that the

transmitted symbols and the noise are assumed to be uncorrelated, i.e. E[snH ] = E[nHs] = 0,

while the autocovariance matrices must now satisfy E[ssH ] = InT
and E[nnH ] = σ2

nInR
. Thus,

the quadratic error expression is given by

ξ = E
[
tr
{
InT
− (WHP)− (PHHHWH) + (WHPPHHHWH) + (σ2

nWWH)
}]
.

In order to determine the linear precoder P and the corresponding detector W that minimize

the MSE, the error expression is differentiated with respect to PH and WH and then equated to

0. Also, the well-know Karush-Kuhn-Tucker (KKT) conditions [70, 136] are used to guarantee

the power constraint is satisfied, obtaining the following equations

dξ

dPH
= −HHWH + HHWHWHP + λP = 0,

dξ

dWH
= −PHHH + WHPPHHH + σ2

nW = 0, (5.28)

where λ ≥ 0 is the Lagrange multiplier [26] that ensures the total transmit power is equal to PT.

Solving these equation with respect to P and W, respectively, the optimal linear MMSE filters

are given by

P = (λInT
+ HHWHWH)−1(HHWH), (5.29)

W = (PHHH)(σ2
nInR

+ HPPHHH)−1. (5.30)

At first sight, since both equations depend on each other we can use the idea of alternating

optimization [14] to state an iterative algorithm that calculates both filters jointly. Thus, we start

assuming an initial precoder equal to the identity matrix and, at each iteration, both the detector

and the precoder are sequentially updated using Equations (5.29) and (5.30). Notice that the

Lagrange multiplier λ should be recalculated at each iteration –using for example the Newton’s

method– to ensure that the transmit power constraint is still satisfied. Although the convergence

of this algorithm has not been mathematically analyzed, it has been shown to converge after a

few iterations in practice for the whole range of CSNRs.

Alternatively, an explicit solution for Equations (5.29) and (5.30) can be directly computed

by assuming a Single Value Decomposition (SVD) of the MIMO channel, H. The procedure

used to jointly calculate the two linear filters for the proposed analog MIMO scheme is detailed

in Appendix B. The precoder and detector obtained according to the explicit solution have

been shown to achieve a identical performance than that of the iterative case. In addition, the

complexity and delay introduced by the explicit solution are practically negligible with respect

to the iterative procedure which introduces a certain latency until the algorithm converges.
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Figure 5.4: Performance of 2:1 analog JSCC over 2× 2 MIMO Rayleigh channels: Gaussian source.

5.4 Experimental Results

In this section we present the results of several computer experiments carried out to assess

the performance of analog JSCC transmissions over MIMO flat-fading channels in different

situations. We first consider the general model described in Section 5.3, where the analog JSCC

MIMO system performs a 2:1 bandwidth compression of the source samples and employs either

MMSE linear detection or DF detection at the receiver. Initially, we focus on the symmetrical

case, i.e. nT = nR, and assume that CSI is not available at the transmitter.

Some modifications on this basic configuration of the analog MIMO scheme are later

addressed in subsequent sections: different compression rate, unequal number of transmit and

receive antennas (asymmetrical case) and, finally, the use of real fading channels which were

obtained after a measurement campaign carried out in a multiuser indoor scenario.

5.4.1 Symmetrical MIMO Rayleigh Channels

In this subsection we focus on the case of symmetrical MIMO transmission systems.

Specifically, we consider nT = nR = 2 and nT = nR = 4 transmit and receive antennas.

Two types of source distributions are evaluated: Gaussian and Laplacian. These distributions

are typically encountered in practical applications such as image transmission or Compressive

Sensing [54].
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Figure 5.5: Performance of 2:1 analog JSCC over 2× 2 MIMO Rayleigh channels: Laplacian source.

The MIMO channels are synthetically generated with random numbers obtained from a

computer program. In particular, we emulate ergodic spatially white MIMO Rayleigh fading

channels whose entries hij are realizations of complex-valued zero-mean circularly-symmetric

Gaussian independent and identically distributed (i.i.d.) random variables.

Figures 5.4 and 5.5 show the performance results obtained for a 2:1 bandwidth reduction

analog JSCC system over 2× 2 MIMO Rayleigh channels with Gaussian and Laplacian source

symbols, respectively. The SDR versus CSNR performance curves for the two analog JSCC

MIMO receivers described in Section 5.3, together with the OPTA, are plotted in each figure.

It can be seen that, for Gaussian sources, the SDR obtained with DF MIMO receivers is 2 dB

below the OPTA, while the SDR obtained with linear MMSE MIMO receivers is 3 dB below

the OPTA, thus DF MIMO receivers produce a distortion that is 1 dB better than that obtained

with linear MIMO receivers. For Laplacian sources, DF MIMO receivers perform only slightly

better than linear MIMO receivers. The SDR distance to the OPTA is about 2.5 dB in both

cases.

Figures 5.6 and 5.7 show the performance results obtained for a 2:1 compression analog

JSCC system over 4×4 MIMO Rayleigh channels with Gaussian and Laplacian source symbols,

respectively. Notice the similarity between the OPTA curves in Figures 5.4 - 5.5 (MIMO

2 × 2) and Figures 5.6 - 5.7 (MIMO 4 × 4) caused by the normalization of the MIMO fading

channels, i.e. EH

[
tr
(
HHH

)]
= nTnR, as well as by the normalization of the channel symbols
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Figure 5.6: Performance of 2:1 analog JSCC over 4× 4 MIMO Rayleigh channels: Gaussian source.

covariance matrix given by Equation (5.2).

As expected, performance differences between DF and linear MIMO receivers are

significantly larger as the number of transmit and receive antennas increases. This gain is due to

the higher impact of both the non-linear transformations carried out in the DF detection and the

ordering procedure as the number of antennas is larger. It can be seen that, for Gaussian sources,

the SDR obtained with DF MIMO receivers is 2 dB below the OPTA while this difference is 4

dB for linear receivers, i.e. DF MIMO receivers produce a distortion that is 2 dB better than that

obtained with linear MIMO receivers. For Laplacian sources, the performance of the proposed

MIMO receivers is slightly worse than in the case of Gaussian sources: the distortion obtained

with DF and linear MIMO receivers is 3 dB and 4.2 below the OPTA, respectively. Yet, DF

MIMO receivers clearly outperform linear MIMO receivers yielding a 1.2 dB better SDR.

5.4.2 Compression Rate 3:2

In this subsection, we assess the performance of the analog MIMO system using the same

configuration as in the previous section although, in this case, the bandwidth compression rate is

set to 3:2. Thus, we consider a symmetrical MIMO system transmitting analog source samples

over synthetically generated Rayleigh fading channels. The source samples are assumed to be

Gaussian distributed and they are encoded according to the specified rate 3:2. This rate can
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Figure 5.7: Performance of 2:1 analog JSCC over 4× 4 MIMO Rayleigh channels: Laplacian source.

be easily achieved if two source samples are compressed using an 2:1 analog encoder whereas

other source sample is directly transmitted. The available power must be properly distributed

with a power allocation module (see 2.3.1.1).

Simulation results are presented in Figures 5.8 and 5.9 for 2× 2 and 4× 4 MIMO systems,

respectively. The performance curves of the two proposed MIMO receivers – linear MMSE and

DF detector –, together with the corresponding OPTA, are plotted again in each figure. Notice

that the OPTA of analog JSCC MIMO systems when the compression rate is 3:2 is logically

larger than that of the 2:1 case, because the compression rate is lower and, therefore, we can

achieve a lower distortion level if the information is transmitted at the same data rate (in terms

of symbols per channel use). As observed, the attained results with a 3:2 compression rate

reinforce the conclusions drawn in the previous section for a 2:1 rate. The DF performance

remains about 1 dB above with respect to that of the linear MIMO receiver for the 2× 2 MIMO

case, whereas the gap between both performance curves rises up to more than 2 dB for 4 × 4

MIMO. Thus, performance differences between DF and linear MIMO receivers are larger again

as the number of transmit and receive antennas increases.

However, the two performance curves are significantly further from the OPTA limit in

both considered cases. The performance degradation can be motivated by the fact that the

power distribution at the transmitter is individually performed at each antenna using the power

allocation module optimally designed for a SISO system. The utilization of this allocation
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Figure 5.8: Performance of 3:2 analog JSCC over 2×2 MIMO Rayleigh channels with Gaussian sources.

strategy is chosen because its simplicity and low complexity with respect to other alternatives

such as, for example, the derivation of the specific expression for the optimal joint power

allocation module for the analog MIMO system. Unfortunately, this mathematical development

implies non-linear transformations over several variables that can be only solved by numerical

methods and, in addition, the allocation module should be readjusted whenever the CSNR

varies. Logically, the computational cost of this method is significantly higher and the resulting

latency is not acceptable for analog JSCC communications. Indeed, the proposed analog MIMO

scheme has been designed to be decoupled into a set of parallel SISO channels by channel

equalization using the linear MMSE or DF detector.

The results obtained for Laplacian sources are not included in this section given that they

are quite similar to the Gaussian case, so we think the performance of the analog JSCC MIMO

system is conveniently illustrated for a 3:2 compression rate in Figures 5.8 and 5.9.

5.4.3 Asymmetrical MIMO Systems

So far, analog JSCC has been shown to achieve good results over symmetrical MIMO channels.

However, we are also interested in assessing the performance of this transmission technique

when the number of transmit and receive antennas is different. In this subsection we consider the

transmission of analog samples over asymmetrical MIMO channels with nT 6= nR. Specifically,
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Figure 5.9: Performance of 3:2 analog JSCC over 4×4 MIMO Rayleigh channels with Gaussian sources.

we will focus on the case that the number of transmit antennas is larger than the number

of receive antennas, i.e. nT > nR. The opposite case, nT < nR, is not addressed in this

thesis since a simple combination of the received signals (for example using the Maximal-Ratio

Combining (MRC) method) allows us to exploit the spatial diversity of the MIMO channel,

reaching a good system performance with low complexity.

However, when nT > nR, the transmission model implementation is not immediate. We

need to combine the nT channel symbols in some way with the aim of recovering them later

at the receiver in spite of the fading introduced by the channel. An interesting solution is to

extend the general analog JSCC MIMO scheme to add a precoder at the transmitter, which

cleverly combines the channel symbols while exploiting the channel information. As explained

in Section 5.3.3, a linear MMSE precoder –and its corresponding detector– can be calculated

for the proposed analog MIMO model if the CSI is also available at the transmitter. Hence, we

now need to feedback not only the CSNR information but the complete CSI.

The source samples are first generated from a Gaussian distribution and then compressed

with the 2:1 analog encoder. The resulting channel symbols are now combined by using a linear

MMSE precoder and sent then over synthetical randomly-generated fading channels. At the

receiver, a linear MMSE filter is employed to recover the transmitted channel symbols which

are used by the ML decoder to produce the estimates of the source samples.

Figures 5.10 and 5.11 show the obtained results for 4 × 1 and 4 × 2 MIMO systems,
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Figure 5.10: Performance of 2:1 analog JSCC over 4× 1 MIMO Rayleigh channels.

respectively. In this case, one single performance curve –corresponding to the joint linear

MMSE precoder and detector– is presented in the figures. The other alternative consists in

designing the optimal non-linear precoder for the DF detector. Nevertheless, the design of the

non-linear precoder and the DF detector must be jointly addressed so that it is not clear the

feasibility of this model in practical JSCC systems because of its huge complexity.

The OPTA bound for the analog MIMO system with linear precoding is recalculated

according to Equation (5.16) and plotted in each figure. As observed, the OPTA in asymmetrical

systems is considerably higher than that of the symmetrical 4× 4 case. The explanation of this

fact is easy and intuitive: the capacity of a MIMO channel is clearly larger if the channel is

known at the transmitter so, consequently, the OPTA will be also larger. On the other hand, the

transmission rate is given by the factor max[nT , nR], which actually determines the number of

channel symbols transmitted per channel use. In 4 × 4 MIMO systems, 4 channel symbols are

transmitted per channel use whereas this number is smaller for an asymmetrical system with

nR < 4 receive antennas. The source information is hence transmitted at a lower rate and,

therefore, the distortion of the received symbols will be lower.

In addition, both the 4× 1 system and the 4× 2 MIMO system exhibit a better performance

than that of the symmetrical case due in part to the same reason. It is also worth noting that the

distance between the performance curve and the OPTA bound significantly decreases to even

less than 1 dB for asymmetrical systems. This improvement is motived by the use of the channel
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Figure 5.11: Performance of 2:1 analog JSCC over 4× 2 MIMO Rayleigh channels.

knowledge at the transmitter to combine the transmitted symbols in order to exploit the diversity

provided by the channel at reception. Thus, the proposed analog JSCC MIMO scheme using

the optimal linear MMSE filters closely approaches the theoretical bounds for asymmetrical

systems, and more sophisticated and huge complexity strategies (such as non-linear precoder

and DF detector) can barely outperform this approach.

5.4.4 Real Indoor Channels

In order to get a more complete assessment of the analog JSCC MIMO scheme presented

in this chapter, we carried out a series of computer experiments considering real wireless

channels instead of the synthetically-generated Rayleigh channels employed so far. These real

channels were measured from an indoor scenario by using the GTEC MIMO testbed described

in Chapter 4. Figure 5.12 shows a picture of the setup where the location of the different

transmitters and receivers is clearly appreciated. As observed, the testbed consists of three

transmit and three receive nodes each equipped with MIMO capabilities. A number of 5844

2 × 2 MIMO channel realizations were obtained after the measurement campaign. These data

are freely available to the research community and can be downloaded from the COMONSENS

project web page [93]. In this same web address there is a detailed description of the setup and

the measurement campaign from which the real channels were obtained.
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Figure 5.12: Picture of the real indoor scenario setup during measurement campaign.

Figures 5.13 and 5.14 plot the performance results for the proposed scheme when

transmission is performed over real measured indoor 2 × 2 MIMO channels with Gaussian

sources and Laplacian sources, respectively. The resulting distortion when using DF detection

is within 1 dB from the OPTA for Gaussian sources, and within 2 dB for Laplacian sources.

Contrarily to the synthetic case, a significant improvement in performance (2 dB) is obtained

when using DF MIMO detection rather than linear MIMO detection for both Gaussian and

Laplacian sources.

5.5 Conclusions

The feasibility of analog JSCC transmissions over MIMO fading channels has been evaluated

in this chapter. In particular, an analog JSCC MIMO system has been designed for the

transmission of discrete-time analog samples over wireless channels. At the transmitter, the

source symbols are spatially multiplexed over nT transmit antennas and then encoded at each

antenna using the analog encoder based on the Archimedes’ spiral. At the receiver, the analog

MIMO scheme extends the design of the low complexity two-stage receiver presented for

AWGN channels in Chapter 2 to the case of MIMO transmissions. Specifically, we consider

two different types of filters in the first stage of the receiver structure: linear MMSE detection

and Decision Feedback (DF).

Like in the case of SISO channels, we must first determined the OPTA for analog MIMO

communications in order to establish an upper bound for the system performance. Next, we

have evaluated the proposed analog JSCC schemes in different situations depending on the

number of transmit and receive antennas or the compression rate. For asymmetrical MIMO

systems where the number of transmit antennas is larger than the number of receive antennas,

we have calculated the optimal linear precoder and its corresponding detector that minimize

the distortion of the received signal. The utilization of linear MMSE filters is supported by
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Figure 5.13: Performance of 2:1 analog JSCC over indoor measured 2 × 2 MIMO channels: Gaussian

source.

the fact that the performance of analog JSCC systems is improved as the MSE between the

source and the decoded symbols is minimized. Finally, a series of computer experiments have

also carried out to assess the practical utility of analog JSCC MIMO transmissions over real

wireless channels measured from an indoor scenario.

The promising results of the computer simulations support the use of analog JSCC for

the MIMO transmission of analog sources over fading channels. In particular, DF MMSE

MIMO receiver provides a better overall performance than that of the linear MMSE detector

in the different evaluated scenarios. This performance improvement is more perceptible as

the number of antennas increases as well as when considering real indoor channels. Both

receivers approach the OPTA limit specially for the case of a 2:1 compression whereas the

system performance seems to degrade for lower transmission rates (e.g. 3:2) due to the use of a

suboptimal low complexity power allocation strategy. On the other hand, asymmetrical MIMO

schemes requires a linear precoder at the transmitter which is designed according to the MMSE

criterion. The proposed scheme exhibits an excellent performance that is only about 1 dB below

the OPTA curve.
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Figure 5.14: Performance of 2:1 analog JSCC over indoor measured 2 × 2 MIMO channels: Laplacian

source.
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Chapter 6

Analog JSCC for OFDM Systems

In the previous chapter, we considered analog Joint Source Channel Coding (JSCC) techniques

over sufficiently narrowband channels in such a manner that the multipath delay spread

only occurs during one symbol period and, hence, the InterSymbol Interference (ISI) can be

disregarded. In general, this model is not very realistic since the users of the current wireless

applications demand increasingly high data rates so that the symbols period has to be shortened

and the narrowband assumption no longer holds. In this case, the ISI caused by multipath

propagation can cause a severe degradation of the system performance.

When considering single-carrier transmission schemes, the wideband wireless applications

demand time-domain equalization at the receiver to combat the delay spread effects. However,

the number of taps required for an equalizer to ensure a good performance in a high data rate

transmission is typically large. Thus, these equalizers are quite complex and can introduce large

delay. In order to overcome these drawbacks, a different paradigm of communication based on

multi-carrier modulation arises as alternative to the traditional single-carrier transmission.

In this chapter, we analyze the performance of analog JSCC transmissions over frequency-

selective channels using an Orthogonal Frequency-Division Multiplexing (OFDM) modulation.

OFDM is a multi-carrier transmission scheme that splits a wideband channel into a set of non-

interfering orthogonal narrowband subchannels. Thus, a multipath channel is transformed into

multiple parallel flat-fading subchannels where the received symbols will not be affected by ISI

and channel equalization is potentially simpler. The number of subcarriers must be chosen to

ensure that each subchannel has a bandwidth smaller than the channel coherence bandwidth.

OFDM-based systems that communicate over wideband channels were first used in military

radios in the late 1950s and early 1960s. In the literature, Chang [17] first introduced the

idea of using parallel data transmission by means of Frequency Division Multiplexing (FDM)

with overlapping subcarriers. Soon after, different studies about this new transmission scheme

were carried out in a short time [18, 99], where the performance of several communication

systems using OFDM was assessed. Since the 1990s, the use of OFDM has been extended
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Figure 6.1: Example of the frequency spectrum of the orthogonal subcarriers.

to diverse wideband communications like Digital Audio Broadcasting (DAB), Digital Video

Broadcasting (DVB) [102] as well as Wireless Local Network Areas (LANs) [5, 6].

Over the past years, OFDM has been widely shown to be a very promising strategy to

enhance data rate, capacity and quality for broadband wireless systems over frequency-selective

fading channels [117]. We can also combine an OFDM scheme with the use of multiple transmit

and receive antennas (i.e. Multiple Input Multiple Output (MIMO) systems), resulting in a

signaling method referred to as MIMO-OFDM. This transmission method has been adopted

by the last generation of broadband wireless communication standards [7, 8] due to its ability

to achieve large spectral efficiencies while enabling low complexity equalization of frequency-

selective channels.

In this Chapter, the transmission of analog JSCC symbols using OFDM over MIMO

frequency-selective fading channels is studied. First, we will briefly review the main

characteristics of the OFDM modulation and present its strengths and impairments. We then

propose a specific design for the analog MIMO-OFDM JSCC scheme and address certain

important issues regarding the system optimization in order to improve the overall performance.

Assuming channel knowledge at the receiver and/or at the transmitter, we can adapt the analog

encoder parameters to the channel conditions or use optimal linear transmit and receive filters

specifically designed for the MIMO-OFDM case. Finally, the results obtained for the different

evaluated configurations of analog MIMO-OFDM systems are presented.

6.1 Description of OFDM Modulation

As previously introduced, OFDM is a multi-carrier scheme that effectively decomposes

a wideband frequency-selective channel into a set of non-interfering parallel flat-fading
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Figure 6.2: Practical implementation of OFDM modulation using FFT/IFFT and the cyclic prefix.

subchannels. This modulation splits the available spectrum into K orthogonal subcarriers in

the frequency-domain (see Figure 6.1), which can be hence separated by the demodulator at the

receiver.

Consequently, the data stream has to be transformed into K parallel substreams, each of

which is modulated into one subcarrier at a low data rate and sent over the corresponding

narrowband subchannel. Notice that an overall high spectral efficiency is achieved since the use

of overlapped subcarriers allows us to simultaneously transmit the K substreams in the same

OFDM symbol. The symbol period is enlarged by K times with respect to the single-carrier

transmission and, thus, the ISI effects are substantially reduced.

Figure 6.2 shows the general block diagram of a system using OFDM modulation. Let fs be

the available bandwidth to transmit an OFDM symbol and, therefore, Ts = 1/fs is the symbol

period. The subcarrier k is centered at the frequency

fk = f0 + k∆f,

where f0 is the initial frequency and ∆f = 1/KTs is the frequency separation between

two contiguous subcarriers. If sk, k = 1, . . . , K represents the k-th input sequence, the

corresponding OFDM signal can be generated as

s(t) =
1√
Ts

K∑
k=1

sk exp(j2πfkt) 0 < t < Ts, (6.1)

when using shifted rectangular pulses in the time-domain. In practice, the hardware effort

of adjusting multiple local oscillators at the desirable frequencies fk, k = 1, . . . , K, is very

high. Moreover, small deviations on the subcarrier frequency offset can completely break down

the orthogonality between subcarriers resulting in InterCarrier Interference (ICI). In order to
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overcome this impairment, Weinstein and Ebert [134] proposed a practical implementation of

OFDM using the Inverse Discrete Fourier Transform (IDFT) and the Discrete Fourier Transform

(DFT) to perform baseband modulation at the transmitter and demodulation at the receiver,

respectively. The IDFT operation preserves the orthogonality between the output sequences

and avoids the use of multiple local oscillators. Also, the OFDM implementation is significantly

simplified if the number of subcarriers K is a power of 2, since the highly efficient Inverse Fast

Fourier Transform (IFFT) and Fast Fourier Transform (FFT) algorithms can be employed for

modulation and demodulation, respectively.

Another key aspect of the OFDM implementation is the use of a guard interval to mitigate

the effect of the delay spread. This guard interval –whose length should ideally exceed the

maximum expected delay of the multipath channel –is added at the beginning of the OFDM

symbol and it allows delayed versions of the previous symbols to die away before the useful

information from the current symbol is recovered, hence completely removing the ISI. A large

guard interval implies more robustness against the multipath, but it leads to an increase of the

data overhead and, therefore, a lower spectral efficiency.

There exists other impairments that can cause the undesirable effect of ICI when OFDM is

employed on wireless communications and frequency-selective fading channels. Among them,

Doppler shifts, frequency offsets or timing synchronization errors can severely threaten the

orthogonality of the OFDM subcarriers. Peled and Ruiz [91] solved these problems substituting

the conventional null guard interval by a cyclic extension, more commonly referred to as Cyclic

Prefix (CP). Thanks to the CP, the effect of the time-dispersive multipath channel becomes

equivalent to a cyclic convolution of the transmitted OFDM symbol and the channel impulse

response. The CP ensures the orthogonality over a time-dispersive channel and eliminates ISI

completely between subcarriers as long as the guard period remains longer than the impulse

response of the channel.

Other well-known problem of OFDM systems is the potential high Peak-to-Average Power

Ratio (PAPR) of the modulated signals that linearly increases with the number of subcarriers.

Additionally, a high PAPR requires high resolution for the Analog-to-Digital Converters

(ADCs) and Digital-to-Analog Converters (DACs) since the dynamic range of the signals is

much larger. In practice, this usually causes non-linear effects in the amplified OFDM signals

due to the saturation of the amplifiers. There are several ways to reduce or tolerate the PAPR

of the modulated symbols such as clipping of the OFDM signal above some threshold, peak

cancellation with a complementary signal or correction of the non-linear distortion introduced

by the amplifier.
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Figure 6.3: Block diagram of the analog JSCC MIMO-OFDM system.

6.2 Analog JSCC in MIMO-OFDM

In this section we present the general structure of the analog JSCC systems designed for the

transmission of analog data over frequency-selective MIMO channels using OFDM. Figure 6.3

shows the block diagram of the proposed analog MIMO-OFDM scheme. As observed, discrete-

time continuous-amplitude symbols are considered to be transmitted over a frequency-selective

MIMO channel with nT transmit antennas and nR receive antennas using an OFDM modulation

withK subcarriers. We also assume that the total available power to transmit the source symbols

is PT .

Source symbols are first spatially multiplexed over the nT transmit antennas. At each

transmit antenna, a set of KN source symbols is encoded into K channel symbols using

the N :1 analog encoder explained in Chapter 2. Let S̃i,k, i = 1, . . . , nT ; k = 1, . . . , K,

denote the unnormalized encoded symbols transmitted over antenna i and subcarrier k. The

corresponding normalized symbols will be represented by Si,k = S̃i,k/
√
γi,k. In a general

setting, both the encoder parameter δi,k and the normalization factor γi,k may be different at

each transmit antenna i and/or subcarrier k. Next, blocks of K normalized channel symbols are

put together to be transmitted as OFDM symbols. Let Si = [Si,1, . . . , Si,K ]T , i = 1, . . . , nT be

the channel symbols that constitute the OFDM symbol transmitted over antenna i. We can also

define the spatial vector Sk = [S1,k, . . . , SnT ,k]
T , k = 1, . . . , K to represent the MIMO symbols

transmitted over subcarrier k.

We assume a block-fading channel that remains constant at least during the transmission of

one OFDM symbol. In the time-domain, the block-fading MIMO channel is represented by a

sequence of nR × nT matrices H[l] for l = 0, . . . L − 1, where L is the length of the channel

impulse response. For Rayleigh fading MIMO channels, the entries to H[l] are complex-

valued zero-mean circularly-symmetric Gaussian random variables. In the frequency-domain,
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the MIMO channel response matrices can be expressed as [76]

Hk =
L−1∑
l=0

R[l]1/2H[l]T[l]1/2 exp

(
−j2πlk
K

)
, (6.2)

where Hk is the frequency-domain nR × nT MIMO channel matrix corresponding to the k-th

subcarrier, k = 1, . . . , K, whereas R[l] and T[l] represent the receive and transmit spatial-

correlation matrices, respectively.

In order to eliminate the channel ISI, the IFFT is applied to the vector of channel symbols

Si, i = 1, · · · , nT and a CP larger than the channel impulse response is appended at the

beginning. These two stages produce the discrete-time representation of the OFDM symbols

to be transmitted over the MIMO channel. At reception, the inverse operations, i.e. the FFT

transformation and CP removal, are applied to the received symbol vector. Elaborating the

signal model, the received observations Yk at subcarrier k are given by

Yk = HkSk + Nk, k = 1, . . . , K (6.3)

where Nk is an i.i.d. circularly-symmetric complex-valued Gaussian random vector that

represents the additive spatially and temporally white channel noise, i.e. Nk ∼ NC(0, σ2
nI).

Thus, the analog JSCC system over a frequency-selective fading channel can be interpreted as

a set of K parallel MIMO subsystems transmitting over flat-fading channels.

At the receiver, MMSE estimation of the source symbols is the optimal decoding strategy for

analog JSCC as seen in Chapter 2. When considering an analog JSCC MIMO-OFDM system,

optimal decoding consists in the calculation, at each subcarrier k, of the MMSE estimate of

the NnT transmitted source symbols xk = [x1,1, · · · , xN,1, · · · , x1,nT
, · · · , xN,nT

]T from the

received symbol vector Yk, i.e.

x̂k,MMSE = E [xk|Yk] =

∫
xk p(xk|Yk)dxk

=
1

p(Yk)

∫
xk p(Yk|xk)p(xk)dxk, (6.4)

where E[·] denotes the expectation operator. Since the conditional probability, p(Yk|xk),

involves the mapping function Mδ(·), which is discontinuous and highly non-linear, the integral

in Equation (6.4) can only be calculated numerically. As occurs for analog MIMO systems,

the discretization of the set of all possible source values, xk, is required. If L discrete-points

are selected per source dimension, we would have to calculate LNnT values for p(Yk|xk) and

p(xk), and then compute the integral in Equation (6.4). This is unfeasible in MIMO-OFDM

even for a small number of transmit antennas and subcarriers.

Alternatively, the two-stage receiver presented in Section 2.3.3 for analog JSCC decoding

in Single Input Single Output (SISO) channels can also be applied to MIMO-OFDM channels.

In this case, we first perform an estimation of the OFDM symbols transmitted from each
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antenna using a conventional linear Minimum Mean Square Error (MMSE) filter. From the

filtered OFDM symbols, we obtain an estimate of the analog channel symbols that is in turn

used to calculate an estimate of the transmitted source symbols by Maximum Likelihood (ML)

decoding.

Assuming Hk is perfectly known at the receiver, the linear filter Wk that minimizes the

MSE between the channel symbol vector Sk and the corresponding estimated symbol vector

Ŝk = WkYk is given by

Wk =
(
HH
k Hk + ρInT

)−1
HH
k , (6.5)

where ρ = (nTσ
2
n)/PT and the super-index H represents conjugate transposition. Then, the set

of estimated symbols Ŝk = [Ŝ1,k, . . . , ŜnT ,k]
T can be denormalized and input to a bank of ML

decoders to calculate an estimate x̂i,k, i = 1, . . . , nT , of the source symbols transmitted over

antenna i and subcarrier k. In the particular case of a 2:1 compression using the Archimedes’

spiral, these estimates are obtained from

x̂i,k = zδ(θ̃i,k) (6.6)

where

θ̃i,k = T−1α (
√
γŜi,k) = sign(Ŝi,k)|

√
γŜi,k|−α. (6.7)

6.3 Adaptive Analog JSCC

As explained in Chapter 2, the optimal encoders have to be used for analog JSCC systems to

closely approach the optimal distortion-cost tradeoff (see Section 2.3.4). Remember that the

optimal value for the δ parameter depends on the actual Channel Signal-to-Noise Ratio (CSNR)

at each channel realization (fading channel). In the case of MIMO-OFDM systems, symbols

transmitted over different antennas and subcarriers generally experience different CSNR. For

that reason, the impact of the system optimization on the analog JSCC performance is more

critical in this case and, therefore, it is specially important to employ the proper values δi,k to

encode the source symbols.

If no information about the channel is available at the transmitter, the same δ value should

be used to encode all analog source symbols. In this case, it is sensible to use the δ value that

corresponds to the average expected CSNR. This fixed approach will perform adequately in

frequency-flat and quasi-static channels where the CSNR remains approximately the same at

all antennas and all subcarriers during the transmission of several OFDM symbols. However, it

can lead to a severe performance degradation in practical MIMO-OFDM channels where each

subcarrier is expected to have a different time-varying CSNR.

Better performance is obtained when we follow an adaptive coding strategy where the

optimal δi,k values are used according to the instantaneous CSNR at each subcarrier and transmit
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antenna, ηi,k. In a practical setting, this implies that the system must be equipped with a

feedback channel that regularly sends the ηi,k values to the transmitter.

As mentioned in Chapter 5, the MMSE filter Wk does not completely cancel the spatial

interference of the MIMO channel. In this case, the CSNR at each antenna and subcarrier can

be estimated using Equation (5.21) extended to the MIMO-OFDM model as

ηi,k =
µi,k

1− µi,k
, (6.8)

where µi,k = (WkHk)ii is the i-th diagonal entry of the equivalent MIMO channel WkHk.

In summary, the MMSE detector transforms the MIMO-OFDM channel into a set of nT
SISO-OFDM parallel channels, each one with an equivalent CSNR per subcarrier given by

Equation (6.8). At the transmitter, we encode the symbols to be transmitted through each

antenna and subcarrier using the appropriate δi,k parameter. This parameter is selected from

the fed-back ηi,k values using Table 2.1 (Gaussian sources) or Table 2.2 (Laplacian sources),

which are assumed to be stored at the transmitter and at the receiver.

Another important issue regarding the optimization of an adaptive analog JSCC MIMO-

OFDM system is the normalization of the transmitted symbols Si,k. In a non-adaptive system,

all subcarriers in the OFDM symbol transmitted over the i-th antenna can be normalized using

the same factor γi, i = 1, . . . , nT per antenna. However, when considering adaptive coding,

source symbols are encoded with different δi,k values and, therefore, the normalization factors

γi,k will be also different. Such factors can be also selected according to ηi,k values provided by

the feedback channel using the third row of Tables 2.1 and 2.2.

6.3.1 Adaptive Analog JSCC with Linear Precoding

If the feedback channel is able to provide the transmitter with information from the MIMO

channel matrices, Hk, k = 1, . . . , K (and not just with the ηi,k values), further performance

improvements can be obtained if the channel symbols are precoded prior to their transmission.

Following the same approach presented for analog MIMO systems (see Section 5.3.3), we will

use the MMSE criterion to jointly design the optimal linear precoder and its corresponding

detector for the proposed analog JSCC scheme in MIMO-OFDM.

Let us assume the output encoder symbols are linearly precoded with a rectangular nT ×nR
matrix Pk at each subcarrier. Thus the transmitted symbols are PkSk. As in Section 6.2,

Wk represents the MIMO linear detector per subcarrier. Hence, the channel symbol estimates

obtained at the detector output are given by

ŝk = Wk(HkPkSk + nk), (6.9)

and the error between the estimated and transmitted symbols per subcarrier is

ek = Sk − Ŝk = Sk −Wk(HkPkSk + nk). (6.10)
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The MMSE linear precoder and detector are obtained after solving the following constrained

optimization problem

arg min
Pk,Wk

K∑
k=1

E[tr(eke
H
k )] s.t.

K∑
k=1

tr(PkP
H
k ) ≤ PT, (6.11)

where PT represents the total power available at the transmitter.

Equivalently to the MIMO case, we substitute the error expression (6.10) into (6.11).

Differentiating with respect to PH
k and WH

k , and using the Karush-Kuhn-Tucker (KKT)

conditions, we arrive at the following equations

Pk = (λInT
+ HH

k WH
k WkHk)

−1(HH
k WH

k ), (6.12)

Wk = (PH
k HH

k )(σ2
nInR

+ HkPkP
H
k HH

k )−1, (6.13)

where λ ≥ 0 is the Lagrange multiplier that ensures the total transmit power is equal to PT. As

in the MIMO model, two alternatives are available to determine the linear MMSE precoder and

the associated detector. On one hand, we can implement an iterative procedure that sequentially

updates the precoder and the detector using Equations (6.12) and (6.13), respectively. On the

other hand, we can extend the explicit solution developed for the MIMO case in Appendix B.

Again, the performance of both approaches is quite similar although the complexity and delay

introduced by the explicit solution are practically negligible compared to those of the iterative

procedure.

It is important to notice that linear precoder changes the CSNR of the equivalent channel

that corresponds to the symbols transmitted over antenna i and subcarrier k. As a consequence,

the encoder parameter δi,k should be adapted accordingly. The CSNR values ηi,k when linear

precoding is used can be obtained if we take into account that linear precoders simply transform

the MIMO channel Hk into another one given by HkPk. Hence, the transmitter can calculate

the corresponding ηi,k values using equation Equation (6.8) and then choose δi,k according to

Tables 2.1 and 2.2.

6.4 Experimental Results

Computer simulations were carried out to assess the performance of the analog JSCC MIMO-

OFDM systems considered in previous sections. Three different configurations were evaluated:

non-adaptive coding, adaptive coding and adaptive coding with linear precoding.

The performance attained in each case is compared with respect to the optimal

distortion-cost tradeoff given by the Optimum Performance Theoretically Attainable (OPTA)

corresponding to the analog JSCC MIMO-OFDM model. For Gaussian sources and N :1

compression over a generic stochastic nR × nT channel matrix Hk, and assuming that the
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Figure 6.4: Performance of 2:1 analog JSCC SISO-OFDM systems over Rayleigh fading channels.

channel is not known at the transmitter, the OPTA can be calculated using the equality (5.12)

and the proper capacity for the MIMO-OFDM channel given by

CE(CSNR) = EHk

[
log det

(
InR

+
CSNR
nT

HkH
H
k

)]
. (6.14)

As already mentioned in Chapter 5, if the channel is known at the transmitter, the capacity

of a digital system is maximized by the water-filling solution at each channel realization. In our

case, however, channel knowledge at transmission is not exploited to maximize capacity but to

precode the transmitted symbols with the linear MMSE precoding matrices Pk, k = 1, . . . , K.

In that case (full CSI), the OPTA can be calculated by replacing the channel matrices Hk with

the equivalent matrices HkPk in Equation (6.14).

Let us start by considering the case nT = nR = 1, i.e. SISO-OFDM. We assume that the

source samples are generated from i.i.d. normalized Gaussian random variables and encoded

using the 2:1 analog mapping based on the Archimedes’ spiral. In addition, the number of

subcarriers in each OFDM symbol is K = 64. In a first computer experiment we considered a

Rayleigh fading channel with L = 10 and a flat delay power profile. Block-fading was assumed,

i.e. the channel remains constant during the transmission of a block of T OFDM symbols but

changes independently from one block to another.

Figure 6.4 plots the obtained results for this case. It can be seen that the three proposed

106



6.4. Experimental Results

0 5 10 15 20 25 30 35
0

2

4

6

8

10

12

14

16

CSNR (dB)

S
D

R
 (

d
B

)

 

 

Linear Precoder
Adaptive Coding
Non−adaptive Coding    
OPTA SISO
OPTA Precoder

Figure 6.5: Performance of 2:1 analog JSCC SISO-OFDM systems over fading channels simulated

according to the ITU-Pedestrian B specifications.

analog JSCC techniques approach the OPTA in the whole CSNR region. As expected, the

worst performance is obtained when no CSI is available at the transmitter (i.e. non-adaptive

coding and no precoding), specially when the CSNR is high, in which case the performance is

3.0 dB below the OPTA. The system performance is significantly improved (about 1.8 dB at

high CSNR) when adaptive coding is considered. Further improvement are obtained if MMSE

linear precoding is utilized. This latter improvement, however, is marginal (only a fraction of

dB) since we are in a SISO scenario and not much performance gain should be expected from

linear precoding.

In a second computer experiment, we considered the ITU-Pedestrian B model. For a

complete description of the delay and Doppler power profiles of such a model, see reference

[59]. Doppler shift is assumed low enough so that the channel remains unchanged during the

transmission of an OFDM symbol and no ICI arises. In the ITU-Pedestrian B channel model this

condition is met for a reasonable large number of practical situations. Nevertheless, the channel

changes from one OFDM symbol to another according to the Doppler profile of the model.

Figure 6.5 shows the obtained results, which are similar to those obtained for Rayleigh channels

although the performance gains when considering adaptive coding and linear precoding are

slightly higher.
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Figure 6.6: Performance of analog JSCC 4× 4 MIMO-OFDM systems over Rayleigh channels.

We now shift our focus to MIMO-OFDM channels. Let us start by considering a spatially

and temporally white MIMO-OFDM Rayleigh fading channel with nT = nR = 4, K = 64

and L = 10. According to Equation (6.2), this corresponds to the case where R[l] and T[l] are

identity matrices and the entries of H[l] are i.i.d. complex-valued circularly-symmetric zero-

mean Gaussian random variables. Block-fading was again assumed in such manner that the

channel does not change during the transmission of a block of T OFDM symbols but varies

independently from one block to another.

The performance curves corresponding to the three optimization alternatives for the

proposed analog JSCC MIMO-OFDM scheme are plotted in Figure 6.6. The non-adaptive

coding strategy exhibits the worst performance. It is about 6.0 dB below the OPTA at

high CSNR values. A significant improvement in performance is obtained (2.5 dB at high

CSNR) when considering adaptive coding. Contrarily to the SISO case, performance also

improves significantly (1.2 dB at high CSNR) when incorporating linear MMSE precoding.

It is interesting to note from Figure 6.6 that the OPTA with precoding is actually lower than that

without precoding. This is because the precoder has been designed to minimize the MSE and

not to maximize the channel capacity. Nevertheless, the actual performance of the precoded

system is better than that of the system without precoding.

We also carried out computer experiments considering a standard model such as the
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Figure 6.7: Performance of analog JSCC 4× 4 MIMO-OFDM systems over an IMETRA-D channel.

Intelligent Multi-element Transmit and Receive Antennas case D (IMETRA-D) channel model

described in [58]. The IMETRA-D model only specifies the spatial correlation of a MIMO

channel, i.e. the matrices R[l] and T[l] in Equation (6.2). For the delay and Doppler power

profile we chose the same parameters as in the ITU-pedestrian B model [59]. Figure 6.7 plots

the obtained results, which highlight the importance of using adaptive coding strategies. Indeed,

without adapting the analog encoder parameters, the system performance is very far away

from the OPTA (9.0 dB at high CSNR). With adaptive coding the gap to the OPTA reduces

significantly (5.0 dB at high CSNR) while the distance to the OPTA is even less (2.5 dB at high

CSNR) when adaptive coding with linear precoding is utilized.

6.5 Conclusions

In this chapter we have studied the use of analog JSCC techniques over frequency-selective

MIMO fading channels. OFDM is employed to transform the transmission of the analog

symbols over wideband channels into a orthogonal transmission over a set of non-interfering

narrowband subchannels. Hence the received symbols are no longer affected by ISI and the

the design of analog JSCC systems presented in the previous chapter for MIMO flat-fading

channels can be now extended to this case. We have noticed that the symbol normalization and
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the optimization of the encoder parameters are two operations particularly relevant to ensure

that the proposed analog MIMO-OFDM system approaches the OPTA. In order to complete

our analysis, besides synthetically-generated fading channels we have also considered wireless

channel models described by the standards ITU-Pedestrian B and I-METRA D for SISO and

MIMO, respectively.

Simulation results show that the proposed scheme exhibits a satisfactory performance in

the whole CSNR region while preserving low complexity and delay. We have also assessed

three different configurations for system optimization depending on weather only the receiver

knows the channel, either partial CSI is also available at the transmitter or we have full CSI

at both sides: non- adaptive coding, adaptive coding and adaptive coding with linear MMSE

precoding. The obtained results show that the three analog JSCC transmission strategies

approach the OPTA, although the best performance is attained when the adaptive coding with

linear precoding method is employed. From such results, we can conclude the importance

of using adaptive coding strategies for analog JSCC systems to closely approach the optimal

performance in MIMO-OFDM scenarios, specially in the case of real wireless channels.
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Chapter 7

Analog JSCC for Multiple Access
Channels

In previous chapters, we focused on point-to point wireless communications where a single user

independently sends information to a single receiver. However, there exists a large number of

scenarios that cannot be modeled as non-interfering point-to-point links between transmitters

and receivers such as, for instance, cellular communications. In this type of systems, a large

number of mobile units are accommodated over a long area within a limited frequency spectrum

and hence the users need to share the available bandwidth to communicate with the base station.

In this chapter we turn our attention to the use of analog Joint Source Channel Coding

(JSCC) in multiuser communications. Specifically, we focus on the transmission of analog data

over a Multiple Access Channel (MAC). The transmission of information over a MAC is a

fundamental problem in wireless communications that arises in many practical situations such

as the uplink in a cellular system [125]. In a MAC scenario, multiple users simultaneously

transmit their information over the same channel to a centralized receiver responsible for

separating the data streams corresponding to each user. It is hence necessary to enable some

mechanism to allow the users to share the MAC while ensuring a interference-free transmission

of the information.

Frequency Division Multiple Access (FDMA) and Time Division Multiple Access (TDMA)

are two well-known orthogonal channel access techniques employed in conventional mobile

communications. FDMA assigns different subchannels to each user whereas TDMA divides

the transmission time into separate time slots, and in each slot only one user is allowed to

either transmit or receive. Both orthogonal strategies actually transform the multiuser scenario

into several point-to-point channels and, therefore, the transmission techniques explained for

the single-user case can be applied. In the previous generation of cellular communications,

Code Division Multiple Access (CDMA) was adopted as the access method to the MAC.

CDMA is another orthogonal access scheme based on the use of spreading codes [95] where
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7. Analog JSCC for Multiple Access Channels

the available resources are allocated to all active users unlike FDMA and TDMA techniques.

Thus, the advantage of CDMA with respect to other orthogonal access methods is that all users

synchronously and simultaneously transmit over the MAC.

Orthogonal access schemes have been shown to achieve the sum-capacity of a MAC

when the channel is assumed to be Gaussian [125]. Nevertheless, orthogonal strategies are

strictly suboptimal for fading MAC. In the particular case of single-antenna fading MACs with

Channel State Information (CSI) available at the transmitters, it can be shown [65] that the

optimal channel access scheme consists in allocating all available power to the user with the

strongest channel. This strategy is commonly referred to as Opportunistic Communication

and it is optimal in the sense that maximizes the sum-rate of the MAC model. However,

opportunistic access is no longer optimal when the users and the common receiver employ

multiple antennas, i.e. for Multiple Input Multiple Output (MIMO) MAC systems. In that

case, the capacity of digital Separate Source Channel Coding (SSCC) communication systems

over a block-fading MAC can be achieved using a scheme based on superposition coding and

successive interference cancellation at the receiver [129]. In such a scheme, it is possible

to decode the information from one of the users without errors as long as its rate is below

the capacity limit imposed by the Signal-to-Interference Noise Ratio (SINR) for such a user.

Then, the information corresponding to that user is subtracted from the incoming signal before

decoding the next user. Unfortunately, this strategy is unfeasible for analog JSCC since a certain

level of distortion always remains after decoding the user information in such manner that

the subtracting process does not completely remove the interference of each user causing an

inevitable degradation of the successive cancellation procedure.

In this chapter we study the application of analog JSCC techniques for the transmission of

analog sources over Gaussian and block-fading MACs. In the last years, the design of suitable

JSCC techniques for multiuser communications has been investigated from different points of

view. Some interesting examples are [10, 69], where the design of optimal non-parametrized

analog mappings for Gaussian MAC is addressed. In [33] a particular hybrid JSCC scheme is

proposed for the transmission of two correlated Gaussian sources over Gaussian MAC. This

scheme is referred to as Scalar Quantizer Linear Coding (SQLC) because it consists of a scalar

quantizer and a optimized linear analog mapping. It can be hence considered as an extension of

the Nested Quantization digital technique [106]. Analog JSCC has been also applied to relay

multiple access channels in [139] where an analog network coding mapping that combines the

Archimedean spiral and a like-sawtooth mapping is proposed assuming orthogonal transmission

of the information. Like in the case of point-to-point transmissions, most of those works focus

on the case of Gaussian channels. An exception is [92] that introduces an JSCC scheme based

on Channel Optimized Vector Quatization (COVQ) for the transmission of uncorrelated sources

over MIMO broadcast channels. In this case, the mappings are not strictly analog because a

discrete set of representation vectors is actually employed at the encoder.
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In the MAC case, the design of the optimal analog JSCC mappings requires to solve complex

optimization problems and, in general, the resulting mappings are not very practical. For that

reason, instead of designing specific analog mappings for a given MAC scenario, we propose

a distributed approach. On one hand, each user employs the 2:1 analog encoder based on

the Archimedes’ spiral at the transmitter and the two-stage receiver explained in Chapter 2 to

separate and decode the signal corresponding to each user. On the other hand, the channel

access scheme is specifically designed for the transmission of discrete-time analog samples

over the MAC using analog JSCC. We show that this strategy not only simplifies the design

of analog JSCC schemes for multiuser communications but also it is able to approach the

optimal distortion-cost tradeoff using the traditional analog JSCC mappings for point-to-point

communications.

At the beginning of this chapter, we focus on multiuser transmissions over Gaussian MAC.

In this case, we choose CDMA as the channel access method because this orthogonal scheme

achieves the sum-capacity and allows us to configure the individual data rates at which each

user should transmit its information. Next, three different access methods are designed for the

case of block-fading MAC: orthogonal CDMA, linear Minimum Mean Square Error (MMSE)

codes and opportunistic access. If only the receiver knows the channel, CDMA guarantees an

orthogonal and simultaneous transmission of the user information at the desired individual rates.

When the Channel State Information (CSI) is also available at the transmitters, we can exploit

this knowledge to determine the optimal linear MMSE access codes to be used instead of the

orthogonal CDMA codes. It is important to note that such codes are designed to minimize the

sum-Mean Square Error (MSE) between the transmitted and the filtered symbols. Finally, the

opportunistic access is intended to maximize the sum-rate of the multiuser analog JSCC system

regardless user rate/power constraints. Unfortunately, we show that the opportunistic strategy

can lead to unfair distributions of the individual user powers and rates.

7.1 OPTA for Analog JSCC Systems over MAC

As seen for point-to-point communications, the optimal distortion-cost tradeoff curve defines

the performance upper bound for the transmission of analog sources. This bound is referred

to as Optimum Performance Theoretically Attainable (OPTA) and it is calculated by equating

the rate distortion function of the source and the capacity of the channel. We can easily extend

these ideas to the case of multiuser communications.

In the MAC scenario, several users simultaneously send their data to a common receiver

over the same channel. Hence, the received signal corresponding to each user is affected by

interferences caused by the rest of users. Thus, the MAC model can be actually interpreted as

a set of interfering point-to-point links and we can focus on either the maximum data rate at
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which each user can transmit over the MAC or the total sum-rate for the set of all users. In

the former approach, we should calculate a different upper bound for each user in terms of the

rate distortion function of the corresponding source and the maximum individual rate such a

user can achieve. Conversely, in the second case we can calculate a single OPTA curve that

describes the optimal performance of the overall MAC system.

Rather than minimizing the individual signal distortion corresponding to each user, we are

interested in the overall distortion of the set of received signals. In such a case, the sum-

distortion can be defined as

Dsum =
N∑
i=1

Di (7.1)

as long as we consider a linear distortion metric such as the MSE. The index N represents

the number of the active users transmitting over the MAC and Di is the distortion observed

in the recovered signal for each user i. The performance of analog JSCC systems in MAC

communications can be measured in terms of the average Signal-to-Distortion Ratio (SDR)

given by

SDR =
σ2
s

(
∑N

i=1Di)/N
=

σ2
s

Dsum/N
,

where Dsum/N is the average distortion and the N sources are assumed to have the same

variance σ2
s for simplicity. If the sources are also independent, the OPTA bound can be

calculated similarly to the point-to-point case by equating the rate distortion function of the

sources and the sum-capacity of the MAC, i.e.

M
N∑
i=1

R(Di) = KRsum, (7.2)

where R(Di) is the rate distortion function of user i given a distortion target Di, and Rsum is

the sum-capacity of the MAC, i.e. the maximum sum transmission rate that the set of all users

can achieve. The terms M and K represent the bandwidth of the sources and the channel,

respectively and, therefore, such values determine the expansion/compression factor applied

when the source symbols are mapped into the channel symbols at the transmitters.

Finally, if we assume that the N sources are also identically distributed, it is logical to

consider that the individual contribution of each user to the sum-distortion is the same [71], thus

Di = (Dsum/N) ∀i. In such a case, the general expression for the OPTA given by Equation (7.2)

can be simplified as follows

MNR(D) = KRsum, (7.3)

where D = Dsum/N the individual distortion of each user. Notice that the product MNR(D)

specifies the total number of source symbols required to be transmitted by the set of N users

alongK channel uses to obtain the sum-distortionDsum after decoding the received MAC signal.
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In this chapter, we will focus on the transmission of i.i.d. complexed-valued Gaussian

symbols with zero mean and variance σ2
s . If we consider the MSE as the distortion metric,

the rate distortion function of a complexed-valued Gaussian source is given by [21]

R(D) = max

[
0, log

(
σ2
s

D

)]
.

By inserting the above expression into Equation (7.3), we obtain

MN log

(
σ2
s

Dsum/N

)
= KRsum

or equivalently

MN log
(
SDR

)
= KRsum. (7.4)

The optimal performance of the a MAC system can be hence calculated by solving the

average SDR from Equation (7.4) as

SDR = exp

(
K

MN
Rsum

)
. (7.5)

Thus, the OPTA for the transmission of analog sources over the MAC can be calculated

according to Equation (7.5) using the appropriate expression for the sum-rate of the considered

MAC system.

7.2 Gaussian MAC

We start considering the Gaussian MAC model with N independent users sending their

information simultaneously to a common receiver. In this case, the received signal can be

expressed as

y =
N∑
i=1

√
Pizi + w, (7.6)

where Pi and zi, 1 ≤ i ≤ N , represents the power and the transmitted symbol corresponding to

user i, respectively, while w ∼ N (0, σ2
n) is the Additive White Gaussian Noise (AWGN) at the

receiver. The total available power PT is assumed to be allocated among the users according to

the sum-power constraint
∑N

i=1 Pi = PT .

In this model, the data rate that each subset of users may individually achieve is restricted

by the following set of 2N − 1 inequalities, one for each possible non-empty subsetN of users∑
i∈N

Ri ≤
1

2
log(1 +

∑
i∈N

Pi) (7.7)
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for allN ⊂ {1, 2, . . . , N}. The capacity region is hence given by anN -dimensional polyhedron

where each of its edges corresponds to one inequality in Equation (7.7). The maximum sum-

rate to be achieved in the Gaussian MAC is limited by the inequality where all users are in the

subset N , i.e.

Rsum =
N∑
i=1

Ri ≤
1

2
log(1 +

N∑
i=1

Pi). (7.8)

In order to simplify the previous equations we assumed without loss of generality that the

noise variance is equal to one, i.e. σ2
n = 1. Notice that the OPTA for the transmission of analog

sources over Gaussian MAC can be straightforwardly calculated from Equation (7.5) using the

corresponding expression of the sum-capacity given by Equation (7.8).

7.2.1 Orthogonal CDMA Scheme

As mentioned in the introduction, a channel access scheme is required to allow multiple users

to send their information to the centralized receiver over the MAC since the signal of one user

interferes with the data transmitted by the rest of users. We propose to use an orthogonal

like-CDMA scheme based on the use of spreading codes. Hence, the receiver can exploit the

orthogonality of these codes to remove the Multiple Access Interference (MAI).

We propose to construct the spreading codes corresponding to each user from a unitary

matrix such as the Hadamard matrix or the DFT matrix. Let Ri = ki/K, i = 1, . . . , N , be the

data rate at which user i aims to transmit. In such a case, we start with a K ×K unitary matrix

U and assign ki columns to user i such that
∑N

i=1 ki ≤ K. Thus, the code corresponding to

user i, Ci, will be a K × ki matrix defined as follows

Ci =


ci1

ci2
...

ciK

 =


ci1(1) ci1(2) · · · ci1(ki)

ci2(1) ci2(2) · · · ci2(ki)
...

... · · · ...

ciK(1) ciK(2) · · · ciK(ki)

 (7.9)

This matrix Ci will be used to combine ki source symbols of user i, xi = [xi1, xi2, · · · , xiki ]T ,

to produce a vector of K channel symbols, zi = Cixi. Notice that in order to ensure that

E[|zi|2] = Pi is satisfied, the columns of the matrix U assigned to user i must be normalized

by a factor 1/
√
ki given that such a user actually sends a combination of ki symbols at each

time instant. Finally, the overall access code matrix utilized by all users in the MAC is

CK = [C1,C2, · · · ,CN ].

A remarkable property of the proposed CDMA scheme is its flexibility to achieve any

distribution of the user data rates by appropriately selecting ki and K. In addition, cooperation

among users is not required and, therefore, the use of these orthogonal codes enables a simple

mechanism to guarantee that all users achieve a certain individual rate.
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Figure 7.1: Example of orthogonal spreading codes for the proposed CDMA access scheme.

Figure 7.1 shows an example of orthogonal codes designed for a MAC scheme with two

users whose individual data rates are R1 = 3/8 and R2 = 5/8, respectively. These codes are

constructed from a Hadamard matrix of order 8. As observed, the three first columns of the

Hadamard matrix are assigned to user 1 and the remaining five ones to user 2. Notice that the

columns of the code matrix are normalized by the proper factor for each user.

At each time instant k = 1, . . . , K, each user i transmits the same vector of ki source

symbols multiplied times the code corresponding to that instant, cik, to produce the transmitted

symbol zi = cikxi. Hence, the received signal is

yk =
N∑
i=1

√
Picikxi + wk 1 ≤ k ≤ K

where wk is the AWGN at time k.

Given that the input source samples are assumed to be i.i.d., the proposed CDMA scheme

can be interpreted as an equivalent model where K independent users transmit a single

symbol along K time instants. In that case, the spreading code of each user is given by the

corresponding column of the overall code matrix. On the other hand, the use of orthogonal codes

ensures that the information transmitted by each user can be perfectly decoupled at the receiver

by multiplying the received signal times the overall code matrix, since the product CKCT
K

results in a diagonal matrix. Thus, the proposed scheme transforms the Gaussian MAC model

with CDMA into K orthogonal Single Input Single Output (SISO) channels and, therefore, its

sum-capacity can be calculated as the sum of the individual capacities of those K Gaussian
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Figure 7.2: Capacity of the Gaussian MAC model and the proposed CDMA scheme for P1 = 8, P2 = 1

and a spreading factor K = 64.

SISO channels as follows

R(CDMA)
sum =

1

K

[
N∑
i=1

ki∑
j=1

(
1

2
log
(

1 +
KPi
ki

))]
. (7.10)

Given that Rsum is measured in terms of bits per channel use, the sum-capacity must be divided

by the total number of times MAC is used, i.e. K. Notice that the factor (KPi)/ki represents

the fraction of power allocated to each source symbol of user i along the K intervals.

From Equation (7.8), the general expression of the maximum sum-rate for the Gaussian

MAC can be rewritten as

Rsum =
1

2
log

(
1 +

N∑
i=1

Pi

)
=

1

2
log

[
1 +

N∑
i=1

ki∑
j=1

(
Pi
ki

)]
. (7.11)

It can be easily shown that the sum-capacity of the proposed CDMA scheme, R(CDMA)
sum , and

the Gaussian MAC capacity, Rsum, are equal if and only if

Pi
ki

=
Pj
kj

∀j 6= i with 1 ≤ i, j ≤ N. (7.12)

The above condition hence defines the optimal allocation strategy for the user powers given a

set of data rates, and viceversa. This result is not surprising since the CDMA scheme achieves

the MAC capacity when all symbols of the equivalent system are transmitted with the same

power.

Figure 7.2 shows the maximum rates achieved by each user for the two user case when

P1 = 8 and P2 = 1, and the spreading factor is K = 64. The MAC capacity region, obtained
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7.3. Block-Fading MAC

from Equation (7.8), is represented by the red line. The capacity region of the CDMA scheme is

represented by the blue curve whose points have been calculated according to Equation (7.10)

for different k1 and k2 values. As indicated in (7.12), there exists a point in the graph in which

the proposed scheme achieves the MAC capacity. Such a point corresponds to the optimal

values for k1 and k2 determined according to the previous equality.

7.3 Block-Fading MAC

Let us consider now a scenario whereN users transmit independent information simultaneously

to a common receiver over a block-fading MAC. Thus, the channel is assumed to remain

static during the transmission of a packet of symbols but independently varies from one

packet to another. We address the general MIMO case where each user is equipped with nTi ,

i = 1, . . . , N , transmit antennas and the centralized receiver with nR antennas. Notice that the

single-antenna MAC model is easily derived if nTi and nR are set to 1. The signal at the MIMO

MAC receiver is given by

y =
N∑
i=1

√
Pi
nTi

Hizi + w, (7.13)

where Pi and zi are the power and the nTi × 1 vector of complex-valued transmitted symbols

corresponding to user i, respectively. Hi is the nR×nTi complex-valued MIMO fading channel

matrix for user i and w ∼ NC(0, σ2
nI) represents the AWGN at the receiver. Without loss of

generality, we assume that the variance of the entries in zi and Hi are equal to one. We also

impose the sum-power constraint
∑N

i=1 Pi = PT .

If we assume that the channel coefficients are described by a stationary stochastic process,

the individual rate users may achieve, Ri, 1 ≤ i ≤ N , are restricted by the following set of

2N − 1 inequalities, one for each possible subset N of users∑
i∈N

Ri ≤ E{Hi}i∈N

[
log det

(
InR

+
1

σ2
n

HiKiH
H
i

)]
, (7.14)

for all N ⊂ {1, 2, . . . , N}. The superindex H , E[·] and tr(·) denote the Hermitian, expectation

and trace operator, respectively, and Ki represents the transmit covariance matrix of the i-th user

for a specific channel realization Hi. The maximum sum-rate to be achieved in the block-fading

MIMO MAC is limited by the inequality where all users are in the subset N , i.e.

Rsum =
N∑
i=1

Ri ≤ E{Hi}Ni=1

[
log det

(
InR

+
1

σ2
n

N∑
i=1

HiKiH
H
i

)]
. (7.15)

In the case of multiple transmit antennas, it is not feasible to find N covariances matrix Ki that

simultaneously maximizes the individual rates given by the inequalities in Equation (7.14) and

the sum-rate in Equation (7.15) [125]. In general, the achievable rates are therefore defined by
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7. Analog JSCC for Multiple Access Channels

the particular allocation strategy employed at the users to send the information over the MAC.

For example, it can be shown that the achievable capacity region for digital multiuser systems is

provided by dirty paper coding [131] but, unfortunately, this method can not be successfully

applied to analog JSCC transmissions. For that reason, we will specifically consider the

achievable sum-rates corresponding to the proposed access schemes to calculate the OPTA

curves.

When sending information over a MAC, the channel access scheme can be designed

according to diverse objectives as, e.g. minimizing the transmission power while ensuring a

certain distribution of the user rates or maximizing the sum-rate. In the ensuing sections, we

present three different access methods designed for the transmission of continuous sources over

block-fading MACs using analog JSCC: Orthogonal CDMA, Linear MMSE Access Coding and

Opportunistic Access.

7.3.1 Orthogonal CDMA Scheme

Let us first consider a MAC scenario where users transmit their data with a given constant rate

and the CSI is only available at the receiver. In this situation, orthogonal CDMA based on the

spreading codes explained in Section 7.2.1 is a viable access method for the block-fading MAC.

Remember that the advantage of CDMA with respect to other orthogonal access methods like

TDMA or FDMA is that all users synchronously and simultaneously transmit over the same

bandwidth while the receiver exploits the orthogonality of the spreading codes to remove the

MAI. In addition, the flexible design of the proposed CDMA scheme guarantees that all users

achieve the target rate.

In MIMO MAC, the spatial diversity provided by the deployment of multiple antennas

at transmission and reception can be exploited to increase either the transmission rate or the

communication reliability. As already seen, analog JSCC is able to provide high transmission

rates with zero-delay and minimum decoding complexity. For that reason, it is more helpful to

exploit the MIMO spatial diversity to improve reliability.

Let Ri = ki/K, i = 1, . . . , N , be the target rate at which each user i should transmit the

data to the receiver. Figure 7.3 shows the block diagram of the proposed orthogonal CDMA

access scheme for the transmission of analog symbols over the block-fading MIMO MAC.

As observed, the i-th user encodes the same vector xi of ki symbols at each transmit antenna

using the spreading codes obtained according to the procedure described in Section 7.2.1. The

resulting vectors ofK coded symbols, zqi = Cq
ixi = [zqik, . . . , z

q
iK ], q = 1, . . . , nTi , are then sent

sequentially over the MAC into K channel uses. Finally, the receiver utilizes the sequences of

K symbols received through the nR antennas to recover the information corresponding to each

user by using a proper filter.

Alternatively, we can construct an overall MAC access code for each user by stacking the set
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Receive
Filter

Figure 7.3: Block diagram of the orthogonal CDMA access scheme proposed for the block-fading MIMO

MAC.

of nTi orthogonal codes employed at each antenna. Thus, C̃i = [C1
i ; . . . ; C

nTi
i ] is a nTiK × ki

matrix that represents the MAC access code for the i-th user. If xi = [xi1, xi2, · · · , xiki ]T is

the vector of source symbols corresponding to user i, the vector of nT iK coded symbols can

be hence obtained as zi = C̃ixi. These coded symbols are first spatially multiplexed over the

nT i transmit antennas and then sent over the block-fading MIMO MAC along K time instants.

Therefore, the received signal vector at time k is given by

yk =
N∑
i=1

√
Pi
nTi

Hizik + wk 1 ≤ k ≤ K. (7.16)

where zik and wk are the nT i transmitted symbol vector of the user i and the noise at time k,

respectively. Since the channel is unknown at the transmitters, the user power Pi is uniformly

distributed among the nTi antennas.

The MIMO MAC system model given by Equation (7.16) can be reformulated to an

equivalent model. Indeed, let us define

Apq = [

√
P1

nT1
(H1)p,qC

q
1, · · · ,

√
PN
nTN

(HN)p,qC
q
N ],

where (Hi)p,q is the (p, q) entry of Hi that represents the channel gain between the antennas q

and p of user i with p = 1, . . . , nR and q = 1, . . . , nTi . We now build the matrix H̃ stacking the
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7. Analog JSCC for Multiple Access Channels

matrices Apq as follows

H̃ =

[
nT∑
i=1

A1i ;

nT∑
i=1

A2i ; . . . ;

nT∑
i=1

AnRi

]
.

If we now stack the source symbols from the N users into one single vector x =

[xT1 , xT2 , · · · ,xTN ]T , Equation (7.16) can be rewritten as

y = H̃x + w, (7.17)

where the vector y comprises the symbols received through the nR antennas along K intervals,

H̃ is the equivalent channel matrix obtained from the orthogonal codes and the channel paths,

and w = [w1, w2, · · · , wK ]T is the AWGN vector.

We now assume that a linear filter G is employed at the MAC receiver to produce estimates

of the transmitted symbols from the vector of received symbols y, i.e. x̂ = Gy. Given that the

source symbols are transmitted using analog JSCC, we consider the linear MMSE filter given

by

G =
(
H̃HH̃ + ρIK

)−1
H̃H , (7.18)

where ρ = (
∑

i nTiσ
2
n)/PT . The linear filter G is able to separate the information corresponding

to each user because of the orthogonal properties of the spreading codes. Hence ML decoding

can be then applied to the resulting symbols at the filter output to obtain the corresponding

estimate of the analog source symbols transmitted by each user.

7.3.2 Linear MMSE Access Coding

We now assume that the block-fading channel for each user, Hi, is also known at the

corresponding transmitter. In this case, CSI can be exploited by the users to calculate the

optimal access codes for the considered MAC model. Since the objective of analog JSCC

communications is to minimize the sum-MSE between the source and received signals, we

design these access codes according to the MMSE criterion.

The system design quite resembles the scheme shown in Figure 7.3 for CDMA, but the

orthogonal codes employed at the transmitters are now substituted by the optimal linear MMSE

codes. We continue to assume that the i-th user transmits at the fixed rate Ri = ki/K, i =

1, . . . , N , i.e. user i transmits ki symbols along K channel uses. Unlike the orthogonal case,

the access codes can be separately designed for each user and, therefore, we can express the

received MAC signal as

y =
N∑
i=1

1
√
nTi

H̃iFixi + w, (7.19)

where Fi is an (nTK × ki) matrix that represents the non-orthogonal access code for user

i and H̃i is a (nRK × nTK) block-diagonal matrix where the i-th element of the diagonal
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7.3. Block-Fading MAC

corresponds to the MIMO channel of user i, Hi. Since the transmitted symbols are assumed

to be normalized, the access codes Fi must satisfy the transmit sum-power constraint, i.e.∑N
i=1 ||Fi||2F = PT .

Similarly to the previous section, we can further elaborate the signal model of the proposed

MIMO MAC system. If the source symbols of all users are compacted into a single vector

x = [xT1 , . . . ,x
T
N ]T , and if we define the matrices H̃ = [ 1√

nT1
H̃1, . . . ,

1√
nTN

H̃N ] and F =

blockdiag{Fi}Ni=1, Equation (7.19) can be rewritten as

y = H̃Fx + w. (7.20)

At the receiver, a linear filter G is also employed to obtain an estimate of the transmitted

symbols from vector y, i.e. x̂ = Gy. According to this model, the optimal linear codes Fi and

the corresponding receiver filter G that minimize the sum-MSE can be determined solving the

following constrained minimization problem:

arg min
F,G

E
[
tr(eeH)

]
s.t. ||F||2F = PT , (7.21)

where e = x − x̂ represents the error vector. Given that the estimated symbol vector x̂ is

calculated as

x̂ = Gy = GH̃Fx + Gw,

the error vector is hence given by

ê = x− [GH̃Fx + Gw]. (7.22)

In the literature, the sum-MSE minimization for a MAC system using linear filters has been

specifically addressed in several works [57, 62, 116]. As an example, [116] uses the idea of

alterning optimization to pose an iterative algorithm where the linear MMSE filters are updated

in an alternating fashion. Rather than this option, we consider the approach described in [57],

where a projected gradient algorithm is employed to improve the convergence speed at high

SNRs.

The expected sum-MSE at the output of the receiver filter can be directly computed from

Equation (7.22) as

ε = tr(eeH) =
N∑
i=1

ki − tr
[
GH̃F + FHH̃HGH

]
+ tr

[
GH̃FFHH̃HGH + σ2

nGGH
]
. (7.23)

Notice that the linear receive filter G is calculated from the overall code matrix F and the

equivalent channel matrix H̃ as

G = FHH̃H(σ2
nInRK + H̃FFHH̃H)−1.
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If we define the auxiliary matrix X = σ2
nInRK +H̃FFHH̃H , the expression for the receive filter

can be rewritten as G = FHH̃HX−1, and the calculation of the sum-MSE in Equation (7.23)

simplifies as follows

ε =
N∑
i=1

ki −N + σ2
n tr
[
X−1

]
. (7.24)

We can now state an iterative gradient algorithm to update the linear codes (and implicitly

the receive filter), with the following iteration step

F(l+1) =

[
F(l) − λ(l)

s(l)
∇∗ε(F(l))

]
, (7.25)

where s(l) is the step size and ∇∗(·) is the conjugate nabla operator that generates all conjugate

Jacobi matrices. Such operator is computed as

∇∗ε(F(l)) =
∂ε(F(l))

∂FH
= −σ2

nH̃
HX−2H̃F(l).

The factor λ(l) in Equation (7.25) is intended to speed up the algorithm convergence at the high

SNR region where the sum-MSE cost function is almost flat and the norm of the Jacobi matrices

is hence small. At each iteration, l, a normalization of F(l) is also required in order to satisfy

the imposed sum-power constraint. Such a normalization actually consists in the orthogonal

projection of the linear codes obtained at each iteration into the subspace defined by the set of

feasible solutions that satisfy the sum-power constraint.

Notice that the access codes Fi can be actually interpreted as a type of spatio-temporal

precoders where the data symbols are combined at the spatial and temporal domain to produce

the whole set of coded symbols. Applying the projected gradient algorithm above, the optimal

access codes and the linear receive filter that minimize the sum-MSE are obtained.

The achievable sum-rate of the analog JSCC system with linear MMSE access can be

directly computed from the general expression for the sum-capacity of the MIMO MAC given

by Equation (7.15) by replacing the covariance matrices with the corresponding optimal codes

Fi, i.e.

Rsum ≤ E{Hi}Ni=1

[
log det

(
InR

+
1

σ2
n

N∑
i=1

HiFiH
H
i

)]
. (7.26)

The implementation of this MAC access method requires perfect CSI available at both sides.

Thus, we assume that the receiver is able to correctly estimate the channels of all users and then

feedback the information of each transmitter to the corresponding user.

7.3.3 Opportunistic Access

Finally, we consider a MAC scenario where there is perfect CSI at the receiver and the

transmitters, and the constraints imposed on the individual user rates are eliminated. Thus,
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7.3. Block-Fading MAC

the user rates can be dynamically adapted according to the channel conditions. We first address

the particular case where each user transmits with a single antenna. It has been shown in [65]

that the access scheme that maximizes the sum-capacity of a block-fading SISO MAC consists

in allocating the available transmit power PT to the user with the highest channel gain at each

time block. Such a scheme is usually referred to as Opportunistic Communication.

In this context, opportunistic access actually transforms the MAC problem into a point-to-

point transmission where only the user with the best channel transmits at each time instant and,

therefore, the received signal is not affected by MAI and can be expressed as

y =
√
PThizi + w, (7.27)

where zi and hi are the transmitted symbol and the channel gain corresponding to the user that

experiences the best channel realization.

Like in previous schemes, the received symbols must be filtered before proceeding to the

decoding of the source information in order to reduce the impact of the channel noise. Since

only one user transmits at each instant, we can directly use the two-stage receiver proposed for

single-user analog JSCC transmissions. Thus, an MMSE estimate of the transmitted symbol zi
is first computed as

ẑi =

( √
PTh

∗
i

PT |hi|2 + σ2
n

)
y

and then ML decoding is applied to the resulting filtered symbol ẑi.

As already mentioned, opportunistic access has been proved to achieve the ergodic sum-

capacity of a block-fading SISO MAC when perfect CSI is available at both sides [125], which

is given by

Rsum ≤ E{hi}Ni=1

[
log
(

1 + PT max
i
|h2i |
)]
. (7.28)

As observed, Equation (7.28) corresponds to the capacity of a point-to-point communication

system where the block-fading gain hi is given by the strongest channel at each time block and

the power used to transmit is the total available power PT .

In the case of MIMO MAC, the allocation of the available power to the user with the best

channel is no longer the optimal strategy when the objective is to maximize the sum-capacity

[130, 140]. In that case, the spatial diversity provided by the use of multiple antennas can

be employed to allow multiple users to transmit simultaneously over the block-fading MIMO

MAC. As explained in Section 7.3.1, it is however preferable to exploit the spatial diversity

to improve the reliability of analog JSCC transmissions rather than increasing the sum-rate of

the system. For that reason, opportunistic access is also a suitable scheme for the transmission

of analog samples over the MIMO MAC using analog JSCC. Thus, only the user i with the

best channel at each time block transmits its information over the nT i antennas using the total

available power.
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7. Analog JSCC for Multiple Access Channels

Like in the single-antenna case, the MIMO MAC model with opportunistic access is

transformed into a point-to-point MIMO communication and, therefore, the received symbols

are given by

y =

√
PT
nT i

H̄zi + w, (7.29)

where zi is the symbol vector transmitted by the best user and H̄ represents the response of the

strongest MIMO channel at each block time that is determined as follows

H̄ = {Hi | max
i

[CE(Hi)] , i = 1, . . . , N}. (7.30)

The term CE(Hi) corresponds to the ergodic capacity of the MIMO channel for the i-th user

considering the interferences caused by the rest of users.

At the receiver, a linear filter is also used to obtain an estimate of the transmitted symbols

from the vector of nR received symbols as ẑi = Gy. We consider a conventional linear MMSE

filter for MIMO systems, i.e.

G =
(
H̄HH̄ + ρInTi

)−1
H̄H ,

where ρ = (nTiσ
2
n)/PT . The achievable sum-rate of the MIMO MAC system with opportunistic

access actually corresponds to the single-user MIMO capacity when the channel response is

always given by the strongest channel at each time block and the power used to transmit is the

total available power PT . Thus,

Rsum = EH

[
log det

(
InR

+
PT
nT iσ2

n

H̄H̄H

)]
. (7.31)

It is important to note that the practical implementation of an opportunistic access scheme

is difficult because it requires that either all transmitters know all the pair-wise MAC channel

responses or that the transmissions be coordinated by the MAC receiver. In addition, a feedback

channel is required for the receiver to send all the CSI to all users or indicate which is the user

allowed to transmit at each channel realization.

Another remarkable disadvantage of the opportunistic strategy with respect to the previous

proposed access schemes is that it can lead to unfair situations in terms of rate distribution and

power consumption because one user may experience a better channel during a large number

of channel realizations. Such user is consequently forced to consume more power although it

also achieves a higher rate. There are many practical situations where this unfair behaviour of

opportunistic access is unacceptable.

7.4 Results

In this section, the results of several computer simulations are presented to illustrate the

performance of the different access schemes designed for the transmission of analog data over
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Figure 7.4: Performance of the orthogonal CDMA scheme for the transmission of uncoded samples over

the Gaussian MAC.

a MAC. Specifically, we assume that the discrete-time continuous symbols to be transmitted by

the users are generated from N i.i.d. Gaussian sources with zero mean and variance σ2
s .

We first evaluate a scenario where two users send independent data over a Gaussian MAC

using the proposed orthogonal CDMA method with a spreading factor of K = 8. In such a

scenario, the analog source symbols are first mapped into the channel symbols using an analog

JSCC scheme and then encoded with the corresponding spreading codes. In order to show that

the proposed method achieves the theoretical limits, we consider two particular analog JSCC

strategies: uncoded transmission, i.e. (M = 1), and a 2:1 compression scheme based on the

Archimedes’ spiral, i.e. (M = 2).

Figures 7.4 and 7.5 show the system performance in term of average SDR with respect

to CSNR for uncoded transmission and 2:1 compression of the source symbols, respectively.

Each point in the graphs corresponds to the average SDR attained for a given pair of user rates

(R1, R2) defined by the corresponding values for k1 and k2. It is important to note that the

power used for each user to transmit is optimally determined according to the allocation policy

defined by Equation (7.12). In both figures, we also plot the OPTA bound calculated according

to Equation (7.5) and using the proper expression of the sum-capacity for Gaussian MAC given

by Equation (7.8).
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Figure 7.5: Performance of the orthogonal CDMA scheme for the transmission of 2:1 compressed

samples over the Gaussian MAC.

As observed in Figure 7.4, the system achieves the optimal performance when the source

symbols are directly transmitted using the orthogonal CDMA approach. This result is not

surprising because, as already mentioned, the proposed scheme actually transforms the MAC

model into a set of orthogonal SISO Gaussian channels and the uncoded transmission of

Gaussian samples over Gaussian channels has been shown to be optimal when both source and

channel have the same bandwidth [44]. In the case of 2:1 compression (Figure 7.5), the system

performance is about 1 dB below the OPTA, regardless of the k1 and k2 values. This gap with

respect to the optimal performance is motived by the lossy compression operation carried out at

each transmitter.

In the second part of this section, we present the results obtained for the block-fading

MAC with the three proposed access methods: Orthogonal CDMA, Linear MMSE Coding

and Opportunistic Access. We first focus on a SISO scenario where each user and the receiver

are equipped with a single antenna. We consider again two independent users sending analog

Gaussian symbols to a common receiver over the block-fading MAC. In this case, we focus on

the 2:1 compression of the source symbols. Thus, at each transmitter, the source information

is first encoded using the analog mapping based on the Archimedes’ spiral and then input to

the considered access scheme. We also assume constant user rates R1 = 3/8 and R2 = 5/8
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Figure 7.6: Performance of the three proposed access scheme for the transmission of Gaussian samples

over a SISO MAC using a 2:1 analog JSCC scheme.

for CDMA and MMSE coding whereas the user rates are dynamically adapted in opportunistic

access.

Figure 7.6 shows the system performance for the three employed MAC access methods. The

OPTA curves for the MAC system with linear MMSE coding and with opportunist access are

also plotted. Both curves are calculated according to Equation (7.5) using the proper expression

for the achievable sum-rates given by Equation (7.26) and Equation (7.28), respectively. Recall

that the theoretical optimal performance when CSI is also available at the transmitters in

the single-antenna case is determined by the achievable sum-rate of the MAC system with

opportunistic access given that such a strategy maximizes the sum-capacity.

As observed, the overall performance of the analog system is substantially improved when

the CSI at the transmitters is exploited to design the optimal linear access codes and optimize

the encoder parameters δ and α. The average SDR curve corresponding to CDMA remains

about 2 dB below the performance curve of the linear MMSE access for medium and high

CSNRs. As also shown in Figure 7.6, opportunistic access provides the best results and

significantly improves the system performance, specially at the high CSNR region. However, it

is important to remember that such a strategy does not allow us to guarantee the target data rates

to be achieved by the MAC users during the transmission. These rates are optimally allocated

according to the channel conditions of the users and it can lead to unfair distribution of both the

user rates and power consumption.
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Figure 7.7: Performance of the three proposed access scheme for the transmission of Gaussian samples

over a block-fading 2× 2 MIMO MAC using a 2:1 analog JSCC scheme.

We finally consider a MIMO MAC scenario where two users send their data using nTi = 2 ∀i
antennas to the centralized receiver equipped with nR = 2 antennas. The users are assumed to

transmit at the same rate as in the SISO case, thus R1 = 3/8 and R2 = 5/8 for CDMA

and MMSE coding whereas such rates and the available power are dynamically allocated in

opportunistic access.

Figure 7.7 shows the performance of the analog JSCC system for the three considered MAC

access methods when the source symbols are compressed with rate 2:1. In the figure, we

also include the OPTA curves corresponding to the MIMO MAC model with linear MMSE

coding and when the opportunistic method is employed to access to the block-fading MAC.

As observed, the obtained results are similar to that of the SISO scenario. The use of optimal

MMSE access codes allows us to significantly improve the overall performance of the analog

system and the gap with respect to the performance upper bound is reduced down to less than

2 dB. In addition, we can appreciate that the performance difference between the linear MMSE

coding and the opportunistic access is reduced to a large degree with respect to the SISO case

and both performance curves are quite close to each other. Nevertheless, the opportunistic

method continues to provide the best average SDR for the whole CSNR range and closely

approaches the theoretical limits.
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7.5 Conclusions

In this chapter, the application of analog JSCC techniques to multiuser communications has

been studied. In particular, we have addressed the transmission of independent analog data

over two types of MAC models: Gaussian MAC and block-fading MAC. At each transmitter,

the source information is first encoded using analog JSCC and then input to the MAC

access scheme. We have proposed three suitable channel access methods for analog JSCC

transmissions: Orthogonal CDMA, Linear MMSE Coding and Opportunistic Access. CDMA

is employed when the channel information is only available at the receiver whereas the other

two alternatives exploit the channel knowledge at the transmitters to improve the overall system

performance. Hence, the use of MMSE coding and opportunistic strategies makes only sense

in the case of block-fading MAC. On the other hand, CDMA and linear MMSE coding are

specially appropriate for MAC systems with specific per-user rate constraints since they provide

a flexible framework to obtain any distribution of the individual user rates.

The results of computer simulations carried out to evaluate the Gaussian MAC model

confirm that the proposed CDMA method achieves the optimal performance (OPTA) as long

as the power for each user is distributed according to the optimal allocation policy and the

source symbols are directly input to the MAC access scheme. When the information to be

transmitted is first compressed using analog JSCC, the system no longer achieves the optimal

performance although it remains only 1 dB below the OPTA. This performance loss is motived

by the compression operation at the analog encoders.

In the case of block-fading MAC, computer simulations show that the performance of

the proposed CDMA scheme is relatively apart from the OPTA because orthogonal strategies

are actually suboptimal for fading channels. As shown, the MAC performance can be

significantly improved if the optimal linear MMSE access codes are employed instead of the

orthogonal CDMA ones. Finally, the opportunistic access provides the best results in terms

of sum-distortion but it may lead to an unfair distribution of both the user rates and power

consumption.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

The main purpose of this thesis is to assess the feasibility of analog Joint Source Channel Coding

(JSCC) transmissions in wireless communications. Analog JSCC is an alternative strategy to

encode and transmit discrete-time analog symbols capable of achieving high transmission rates

with very low complexity and almost zero delay. Most of previous works in the literature

focused on the transmission of continuous sources using analog JSCC over Additive White

Gaussian Noise (AWGN) channels. For that reason, we consider very interesting to extend this

approach to wireless environments, since it constitutes an promising strategy to satisfy the high

speed and low latency requirements demanded by the users of current wireless applications.

As suggested by Shannon, we start reviewing the main concepts of analog JSCC in Chapter 2

according to a geometrical interpretation of the transmission problem. We focused on the

case of point-to-point communications, memoryless channels and 2:1 bandwidth compression

of the source information. Under these conditions, it is well-know that the analog mapping

consisting in a doubly intertwined Archimedes’ spiral closely approaches the optimal cost-

distortion tradeoff given by the Optimum Performance Theoretically Attainable (OPTA). In

order to improve the performance of analog JSCC systems based on Archimedes’ spiral, certain

optimization issues are further addressed at the end of Chapter 2. On one hand, the optimal

cost-distortion tradeoff can be only achieved if the optimal values for the encoder parameters

are employed. On the other hand, the power constraint inevitably imposes a normalization of the

coded symbols at the transmitter. The optimal values of the parameters and the normalization

factors that satisfy the transmit power constraint have been determined off-line for a wide range

of Channel Signal-to-Noise Ratios (CSNRs).

After evaluating the decoding operation, we proposed a two-stage receiver structure to deal

with the impairments of the existing decoding methods: Maximum Likelihood (ML) and

Minimum Mean Square Error (MMSE). As seen, the proposed approach achieves near-optimal
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performance of the MMSE decoding while maintaining the receiver complexity at low level.

This contribution not only allows us to overcome the limitations of ML and MMSE decoding

but it is also essential to preserve the low complexity and low delay at the receiver when analog

JSCC is implemented on more complex transmission models. In such systems, the use of the

optimal MMSE approach is unfeasible since its complexity is prohibitive.

In Chapter 3, the performance of the proposed analog JSCC scheme and that of a digital Bit

Interleaved Coded Modulation (BICM) system is compared. For a fair comparison, the digital

system has been designed to transmit at the same rate as the analog scheme (high throughput).

In this context, the attained results show that the analog system outperforms the considered

practical digital systems with a significantly lower encoding and decoding complexity. In fact,

its performance is even above the theoretical limit for digital systems employing the same

number of channel uses. According to these results, we conclude that analog JSCC is an

appealing alternative to the traditional design of digital systems for applications with strong

requirements on delay and/or complexity and where a high transmission rate is required.

At this point, the potential virtues of analog JSCC have been already corroborated on

ideal conditions (by simulation), although its actual performance has not been assessed yet

on realistic environments, such as wireless communications. No experimental evaluation of the

practical feasibility of this scheme has been performed to date. In Chapter 4, we describe a

software-defined radio implementation of a system that uses analog JSCC to send analog data

over real wireless channels. Specifically, we have carried out closed-loop narrowband single-

antenna measurements in a typical and realistic indoor scenario (an office). This experimental

evaluation shows that the obtained performance curves almost perfectly match the ones reported

by simulations in AWGN channels for CSNR values below 20 dB. Thus, the feasibility of the

proposed analog JSCC scheme on wireless communications and real environments is clearly

demonstrated.

During the past years, the increasingly demand of reliable high-speed transmissions over

wireless channels has lead to devise new communication paradigms in order to satisfy such

high throughput requirements while making efficiently use of the scarce available resources and

exploiting the diversity gain provided by fading channels. These techniques are generally based

on the utilization of multiple antennas at both the transmitter and the receiver. In Chapter 5,

we design an analog JSCC Multiple Input Multiple Output (MIMO) system that performs a

2:1 compression at each transmit antenna and employs the proposed two-step decoding strategy

at the receiver, since the optimal MMSE decoding is unfeasible even for a small number of

antennas. Along Chapter 5, the performance of this analog MIMO scheme is evaluated for

several scenarios, including different compression rates, asymmetrical system configurations,

perfect Channel State Information (CSI) at the receiver and/or the transmitter. For these

experiments we considered two different types of channels: randomly-generated synthetic

and real wireless channels. From this detailed study, we conclude that the proposed analog
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MIMO scheme approaches the theoretical limits (OPTA), specially for the case of Decision

Feedback (DF) detection and 2:1 compression rate.

The transmission of analog JSCC samples over frequency-selective fading channels is

addressed in Chapter 6. In order to avoid the harmful effects of multipath propagation, the

analog channel symbols are modulated using the well-know multicarrier scheme Orthogonal

Frequency-Division Multiplexing (OFDM), prior to be transmitted over the wideband channels.

This OFDM scheme is further combined with the use of multiple antennas at both the transmitter

and the receiver. In this case, a appropriate optimization of analog JSCC MIMO-OFDM

systems is specially important because the symbols transmitted over different antennas and

subcarriers experience different fading. For that reason, several alternatives are considered for

the optimization procedure depending on whether partial/full CSI or no CSI is available at the

transmitter. The performance of analog MIMO-OFDM systems is assessed in two scenarios:

synthetic channels and channels generated according to the specifications of standards for

mobile communications. The obtained results show that the proposed analog MIMO-OFDM

scheme exhibits good performance, specially when adaptive coding is employed together with

linear precoding in order to exploit the channel information at the transmitter.

Finally, we have evaluated the use of analog JSCC for the transmission of continuous-

amplitude symbols over Multiple Access Channels (MACs) in Chapter 7. In this

communication model, it is essential to design a channel access scheme that allows the users

to transmit their information simultaneously over the same channel while the receiver is able to

decouple the data streams corresponding to each user. Rather than designing particular analog

mappings for each MAC scenario, we propose to employ the analog mappings and the receiver

structure considered for point-to-point communications, and focus on the design of suitable

access methods for analog JSCC. Specifically, three different channel access schemes have

been presented: Orthogonal CDMA, Linear MMSE Coding and Opportunistic Access. The

obtained results show that this strategy is able to approach the theoretical optimal performance

of the considered MAC systems. Thus, we can confirm that the application of analog JSCC

techniques can be actually considered an appealing alternative to the conventional Separate

Source Channel Coding (SSCC) systems in several multiuser scenarios, such as cellular

communications or sensor networks, where there usually exist severe constraints on delay

and/or power consumption and the information must be transmitted at high data rates.

In summary, the promising results of analog JSCC in the area of wireless communications

confirm the potential advantages of using this novel strategy in future wireless applications.

This strategy seems specially suitable to satisfy the high transmission rate and low-delay

requirements of the real-time applications. Moreover, under these premises, analog JSCC

has been shown as a better solution than traditional digital systems. Along this thesis,

several wireless transmission schemes using analog JSCC have been proposed to deal with

the hindrances of fading channels and exploit the different types of diversity gain provided by
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such channels. This study has not been exclusively restricted to simulated environments, but we

have also considered various situations on realistic scenarios and real wireless channels together

with their corresponding implementation problems.

8.2 Future Work

When we started investigating the utilization of analog JSCC over fading channels, our main

concern was to prove its feasibility in the context of wireless communications. Hence, we

decided to address the 2:1 compression of analog sources on a point-to-point scenario under

some practical assumptions, such as channel perfectly known at the receiver (i.e. regardless

of the error introduced by the channel estimation), noiseless feedback channel, uncorrelated

sources or memoryless channels –although spatially correlated MIMO channels and slow-

fading time correlated channels are actually considered in Chapter 6–. For the future, the

communication models based on analog JSCC can be further enhanced by including these

pending issues, i.e. the channel estimation, the impact of a noisy feedback channel, the use of

correlated sources or other types of fading channels. In addition, due to the particular properties

of analog JSCC, there exists multiple scenarios where the application of this strategy can be

also very interesting.

8.2.1 Analog JSCC for Bandwidth Expansion

Along this thesis, we focused on the particular case of a 2:1 compression using a doubly

intertwined Archimedes’ spiral. This decision comes because Shannon-Kotel’nikov mappings

have been shown to approach the theoretical limit as long as they are designed for bandwidth

compression of analog sources. Specifically, mappings based on the Archimedes’ spiral provide

a near-optimal performance for a 2:1 compression rate. Nevertheless, the design of analog

mappings that approach the OPTA for bandwidth expansion still constitutes an important

challenge on current analog JSCC research. This fact significantly limits the application of

this strategy to those models where a high transmission rate is not specially critical but it is

more convenient to ensure a data transmission with good quality. For the future, an interesting

work area is the design of optimal analog mappings for expansion coding in order to achieve

similar results to the compression case.

8.2.2 Correlated Sources

A memoryless source generating identically and independent distributed (i.i.d.) samples is a

traditional assumption on signal processing. Nevertheless, this premise is not adequate for

modeling multitude of practical situations where the information to be transmitted is correlated
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in some way. Additional research would be required in the future to adapt the proposed analog

JSCC systems if the source is no longer memoryless. For the case of correlated sources, a

more convenient approach could be the design of optimal analog mappings according to the

correlation level between the source samples.

8.2.3 Imperfect CSI in Fading Channels

In this work, we decided to disregard the stage corresponding to the estimation of the time-

varying fading channels. Thus, the channel is assumed to be perfectly known (estimated)

at the receiver and, as long as necessary, we consider that this information is sent error-

free to the transmitter through a feedback channel. However, small errors introduced by the

estimation procedure can induce significant distortions after the filtering operation and, as

consequence, a severe degradation of the system performance. At present, there exist several

estimation methods –such as, for example, training and tracking methods or blind estimation–

that generally provide accurate information of the channel. The study of the impact of the

CSI estimation errors on the overall performance of the proposed analog scheme represents an

interesting complement to the work carried out in this thesis.

In a similar way, another possibility is to consider a noisy feedback channel which

introduces a certain level of distortion on the channel information. In this situation, the

information used by the transmitter either to select the optimal parameters or precode the

channel symbols (full CSI) may not be sufficiently accurate. We can combine this scenario

together with the former approach and evaluate the joint effect on the system performance.

8.2.4 Analog JSCC in Feedback Channels

Related to the feedback channel, it is only possible to assume that the CSI is available at the

transmitter if the coherence time of the fading channel is guaranteed to be larger than the time

required to feedback the information. When the fading channel varies quickly –for example in

the context of vehicular communications– its coherence time is short and, therefore, the receiver

needs to send the channel estimation through the feedback link at high rate. Thus, in this case

of fast fading environments, the part corresponding to the feedback operation must be equipped

with some transmission mechanism that tolerates these high rate requirements.

At this point, a compression scheme based on analog JSCC immediately arises as a possible

solution instead of more complex and slower digital approaches. In such digital schemes, the

information has to be first quantized and then encoded using a channel code in order to recover

the quantized information with a low error probability at the transmitter. In the literature, analog

transmission [79, 101] and hybrid analog-digital schemes [107] have been already applied to

this problem and promising results have been obtained. Our intention is to design a purely

137



8. Conclusions and Future Work

analog solution, based on Shannon-Kotel’nikov mappings, that sends the channel information

at very high rates in fast fading environments.

8.2.5 Broadcast Channel

The application of analog JSCC mappings to multiuser communications has been studied in

the particular case of MACs. The MAC dual model is the broadcast channel where one single

transmitter simultaneously sends information to many receivers sharing the same bandwidth.

Hence the transmitter needs to employ some communication scheme that allows each user

to recover only the data intended to it in spite of the interferences caused by the signals

corresponding to the other users. Examples of such transmission model are broadcast television

systems or the downlink in cellular communications. In the future we plan to extend the ideas

presented for the MAC case to the design of analog JSCC systems that reliably transmit analog

data over broadcast channels. In this case, we also expect to obtain good results since the

problem of the sum-Mean Square Error (MSE) minimization in the broadcast channel can be

reformulated from the point of view of the MAC due to the duality properties between both

models [57].
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Appendix A

Estimation of Channel SNR in MIMO
Systems with Decision Feedback Receivers

Let us consider a nT ×nR MIMO transmission scheme that employs a Decision Feedback (DF)

filter designed according to the MMSE criterion at the receiver. The channel is assumed to be

unknown at the transmitter so that the total power PT is uniformly distributed among the nT
antennas.

Theorem 1 The CSNR of the equivalent Single Input Single Output (SISO) channels can be

calculated at the output of the MMSE DF filter as

CSNRi =
µ2
i

µi − µ2
i

=
µi

1− µi
, i = 1, . . . , nT , (A.1)

where µi represents the diagonal elements of the matrix InT
− nT σ

2
n

PT
∆−1L−H .

Proof: We start considering the transmission of a vector s, that comprises nT analog coded

symbols, over a MIMO channel whose response is represented by the matrix H. In the proposed

model, the vector of received symbols can be determined as

x = Hs + n.

At the receiver, an MMSE DF filter is employed to cancel the spatial interference introduced

by the MIMO channel. The DF detector consists of a Feed Forward (FF) filter and a Feed

Backward (FB) filter whose expressions are respectively given by

FFDF = BHHH = ∆−1L−HHH , (A.2)

FBDF = L− InT
, (A.3)

where the lower triangular matrix L and the diagonal matrix ∆ are obtained from the following

Cholesky decomposition

HHH + ρInT
= L−H∆L,

139



A. Estimation of Channel SNR in MIMO Systems with Decision Feedback Receivers

where ρ = (nTσ
2
n)/PT . Hence, the response of the channel alongside the matched filter, HH ,

can be straightforwardly computed from the above equation as

HHH = L−H∆L− ρInT
. (A.4)

In the detection stage, the FF filter is first applied to the vector x of the symbols observed at

the DF detector input, i.e

y = BHHHHs + BHHHn,

and the FB filter is then employed to remove the channel interferences successively. Thus, the

resulting symbols after the filtering operations are defined by the expression

z = y − (L− InT
) s = BHHHHs + BHHHn− Ls + s. (A.5)

Substituting the term HHH in Equation (A.5) by its corresponding expression in

Equation (A.4) and simplifying some terms, we finally obtain the following expression for the

vector of filtered symbols:

z =
(
InT
− ρ∆−1L−H

)
s + BHHHn. (A.6)

In order to further simplify the ensuing calculations, we define the auxiliary matrices G and

QH as

G = BHHHH− L + InT
= InT

− ρ∆−1L−H ,

QH = BHHH = ∆−1L−HHH .

According to this notation, Equation (A.6) can be more compactly rewritten as

z = Gs + QHn.

Now, we can obtain the signal power at the output of the DF filter by computing the

autocovariance matrix of vector z, i.e.

Cz = E[zzH ] = GCsG
H + QHCnQ,

where Cs and Cn are the autocovariance matrix of the transmitted signal and the noise,

respectively. Remember that Cs = PT

nT
InT

and Cs = σ2
nInR

and, therefore, the covariance

matrix Cz can be expressed as

Cz = E[zzH ] =
PT
nT

GGH + σ2
nQ

HQ. (A.7)

In order to determine the equivalent CSNRs at the output of the MMSE DF filter, the ratio

between the fraction of the total power (given by Equation (A.7)) corresponding to the signal

and noise components is now computed by

CSNRi =

PT

nT
|gii|2

PT

nT
[GGH + ρQHQ]ii − PT

nT
|gii|2

. (A.8)
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Substituting G and HH by their expressions in terms of ∆ and L matrices, we can further

develop the term corresponding to the total power that appears at the denominator in the above

expression, i.e.

GGH + ρQHQ =
(
InT
− ρ∆−1L−H

) (
InT
− ρL−1∆−1

)
+

+ ρ(∆−1 − ρ∆−1L−HL−1∆−1).

Making the product and extracting the common factor ρ, we finally obtain

GGH + σ2
nQ

HQ = InT
− ρ∆−1L−H − ρL−1∆−1 + ρ∆−1

= G− ρ
(
L−1∆−1 −∆−1

)
.

The diagonal elements of the resulting matrix can be easily simplified taking into account

that L is lower triangular and ∆ is diagonal. Hence,

(G)ii − ρ
(
L−1∆−1 −∆−1

)
ii

= gii − ρ
(
δ−1ii − δ−1ii

)
= gii,

where (G)ii = gii is the i-th element of the diagonal of the matrix G and δii represents the

components of the diagonal matrix ∆ = {δ11, . . . , δnTnT
}. Thereby, it is proved that the CSNR

at the output of the DF MIMO filter is given by

CSNRi =

PT

nT
|gii|2

PT

nT
gii − PT

nT
|gii|2

=
|gii|2

gii − |gii|2
, i = 1, . . . , nT (A.9)
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Appendix B

Explicit Solution for the Design of MMSE
MIMO Transceivers

Let us consider a nT ×nR MIMO system where the linear transmit and receive filters are jointly

designed according to the MMSE criterion. As shown in Chapter 5, the general expressions

for the optimal MMSE linear precoder and equalizer under a transmit power constraint are

respectively given by

P = (λInT
+ HHWHWH)−1(HHWH), (B.1)

W = (PHHH)(σ2
nInR

+ HPPHHH)−1, (B.2)

where H ∈ Cl nR×nT represents the MIMO channel matrix, P ∈ Cl nT×L the precoding matrix

and W ∈ Cl L×nR the receive equalizer. In addition, L represents the rank of the MIMO channel

matrix and λ ≥ 0 is the Lagrange multiplier that ensures the total transmit power does not

exceed PT.

At first sight, the above equations depend on each other and, therefore, an iterative procedure

arises as a feasible option to compute P and W. Nevertheless, a solution for the optimal MMSE

MIMO transceiver can be explicitly calculated from Equations (B.1) and (B.2) by assuming a

Single Value Decomposition (SVD) of the MIMO channel.

We start exposing the particular decomposition of the optimal linear precoder and equalizer

by the two following lemmas

Lemma 1 The optimal linear MMSE precoder for the MIMO transmission y = Hs + n is of

the form P = VT, where T = diag{t1, t2, . . . , tL} ∈ RnT×L and V ∈ Cl nT×nT is a unitary

matrix from the channel SVD, i.e. H = UΣVH .

Proof: As shown in [120], applying the Hadamard inequality [21], the linear precoder P = VT

maximizes the mutual information along the MIMO channel when the input symbols are
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Gaussian, i.e.,

I(s,y) = log2 det

(
InR

+
1

σ2
n

HCsH
H

)
, (B.3)

where Cs = E{ssH} is the input signal covariance matrix. Notice that Equation (B.3) is

straightforwardly obtained by particularizing the general expression of the mutual information

for MIMO systems, given by Equation (5.9). The corresponding derivation of such a expression

can be reviewed in Section 5.2.1. On the other hand, due to the existing relation between the

mutual information and the MMSE [47], and taking account that the mutual information for

MIMO channels is a logarithmic function, the choice of the optimal precoder that maximizes

the mutual information in turn leads to the minimization of the MMSE.

Lemma 2 The optimal linear MMSE equalizer is of the form WMMSE = DUH where D =

diag{d1, d2, . . . , dL} ∈ RL×nR and U ∈ Cl nR×nR is a unitary matrix that comes from the

channel SVD H = UΣVH .

Proof: Substituting P = VT in (B.2) we obtain

WMMSE = TΣT [ΣTTΣT + σ2
nInR

]−1UH = DUH (B.4)

and the lemma is proved.

From Lemmas 1 and 2, an estimate of the transmitted symbol vector s at the equalizer output

is hence calculated as

ŝ = WHPs + Wn = DΣTs + Dv, (B.5)

where Σ = diag{σ1, σ2, . . .} ∈ RnR×nT is also a real diagonal matrix and v = UHn is the

additive Gaussian noise. Notice that v ∼ NCl (0, σ2
nI), since U is a unitary matrix and hence

does not change the noise distribution. Since D, Σ and T are diagonal matrices, equation (B.5)

can be rewritten component-wise as follows

ŝi = diσitisi + divi, i = 1, . . . , L. (B.6)

Our next step is to determine the MMSE diagonal precoder T and equalizer D. Defining

the error vector as e = s− ŝ, the MSE is given by

MSE =
L∑
i=1

|si − ŝi|2 =
L∑
i=1

(1− diσiti)2 + σ2
nd

2
i . (B.7)

This cost function should be minimized under the power constraint
∑L

i=1 t
2
i ≤ PT. Thereby,

an explicit expression for the precoder P and the detector W can be explicitly computed once

the diagonal matrices T and D are obtained solving this minimization problem. The ensuing

theorem provides the solution to this constrained optimization problem.

144



B. Explicit Solution for the Design of MMSE MIMO Transceivers

Theorem 2 The diagonal precoders {ti}Li=1 and equalizers {di}Li=1 that minimize the MSE cost

function (B.7) under the power constraint
∑L

i=1 t
2
i ≤ PT are calculated from the following

equations:

di =
1√
σ2
n

√
Ai [1− Ai]+ (B.8)

ti =

√
σ2
n

σi

√[
1

Ai
− 1

]+
(B.9)

where

Ai =
1
σi

∑L∗

k=1
1
σk

η +
∑L∗

k=1
1
σ2
k

. (B.10)

The operator [·]+ takes only the positive arguments and sets negative arguments to zero. The

number L∗ ≤ L refers to the number of singular values whose corresponding expressions for di
or ti are non-zero. Finally, η = PT/σ

2
n is the transmit Signal-to-Noise Ratio (SNR).

Proof: We start defining the Lagrangian cost function

L =
L∑
i=1

(diσiti − 1)2 + σ2
nd

2
i + λ

(
L∑
i=1

t2i − PT

)
, (B.11)

where λ is the Lagrange multiplier. Equating to zero the derivative of L with respect to di and

ti we obtain

∂L
∂di

= 0 ⇒ di =
tiσi

σ2
i t

2
i + σ2

n

, (B.12)

∂L
∂ti

= 0 ⇒ ti =
diσi

σ2
i d

2
i + λ

. (B.13)

Substituting one expression into the other leads to a quadratic form in d2i :

σ2
i

(
diσi

σ2
i d

2
i + λ

)2

+ σ2
n =

σ2
i

σ2
i d

2
i + λ

. (B.14)

Solving for d2i , we obtain a solution in terms of λ

d2i =
1

σ2
i

[√
σ2
i λ

σ2
n

− λ

]+
(B.15)

and by substitution also a solution for t2i in λ

t2i =
1

σ2
i

[√
σ2
i σ

2
n

λ
− σ2

n

]+
. (B.16)
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It is important to notice that the positivity conditions in (B.15) and (B.16) are equivalent

and also equivalent to requirement Ai < 1 in (B.10). The next step is to determine the λ value

that satisfies the power constraint
∑L∗

i=1 t
2
i = PT. Substituting (B.15) and (B.16) into the power

constraint, the following value is obtained

λ =
1

σ2
n

 ∑L∗

k=1
1
σk

η +
∑L∗

k=1
1
σ2
k

2

(B.17)

which is indeed a constant. Substituting λ into (B.15) and (B.16) we find the explicit solutions

provided in the theorem.

The diagonal precoders and equalizers can be determined from (B.8), (B.9) and (B.10) with

a waterfilling-like algorithm. Assuming the SVD of H is available, the complexity of this

algorithm is linear in L, i.e. O(L). Indeed, let us order the singular values from smallest to

largest, i.e. σmin = σ1 ≤ σ2... ≤ σL = σmax. Next, let us compute the sums S1(L) =
∑L

k=1 σ
−1
k

and S2(L) = η +
∑L

k=1 σ
−2
k . This complexity is linear in L. If σ−11 S1(L)/S2(L) > 1, then

decrease L and reduce the terms S1 and S2 by their σ1 contribution. Then, continue with the

next singular value until the condition is not satisfied. The remaining L = L∗ and all remaining

terms satisfy Ai < 1. The maximal number of such iterations is L − 1. It is interesting to note

that this solution relates to the well-known waterfilling result [21] in the sense that it provides

an optimal way (in the MMSE sense) to distribute the transmit power among the different data

streams.
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List of Acronyms

3GPP 3rd Group Partnership Project

ADC Analog-to-Digital Converter

API Application Program Interface

APP A Posteriori Probability

ARQ Automatic-Repeat-Request

AWGN Additive White Gaussian Noise

BICM Bit Interleaved Coded Modulation

BP Belief Propagation

CDMA Code Division Multiple Access

COTS Commercial Off-The-Shelf

COVQ Channel Optimized Vector Quantizer

CP Cyclic Prefix

CSI Channel State Information

CSNR Channel Signal-to-Noise Ratio

DAB Digital Audio Broadcasting

DAC Digital-to-Analog Converter

DF Decision Feedback
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DFT Discrete Fourier Transform

DSP Digital Signal Processor

DVB Digital Video Broadcasting

EXIT EXtrinsic Information Transfer

FB Feed Backward

FEC Forward Error Correction

FF Feed Forward

FFT Fast Fourier Transform

FDM Frequency Division Multiplexing

FDMA Frequency Division Multiple Access

FPGA Field Programmable Gate Array

ICI InterCarrier Interference

IDFT Inverse Discrete Fourier Transform

IF Intermediate Frequency

IFFT Inverse Fast Fourier Transform

IRA Irregular Repeat Accumulate

ISI InterSymbol Interference

JSCC Joint Source Channel Coding

LAN Local Network Area

LDGM Low Density Generator Matrix

LDPC Low Density Parity Check

LLR Log-Likelihood Ratio

LS Least Squares

MAC Multiple Access Channel

MAI Multiple Access Interference
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MIMO Multiple Input Multiple Output

ML Maximum Likelihood

MMSE Minimum Mean Square Error

MSE Mean Square Error

MRC Maximal-Ratio Combining

OFDM Orthogonal Frequency-Division Multiplexing

OPTA Optimum Performance Theoretically Attainable

PAM Pulse Amplitude Modulation

PAPR Peak-to-Average Power Ratio

PCCOVQ Power Constrained Channel Optimized Vector Quantizer

PDF Probability Density Function

PN Pseudo-Noise

SDR Signal-to-Distortion Ratio

SINR Signal-to-Interference Noise Ratio

SISO Single Input Single Output

SNR Signal-to-Noise Ratio

SPA Sum-Product Algorithm

SSCC Separate Source Channel Coding

SVD Single Value Decomposition

RA Repeat Accumulate

RF Radio Frequency

TDMA Time Division Multiple Access

TCM Trellis Coded Modulation

VQ Vector Quantization

WSS Wide Sense Stationary
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