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  SUMMARIES 

ABSTRACT 

 Appropriate management of plants of conservation concern requires reliable 

estimates of the magnitude and spatial distribution of genetic diversity as these 

species often combine features that make them potentially susceptible to genetic 

erosion. In this regard, the present thesis focuses on applying genetic markers to the 

conservation of rare and threatened plants.  

 In the first two chapters, genetic diversity and population structure of the 

clonal endemism Centaurea borjae is assessed using AFLPs and cpDNA sequences. C. 

borjae displayed intermediate-low genetic diversity compared to other plants with 

similar life-history traits. Gene flow seem to be restricted as populations separated by 

few hundred meters showed significant differentiation. Clonal frequency was lower 

than anticipated and might be related to soil type. Five Management Units were 

designated for conservation purposes and sampling for ex situ 

preservation should focus on individuals separated >80 m.  

 In the third chapter, the neutral and quantitative diversity of the endangered 

therophyte Omphalodes littoralis spp. gallaecica is investigated. The five extant 

populations displayed minimal to none neutral genetic diversity and a lack of gene 

flow between them. Reciprocal transplant experiments showed among-population 

differentiation in several quantitative traits but the pattern of differences did not fit 

the expectations of local adaptation. Instead, it seemed to be caused by genetic drift. 

Based on the genetic and phenotypic results, each population should be designated 

as an independent Evolutionary Significant Unit for conservation purposes. 

 The last chapter focuses on developing SSRs markers for threatened plants 

using EST sequences available in public databases. 257 genera were analyzed and 86% 

of them were successfully mined. As most of these genera lack an annotated genome, 

Arabidopsis and Oryza were used as controls for genome distribution analyses. Dimers 
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and trimmers were prevalent types of repeat. Control genomes revealed that 

trimmers were mostly located in coding regions while dimers were largely associated 

to untranslated regions. Finally, empirical trials showed that EST-SSRs had high 

amplification success and were 100% transferable between species in two tested 

genera.  

RESUMEN 

 La adecuada gestión de plantas con especial interés para la conservación 

requiere conocer la magnitud y la distribución espacial de la diversidad genética, ya 

que estas especies a menudo presentan características que las hacen más 

susceptibles a la erosión genética. En este contexto, la presente tesis se centra en la 

aplicación de marcadores moleculares para la conservación de plantas raras y 

amenazadas. 

 En los dos primeros capítulos se investiga la diversidad genética y la estructura 

de población del endemismo clonal Centaurea borjae empleando AFLPs y secuencias 

del genoma del cloroplasto. C. borjae mostró una diversidad genética intermedia-baja 

en comparación con otras plantas con rasgos vitales similares. El flujo genético está 

restringido, ya que poblaciones distanciadas unos cientos de metros presentaron 

diferencias significativas. La frecuencia de clones fue inferior a la esperada y parece 

estar relacionada con el tipo de suelo. Finalmente, se recomienda establecer cinco 

Unidades de Gestión y mantener una distancia >80 m entre individuos recogidos para 

conservación ex situ. 

 A lo largo del tercer capítulo, se investiga la diversidad neutral y cuantitativa 

del terófito amenazado Omphalodes littoralis spp. gallaecica. Las cinco poblaciones 

existentes revelaron una diversidad genética neutral mínima o cero además de 

ausencia de flujo genético entre ellas. Mediante experiencias de trasplante recíproco, 

se encontraron diferencias entre poblaciones en varios caracteres cuantitativos pero 
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dicha diferenciación no se ajustó a un patrón de adaptación local. Por contra, la 

variación fenotípica parecía ser consecuencia de la deriva genética. En base a los 

resultados genéticos y fenotípicos, cada población debe considerarse como una 

Unidad Evolutivamente Significativa independiente a efectos de conservación. 

 El último capítulo se centra en desarrollar marcadores SSR para plantas 

amenazadas utilizando secuencias EST disponibles en bases de datos públicas. Se 

estudiaron 257 géneros y el 86% de ellos fueron analizados con éxito. Como la mayoría 

de estos géneros carecen de genomas anotados, Arabidopsis y Oryza se emplearon 

como controles para determinar la distribución de los EST-SSRs a lo largo del genoma. 

Dímeros y trímeros fueron los tipos de repeticiones más abundantes. Los genomas de 

control revelaron que los trímeros están distribuidos principalmente en regiones de 

codificantes, mientras que los dímeros se asocian mayoritariamente con regiones no 

codificantes. La tasa de amplificación fue buena. Además, fueron transferibles entre 

especies del mismo género.  

RESUMO  

 Unha adecuada xestión en plantas con especial interese para a conservación 

require coñecer a magnitude e a distribución espacial da diversidade xenética, xa que 

estas especies a miúdo posúen características que as fan máis susceptibles á erosión 

xenética. Neste contexto, a presente tese centrase na aplicación de marcadores 

moleculares para a conservación de plantas raras e ameazadas. 

 Ó longo dos dous primeiros capítulos investigase a diversidade xenética e a 

estrutura poboacional do endemismo clonal Centaurea borjae empregando AFLPs e 

secuencias do xenoma do cloroplasto. C. borjae amosou una diversidade intermedia-

baixa en comparación con outras plantas con rasgos vitáis similares. O fluxo xenético 

parece estar restrinxido, xa que poboacións distanciadas uns centos de metros 

presentaron diferencias significativas. A presencia de clons foi inferior á esperada e 
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parece estar relacionada co tipo de solo. Finalmente, recoméndase establecer cinco 

Unidades de Xestión e manter unha distancia >80 m entre individuos recollidos para 

conservación ex situ. 

Ó longo do terceiro capítulo, investigase a diversidad neutral e cuantitativa do 

terófito ameazado Omphalodes littoralis spp. gallaecica. As cinco poboacións 

existentes revelaron unha diversidade xenética neutral mínima ou cero e ausencia de 

fluxo xenético entre elas. Os transplantes recíprocos amosaron diferencias entre 

poboacións para varios caracteres cuantitativos, non obstante dita diferenciación nos 

se axustou a un patrón de adaptación local. Pola contra, a variación fenotípica pareceu 

ser consecuencia da deriva xenética. En base ós resultados xenéticos e fenotípicos, 

cada poboación debe considerarse como unha Unidade Evolutivamente Significativa 

independente para fins da súa conservación. 

O último capítulo centrase no desenvolvemento de marcadores SSR para 

plantas ameazadas empregando secuencias EST dispoñibles en bases de datos 

públicas. Estudiáronse 257 xéneros e o 86% dos mesmos foron analizados con éxito. 

Como a maioría de estes xéneros carecen de xenomas anotados, Arabidopsis e Oryza 

empregáronse como controles para determinar a distribución dos EST-SSRs ó longo 

do xenoma. Dímeros e trímeros foron os tipos de repeticións máis abundantes e os 

xenomas de control revelaron que os trímeros distribúense principalmente en rexións 

codificantes, mentres que os dímeros están maioritariamente asociados con rexións 

non codificantes. O éxito de amplificación dos EST-SSRs foi bo e ademais, foron 

transferibles entre especies do mesmo xénero. 
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INTRODUCTION 

INTRODUCTION 

Plant conservation genetics 

Ecology is the science dealing with the interactions that determine the 

distribution and abundance of organism (Krebs, 1972). Thus, ecologists aim to 

understand the processes that influence biodiversity. In the modern world, a major 

concern is the loss of biodiversity that can be mostly attributed to human factors. 

Human influence has deeply altered the natural environment, modifying the territory, 

exploiting species directly, changing biochemical cycles and transferring species 

between areas. Main threats to biodiversity loss can be summarized as:  

• Alteration and loss of habitats: the transformation of natural areas impacts

the number and abundance of species.

• Introduction of alien species and genetically modified organisms: species

introduced into a new environment can lead to disequilibrium in the

ecosystem.

• Pollution: pollution alters the chemical and physical features of the

environment, resulting in changes in the diversity and abundance of species.

• Climate change: Earth’s surface warming affects biodiversity as it threatens

species that are adapted to cold (i.e. polar species) or to high altitudes (i.e.

alpine species).

• Overexploitation: excessive harvesting of natural resources may exhaust

them.

In this scenario, conservation biology emerged with the aim to minimize the 

loss of biodiversity and to ensure the maintenance of threatened species. The 

publication in 1981 of “Conservation and Evolution” by Frankel and Soule pioneered 

the scientific framework for conservation biology by demonstrating how evolution 

and the dynamics of genetic diversity, within and among populations, are pivotal for 
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preserving endangered species. Since then, a growing body of literature has 

addressed conservation issues (Allendorf and Luikart, 2013; Hamrick and Godt, 1996; 

Frankham et al., 2010; Mills, 2006).  

The International Union for Conservation of Nature (IUCN) recommends 

preserving the biological diversity at three levels: genes, species, and ecosystem 

(McNeely et al., 1990). In this context, conservation genetics arises as an applied 

science that uses molecular tools and evolutionary genetics for conservation purposes 

(Hamrick and Godt, 1996; Frankham et al., 2010; Mills, 2006). Appropriate 

conservation strategies require reliable estimates of the magnitude and spatial 

distribution of genetic diversity within and among populations, as it is the raw 

material for species to evolve and adapt in response to changing environments 

(Frankham, 2005; Frankham et al., 2010; Hamrick and Godt, 1996). This knowledge is 

even more relevant in threatened and/or rare plants as they often combine several 

features that make them potentially susceptible to genetic erosion and lower 

adaptability: small population size, habitat specificity, and isolation (Ellstrand & Elam, 

1993; Cole, 2003; Hamrick & Godt, 1996; Leimu et al., 2006) (Fig. 1). From now on, 

and for a lighter reading, the term threatened and/or rare species will be referred only 

as rare species. 

Species that have experienced a reduction in gene flow and/or population size 

have been found to be more sensible to genetic erosion due to small population size 

(Aguilar et al., 2008; Honnay and Jacquemyn, 2007). In this context, many rare species 

occur in small isolated populations and usually display reduced levels of genetic 

diversity (Cole, 2003; Ellstrand and Elam, 1993). Nevertheless, the premise that rare 

plants have lower genetic diversity is far from universal and needs to be further 

examined (Gitzendanner and Soltis, 2000). Besides, low levels of neutral genetic 

diversity may not necessarily lead to a loss of adaptive variation (Bekessy et al., 2003; 

Landguth and Balkenhol, 2012; Reed and Frankham, 2001; Reed and Frankham, 2003). 
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Still, it seems undeniable that many plant populations are currently experiencing 

severe reductions and a growing isolation that might compromise their evolutionary 

potential because of habitat fragmentation, habitat destruction and environmental 

stress. Under these circumstances, plant conservation genetics may play a pivotal role 

in the preservation of rare species. 

Fig. 1: Interacting factors in the conservation of natural populations (adapted from Allendorf et al., 
2010).  

Most rare plants have small population sizes and their populations often 

experience a decreasing trend. In this regard, it is important to recall that census size 

(the number of individuals constituting a population) is usually larger than effective 

population size (Ne) (Wright, 1931). Species with small Ne are more prone to genetic 

bottlenecks and genetic drift (Hamrick et al., 1991). Bottlenecks are sharp decreases 

in the number of individuals of a species that are highly likely to be accompanied by a 

significant loss in genetic diversity. Moreover, if the population undergoes several 

consecutive bottlenecks in time, the loss of genetic diversity will be exacerbated (Willi 

et al., 2006). Isolated populations with reduced genetic diversity are also more 

sensitive to the effects of genetic drift (Ellstrand and Elam, 1993; Willi et al., 2006). 
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When random genetic drift occurs, some alleles (specifically rare ones) may be lost 

just by chance and allele frequencies in subsequent generations probably differ from 

the parental ones causing the erosion of the genetic diversity of the population 

(Hamrick and Godt, 1996).  

Severe reductions in population size are also likely to lead to inbreeding (the 

mating of relatives). Inbreeding occurs naturally in many plant species that reproduce 

by selfing (Huenneke, 1991). However, mating among relatives can have serious 

consequences for fitness in plants with mixed-mating and out-breeders (Angeloni et 

al., 2011). Inbreeding can lead to the fixation of deleterious alleles, reducing 

reproductive output and survival (i.e. inbreeding depression) (Angeloni et al., 2011). 

Despite earlier scepticism, there is now compelling evidence that inbreeding 

depression can have an impact on wild populations (Crnokrak and Roff, 1999; Keller 

and Waller, 2002), and that its negative effects increase in stressful habitats compared 

to benign ones (Armbruster and Reed, 2005). Nevertheless, the severity of inbreeding 

depression depends on several factors. Perennial species displayed significantly 

greater inbreeding depression than annual ones (Angeloni et al., 2011). Likewise, 

outcrossing species usually displayed higher inbreeding depression than selfers 

(Angeloni et al., 2011; Frankham et al., 2010). Moreover, inbreeding depression was 

found to be positively correlated with increasing population size (Angeloni et al., 

2011). The latter may be a consequence of genetic purge as mating among relatives 

for long periods of time helps to remove deleterious alleles. Thus, genetic purge is 

more likely to occur in small rather that big populations (Crnokrak and Barret, 2002; 

Glémin, 2003; Goodwillie et al., 2005).  

The patterns of genetic diversity are shaped by multiple factors among which 

life-history traits (LHTs) are regarded as highly determinant (Hamrick et al., 1991; 

Nybom, 2004). Genetic diversity can partitioned at species, within population and 

among population level. Life form, geographical range and breeding system are highly 
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influential at species level (Hamrick et al., 1991, Nybom, 2004). Short-lived and annual 

plants usually display lower genetic diversity than long-lived ones (Nybom, 2004). 

Similarly, selfing, mixed-mating and animal-pollinated taxa commonly have less 

genetic diversity than their outcrossing counterparts (Hamrick et al., 1991, Nybom, 

2004). Plants with restricted geographical range commonly show less variation than 

widespread taxa. According to Hamrick et al. (1991), the patterns mentioned above is 

maintained when genetic variation is considered at within population level. However, 

the distribution of the genetic diversity among populations follows a different pattern. 

Annual and/or selfing species usually showed higher among-population 

differentiation than long-lived and/or outcrossed taxa; geographical range, however, 

seemingly had no effect on genetic diversity among populations (Gitzendanner and 

Soltis, 2000; Hamrick and Godt, 1990; Honnay and Jacquemyn, 2007). In general, 

species with limited potential to disperse display greater genetic differentiation 

among populations than those with efficient dispersal. In this regard, Loveless and 

Hamrick (1984) estimated that selfing species harbored 56% of their allelic diversity 

within populations. Despite the general assumption that LHTs correlate with the 

pattern of genetic diversity, recent studies have noted that this tenet must be further 

discussed (Duminil et al., 2007; Duminil et al., 2009). Most of the reviews about this 

topic did not consider the phylogenetic independency across the studied taxa in their 

analyses. When the latter is taken into account, genetic structure was shown to be 

influenced only by a few LHTs such as mating system for nuclear markers and dispersal 

mode or geographic range size for organelle markers (Duminil et al., 2007). Besides, 

plant traits that correlate with generation time influence mating system and 

inbreeding depression affecting genetic drift and gene flow and eventually modifying 

the genetic structure of the population (Duminil et al., 2009).   

Dispersal is one of the core processes involved in the dynamics and evolution 

of plant populations (Ouborg et al., 1999). Population spatial dynamics is determined 
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by seed and pollen movement, which often display different modes and distances of 

dispersal (Garcia et al., 2007). Overall, restricted gene flow commonly results in spatial 

genetic structure while high levels of gene flow usually lead to a random distribution 

of genotypes (Turner et al., 1982; Wright, 1943; Wright, 1978;). The extent of pollen 

dispersal is determined by the mediator vector. For example, wind-pollinated species 

usually have a wide-range dispersal while gene flow can be restricted in animal-

pollinated plants depending on the behaviour of the disperser (Garcia et al., 2007). 

Self-fertilizing and clonal species are expected to have very low dispersal (Hamrick and 

Godt, 1996). Likewise, seed movement is also shaped by the disperser vector. 

Dispersal is usually restricted to very short distances in plants that disseminate their 

seeds by gravity. In contrast, dispersal distance is notably longer in anemochorous or 

zoochorous species (Cain et al., 2000). Species with very limited dispersal capabilities 

are expected to have a strong population structure due to the non-random spatial 

distribution of genotypes, where genetic similarity is higher among neighbouring than 

among more distant individuals (Wright, 1943).  

Genetic differentiation among populations can also be consequence of 

adaptation rather than genetic-drift or restricted dispersal. In fact, plant populations 

are commonly assumed to be locally adapted (Leimu and Fischer, 2008). In the 

absence of other forces and constrains, resident genotypes in each population would 

have on average a higher relative fitness in their local habitats than genotypes arriving 

from other habitats (Kawecki and Ebert, 2004). However, when further examined, this 

premise does not seem to be a general trend. Only 43.5% of the species reviewed by 

Leimu and Fisher (2008) performed better in their local habitats than in foreign ones. 

Moreover, these authors noted that the ability of a plant to adapt seems to be 

independent of its life history, spatial and temporal heterogeneity, and geographic 

scale. Instead, they found that local adaptation was more commonly displayed by 
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large populations, supporting the idea that small populations may have significantly 

reduced their ability to cope with changing environments (Willi et al., 2006). 

Although it is widely acknowledged that many possible factors can determine 

the genetic variation and structure of a particular species, we often operate under the 

unproven assumption that rare plants may have their evolutionary potential 

diminished. This approach seems inappropriate. Instead, formulating scientifically 

rational conservation actions that may minimize the extinction risk of a particular 

plant requires the appropriate assessment of its genetic diversity and structure 

(Aguilar et al., 2008; Frankham, 2010; Tallmon et al., 2004). In this regard, the genetic 

information derived from neutral molecular markers seems a crucial element in the 

development of accurate conservation initiatives, both in situ and ex situ. Ex situ 

efforts in plants typically involve germplasm (mostly seeds) storage where a common 

issue is to attain a sampling regime that may encompass the full genetic diversity of 

the species and its local populations. For germplasm collection, a minimum sampling 

distance can be determined by fine-scale spatial genetic structure analysis (SGS) 

where a kinship coefficient quantifies the degree of relatedness between each pair of 

individuals (Vekemans and Hardy, 2004). SGS is then used to set the minimum 

distance between individuals that will guarantee a maximum coverage of the 

population genetic diversity. An example of this approach can be seen below in 

chapter 1 where SGS was used to recommend ex situ conservation actions.  

The genetic management of endangered wild populations also involves 

delimiting management units (MUs) (Palsboll et al., 2007) (see chapters 1 and 2 for 

further explanations). MUs are described as demographically independent units 

(Avise, 1995; Moritz, 1999) and they are diagnosed as populations displaying 

differences in allele frequencies at organelle DNA and/or nuclear loci (Avise, 1995; 

Moritz, 1994). When differentiation goes beyond divergences in allele frequencies 

and also involves differences in quantitative traits, the concept of MUs becomes 
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insufficient and Evolutionary Significant Unit (ESU) seem more appropriate (Crandall 

et al., 2000; Moritz, 1999) (see chapter 3 for further information). The distinction 

between MUs and ESUs seems particularly relevant in cases where conservation 

strategies may involve an exchange of individuals between populations as 

translocations might be allowable between MUs but not between ESUs. The transfer 

of individuals adapted to local conditions might have negative consequences due to 

outbreeding depression (Mills, 2006).  

Neutral markers are useful for determining genetic relationships among 

individuals, among populations (gene flow and population structure), or the 

demographic history, but they are considered to have no impact on phenotypes or 

fitness (Reed and Frankham, 2001). Interestingly, the characters of greatest concern 

in conservation biology are those associated with quantitative variation as it 

determines the ability of the species to cope with environmental changes and to 

evolve (Frankham et al., 2010). Unfortunately, the relationship between neutral 

markers and adaptive variation has been found to be weak at best (Bekessy et al., 

2003; Reed and Frankham, 2001) and variation in quantitative traits is known to be 

due to both genetic and environmental factors. In chapter 3, there is an example 

where a plant with minimal to none neutral variation at deme scale still shows 

variability in a number of quantitative traits.  

The recent increase of large, publicly available DNA sequence datasets 

generated by high-throughput techniques and the growing emphasis on functional 

genomics can greatly facilitate the use of molecular approaches in non-target species 

of conservation concern (Allendorf et al., 2010; Luikart et al., 2003). In chapter 4, we 

show a cost-effective procedure to develop molecular markers for population studies 

in endangered plants using DNA sequences generated by high-throughput. Is in this 

context where conservation genetics goes one step further evolving into conservation 

genomics (Ouborg et al., 2010; Primmer, 2009). Even if conservation genomics is a 
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new disciple still in its infancy, it is quite promising. Genomics already has provided 

some interesting surprises, such as the discovery of adaptive loci that displayed high 

divergence between populations.  

Methods in conservation genetics 

There are several types of molecular marker techniques currently available 

but none of them can be regarded as universally “best”. The most suitable technique 

to assess genetic variation depends upon both the question addressed and the type 

of genetic information available for the species (Allendorf and Luikart, 2013). In fact, 

the popularity of the major types of molecular markers has changed along the last 

two decades (Fig. 2). Here we provide a brief overview of the various markers used in 

conservation genetics with their respective applications (Table 1). 

Genetic variation is most commonly inferred using markers that are expected 

to be neutral or nearly neutral, this is, that there is no evidence of selection involved 

in shaping their alleles frequencies (Höglund, 2009). Neutral markers have proved 

suitable for conservation studies interested in estimating population sizes, population 

structure, genetic variation, genetic drift and inbreeding (Allendorf and Luikart, 2013). 

Fig. 2:  Changes in the 
popularity of major molecular 
markers in conservation 
genetics. The horizontal axis 
indicates time and the vertical 
axis corresponds to the relative 
use of molecular markers at 
that time (extracted from 
Allendorf et al. 2013). 
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Among the most commonly used neutral markers, we have allozymes, Restriction 

Fragment Length Polymorphism (RFLPs), Microsatellites or Short Tandem Repeats 

(SSRs), Amplified Fragment Length Polymorphism (AFLPs) and DNA sequencing. 

Table 1: Comparison of different molecular markers used in conservation genetics (adapted from 
Schötterer, 2004). 

Markers Advantages Disadvantages 
Allozymes - Inexpensive 

- Universal protocols 
- Require fresh or frozen material 
- Some loci show protein instability 
- Limited number of available 
markers 
- Can be a target of natural selection 

RAPDs and AFLPs - Inexpensive 
- Produces a large number of 
bands, which can then be 
further characterized 
individually   

- Very sensitive to DNA quality, 
might lead to low reproducibility 
- Dominant 
- Difficult to analyse 
- Difficult to automate 
- Cross-study comparisons are 
difficult 

Microsatellites - Highly informative  
- Low ascertainment bias 
- Easy to isolate 

- High mutation rate 
- Complex mutation behaviour 
- Not abundant enough  
- Difficult to automate 
- Cross-study comparisons require 
special preparation 
- Expensive development 

DNA sequencing - Highest possible level of 
resolution  
- Unbiased 
- Easy cross-study comparisons; 
data repositories already exist 

- More expensive than the other 
techniques (but prices have 
experienced a continuous decrease) 

SNPs - Low mutation rate 
- High abundance 
- Easy to genotype 
- New analytical approaches in 
development  
- Easy cross-study comparisons; 
data repositories already exist 

- Substantial rate heterogeneity 
among sites 
- Expensive development  
- Ascertainment bias 
- Low information content of a single 
SNP  

Allozymes, also known as isozymes, are neutral, co-dominant markers 

described as alternative forms of a protein detected by electrophoresis that are the 

consequence of alternative alleles at a single locus (Allendorf and Luikart, 2013). 

Allozymes were the first molecular markers widely used in conservation genetics; they 

were very popular until the early nineties and there are many examples of their use 

at inferring genetic variation in rare plants. Two particularly relevant works are the 
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seminal paper by Hamrick and Godt in (1990) and the review by Hamrick (1983) 

published in the book “Genetics and Conservation”. Today, the use of allozymes is 

mostly anecdotical and very few examples exist in the modern literature due to the 

low number of informative loci and doubts about their neutrality (Schlötterer, 2004). 

The arrival of DNA-based markers revolutionized the field and promoted a shift 

from enzyme-based markers. DNA-based markers owe their popularity to the fact that 

they provided a direct survey of DNA variation rather than relying on variations in the 

electrophoretic mobility of proteins (Allendorf and Luikart, 2013). Restriction 

Fragment Length Polymorphism (RFLP) are dominant molecular markers generated 

by a single substitution in the restriction site recognized by an enzyme (e.g. from 

GAAATTC to GATTTC) that causes the absence of restriction in the individual. RFLP 

analyses of mitochondrial (mtDNA) and ribosomal (rDNA) DNA were largely used in 

the mid-1980s and early 1990s for investigating population structure and genetic 

variation (Avise, 1994) before being replaced by the more informative microsatellites. 

Minisatellites are another marker of the past: tandem repeats that usually 

display length polymorphism as consequence of unequal crossing over or gene 

conversion. Like in RFLPs, the first step of minisatellites analysis involves the digestion 

of genomic DNA with restriction enzymes; however, they represent a different 

concept of molecular marker (Frankham et al., 2010). Their extremely high variability 

revolutionized the genetic identification of individuals (i.e. DNA fingerprinting) in the 

late 1980s but they were very briefly used because they cannot be applied in standard 

population genetics given the high complexity of their banding patterns.  

The main breakthrough in the history of the DNA markers was the invention 

of the Polymerase Chain Reaction (PCR) (Mullis et al. 1986; Mullis and Faloona, 1987). 

PCR allowed, for the first time, the amplification of a genomic region in many 

individuals without cloning or isolating large amounts of ultra-pure genomic DNA. The 

first widely used PCR-based markers were microsatellites or Short Sequence Repeats 
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(SSRs). These are short tandemly repeated sequences that have become the marker 

of choice in many population genetic analysis because of their co-dominance, high 

polymorphism and considerable abundance along the genome (Selkoe and Toonen, 

2006). Nevertheless, SSRs also have disadvantages. Their development is a time-

consuming and expensive task and they can suffer technical problems (e.g. PCR 

artefacts such as stutter peaks) that complicate their automatic scoring (Schötterer, 

1998). Also, SSRs are species-specific, meaning that cross-amplification between 

relative species is very low and must be developed anew each time we move into a 

new species. However, see chapter 4 below for an example where a variant of SSRs 

(EST-SSRs) were highly transferable between species of the same genus. 

Another class of PCR-based markers are Randomly Amplified Polymorphic 

DNA (RAPD) and Amplified Fragment Length Polymorphism (AFLP) (Schötterer, 

1998), two types of marker that bind to multiple sites in the genome. Here, we restrict 

our comments to AFLP as the RAPD technique was soon avoided due to reproducibility 

problems and its presence in plant conservation studies is notably scarce. AFLPs are 

genome-wide markers that amplify restriction fragments by adding linkers. A main 

advantage of AFLPs is that they do not require previous knowledge of the genome 

(Allendorf and Luikart, 2013). This has been proved particularly useful in the study of 

population genetics of rare plant species (Mba and Tohme, 2005; Palacios et al., 1999) 

and chapters 1 and 3 in this thesis provides other examples of the use of AFLPs in rare 

plants. AFLPs are dominant markers that do not allow detecting heterozygotes. 

Nevertheless, their dominant nature is offset by the high number of loci that can be 

detected. As in the case of SSRs, there are some technical problems that need to be 

considered when dealing with AFLPs. AFLPs require very high quality DNA that must 

be free of secondary metabolites such as polyphenols which can interfere with the 

restriction reaction eventually resulting in reproducibility issues (Bonin et al., 2004). 
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Stutter peaks can be also common, hindering an automatic scoring (Schlötterer, 

2004). 

Finally, sequencing a particular region of the genome provides the most fine-

grained information. Several regions of the organelle DNA have been widely used to 

investigate plants. Organelle DNA often displays uniparental inheritance with little or 

no crossing over compared to nuclear DNA (McCauley, 1995). In plant conservation 

genetics, organelle DNA has become a standard tool for assessing intraspecific 

population structure and gene flow. Chloroplast DNA is maternally inherited and it 

can only be dispersed by seeds but not by pollen (McCauley, 1995). Thus, contrasting 

patterns between organelle and nuclear markers can help to evaluate the relative 

influences of seed and pollen dispersal in the species genetic structure. Moreover, 

unlike SSRs or AFLPs, organelle-derived sequences can be historically ordered. As a 

result, they provide information on population histories (Avise, 2004) as shown in 

chapters 2 and 3 below. Chloroplast DNA and, to a lesser extent, mtDNA have been 

useful in plant conservation genetics interested in gene flow and phylogenetic 

histories reconstruction. A clear example of the latter is the use of the universal 

primers described by Taberlet et al. (1991) for the cpDNA region trnT-L (cited 2916 

times, information from the ISI Web of Science). Chapters 2 and 3 used region trnT-L 

to ascertain the phylogeography of the two plants used in this thesis.  

The recent explosion of Next Generation Sequencing (NGS) techniques have 

opened a new world of possibilities in conservation genetics. Large scale sequencing 

is becoming an accessible tool for studying natural populations. In this regard, Single 

Nucleotide Polymorphisms (SNPs) are the commonest type of polymorphism in the 

genome with a density of one every 200-500bp (Allendorf and Luikart, 2013). The 

most comprehensive way to identify SNPs towards the genome is through shotgun 

genome sequencing of a pool of individuals used as donors of genomic DNA. SNPs can 

be useful for describing genetic variation in natural populations; however, their 
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development is time- and cost-intensive (Schlötterer, 2004). Moreover, the position 

of the SNPs is impossible to know in non-model organism that lack an annotated 

genome. While SNPs located in intergenic regions or introns are consider to evolve 

neutrally, this premise does not hold for those located in exons (Allendorf and Luikart, 

2013). Thus estimates of population structure can be biased due to selective 

pressures.  

The marker types discussed above are selectively neutral, not affecting 

phenotypes or fitness (Reed and Frankham, 2001). So far, studies addressing 

adaptation were based in Quantitative Trait Loci (QTL) analysis and outlier loci analysis 

but none of them directly address variation in genes (Frankham et al., 2010) (see 

chapter 1 for an example of outlier loci analysis). Molecular markers derived from 

genic regions are called functional markers (Andersen and Lübberstedt, 2003). Unlike 

QTLs and outlier loci analysis, functional markers target directly gene variation. 

Specific genes that are known to have an effect on relevant phenotypic traits (i.e. 

candidate genes) from which there is sequence information for PCR primer design are 

an example of functional markers (Allendorf and Luikart, 2013). However, this type of 

markers are scarce because there is no genome information for most of them. 

Nevertheless, since coding regions are highly conservative, annotated genomes from 

model plant species (e.g. Arabidopsis or Oryza) can be crossed with those from non-

model species. In this regard, SNPs that are known to be located in coding regions are 

more likely to have a phenotypic effect that may affect fitness and might be used as 

functional marker (Allendorf and Luikart, 2013).  

Expressed Sequence Tags (ESTs) can also be used as a source for functional 

marker development (Varshney et al., 2005a) (see chapter 4 for further information 

on the use of ESTs as a source of funtional markers). In the absence of a complete 

genome, ESTs sequences remain a useful proxy to the genome because they derive 

from the transcript portion of the genome. SSRs derived from Expressed Sequence 
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Tags (EST-SSRs) have been widely used and proved very useful in model plants (i.e. 

crops) but their used in non-model organism is still on its infancy (Varshney et al., 

2005a). The growing availability of EST sequence data for a wide range of taxa makes 

this type of marker a promising option in future conservation genetics studies. Besides 

their linking to coding regions, a major advantage of EST-SSRs is their transferability 

(Varshney et al., 2005b). Should EST sequences be available for a species closely 

related to our pet organism (e.g. congenerics), the set of EST-SSRs developed from 

these EST sequences will likely work in our organism. Moreover, compared to the time 

and money needed for conventional SSRs discovery, EST-SSRs can be produced in a 

very short time with no additional cost after accessing the EST database (Ellis and 

Burke, 2007).   

Pet species 

The work presented here focuses in two endemic plants of NW Spain: 

Centaurea borjae Valdés-Bermejo and Rivas Goday (1978) and Omphalodes littoralis 

spp. gallaecica M. Laínz (1971). Both species are catalogued as “endangered” by the 

IUCN and the Spanish Catalogue of Threatened Species (Serrano and Carbajal, 2011) 

(Ministerio de Medio Ambiente y Medio Rural y Marino, 2011), and listed as priority 

species in EU Habitats Directive (92/43/EEC, Annex II). Their total occupancy is 

estimated to be very small, which is one of the main reasons of why they are listed as 

endangered. Additionally, their habitats are considered Sites of Community 

Importance (SCI) within the Natura 2000 network.  

Centaurea borjae is a relict paleopolyploid endemic to NW Spain (Garcia-Jacas 

and Susanna, 1992) (Fig. 1). It is found only in six enclaves, all of them cliffs spread 

along <40 km of the coastline (Valdes-Bermejo and Rivas Goday, 1978) (Fig. 1). It has 

been estimated that the total occupancy of the species does not exceed 5000 m2 

(Bañares et al., 2004). C. borjae is a small (up to 6 cm tall), entomophilous outcrossing 
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plant with hermaphroditic flowers (Valdés-Bermejo and Agudo Mata 1983; Valdes-

Bermejo and Rivas Goday, 1978). Its germination success seems to be very low 

(Gómez-Orellana Rodríguez, 2004; R. Retuerto pers. comm.; but see Izco et al., 2003 

for other estimates) and insect larvae can be easily found feeding on ripe fruits within 

mature flower heads (Fernández Casas and Susanna, 1986). The fruit lacks a pappus 

and presents an elaiosome. The latter suggests that ants may play a role in seed 

dispersal. C. borjae also produces rhizomes up to several meters long that can give 

rise to new rosette leaves.  

Fig. 1: Centaurea borjae Basal rosette with flower (left) and typical habitat of C. borjae (right). 

Despite its status as priority species, there are no data on the magnitude and 

structure of the genetic diversity of C. borjae. Its LHTs lead to conflicting hypothesis 

about its genetic variation. On one hand, the occurrence of clonal propagation 

together with the low germination success suggest that populations might be formed 

by ramets originating from a few genets with negative consequences for the genetic 

diversity of populations (Izco et al., 2003). However, self-incompatible outcrossers 

often display considerable levels of genetic variation (Cole, 2003; Hamrick and Godt, 

1996; Nybom, 2004) and polyploids generally maintain higher levels of genetic 

diversity in small populations than diploids with comparable population sizes (Soltis 

and Soltis, 2000). On the other hand, the occurrence of fruits without a pappus and 

the probable myrmecochory could be regarded as indicators of restricted seed 

dispersal (Cousens et al., 2008; Gomez and Espadaler, 1998) that might result in 
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significant genetic differentiation at small spatial scales. Given this lack of empirical 

data, the genetic structure and diversity of C. borjae was investigated in the first two 

chapter of the present thesis in an effort to formulate informed and effective 

management guidelines for its conservation, both in situ and ex situ.  

Omphalodes littoralis spp. gallaecica is a rare herb (total occupancy <100000 

m2) restricted to coastal dune systems in NW Spain (Romero Buján, 2005, Serrano and 

Carbajal, 2011; Gómez-Orellana Rodríguez, 2011) (Fig. 2). Due to threats faced by its 

sensitive habitat, its populations have undergone a continuous decline in the last 

decades (Bañares et al., 2004). Hence, its actual distribution is extremely fragmented 

and the plant is known to be present only in five dune systems. O. littoralis spp. 

gallaecica is a self-compatible plant and autogamy has been suggested as the most 

probable mechanism for reproduction (Bañares et al., 2004). Flowering period is very 

short and the ephemeral flowers last less than three days (Romero Buján, 2005). Seed 

are thought to be dispersed by animals through the adhesiveness of the fruit to their 

hair (Bañares et al., 2004). Population size fluctuates greatly between years, 

multiplying or dividing by ten the number of individuals found any given year (Bañares 

et al., 2004). 

Fig. 2. Detail of Omphalodes littoralis spp. Gallaecica. Habit of a plant with flowers (left) and typical 

habitat (right).  
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As in the case of C. borjae and despite the conservation concern of O. littoralis 

spp. gallaecica, its population genetics and the variation of its ecophysiological traits 

have never been addressed. Since autogamy is speculated as the most probable 

mechanism of reproduction in this small therophyte, genetic diversity within 

populations might be low (Hamrick et al., 1991; Nybom, 2004). Likewise, the 

considerable fluctuations in population sizes between years might have led to the 

genetic erosion of the populations due to consecutive bottlenecks (Willi et al., 2006). 

However, the latter might be buffered in presence of a stable seed bank (McCue and 

Holtsford, 1998; Nunney, 2002). Finally, high rates of selfing are known to be related 

with high levels of differentiation among populations (Nybom, 2004; Hamrick and 

Godt, 1996). If high levels of differentiation among populations are mantained 

through time, population might even evolve independiently resulting in procesess of 

local adaptation (Leimu and Fischer, 2008).  Thus, it migth be expected that O. 

littoralis spp. gallaecica will displayed high differentiation among populations that 

may eventually lead to local adaptation of its populations. In this regard, chapter 3 

provides an exhaustive molecular and phenotypic study of the five extant populations 

of this rare herb. Molecular and phenotypic information was combined to propose 

guidelines for the conservation of this endangered plant.         
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OBJECTIVES 

- General objective: 

• The main objective of this thesis was employing molecular markers to

investigate the genetic variation in rare and threatened plant species. Results

were interpreted from an applied point of view and specific management

guidelines were proposed for the conservation of these organism.

- Specific objectives: 

• Chapter 1:  AFLP phenotypes were used to investigate the genetic variation

and population structure of Centaurea borjae. AFLP-derived information was

used to (1) infer the contribution of clonal reproduction, (2) determine if

populations show signs of diminished genetic variation, (3) infer minimum

inter-plant distance for appropriate germplasm collection, (4) determine

whether populations are significantly differentiated from each other and, if so,

whether it is possible to delineate management units.

• Chapter 2: The genetic structure of Centaurea borjae along its range and the

historical processes behind it were investigated using sequences of the non-

coding cpDNA region trnT-F (Taberlet et al., 1991). cpDNA information was

used to estimate the genetic diversity of C. borjae, investigate its demographic

past, evaluate its population structure, identify populations of greater

conservation concern and, finally, compare the pattern obtained with cpDNA

sequences with the results of the AFLP shown in chapter 1.

• Chapter 3: An exhaustive molecular and phenotypic study of the five extant

populations of the rare herb Omphalodes littoralis spp. gallaecica was carried

out in this chapter. Chloroplast sequences form the trnT-F region and AFLP-

genotypes were used to (1) ascertain whether O. littoralis spp. gallaecica is

genetically impoverished as suggested by its life history traits, (2) whether its

populations are significantly differentiated from each other, and (3), given that

37 



OBJECTIVES

O. littoralis spp. gallaecica is a therophyte, whether there are significant 

between-year differences in its genetic structure. On the other hand, a series 

of reciprocal transplant experiments were performed to investigate the 

adaptive component of several quantitative traits related to fitness. 

Phenotypic variation was examined to reveal whether there are there any 

phenotypic differences between populations. These differences were further 

investigated to assess whether they result from phenotypic plasticity or have 

a genetic basis and if they might be adaptive. Finally, molecular and 

phenotypic information were combined to propose specific guidelines for the 

conservation of this endangered plant. 

• Chapter 4: This chapter explores a rather underexploited yet clearly promising

application of EST-SSRs: the development of markers from public EST

databases for use in evolutionary and conservation genetic studies of non-

model plant species (with emphasis on threatened ones). All plant genera

included in the International Union for Conservation of Nature and Natural

Resources (IUCN) Plant Red List with EST sequences available in the GenBank

EST database were searched for SSRs. Since most of these plant genera do not

include model organisms, there are no available annotated reference

genomes for comparison, hampering the location of the EST-SSRs within the

genome (i.e. intergenic regions, introns, UTRs or exons). To minimize this

obstacle, the EST sequences of two model genera with well-known annotated

genomes were in-depth analyzed and used as a proxy: Arabidopsis was

selected as a control for eudicots while Oryza was used as a guide for

monocots. Finally, twenty-four of the developed SSR were tested for

amplification, cross-amplification, and polymorphism in four species of

conservation interest from two genera (Trifolium fragiferum, Trifolium

saxatile, Centaurea valesiaca and Centaurea borjae).
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ABSTRACT 

Appropriate management of species of conservation concern requires 

designing strategies that should include genetic information as small population size 

and restricted geographic range can reduce genetic variation. We used AFLPs to 

investigate genetic variation within and among populations of the endangered narrow 

endemic Centaurea borjae, and found no evidence for genetic impoverishment 

despite its < 40 km range and potential for vegetative propagation. Genetic variation 

was comparable to other plants with similar life history (88% occurring within 

populations) and potential clone mates were less frequent than expected. 

Nonetheless, populations separated by few hundred meters showed signs of 

significant genetic differentiation suggesting low gene flow between them. Our 

results suggested that the three geographically closer populations located at the 

center of the range might be treated as a single management unit, while the 

remaining ones could be considered independent units. We found evidence of fine-

scale spatial genetic structure up to 80 m indicating that the collection of germplasm 

for ex-situ conservation should focus on individuals separated >80 m to 

maximize genetic variation. 

Keywords: Centaurea borjae, conservation, endangered species, genetic diversity, 

polyploidy. 
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INTRODUCTION 

Narrow endemics, i.e. taxa that occur in one or a few small populations 

confined to a single domain or a few localities (Kruckeberg and Rabinowitz, 1985), are 

interesting cases of naturally rare species. Small population sizes, habitat specificity, 

and isolation often account for their status as taxa of conservation concern which can 

also increase their sensitivity to demographic and environmental stochasticity 

(Frankham, 2005; Kruckeberg and Rabinowitz, 1985). These features also anticipate 

that narrow endemics may harbor low genetic variation. Genetic drift and inbreeding 

can lead to a loss of genetic diversity in isolated and small populations (Frankham et 

al., 2002) with negative consequences for the evolutionary potential and which can 

also enhance the extinction risk (Frankham, 2005; Willi et al., 2006). In this regard, a 

number of neutral marker studies have found that rare and/or endemic plants often 

show less genetic variability than widespread taxa (Cole, 2003; Ellstrand and Elam, 

1993; Gitzendanner and Soltis, 2000; Hamrick and Godt, 1996). Nonetheless, the 

association between genetic diversity and range size is far from universal. Various 

comparative studies also revealed that endemic and rare taxa can maintain levels of 

diversity equal to or exceeding that of widespread congeners (Cole, 2003; 

Gitzendanner and Soltis, 2000). In fact, other factors besides range size can be 

influential for the genetic variability of a plant species as well. Outcrossing species 

commonly have higher levels of genetic diversity, and lower differentiation between 

populations, than selfing and clonal plants (Cole, 2003; Chung and Epperson, 1999; 

Hamrick and Godt, 1996; Nybom, 2004; Palacios et al., 1999; Stehlik and Holderegger, 

2000). Also, polyploids may harbor more genetic diversity when compared to diploid 

species (Soltis and Soltis, 2000). Predicting the actual genetic variation and structure 

of a particular narrow endemic is difficult and, instead, it must be investigated on a 

case by case basis.  
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Most members of the genus Centaurea (Asteraceae) are common and 

widespread. However, a few of them are endemics with a narrow distribution. An 

interesting example of this is Centaurea borjae Valdés-Bermejo and Rivas Goday 

(1978), a relict paleopolyploid, member of section Acrocentrum endemic to the 

Iberian Peninsula (Garcia-Jacas and Susanna, 1992) (Fig. 1). The origin of this 

hexaploid (2n=66, x=11) plant is somewhat obscure and the parental species are 

unknown. However, hexaploids in section Acrocentrum are commonly considered 

allopolyploids (Font, 2007; Font et al., 2009). Habitat type is likely to play a 

determinant role in the existence of this perennial herb as it is found only along < 40 

km of the marine coastline of NW Spain where it occurs in a few enclaves on the mid-

upper slopes of very tall coastal cliffs (Valdes-Bermejo and Rivas Goday, 1978) (Fig. 1). 

Most enclaves are characterized by thin soils developed on a range of metamorphic 

substrata (serpentinites, amphibolites, gneisses). Recently, a new site was discovered 

on igneous soil (granitoid) in a relatively isolated isthmus (approximately, 25 km away 

from the other sites) (Soñora, 1994). It has been estimated that the total occupancy 

of the species does not exceed 5000 m2 (Bañares et al. 2004). C. borjae is a small (up 

to 6 cm tall), entomophilous outcrossing plant with hermaphroditic flowers (Valdés-

Bermejo and Agudo Mata 1983; Valdes-Bermejo and Rivas Goday 1978). Although not 

specifically tested in C. borjae, self-incompatibility is known to be common in 

Asteraceae, particularly among the members of the genus Centaurea (Colas et al., 

1997; Pisanu et al., 2009). Flowering period ranges from June to August (Izco et al., 

2003). Besides, germination success seems to be very low (Gómez-Orellana 

Rodríguez, 2004; R. Retuerto pers. comm.; but see Izco et al., 2003 for other 

estimates) and insect larvae are commonly found feeding on ripe fruits within mature 

flower heads (Fernández Casas and Susanna, 1986). The fruit lacks a pappus and, as 

in many Centaurea species, the presence of an elaiosome suggests that ants may play 

a role in seed dispersal. C. borjae produces rhizomes up to several meters long that 

can give rise to new rosette leaves. Rhizomes also serve as a belowground bud bank: 
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the plant is a poor competitor that gradually disappears as the surrounding plant 

community matures but rosette leaves readily resprout from dormant rhizomes if a 

disturbance destroys the surrounding community (Izco et al., 2003).  

 

Fig. 1: Centaurea borjae Basal rosette with flower (left) and typical habitat of C. borjae (right).  

Centaurea borjae is catalogued by the IUCN as “endangered” (Gómez-Orellana 

Rodríguez, 2011) and listed as priority species by the “Habitats” Directive (92/43/EEC, 

Annex II). Additionally, the habitat occupied by this species is considered as a Site of 

Community Importance (SCI) within the Natura 2000 network of protected sites. Yet, 

and despite its status as priority species, there are no data on the magnitude and 

structure of the genetic diversity of C. borjae. Its life-history traits may lead to 

contradictory hypothesis about its genetic variation. Thus, the occurrence of clonal 

propagation together with the low germination success has led to the hypothesis that 

populations are made up by ramets originating from a few genets, with a negative 

impact on the magnitude of population-level genetic diversity (Izco et al., 2003). 

Alternatively, self-incompatible outcrossers often display considerable levels of 

genetic variation (Cole, 2003; Hamrick and Godt, 1996; Nybom, 2004) and polyploids 

generally maintain higher levels of genetic diversity in small populations than do 

diploids with comparable population sizes (Soltis and Soltis, 2000). On the other hand 

the occurrence of fruits without a pappus and the probable myrmecochory indicate 

that seed dispersal could be restricted to relatively short distances (Cousens et al., 

2008; Gomez and Espadaler, 1998). Likewise, animal-pollinated plants can experience 
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limited gene flow depending on the behavior of the animal disperser (Ghazoul, 2005), 

leading to significant genetic differentiation at smaller spatial scales.  

Knowledge of the genetic diversity and structure of endemic species is a 

prerequisite to formulate scientifically rational conservation programs, both in situ 

and ex situ (Frankham et al., 2002). The genetic management of endangered wild 

populations often involves defining management units (Crandall et al., 2000; Moritz, 

1994) as well as actions intended to minimize the risk of extinction, e.g. rescue of small 

inbreed populations, management of fragmented populations (Aguilar et al., 2008; 

Frankham, 2010; Tallmon et al., 2004). The patterns of genetic diversity between 

populations can also be used to detect loci under selection, improving our knowledge 

of the species biology (Excoffier et al., 2009; Frankham, 2010).  Likewise, ex situ efforts 

in plants typically involve germplasm (mostly seeds) storage where a common issue is 

to attain a sampling regime that may encompass the full genetic diversity of the 

species and its local populations (Frankel et al., 1995). However, an important 

limitation when studying rare and/or endemic plants is the need to obtain molecular 

markers for an organism with none or very scarce previous sequence information. In 

this regard, amplified fragment length polymorphisms (AFLP) are among the 

molecular markers most commonly used in plants (Mba and Tohme, 2005; Palacios et 

al., 1999) and they have proven particularly useful in the study of rare and/or 

threatened species (e.g. Barnaud and Houliston, 2010; Kim et al., 2005; Li et al., 2008; 

Peters et al., 2009; Stefenon et al., 2008; Winfield et al., 1998; Yan et al., 2009). 

Compared to co-dominant markers (e.g. SSRs), AFLP do not allow detecting 

heterozygotes. However, the same limitation affects to co-dominant markers when 

dealing with polyploids (Bruvo et al., 2004; Obbard et al., 2006). In fact, banding 

patterns of polyploid organisms, whether obtained with co-dominant or with 

dominant markers, may not express individuals’ genotypes and should be considered 

only as phenotypes (Kosman and Leonard, 2005).  
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In the present study, we used AFLP phenotypes to investigate the genetic 

variation and population structure of Centaurea borjae to obtain information that 

may contribute to a better management and conservation of this protected narrow 

endemic. We focused in the following questions: 1) how does clonal reproduction 

contribute to population sizes?; 2) do populations show signs of diminished genetic 

variation?; 3) what is the minimum inter-plant distance for appropriate germplasm 

collection?; 4) are populations significantly differentiated from each other and, if so, 

is it possible to delineate management units? 

MATERIALS AND METHODS 

Sample collection and DNA extraction 

 Our sampling scheme covered the entire distribution range of the species and 

included the only six known sites of Centaurea borjae (Izco et al., 2003). Three sites 

were located on serpentine substrata, one on gneiss substrata, one on amphibolites 

soil, and one on a relatively isolated site with granitoid soil (see Fig. 2 in results). 

Rosette leaves were taken as putative individuals. Sampling covered the whole area 

occupied by the species at each site (see Table 1 for maximum inter-rosette distances 

at each site). Since Centaurea borjae displays an aggregated distribution, we followed 

a stratified design with 2-4 rosettes sampled per aggregation. Leaves were dried in 

silica gel and stored at -20°C until DNA extraction. DNA was extracted using the Wizard 

Magnetic Kit (Promega) according to the manufacturer’s instructions. The quality of 

extracted DNA and negative controls were checked on 1.5% agarose gels. 

AFLP analyses 

 As AFLP performance can be sensitive to reaction conditions (Bonin et al., 

2004), we used several control measures to guarantee the reproducibility of our AFLP 

fingerprints. First, selective primer combinations were chosen after screening twenty-
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four pairs of primers with three selective bases on 20 individuals (3-4 individuals per 

sampling site). The whole procedure was repeated with new, independent DNA 

extractions of the same individuals to check for reproducibility. Four primer 

combinations generating reproducible, easily scorable profiles were chosen 

(EcoRI/TruI: TAG/CAT, TAG/CAG, TAG/CAC, TAC/CAA). Second, replicate DNA 

extractions were obtained for a new set of approximately 10% of the total number of 

individuals (evenly distributed among the 6 sampling sites) and run in parallel with the 

other DNA samples to monitor reproducibility. Samples and replicates were run in a 

blind-manner to avoid any bias during scoring. Individuals from each sampling site 

were evenly partitioned between the various 96-well plates used for PCR; replicates 

and originals were always run in separate plates; samples and replicates were 

randomly distributed within plates. Third, each batch of DNA extractions (24 samples) 

included a negative control with no sample added that went through the entire 

genotyping procedure (DNA extraction included). The estimated genotyping error 

(1.5%) was consistent with results of reproducibility tests conducted for AFLP both in 

plants and animals (Bonin et al., 2004); none of the individual loci exceeded the 

maximum acceptable error rate (10%) recommended by Bonin et al. (2007).  

AFLP analyses were performed according to Vos et al. (1995) with minor 

modifications and using nonradioactive fluorescent dye-labelled primers. 

Approximately 250 ng of genomic DNA were digested at 37°C for 3 hours in a final 

volume of 20 µl with 1.25 units of EcoRI and TruI (Fermentas) and 2x Tango Buffer 

(Fermentas). Digested DNA was ligated for 3 hours at 37ºC to double-stranded 

adapters (50 pmols of adaptors E, 5’-CTCGTAGACTGCGTACC-3’ and 5’-

AATTGGTACGCAGTCTAC-3’, and M, 5’-GACGATGAGTCCTGAG-3’ and 5’-

TACTCAGGACTCAT-3’) using 0.5 units of T4 DNA ligase (Fermentas). Then, 2 µl of the 

ligation product was pre-amplified with 0.3 µM of each single selective primer (EcoRI-

T and TruI-C), 2.5 mM MgCl2, PCR buffer 1x (Applied Biosystems), 0.8 µM dNTPs, 0.04 
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µg/µl BSA, 1M Betaine and 0.4 units of Taq polymerase (Applied Biosystems) in a final 

volume of 20 µl. Amplification conditions were 2 min at 72°C; 2 min at 94°C; 20 cycles 

of 30 s at 94 °C, 30 s at 56°C, and 2 min at 72 °C; and a final extension of 30 min at 

60°C. Pre-amplification fragments were diluted 1:5 with Milli-Q water; 2.5 µl of the 

resulting solution were selectively amplified using 0.6 µM of the selective primers, 0.8 

µM dNTPS, 2.5 mM MgCl2, 0.04 μg/μl BSA, PCR Buffer 1x (Applied Biosystems) and 0.4 

units of AmpliTaq Gold polymerase (Applied Biosystems) in a final volume of 10 µl. 

Selective amplification was performed as follows: 4 min at 95°C; 12 of cycles of 30 s 

at 94°C, 30 s at 65ºC (first cycle, then decreasing 0.7°C for each of the last 11 cycles), 

and 2 min at 72°C; 29 cycles of 30 s at 94ºC, 30 s at 56ºC, and 2 min at 72ºC; and a 

final extension of 30 min at 72°C. Digestion, ligation, and PCR reactions were 

performed in a PxE thermal cycler (Thermo Fisher Scientific Inc., Waltham, MA, USA). 

Selective amplification products were electrophoresed on an ABI 3130xl automated 

DNA (Applied Biosystems) sequencer with HD-500 as size standard (Applied 

Biosystems). Fragments from 70 to 400 bp were manually scored for 

presence/absence at each selected locus with the help of GeneMarker v.1.70 

(SoftGenetics LLC, State College, PA, USA) following common recommendations 

(Bonin et al., 2005). Scores of the 4 primer combinations were assembled into a single 

binary data matrix.  

Data analysis 

 For the purposes of our data analyses, individuals collected from each 

sampling site were regarded as a putative population. Data analyses followed a 

phenotypic (“band-based”) approach as it is often the case in studies that deal with 

polyploids or that combine various levels of ploidy (Abbott et al., 2007; Andreakis et 

al., 2009; Bonin et al., 2007; Garcia-Verdugo et al., 2009; Kosman and Leonard, 2005; 

Obbard et al., 2006). Genetic diversity for each population as well as for the complete 

data set was estimated in GenAlex 6.41 (Peakall and Smouse, 2006) as the percentage 
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of polymorphic bands (5% criterion), the Shannon-Weaver Index of phenotypic 

diversity (HSW), and the average dissimilarity (simple-matching coefficient) between 

pairs of individuals (HPhen) (equivalent to Nei's gene diversity calculated from band 

frequencies, Kosman 2003). These estimates were supplemented with measurements 

of genotypic diversity based on the frequency of distinct multi-locus genotypes. To 

this aim, potential clones, i.e. individuals with identical banding pattern, were 

identified with the help of the program GenoType (Meirmans and Van Tienderen, 

2004). As rates of somatic mutations are difficult to obtain for natural populations 

(Douhovnikoff and Dodd, 2003), the threshold value for genotype detection (i.e. 

maximum distance between two individuals at which they are still assigned to the 

same genotype) equaled the genotyping error rate estimated in our reproducibility 

tests (1.5%). Individuals with missing values for any loci were excluded from the 

genotype assignment. Genotypic diversity was estimated with the help of GenoDive 

(Meirmans and Van Tienderen, 2004) as number of genotypes (G), proportion of 

distinguishable genotypes, (G/N, where N is the number of individuals), effective 

number of genotypes (Geff=1/∑pi2, where pi is the frequency of each i genotype), and 

evenness of genotypes (Eve = Geff/G).  

To detect possible loci under selection, and in order to minimize the possibility 

of false-positives, three different approaches were used. First, loci under selection 

were searched with the Bayesian method described in Beaumont and Balding (2004) 

and implemented in the software Bayescan (Foll and Gaggiotti, 2008). Bayescan 

estimates population-specific FST coefficients and uses a cut-off based on the mode of 

the posterior distribution to detect loci under selection (Foll and Gaggiotti, 2008). 

Bayescan was run by setting a sample size of 10000 and a thinning interval of 50 as 

suggested by Foll and Gaggiotti (2008), resulting in a total chain length of 550000 

iterations. Loci with a posterior probability over 0.99 were retained as outliers, which 

corresponds to a Bayes Factor >2 (i.e. “decisive selection” (Foll and Gaggiotti, 2006)) 
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and provides substantial support for accepting the model. Second, loci under selection 

were also identified using the approach of Beaumont and Nichols (1996) implemented 

in Mcheza (Antao and Beaumont 2011). Mcheza uses coalescent simulations to 

generate a null distribution of FST values based on an infinite island model for the 

populations; loci with an unusual high or low FST are regarded as under directional or 

stabilizing selection, respectively. Runs were performed with the infinite allele 

mutation model and the significance of the neutral distribution of FST was tested with 

100000 simulations at a significance value P of 0.001. The multitest correction on false 

discovery rates (FDR) was set to 1% false positive to avoid overestimating the 

percentage of outliers. Finally, the Spatial Analysis Method (SAM) described by (Joost 

et al., 2007) was used to investigate the relation between loci under selection and soil 

type. Unlike the previous procedures, SAM does not require defining the populations. 

It identifies alleles associated with environmental variables by calculating logistic 

regressions between all possible marker-environmental pairs and by comparing if a 

model including an environmental variable is more informative than a model including 

only the constant. In SAM, soil type was converted into a semi-quantitative scale 

following differences in the mineral composition (SiO2 content) of parental rocks: 

granitic soil was scored as 1, gneisses and amphibolite soils as 2, and serpentine soil 

as 3. We followed a restrictive approach and a model was significant only if both G 

and Wald Beta 1 tests rejected the null hypothesis with a significance threshold set to 

95% (P <0.00017 after Bonferroni correction). Bayescan, Mcheza and SAM were used 

under a conservative approach and the analyses were restricted to loci with a 

dominant allele frequency between 5% and 95%. This restriction decreases the 

probability that differentiation at a given locus would be incorrectly identified as a 

signature of selection just because it stood against low levels of background genetic 

variation resulting from the inclusion of low-polymorphism markers. 
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The presence of genetic structure was tested using a combination of 

individual-based and population-based approaches. First, pairwise simple-matching 

dissimilarities between individuals were visualized using Principal Coordinates 

Analysis (PCoA) as in Kloda et al. (2008). Second, the partitioning of the genetic 

diversity was evaluated by molecular variance analysis (AMOVA) (Excoffier et al., 

1992). Its significance was tested by 9999 random permutations of individuals among 

populations; the genetic variation apportioned to differences among populations was 

expressed as ΦPT, an analogue of FST. Both AMOVA and PCoA were performed in 

GenAlex 6.41 (Peakall and Smouse, 2006). Third, the correlation between genetic and 

geographic distance between populations was tested for significance with a Mantel 

test as implemented in the Isolation by Distance Web Service 3.15 (Jensen et al. 2005) 

using 10 000 bootstrap randomizations. Finally, the network structure and genetic 

connectivity among populations was assessed with a network analysis based on graph 

theory that has proved useful in population genetics and landscape ecology (Dyer and 

Nason, 2004; Garroway et al., 2008). The graph represents a landscape of discrete 

habitat patches as a set of nodes (populations) genetically interconnected by edges 

(gene flow) (Minor and Urban, 2007). The presence of an edge is determined by the 

genetic covariance of the connected populations; independent populations are shown 

unconnected. Networks were constructed with the online application Populations 

Graphs v2 (http://dyerlab.bio.vcu.edu/software/) and the analyses were carried out 

in the software Genetic Studio (Dyer, 2009). For graph construction, we retained the 

minimal edge set that sufficiently described the total among-population covariance 

structure; two populations shared an edge when there was significant covariance 

between them after removing the covariance that each population had with all the 

remaining populations. Significance was tested using edge exclusion deviance which 

identified the most important edges for each node in terms of genetic covariance. 

Extended and compressed edges were determined by regressing geographic and 

graph distances (Dyer, 2009). Graph distance was estimated as the minimal 
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topological distance connecting pairs of nodes. In a homogeneous IBD process, graph 

and geographical distances should be proportional. Alternatively, long distance 

migration can result in extended edges, i.e. relatively small graph distances between 

spatially distant populations, while high graph distances between spatially close 

populations are compressed edges revealing restricted migration (Dyer et al., 2010).  

The pattern of genetic differentiation was further investigated with individual-

based Bayesian approaches. The option for spatial clustering of individuals 

implemented in BAPS 5.3 (Corander et al., 2008) was run 3 times for each of K = 2–20 

and the optimal partition determined by the program was used to estimate the levels 

of genetic admixture of individuals (with 200 reference individuals simulated for each 

genetic group and each original individual analyzed 20 times). The data was analyzed 

with an alternative Bayesian approach as implemented in Structure v.2.3.3 (Falush et 

al., 2003; Hubisz et al., 2009; Pritchard et al., 2000). Structure was run assuming 

correlated allele frequencies. Ten runs with a burn-in period of 100 000 replications 

and a run length of 1 000 000 Markov chain Monte Carlo (MCMC) iterations were 

performed for a number of clusters ranging from K = 1 to 10. The value of K that 

captured most of the structure in our data was determined using the approach 

originally proposed by Pritchard et al. (2000) with further guidance derived from the 

procedure of Evanno et al. (2005) based on the rate of change of the estimated 

likelihood between successive K values. Runs of the selected K were averaged with 

the Clummp version 1.1.1 (Jakobsson and Rosenberg, 2007) using the LargeKGreedy 

algorithm and the G’ pairwise matrix similarity statistics. 

 To investigate the fine-scale spatial genetic structure (fine scale SGS), the 

location of each individual sample was carefully recorded in three sites covering the 

whole range of the species (PR, PC, LI). The kinship coefficients between pairs of 

individuals (FL) within each site were calculated following Loiselle et al. (1995). The 

hypothesis that there was significant SGS was tested by comparing the observed 
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regression slope of FL on the logarithm of pairwise geographic distances, b, with those 

obtained after 10 000 random permutations of individuals among locations. Tests 

were conducted for each individual site as well as for the pooled data set. Standard 

errors for b were calculated by jackknifing over loci and used to test for significant 

differences among slopes. SGS was then quantified by an Sp statistic that represents 

the rate of decrease of FL with distance (Vekemans and Hardy, 2004); Sp was 

calculated as –b/[1-F(1)], where F(1) is the average kinship coefficient between 

neighboring individuals. However, this approach assumes a linear relationship 

between FL and ln of distance. Therefore, the SGS was visualized by plotting mean FL 

estimates over pairs of individuals in a given distance interval against distance; the 

extent of the linear relationship was determined as the distance at which mean FL 

showed no obvious trend. Estimates of b and Sp were restricted to these maximum 

distances and computed with the help of SPAGEDI (Hardy and Vekemans, 2002).  

RESULTS 

Genetic diversity measures 

A total of 129 markers were scored in 180 individuals. Fifty-nine (45.7%) loci 

were segregating for the complete dataset and were retained for diversity estimates. 

Only one private band was detected in the geographically isolated PR. The estimates 

of total genetic diversity for the species (HPhen = 0.258; HSW = 0.413) were slighter 

above most of the values for single populations (Table 1). The three indices of genetic 

diversity were correlated across populations. OB exhibited the highest genetic 

diversity (86.4% polymorphic loci, HPhen = 0.280; HSW = 0.435) with values 20-25% 

higher than the estimates obtained at VH, the population with the lowest values for 

most indices (64.4% polymorphic loci, HPhen = 0.192; HSW = 0.309). The remaining four 

populations produced very similar estimates (69.5-74.6% polymorphic loci, HPhen = 
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0.217-0.224; HSW = 0.348-0.360), intermediate between OB and VH but slightly closer 

to the values observed in VH.  

The 175 individuals used for genotype assignment (5 individuals were excluded 

due to the presence of missing values at some loci) produced 154 distinct genotypes 

(Geff = 125, G/N = 0.880). Potential clone mates always occurred in the same 

population, often spatially close to each other. The presence and relative abundance 

of potential clone mates (i.e., genotypic diversity) depicted an arrangement of genetic 

diversity somewhat different from the image derived from non-genotypic indices. 

Again, OB produced the highest estimates (G = 29, Geff = 28.1, G/N = 0.967) and VH 

produced the lowest (G = 21, Geff = 15.0, G/N = 0.700). However, Table 1 shows the 

occurrence of two groups of populations with very different levels of diversity. Most 

of the individuals sampled in the three southernmost populations (OB, PC, and the 

geographically remote PR) had distinct genotypes, while 24-30% of the rosettes 

sampled in the three northernmost ones (OBB, VH, LI) were potential clone mates 

with identical AFLP banding patterns. As a results, the various estimates of genotypic 

diversity were clearly higher in southernmost populations (G = 25- 29, Geff = 25.1-28.1, 

G/N = 0.961-0.967) than in northernmost ones (G = 21-26, Geff = 15.0-20.5, G/N = 

0.700-0.862). The index of evenness indicates that a few genotypes were repeatedly 

found in a considerable fraction of the individuals sampled in these northernmost 

sites.  
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Table 1. Centaurea borjae. Genetic characteristics of each sampling location based on 59 segregating 
loci. 

LI, O Limo; VH, Vixia Herbeira; OBB, O Bico2; OB, O Bico; PC, Punta Candieira; Pr, Prior. Dmax = maximum 
distance (in m) between samples, N, number of individuals; PL, number (and percentage) of 
polymorphic loci (5% criterion) (percentage for the total data set based on 129 scorable loci); PB, 
number of private bands; HPhen, average simple-matching dissimilarity between pairs of individuals 
(equivalent to Nei’s gene diversity for band frequencies); HSW, Shannon-Weaver Index of phenotypic 
diversity; G, number of distinct genotypes; Geff, effective number of genotypes; Eve, evenness; Sp, Sp 
statistic of autocorrelation (Vekemans and Hardy 2004). 

Identification of possible loci under selection 

Of the 129 reproducible AFLP loci, 59 had dominant allele frequencies ranging 

5% to 95% and were included in outlier analyses (Table 2). Together, the three outlier 

detection approaches identified six loci as potentially under selection but only locus 

31 was consistently detected as an outlier by the three procedures. In Bayescan, the 

six-population analysis identified two loci under selection: one under “very strong” 

selection log10BF>1.5 and another under “decisive” selection log10BF>2. Using the 

model of infinite alleles at a significance P value of 0.001, Mcheza only identified one 

locus under directional selection that coincided with the marker considered under 

“very strong” selection by Bayescan. After calculating logistic regressions between all 

possible marker-environmental pairs and with a significance threshold set to 95% 

after Bonferroni correction, SAM detected 5 loci associated with soil type. Again, this 

set of loci included locus 31 detected by both Mcheza and Bayescan.   

Band-based Genotypic 

Pop Dmax N PL PB HPhen HSW (±SE) N G  Geff G/N Eve Sp 

LI 200 32 43 (72.9) 0 0.223 0.354 ±0.029 31 26 20.5 0.839 0.79 0.400 

VH 320 30 38 (64.4) 0 0.192 0.309 ±0.030 30 21 15.0 0.700 0.71 N/A 

OBB 240 29 44 (74.6) 0 0.224 0.360 ±0.027 29 25 17.2 0.862 0.69 N/A 

OB 191 30 51 (86.4) 0 0.280 0.435 ±0.025 30 29 28.1 0.967 0.97 N/A 

PC 600 30 41 (69.5) 0 0.217 0.348 ±0.028 29 28 27.1 0.965 0.97 0.132 

PR 260 29 41 (69.5) 1 0.217 0.349 ±0.028 26 25 25.1 0.961 0.97 0.088 

Total 180 59 (45.7)  0.258 0.413 ±0.022 175 154 125.0 0.880 0.81 0.185 

55 



 
 CHAPTER 1 

Table 2. Detection of possible loci under selection. 
 

 

 

 

 

 

 

Numbers in bold are loci detected as potentially under selection by SAM (P values for G and Wald Beta 
1 with a significance threshold set to 95% corresponding to P <0.00017 after Bonferroni correction), 
BayeScan (log10(BF)>1.5 corresponding to “very strong selection”), and MCHEZA (P <0.001).  

 Since none of the six loci detected as outliers seemed linked to serpentine soil 

no obvious differences between serpentine LI, VH, OBB and non-serpentine sites OB, 

PC, PR were found. Instead, our results reveal that site PR had the largest influence 

on the detection of outlier loci. PR displayed a distinctive genetic composition for 

most of the loci detected by SAM (Table 3). Interestingly, locus 31 was private to PR. 

Similarly, PR also produced the highest (loci 11 and 38) or the lowest (loci 20 and 23) 

estimates for the frequency of the dominant allele.  

Table 3. Population relative frequency of the dominant allele (as %) for six outlier loci. 

 LI VH OBB OB PC PR 

Locus 11 29.0 6.7 21.4 40.0 10.3 78.3 

Locus 20 70.8 83.3 42.7 50.0 44.8 13.0 

Locus 23 58.1 90.0 78.6 66.7 62.1 30.4 

Locus 31* 0.0 0.0 0.0 0.0 0.0 60.8 

Locus 38 51.6 50.0 28.6 50.0 79.3 82.6 

Locus 41 83.9 36.7 35.7 13.3 55.2 60.8 

Numbers in bold are sites with serpentine soil. * indicates the locus detected as under selection by the 
three approaches 

 SAM  BAYESCAN  MCHEZA 

P value for G P value for Wald Beta 1  log10(BF)  P(Simul FST<sample FST) 

Locus11 2.98E-07 1.08E-06  0.476  0.9852 

Locus20 1.37E-06 1.18E-05  -0.104  0.8112 

Locus23 0.000117 0.000109  -0.183  0.7520 

Locus31 5.55E-16 0.499992  1.8770  0.9992 

Locus38 0.000167 0.000363  -0.0885  0.6871 

Locus41 0.196413 0.098697  2.1280  0.9621 
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Population structure 

AMOVA revealed that most 88% of the genetic variation occurred within 

populations (Table 4). Still, population differentiation was highly significant 

ΦPT=0.119, P < 0.0001.  The exclusion of PR from the dataset had minimal impact on 

the genetic differentiation, and ΦPT=0.104 continued to be highly significant P< 

0.0001. 

Table 4. Analysis of molecular variance (AMOVA) based on 59 segregating markers in C. borjae. 

Separate analyses were carried out for the complete data set (6 populations) and for the subset of sites 
from the main range of the species (excluding the geographically isolated PR). P-values based on 9999 
permutations. d.f. =degrees of freedom, MSD = mean squared deviations. 

All pairwise ΦPT were also significant P < 0.05 after Bonferroni correction for 

multiple testing. Even the comparison between the geographically close OB and OBB 

separated by 0.8 km was significant ΦPT= 0.037. The highest level of differentiation 

occurred between VH and PR ΦPT = 0.222. PR also yielded the highest ΦPT values when 

compared to any of the other populations from ΦPT = 0.114 for PR-PC to ΦPT = 0.154 

for PR-OBB. The Mantel test provided only weak evidence that genetic and geographic 

distances correlated along the species range. The moderately significant Mantel 

correlation was largely dependent on the inclusion of PR, the geographically isolated 

population, in the data set r = 0.1946, Mantel P = 0.036. Without PR, the correlation 

became non-significant.  

Source of variation d.f. MSD Variance components P-value ΦPT 

All (6) populations 

Among populations 5 34.86 0.933 (12%) < 0.0001 0.119 

Within populations 174 6.88 6.880 (88%) 

Main range (5) populations 

Among populations 4 31.18 0.803 (10%) < 0.0001 0.104 

Within populations 146 6.92 6.927 (90%) 
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 The network generated by the 59 polymorphic loci only contained 10 out of 

the 15 possible edges indicating that the genetic covariance between populations was 

limited (Fig. 3). The network was largely consistent with an IBD pattern as 7 out of the 

10 edges were proportional to geographical distance. PR, LI, and OBB produced the 

largest number of connections 4 edges each while OB, PC, and VH were less connected 

in genetic terms 3, 2, and 2 edges, respectively. Many edges involved geographically 

adjacent sampling sites; only PR, and to a lesser extent LI, showed connections with 

spatially distant populations but their edges were mostly proportional to geographical 

distance. VH was linked only by compressed edges highlighting its genetic isolation 

despite the geographical placement between OBB and LI. 

 

 

 

 

 

 

 

 

 

Fig.3. Genetic network of C. borjae created with 59 polymorphic loci. Site symbols indicate soil type: 
triangle, serpentine; circle, gneisses; solid square, amphibolites; star, granitoid. Populations connected 
by lines exhibit significant conditional genetic covariance. Solid lines indicate genetic distances 
proportional to spatial distances. Dotted lines ----- are compressed edges with relatively higher 
conditional genetic distance in respect to spatial separation, whereas dashed lines - - - - denote 
extended edges with small conditional genetic distance in respect to spatial separation. When 
necessary, coordinates for some populations have been slightly modified to avoid excessive line 
overlap.  
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Individual-based analyses produced results largely consistent with those 

obtained from population-based approaches. Confirming that most of the genetic 

variation occurs within populations, the PCoA plot 47% of the variation explained by 

the first two axes, Fig. 4 showed considerable overlap between the individuals 

collected at the 6 sites. However, the graph also revealed that the individuals from VH 

and PR formed two discrete groups with limited overlap.  

Fig. 4. Principal Coordinates Analysis PCoA of pairwise simple-matching dissimilarities between 
individuals of C. borjae. PCo1 and PCo2 explain 47% of total variation.  

With AFLP markers treated as phenotypes, BAPS identified 9 genetic groups as 

the optimal partition log-likelihood value = -4332.5, probability for 9 clusters = 0.9996 

although 2 out of the 9 genetic clusters consisted of one single individual each. 

Genetic admixture was generally low and most individuals 98% were assigned to a 

single cluster. The admixture clustering graph (Fig. 2) shows that the six populations 

can be divided into 4 groups according to their genetic lineage. Again, PR and VH 

consisted mainly of individuals assigned to one genetic group different in each 

sampling site while PC, OB, and OBB formed a larger group that was consistent with 

the overlap seen in the PCoA. One single genetic cluster dominated in these three 

populations 74% of the rosettes, although two other clusters also attained some 
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representation 15% and 7%, respectively. The plants collected in LI were evenly 

partitioned among 4 genetic clusters: two lineages 52% individuals were unique to LI 

while the other two were those also common in PR 23% and PC-OB-OBB 26%. Results 

from Structure corroborated the signal detected by BAPS. Log-likelihood values 

reached a plateau beyond K = 7, suggesting that a model with seven genetic clusters 

captured most of the structure in the data Pritchard et al. 2000. The method of Evanno 

et al. 2005 confirmed that the highest rate of change in the log probability of the data 

occurred both at K = 2 ΔK=108 and K = 7 ΔK=50. The partition for K = 2 seemed 

biologically meaningless. By contrast, clustering for K = 7 resembled the partition 

obtained with BAPS figure not shown but with a higher degree of admixture Dirichlet 

parameter α = 0.073. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Sites sampled in this study and population structure according to BAPS. Range occupancy is 
strongly fragmented into very small enclaves. Site symbols indicate soil type: triangle, serpentine; 
circle, gneisses; solid square, amphibolites; star, granitoid. The histogram shows the results of 
individual assignment by the admixture analysis performed for an optimal number of 9 genetic clusters 
P = 0.9996. Each vertical bar corresponds to one individual with patterns indicating the probability of 
assignment to each cluster.  
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Fine-scale spatial genetic structure 

Average kinship coefficient decreased steadily until some distance in the three 

sites investigated for SGS (Fig. 5). Beyond that point, the relationship between the 

kinship coefficient and distance either experienced a rapid reduction in slope or 

disappeared. The distance for the change in slope varied among sites: 80 m in LI, 40 

m in PC, and 35 m in PR. Calculations of b and the Sp statistic were restricted to these 

maximum distances to avoid any bias derived from this nonlinearity.  

Fig. 5. Correlograms showing the mean kinship coefficient FL as a function of distance for LI black solid 
squares, PC crosses, and PR grey solid circles clonal ramets included. Dotted lines are the 95% 
confidence belt for the null hypothesis of no spatial genetic structure determined by 10 000 
permutations.  

Slope b was always significant supporting the occurrence of SGS in the three 

sites and in the pooled data set P< 0.05. Slope comparison revealed significant 

differences among sites. The kinship coefficient fell more sharply with distance in LI 

b= -0.211 than in PC or PR -0.110 and -0.080, respectively; P < 0.05 for the comparison 

between LI and either PC or PR; the slopes of the latter two sites were statistically 

indistinguishable P > 0.05. One might suspect that the sharper slope of LI could be an 

artifact of a higher frequency of clonal ramets. In LI clone mates were detected 

separated as far as 20 m with an average clone distance of 8 m while in PC and PR 

distance among clone mates was 1 m one single pair per site. However, the exclusion 

of clonal replicates had a slight, non-significant impact in the estimate of b = -0.190; P 
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= 0.28 for the comparison of b estimated with and without clones. The variation in 

SGS among sites was further corroborated by the Sp statistic. Moreover, compared to 

b, Sp amplified the differences between sites as its value was three to four times 

higher in LI than in PC or PR Table 1. This change of magnitude resulted from the fact 

that LI simultaneously produced the lowest b and the highest F1 = 0.473 estimates for 

the two values used to calculate Sp F1 was 0.171 and 0.098 in PC and PR, respectively. 

Again, clone removal had little impact in Sp for LI Sp = 0.329, F1 = 0.424.  

DISCUSSION 

 Centaurea borjae shows a total occupancy typical of a narrow endemic (< 5 

000 m2) arranged into a strongly fragmented distribution (Bañares et al., 2004; 

Valdes-Bermejo and Rivas Goday, 1978). As a result, this plant is catalogued as 

endangered by national and supranational organisms (e.g. Gómez-Orellana 

Rodrígue,z 2011; Ministerio de Medio Ambiente y Medio Rural y Marino, 2011). 

According to the IUCN red list, major threats to its survival are a poor reproductive 

strategy together with the lack of appropriate habitat while other threats include 

livestock (trampling, predation) and tourism (trampling, anthropization) (Gómez-

Orellana Rodríguez, 2011). Despite its conservation status, C. borjae has received little 

attention. In particular, its genetic variation has been totally overlooked. This gap in 

our knowledge can be filled using neutral markers such as AFLP. Although there is 

growing evidence that the correlation between neutral and adaptive variation might 

not be very high, a high neutral variation may indicate the potential for significant 

adaptive variation (Reed and Frankham, 2003).  

 How does clonal reproduction contribute to population sizes? A main concern 

for the long-term preservation of Centaurea borjae derived from the suspicion that its 

populations might be formed by a few genets with numerous ramets (Izco et al., 

2003). Clonal self-incompatible species have been reported to display lower genotypic 
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diversities than self-compatible ones (Honnay and Jacquemyn, 2008) and rare/narrow 

endemic plants with small populations seem to be more clonal than more widespread 

ones (Silvertown, 2008).  

Our results confirm that potential clone mates do occur in every population 

and reveal a clumped clonal structure (i.e. clone mates were detected spatially close 

to each other) typical of plants that clone by organs that are not easily dispersed such 

as underground rhizomes (Vallejo-Marin et al., 2010). However, the high G/N 

estimates calculated for most populations (range 0.700-0.967) reveal a comparatively 

low extent of clonality since average G/N values in studies of clonal plants often are 

<0.65 (Vallejo-Marin et al., 2010). While acknowledging that our estimates are likely 

to overestimate the clonal diversity of C. borjae since our ramet sampling was not 

exhaustive, as it is often the case in most studies (Vallejo-Marin et al., 2010), they still 

suggest that clonal growth in C. borjae might not have the very large impact 

anticipated from direct observations of vegetative propagation in the field.  

We found a lower clonal diversity in the three northernmost populations. 

Large differences in clonal diversity among populations of individual species seem 

common in plants (see Arnaud-Haond et al., 2007 and references therein) and 

previous literature surveys have found that the frequency of clonality increases with 

population age or with increasing latitude (Silvertown, 2008). However, and to the 

best of our knowledge, geological substratum is the only consistent difference 

between our two sets of populations: serpentinites in the 3 northernmost sites; 

gneisses, amphibolites, and granitoids in the other 3 ones. Since serpentine soils are 

characterized by high levels of toxic heavy metals (Cr, Ni, Co) that may affect plant 

growth, it might be suggested that the conditions created by the serpentine soil may, 

at least partly, favor clonal propagation in C. borjae. In this regard, previous 

experimental studies have shown that clonal plants ameliorate the stressful effects of 
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serpentine soils through physiological integration among connected ramets (Roiloa 

and Retuerto, 2006).  

 None of the six loci detected as outliers in our analyses seemed linked to 

serpentine soil. Instead, the detection of outlier loci was largely influenced by the 

presence of one single population (PR). Given the peculiarities of outlier detection 

procedures (Excoffier et al., 2009; Foll and Gaggiotti, 2008), the influential role played 

by PR possibly derives from its geographic isolation. Moreover, even the locus that 

was simultaneously detected as an outlier by the three procedures must probably be 

regarded as an artifact of our sampling design (for further discussion on this topic see 

Supplementary Material S1).   

 Do populations show signs of diminished genetic variation? No evidences of 

genetic impoverishment were detected in Centaurea borjae. Instead, our data 

revealed relatively high levels of genetic variation both at species and at population 

level. The percentage of polymorphic loci in C. borjae is comparable to estimates 

obtained in other outcrossing plants (Despres et al., 2002; Kato et al., 2011; Morden 

and Loeffler, 1999; Tero et al., 2003; Vilatersana et al., 2007). Genotypic diversity was 

likewise high and revealed a low percentage of clone mates in comparison with other 

clonal species (Arnaud-Haond et al., 2007; Silvertown, 2008; Vallejo-Marin et al., 

2010). Also, our AFLP-derived estimates of HPhen compare well with values obtained 

using dominant markers in other perennial outcrossers with mid successional status 

(Nybom, 2004). Allogamous perennials, particularly when long-lived, often yield the 

highest mean levels of within-population diversity in plant studies (Nybom, 2004). In 

this regard, the diversity recorded within populations of C. borjae is in the mid to high 

end of the values typically found in plants studied with dominantly inherited markers.  

 Our estimates for C. borjae also fall within the range of values inferred for 

other endemic members of the genus Centaurea investigated with dominant markers: 
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Centaurea nivea (Sözen and Özaydin, 2009), Centaurea wiedemanniana (Sözen and 

Özaydin, 2010), or Feminasia balearica (formerly known as Centaurea balearica, 

Vilatersana et al., 2007) (see Table S1). The latter are all diploids while polyploids like 

C. borjae are often expected to maintain higher levels of heterozygosity than their 

diploid counterparts (Soltis and Soltis, 2000). Still, Table S1 suggests that ploidy level 

exerts an uncertain influence on the estimates of genetic diversity obtained for other 

members of the genus. Table S1 also shows that while endemic Centaurea often 

display less genetic variation than their widespread counterparts, some endemic taxa 

reach levels of diversity equaling that of their widespread congeners as observed in 

other studies (Cole, 2003; Gitzendanner and Soltis, 2000). In fact, the differences 

between endemic and widespread Centaurea shown in Table S1 could be partially 

attributed to the different maker system used to investigate each type of taxa as many 

endemic Centaurea were studied with allozymes while most of the widespread taxa 

were investigated with microsatellites.   

The retention of moderate-high levels of genetic diversity seems consistent 

with some features of C. borjae. Allogamous, insect-pollinated species like C. borjae 

often show higher genetic diversity than self-pollinated plants (Hamrick and Godt, 

1996; Kim et al., 2005; Takahashi et al., 2011). Also, the presence of seed, bulb, or bud 

(C. borjae) banks is known to buffer plant populations against dramatic changes in 

genetic composition (see Ellstrand and Elam, 1993 and references therein). Likewise, 

endemic does not necessarily equate to rare. Some endemic/restricted species can be 

locally abundant and, consequently, less sensitive to the effects of genetic drift. In this 

regard, only rough estimates of local abundance are available for C. borjae (Bañares 

et al., 2004; Izco et al., 2003) but our observations suggest that local populations are 

made up of a few thousand rosette leaves that, given our G/N ratios, possibly 

represent comparably high numbers of genetically distinct individuals. Finally, 
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polyploids generally maintain higher levels of heterozygosity than their diploid 

progenitors (Soltis and Soltis, 2000).  

 What is the minimum inter-plant distance for appropriate germplasm 

collection? The fine-scale SGS found in Centaurea borjae indicates that rosette leaves 

at close distances can be more related than spatially random pairs. The values of the 

Sp statistic for C. borjae fit the higher end of the estimates compiled by Vekemans and 

Hardy (2004) for 47 plant species. Therefore, our results are in agreement with the 

strong SGS expected in species with low dispersal, clonal reproduction, and/or low 

density (Vekemans and Hardy, 2004). Albeit solid in statistical terms, Sp cannot be 

easily translated into guidelines for conservation. Likewise, the x-intercept in an 

autocorrelogram, another commonly used SGS parameter, has been severely 

criticized by its high sensitivity to sampling strategy (e.g. Zeng et al., 2010). In this 

regard, Vekemans and Hardy (2004) noted that there is one case where a critical 

distance, more useful for conservation purposes, can still be defined; if FL decreases 

steadily until some distance x, showing no further trend, SGS can be said to occur until 

x. This seems to be the case in C. borjae where the extent of SGS deducted with this 

procedure would vary from 35-40 m in PR-PC to 80 m in LI. Therefore, as a general 

recommendation, efficient germplasm collection should avoid rosettes separated <80 

m although distances as short as 35-40 m might be acceptable in southernmost sites. 

These distances will also prevent the collection of clone mates. 

 Are populations significantly differentiated from each other and, if so, is it 

possible to delineate management units? Several pieces of evidence suggest that 

dispersal and/or gene flow is restricted in Centaurea borjae. First, the moderate, but 

significant, among-population variability detected at population scale is consistent 

with a scenario of low gene flow, although any conclusion about gene flow based on 

ΦST estimates must be made with caution, particularly when dealing with wild 

populations that likely violate the model assumptions behind this statistic (Marko and 
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Hart, 2011; Whitlock and McCauley, 1999). Second, the fine-scale SGS detected in C. 

borjae is typical of plants with restricted dispersal and/or gene flow (Chung et al., 

2005; Jump and Peñuelas, 2007; Sebbenn et al., 2011). Finally, the network analysis 

also indicates restrictions to connectivity with only ten out of the fifteen possible 

edges present in the network and with the detection of some compressed edges 

connecting spatially close populations.  

The trend for endemic species to be poor colonizers has received support in 

comparative studies with widespread congeners (Lavergne et al., 2004) and seems 

consistent with unpublished evidence indicating that seed output and germination 

success is very low in C. borjae (R. Retuerto, pers. comm.) probably due to a high 

sterility of the achenes (Valdés-Bermejo and Agudo Mata, 1983). Limited dispersal 

also seems consistent with several life-history traits of C. borjae. Thus, although many 

pollinators can cross large distances in flight, animal-mediated pollen dispersal can be 

limited depending on the behavior of the animal disperser and/or the frequency and 

distribution of floral resources (Ghazoul, 2005). Likewise, the absence of a pappus and 

probable myrmecochory of C. borjae suggest that seed dispersal could be restricted 

to short distances (Cousens et al., 2008; Gomez and Espadaler, 1998). In this regard, 

evidence for low pollen flow rate among populations and very limited seed dispersal 

by ants has also been reported for Centaurea corymbosa¸ another endemic member 

of the genus Centaurea (Hardy et al., 2004; Imbert, 2006). Likewise, heavy cypselas 

and restricted pollen dispersal were invoked as plausible causes for the very low levels 

of gene flow found in the related taxa Feminiasia balearica (Vilatersana et al., 2007).  

Our AFLP data consistently identified the set PC-OB-OBB as clearly 

differentiated from the other populations. Moreover, the individual-based analysis 

assigned most of the rosette leaves sampled in the PC-OB-OBB set to a genetic cluster 

that does not occur in PR, VH, or LI. Therefore, our data supports the designation of 

PR, VH, LI, and the PC-OB-OBB set as distinct MUs. Interestingly, genetic diversity and 
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differentiation in PR was comparable to the values estimated in other populations 

indicating that its geographical isolation did not have any obvious consequence on 

these genetic attributes. Still, most of the outlier loci detected in our analyses showed 

a different frequency of the dominant allele in this population. This included the only 

private marker found in our study, suggesting that PR may have separated long time 

ago (Vilatersana et al., 2007). Alternatively, a portion of the rosette leaves sampled in 

PR share their genetic lineage with samples from LI, at the other end of the 

distribution range of the species, suggesting that both populations were connected in 

the past or episodes of long-distance dispersal.   

 It has been claimed that the very specific habitat of Centaurea borjae (thin, 

often ultrabasic, soils on sea cliffs) is in continuing decline due to human pressure and 

grazing (Gómez-Orellana Rodríguez, 2011). Yet, this claim is debatable. Excessive 

grazing and trampling, for example, are expected to have a negative impact on 

populations but moderate grazing of potential competitors possibly facilitates the 

persistence of C. borjae since this plant avoids areas with dense overlying vegetation. 

As for human pressure, the complete range of C. borjae falls within the Natura 2000 

network (SCI ES1110002) implying that significant human developments require 

approval from environmental authorities. Moreover, the steep slope and harsh 

environmental conditions typical of the areas occupied by C. borjae provide an innate 

protection by rendering these sites unattractive and/or unsuitable to human 

activities. Alternatively, modeling efforts predict that the habitat suitable for C. borjae 

could disappear in the next 30 years due to global warming (Project PNACC; 

http://secad.unex.es/wiki/oeccpr). If so, ex situ conservation could be imperative and 

our results recommend that seed collection should avoid rosette leaves separated <80 

m. Actually, no matter the immediate threats, ex situ conservation may seem 
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unavoidable if we recall that polyploids are regarded as evolutionary dead ends that 

experience higher extinction rates than diploids (Mayrose et al., 2011).  

In conclusion, Centaurea borjae showed no signs of decreased genetic 

variation. Even the frequency of potential clone mates was lower than anticipated, 

although we found some evidence that they might be more frequent in northernmost 

populations linked to serpentine soil. As in other outcrossing perennials, most of the 

genetic variation occurred within populations. Nonetheless, the significant genetic 

differentiation detected in our study suggests that population connectivity could be 

low while the fine-scale SGS reinforces the image of a plant with limited dispersal. The 

moderate genetic differentiation and similar genetic lineage deducted for three 

geographically close populations located at the center of the range suggests that they 

might be more closely related that the remaining populations. In situ conservation 

measures should consider these groups of populations as separate management 

units.  
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  CHAPTER 2 

ABSTRACT  

 A previous study with AFLP fingerprints found no evidence of genetic 

impoverishment in the endangered Centaurea borjae and recommended that four 

management units (MUs) should be designated. Nevertheless, the high ploidy (6x) of 

this narrow endemic plant suggested that these conclusions should be validated by 

independent evidence derived from non-nuclear markers. Here, the variable trnT-F 

region of the plastid genome was sequenced to obtain this new evidence and to 

provide an historical background for the current genetic structure. Plastid sequences 

revealed little genetic variation; calling into question the previous conclusion that C. 

borjae does not undergo genetic impoverishment. By contrast, the conclusion that 

gene flow must be low was reinforced by the strong genetic differentiation detected 

among populations using plastid sequences (global FST = 0.419). The spatial 

arrangement of haplotypes and diversity indicate that the populations currently 

located at the center of the species range are probable sites of long-persistence 

whereas the remaining sites may have derived from a latter colonization. From a 

conservation perspective, four populations contributed most to the allelic richness of 

the plastid genome of the species and should be given priority. Combined with 

previous AFLP results, these new data recommended that five, instead of four, MUs 

should be established. Altogether, our study highlights the benefits of combining 

markers with different modes of inheritance to design accurate conservation 

guidelines and to obtain clues on the evolutionary processes behind the present-day 

genetic structures.    

Key words: Centaurea borjae, conservation, cpDNA, genetic diversity, narrow 

endemic, trnT-F. 
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  CHAPTER 2 

INTRODUCTION 

 According to the International Union for Conservation of Nature (IUCN), 

genetic variation is a key component of biodiversity and must be preserved 

(www.iucn.org). Genetic variation is essential to facilitate evolutionary responses to 

environmental change (Lande, 1988; Reed and Frankham, 2003). Low levels of genetic 

diversity can reduce the evolutionary potential and increase the short-term extinction 

risk of a species (Frankham et al., 2002; Willi et al., 2006; Allendorf and Luikart, 2007). 

In this context, proper conservation of biodiversity requires reliable estimates of the 

magnitude and the spatial distribution of genetic variation within and among 

populations (Hamrick and Godt, 1996; Frankham et al., 2002). This knowledge is even 

more relevant in narrowly occurring plants as they often combine a number of 

features that make them potentially susceptible to genetic risks: reduced population 

size, habitat specificity, and isolation (Ellstrand and Elam, 1993; Hamrick and Godt, 

1996; Cole, 2003).  

 Centaurea borjae Valdés B. and Rivas G. (1978) is a good example of the latter. 

A narrow endemic in the otherwise widespread genus Centaurea (Asteraceae), this 

small perennial plant has a total occupancy below 5000 m2 (Bañares et al., 2004). It 

occurs in a few enclaves concentrated in 16 km of costal cliffs in North West Iberian 

Peninsula, except for a geographically isolated population that was discovered 25 km 

apart from the other sites (Soñora, 1994). Given its extremely narrow range, C. borjae 

is listed as “endangered” by national (Spanish Catalogue of Threatened Species) and 

international (IUCN) organizations (Gómez-Orellana Rodríguez, 2011), and included 

among the “priority species” of the Habitats Directive (92/43/EEC, Annex II). In 

addition to its small range, this plant possibly has little potential for dispersal. Thus, 

several pieces of evidence suggest that seed production may be small. Rosette leaves 

develop a single capitulum (rarely 2) per year that, according to some estimates, 

produce a limited number of viable fruits (7 fruits per capitulum on average; Izco, 
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2003). Moreover, although C. borjae is an entomophilous outcrosser with 

hermaphroditic flowers, self-incompatibility is known to be common in other 

Centaurea (Colas et al., 1997; Pisanu et al., 2009; Sun and Ritland, 1998). Some 

estimates indicate that germination success is likewise low (Retuerto R, 2012, 

unpublished data; but see Izco, 2003 for other estimates; Gómez-Orellana Rodríguez, 

2004), possibly aggravated by the fact that insect larvae are commonly found feeding 

on ripe fruits within mature flower heads (Fernández Casas and Sussana, 1986). 

Finally, seed dispersal is thought to be limited too, as the fruit lacks a pappus. Instead, 

the presence of an elaiosome suggests that ants may play a role in seed dispersal as 

they do in many other Centaurea (Imbert, 2006). In comparison, vegetative 

propagation can be considerable because C. borjae produces asexual rhizomes up to 

several meters long. Despite the above, a previous survey of C. borjae with highly 

polymorphic nuclear markers (amplified fragment length polymorphism, AFLP) failed 

to detect signs of genetic impoverishment (Lopez and Barreiro, 2012). Contrary to the 

expectations of a predominantly vegetative propagation, the AFLP fingerprints 

revealed that clone mates were rare. Still, C. borjae did show substantial 

differentiation among locations. Even sites separated by only a few hundred meters 

were significantly different. This strong genetic differentiation was consistent with the 

poor dispersal capacity anticipated by its biological traits and suggested that gene 

flow must be low among populations. Moreover, there was evidence that gene flow 

was likewise restricted within populations because small-scale spatial analyses 

revealed a significant autocorrelation for distances up to 35–80 m. This limited gene 

flow explains why, with the help of Bayesian assignment methods, we proposed to 

divide the range of C. borjae into four management units for conservation purposes.  

 Genome-wide markers such as AFLP and random amplified polymorphic DNA 

(RAPD) have been widely used in plant studies because of their easiness to produce 

large numbers of highly variable markers in species that lack prior sequence 
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information (Mba and Tohme, 2005; Schaal et al., 2003). These fingerprinting 

techniques have been very fruitful in a wide range of applications (see Meudt and 

Clarke, 2007 and references therein) but they also have shortcomings. In this regard, 

our set of AFLP markers for C. borjae featured a very high resolving power as 

evidenced by the fact that most of the rosette leaves sampled in our study showed a 

distinct fingerprinting profile. As a result, our data seemed particularly well suited for 

analyses that involved an individual-based approach such as population assignment 

procedures, detection of small-scale spatial genetic structure, and identification of 

potential clone mates. However, their accuracy for analyses that required a 

population-based approach, e.g. estimates of genetic diversity and differentiation at 

the population level, was less clear. Due to the dominant mode of inheritance of 

AFLP/RAPD, allele frequencies are not directly accessible. Instead, data analysis relies 

on certain assumptions or resorts to alternative approaches (e.g. band-based analysis) 

which may raise concerns over bias in their estimates (Bonin et al., 2007). The latter 

seems particularly worrisome in polyploids such as C. borjae, a hexaploid with 2n = 66 

and x = 11. Moreover, it also implies that their genome offers more opportunities to 

hide part of the genetic diversity to the predominantly nuclear AFLP markers.  

 Another important limitation of AFLP/RAPD is that their data cannot be 

historically ordered. As a result, they provide only indirect information about 

population histories (Avise, 2004). However, the distribution of genetic variation in 

plant populations is strongly affected both by currents patterns of microevolutionary 

forces, such as gene flow and selection, and by the phylogenetic history of populations 

(Schaal et al., 2003). The latter can only be inferred using markers with a different 

mode of inheritance, being chloroplast-DNA (cpDNA) variation a frequent choice in 

population-level studies of plants. Moreover, cpDNA is maternally inherited in most 

angiosperms (McCauley, 1995). Therefore, it generally informs of the genetic 

structure that results from seed flow, a variable that relates more easily to 
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demographic connectivity among populations, while the gene flow detected by 

nuclear markers is mostly due to pollen transfer (Ouborg et al., 1999). Last but not 

least, the haploid nature of cpDNA obviates the hurdles encountered while working 

with polyploids. The merits of cpDNA markers for intraspecific studies have been 

demonstrated in applications that range from population structure, to 

phylogeography, or into the reconstruction of the evolutionary history of endemic and 

endangered species (Aizawa et al., 2008; Ge et al., 2011; Gong et al., 2011; Liu et al., 

2010; Molins et al., 2009; Zhou et al., 2010). Similarly, the comparative analysis of 

chloroplast and nuclear DNA variation has become a widely used approach to get a 

more thorough view of the genetic structure in population-level studies of plants (e.g. 

Kato et al., 2011). 

 Here, we employed sequences of the non-coding cpDNA region trnT-F 

(Taberlet et al., 1991) to investigate the genetic structure of C. borjae along its range 

and the historical processes behind it. Results were compared to those obtained 

previously with unordered AFLP markers; AFLP are widely acknowledged as 

predominantly nuclear in origin (Meudt and Clarke, 2007; Nybom, 2004). More 

specifically, in this study we aimed to: (1) estimate the genetic diversity of C. borjae 

using cpDNA sequences, (2) investigate its demographic past, (3) evaluate its 

population structure, (4) identify populations of greater conservation concern and, 

finally, (5) compare the pattern obtained with cpDNA sequences with the results of 

the AFLP study.    

MATERIAL AND METHODS 

Sample collection and storage 

 Our sampling scheme covered all known populations of Centaurea borjae 

(Izco, 2003) (see Fig. 1 in results). As this plant tends to display a clumped distribution, 

2–4 rosette leaves per aggregation were sampled covering the whole area occupied 
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by the species at each site. Fresh leaves were dried in silica gel and stored at –20 °C 

prior processing. The samples used in the present study are the same as those 

analyzed for AFLP by Lopez and Barreiro (2012).   

Sequencing 

 DNA was isolated using the Wizard Magnetic Kit (Promega, Madison, USA) 

according to the manufacturer’s instructions. DNA integrity and negative controls 

were verified on 1.5% agarose gels. The trnT-F region encompasses three different 

fragments, two intergenic spacers (trnT-trnL and trnL-trnF) and the intron trnL. The 

three fragments were sequenced following Taberlet et al. (1991) with minor 

modifications. First, PCR reactions for the intergenic spacer trnT-trnL were performed 

in 25 µL using primers a and b (Taberlet et al., 1991). Reactions contained 1x reaction 

buffer, 2 mmol/L MgCl2, 0.2 mmol/L of each dNTP, 0.5 µmol/L of each primer, 1 µL of 

genomic DNA, and 1.25 units of DNA polymerase (Applied Biosystems). The trnL intron 

and the intergenic spacer trnL-trnF were amplified using primers c and d, and e and f 

respectively. PCR mixes for these fragments included 1x reaction buffer, 1.5 mmol/L 

MgCl2, 0.2 mmol/L of each dNTP, 0.5 µmol/L of each primer, 1 µL of genomic DNA, 

and 0.35 units of DNA polymerase (Applied Biosystems). Regardless of the fragment, 

PCR profiles consisted of 2 min denaturation at 94°C followed by 35 cycles of 1 min 

denaturation at 94 °C, 1 min annealing at 50 °C and 90 s of extension at 72 °C, with a 

final elongation step of 3 min at 72 °C. PCR products were visualized on 1.5% agarose 

gels and purified with 1 µL of Exonuclease I (20 U/µL) and 2 µL of FastAP (10 U/µL) 

(Fermentas). Purified PCR products were bi-directionally sequenced under BigDye 

Terminator cycling conditions on an Automatic Sequencer 3730XL (Applied 

Biosystems, USA). Trace files were trimmed and assembled in CodonCode Aligner 

3.7.1 (CodonCode Corporation, USA). Sequences were then aligned using ClustalW 

(Thompson et al., 1994) as implemented in DnaSP v 5.0 (Librado and Rozas, 2009; 

Rozas et al., 2003). Since the non-recombinant nature of cpDNA makes it equivalent 
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to a single-locus marker, sequences from the three fragments were combined into a 

single haplotype for each individual. Singleton polymorphisms and haplotypes 

occurring in on single individual were confirmed by reanalysis, starting from the 

sequencing reaction step, to discard PCR errors and/or sequencing artifacts. 

Data analysis 

 The prior study with AFLP markers detected the occurrence of clones in some 

populations. Clone mates were also sequenced for cpDNA; however, only individuals 

with unique AFLP fingerprints were retained for statistical analyses unless otherwise 

stated. Distinct haplotypes were identified with the help of DnaSP v.5 (Rozas et al., 

2003) while their genealogy was inferred with the median-joining network algorithm 

implemented in Network 4.6 (Bandelt et al., 1999). Genetic diversity was evaluated 

for each population as haplotype diversity (Hd; Nei, 1987) and nucleotide diversity (π) 

using Arlequin 3.5 (Excoffier et al., 2005). Besides, the average intrapopulation 

diversity (hs) and the total diversity (ht) were estimated using Permut (Pons and Petit, 

1996). The contribution of each population to total haplotypic diversity (CT) and total 

haplotypic richness (CrT) was estimated using Contrib (Petit et al., 1998; Pons and 

Petit, 1996) These contributions were partitioned into two components: one related 

to the level of diversity of the population (CS and CrS) and the other to its divergence 

from the others populations (CD and CrD).  

 Population structure was assessed by an analysis of molecular variance 

(AMOVA) based on haplotypes frequencies (Excoffier et al., 1992); the significance of 

the FST statistic was tested by 1023 permutations calculated with Arlequin v3.5 

(Excoffier et al., 2005). A rough estimate of migration rate (Nm) among populations 

due to seed dispersal was estimated using the expression FST=1/(1+2Nm) (Hudson et 

al., 1992; Slatkin, 1993). Also, Permut was used to calculate and compare two 

measures of population differentiation, GST and NST, under the assumption that a 

significantly higher NST value suggests the existence of phylogeographic structure 
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(Pons and Petit, 1996). The correlation between geographic and genetic distances was 

investigated with the Mantel test implemented in the IBD Web Service (Bohonak, 

2002), and its significance was determined after 1000 randomizations.  

RESULTS  

Phylogenetic relationships and geographical distribution of haplotypes 

 Among the three non-coding regions, only the intergenic spacers trnT-L and 

trnL-F showed polymorphism and were retained for statistical analyses. These two 

intergenic spacers were aligned with a total consensus length of 1003 bp: 577 bp for 

the trnT-L region and 426 bp for the trnL-F one. Sequences have been deposited in 

the GenBank database under Accession Nos. KC522681–KC522692. No intragenomic 

polymorphism (heteroplasmy) was detected in this study. Sequences were rich in A 

and T nucleotides (A/T content = 68%) in agreement with the nucleotide composition 

of non-coding chloroplast regions (Kelchner, 2000). Seven segregating sites were 

detected that included five point mutations and two indels. Three point mutations 

and the two indels occurred in the trnT-L region while only two point mutations were 

detected in the shorter trnL-F fragment. Altogether, these seven variable positions 

defined six haplotypes in the cpDNA. Three of them (H1, H2, and H6) were frequently 

sampled and comprised >95% of the individuals whereas the other three were very 

rare and only occurred in one or two individuals each.  

 The parsimony network yielded a neat genealogy free from ambiguities (Fig. 

1). According to this network, the minimum number of mutations necessary to explain 

the data was seven. Its topology revealed the occurrence of two groups of haplotypes 

separated by three mutations. This partition in two groups largely resulted from the 

two point mutations detected in the trnL-F fragment. One group contained only two 

haplotypes and was dominated by H1, the most common haplotype in our data set 

that was also widely distributed along the species range. The other group consisted 
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of haplotypes H4–H6 arranged in a star-like phylogeny around H2. All the haplotypes 

at the tips of the genealogy were always separated by one single mutational step from 

the most widespread haplotype within each group.  

Fig. 1. Map showing the locations investigated for Centaurea borjae, the distribution of the chloroplast 
haplotypes, diversity plot, and haplotype network. Location codes: LI, VH, OBB, OB, PC, and PR. Pie 
charts show relative abundances of six haplotypes (codes H1-H6) in each population with colors 
matching the haplotype network. In the diversity plot, bubble sizes are proportional to deviation from 
the mean diversity for all populations; red fill indicates diversity above the mean whereas blue fill 
shows diversity below the mean. The proportion of private haplotypes for each population (number of 
private haplotypes/total number of haplotypes) is shown beside each bubble. Thick lines summarize 
the distribution of older haplotypes H1, H2 and of haplotypes derived from them, color-coded to the 
haplotype network. The median-joining network analysis is represented at the bottom. The size of each 
circle is proportional to haplotype frequency across populations. Each black-dot in the line between 
two adjacent haplotypes indicates a mutational step. 
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As shown in Fig. 1, none of the populations was monomorphic although one 

of the haplotypes always prevailed over the others comprising >50% of individuals. In 

most cases, the prevailing haplotype was the widely distributed H1. The only 

exception was population VH which was dominated by H6. This gave VH a peculiar 

character even though haplotype H1 was also found here in nearly 25% of the 

individuals. Haplotype H6 was also detected in PR; however, its presence in PR was 

residual as it was only detected in a single individual. On the other hand, haplotype 

H2, the second-most widespread haplotype in C. borjae, seemed restricted to the 

three populations at the center of the species range (PC, OB, OBB). Remarkably, H6 

and H2 were never found in sympatry despite the fact that our genealogy indicated 

that H6 possibly derives from H2. Finally, low frequency haplotypes H3, H4, and H5 

were unique to populations LI, OB, and PC, respectively.  

Chloroplast haplotype diversity and population differentiation 

Total haplotype diversity (Hd) for the species was 0.490 ± 0.048 and total 

nucleotide diversity (π x 102) was 0.157 ± 0.104 whereas total gene diversity (ht) was 

0.515 ± 0.132 using the approach proposed by Pons and Petit (1995). On the other 

hand, average within-population gene diversity (hs) was 0.317 ± 0.089. Haplotype and 

nucleotide diversity were highly correlated across populations and ranged from 0.095 

to 0.581 and from 0.019 to 0.172, respectively (Table 1). Their highest estimates were 

recorded at populations PC and OB (Hd= 0.581 and 0.552, π x 102 = 0.172 and 0.164, 

respectively) at the center of the species range. PC and OB also contained two out of 

the three private haplotypes detected in C. borjae (Fig. 1). In comparison, the 

populations at each end of the distribution range (LI and PR) produced estimates 

below the mean for all populations but their values were similar to those recorded in 

OBB, a population that is very close to OB. The peculiar VH showed diversity values 

close to the mean for all populations. Since C. borjae reproduces asexually, diversity 

estimates were recalculated including the putative clones detected at each location. 
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This involved 10 individuals with an AFLP pattern identical to others already included 

in our data set. In the field, clone mates were found spatially clumped and they always 

had the same cpDNA haplotype. Overall, clone mate occurrence was low (18.2%) and 

had minimal impact on the estimates of diversity (results not shown). Actually, rather 

than decrease, the estimates of diversity increased slightly because many clone mates 

belonged to poorly representing haplotypes, resulting in a more balanced distribution 

of haplotypes within populations.  

Table 1 Genetic diversity measures of Centaurea borjae at the six known locations.  

Location n H S Hd (SD) π x 102 (SD) 

LI 20 2† 4 0.190 (0.108) 0.019 (0.028) 

VH 21 2 4 0.381 (0.101) 0.152 (0.106) 

OBB 21 2 4 0.095 (0.084) 0.029 (0.035) 

OB 21 3† 3 0.552 (0.066) 0.164 (0.112) 

PC 21 3† 4 0.581 (0.075) 0.172 (0.116) 

PR 19 2 1 0.105 (0.092) 0.042 (0.045) 

Total 123 6 7 0.490 (0.048) 0.157 (0.104) 

LI, VH, OBB, OB, PC, PR; n, number of sampled individuals; H, number of haplotypes († denotes the 
occurrence of one private haplotype); S, number of segregating sites; Hd, haplotypic diversity; π x 102, 
nucleotide diversity; SD, standard error. 

 The populations of C. borjae contributed differently to total haplotype 

diversity (CT) and richness (CrT) (Fig. 2). Population VH contributed much more to the 

total diversity than the others as shown by its CT value (nearly 30%). This was mostly 

due to its strong divergence (CD = 25.6%) because its diversity was essentially similar 

to the average (CS = 2.5%). On the other hand, the two populations at the center of 

the distribution range (PC, OB) also had a positive total contribution to total diversity 

(CT = 4.3% and 4.2%, respectively). However, in comparison with VH, their positive 

contribution was due to their diversity (CS = 10.2% and 9.1%) whereas their 

divergence was below the average (CD = –4.9% and –6.0%). The results based on the 
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contribution to total allelic richness were similar. Again, it was VH that contributed 

the most to total allelic richness (CrT = 22.9%) because it was enormously 

differentiated from the other populations (CrD = 25.2%). Likewise, OB and PC had 

positive total contribution; in OB, the positive contribution was due to its richness (CrS 

= 4.6%) whereas both richness and differentiation contributed the same in PC (CrS = 

5.3%, CrD = 4.8%). Finally, the contribution to allelic richness showed an interesting 

difference: LI, at the northern end of the distribution range, also had a considerable 

net contribution to allelic richness (CrT = 5.9%) due to their important differentiation 

(CrD = 8.2%). 

 

Fig. 2. Contribution to total haplotype diversity (CT) and haplotypic richness (Cr
T) of each population of 

Centaurea borjae inferred with cpDNA haplotypes. The black and the grey bars represent the 
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contribution of diversity (CS and Cr
S) and differentiation (CD and Cr

D), respectively. Location codes: LI, 
VH, OBB, OB, PC and PR. 

 The AMOVA analysis revealed that 41.9% of the genetic variation was due to 

differences between populations. The resulting FST value was high and significant 

(0.419, p < 0.001) while the overall level of the inferred gene flow (Nm) was low (0.69 

migrants per generation among populations). Despite this strong global 

differentiation, an examination of the pair-wise FST values provided statistic support 

to the occurrence of three sets of populations with similar haplotype composition. 

Populations PR, OBB, and LI were characterized by an overwhelming prevalence 

(>90%) of haplotype H1. Interestingly, this group does not consist of spatially 

contiguous populations; instead, its components are separated by other populations 

with totally different haplotype composition (Fig. 1). On the other hand, sites PC and 

OB were characterized by a more balanced partition between H1 (60%) and H2 (35%). 

Finally, VH displayed a clearly discordant composition, being the only population 

dominated by a haplotype other than H1. Despite the strong differentiation and low 

level of global gene flow, NST (0.380 ± 0.106) was not found to be significantly different 

from GST (0.383 ± 0.102) (p > 0.05 after 1000 permutations), indicating a lack of 

phylogeographic structure. Likewise, a Mantel test revealed no evidence of isolation 

by distance when testing for the correlation between genetic and geographic 

distances (R2 = 0.023, P = 0.357) after 1000 randomizations.  

DISCUSSION  

 As other endemics, Centaurea borjae may be prone to the consequences of 

genetic drift and inbreeding that, together with the fragmentation of its habitat, may 

threaten the long-term survival of its populations (Ellstrand and Elam, 1993). In this 

regard, a prior study with AFLP found no signs of genetic depletion in C. borjae (Lopez 

and Barreiro, 2012). However, the adequacy of the AFLP technique as a tool to obtain 

accurate estimates of diversity in C. borjae seemed debatable. One might suspect that 
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AFLP estimates may be biased by the interplay of the dominant mode of inheritance 

of the markers with the hexaploidy of C. borjae. In this context, sequencing non-

coding regions of the cpDNA seemed a straightforward complement to obtain more 

comparable estimates (Kato et al., 2011).  

 In comparison with our prior AFLP study (Lopez and Barreiro, 2012), the 

maternally inherited cpDNA provided some evidence of genetic depletion in C. borjae. 

First, the total number of haplotypes in C. borjae was typically lower than the values 

reported in widespread plants (Fang et al., 2010; Su et al., 2011) but similar to those 

of other narrow endemics (Artyukova et al., 2011; Migliore et al., 2011; Molins et al., 

2009). Likewise, nucleotide diversity was low and similar to estimates reported for 

other endemics (see Artyukova et al., 2011 and references therein). Finally, species 

diversity, as ht, was below the average computed for chloroplast regions in 

angiosperms (ht = 0.712, range 0.375–0.993) using values compiled by Petit et al. 

(2005). Moreover, total diversity, as Hd or as ht, was also well below the values for 

cpDNA in other endemic herbs (Artyukova et al., 2011; Molins et al., 2009; Zhou et al., 

2010).  

 A similar incongruence between nuclear and cpDNA markers has been 

reported elsewhere (e.g. Zhao and Gong, 2012). It has been often attributed to 

differences in mutation rate and effective population size (Schaal et al., 1998); the 

latter effect might be aggravated in hexaploids such as C. borjae. A detailed 

examination of the results of C. borjae shows that the low haplotype diversity results 

from the predominance of a single widespread haplotype across most populations: 

haplotype H1 was detected in nearly 70% of individuals, prevailing in 5 out of the 6 

populations. In comparison, other endemics such us Senecio rodriguezii also had 

populations largely dominated by one haplotype (Molins et al., 2009) but the 

prevailing haplotype changed between populations resulting in high species diversity 

(ht) but low average within-population diversity (hs). On other occasions (e.g. 
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Oxytropis chankaensis, Artyukova et al., 2011), populations were characterized by a 

more balanced partition of individuals among several (2–3) haplotypes that made 

both ht and hs high.  

The structure of genetic variation across a species' range is typically 

interpreted in terms of contemporary (e.g. effective population size, gene flow) and 

historical (e.g. fragmentation, founder events) factors (Schaal et al., 2003). Likewise, 

both contemporary and historical factors explain the present day population pattern 

detected in C. borjae. The predominance of a single, widespread haplotype in most 

populations cannot be attributed to intense current gene flow. Instead, both AFLP and 

cpDNA reveal a strong differentiation between populations. Moreover, prior studies 

at small scale indicate that gene flow is restricted even within populations (Lopez and 

Barreiro, 2012). Alternatively, the current arrangement of haplotypes may be a 

consequence of the demographic history of the plant. The coalescence theory predicts 

that older alleles will be more broadly distributed geographically; also, the tip nodes 

of a network will likely represent descendants derived from ancestral, interior nodes 

(Posada and Crandall, 2001). Accordingly, haplotypes H1 and H2 would represent 

some old polymorphism that had been long-maintained and their co-occurrence in PC 

and OB suggests that this area is a site of long persistence of the species. The same 

conclusion is reached by analyzing the spatial distribution of genetic diversity and 

private haplotypes. Long-maintained populations are known to be more diverse and 

to contain private haplotypes (Maggs et al., 2008); two conditions met by PC and OB. 

In this scenario, the remaining sites may have derived from subsequent colonization 

from the central area and their lower genetic diversity would be the product of a 

founder effect.  

On the other hand, C. borjae shows a decrease in genetic diversity towards its 

range limits that mimics a small-scale version of the pattern anticipated by the central-

marginal hypothesis (Brussard, 1984). The latter is one of the hypotheses drawn from 
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the controversial abundant-center assumption (Sagarin et al., 2006). According to the 

central-marginal hypothesis, geographically peripheral populations would experience 

stronger drift as a result of their smaller effective size and greater isolation. This will 

be further exacerbated if peripheral populations suffer founder events or more 

stressful environmental conditions (Eckert et al., 2008). Regarding isolation, the 

southern range-edge fits the expectations of the central-marginal model as 

population PR is clearly separated from the others by a large stretch of unsuitable 

habitat. The same does not apply to the northern edge because its populations are 

not particularly isolated. Yet, the lack of isolation does not mean that other 

assumptions of the model are not applicable to this northern edge. Despite the small 

range occupied by the plant, the 3 northernmost populations show distinct 

environmental conditions due to the extremely intricate geology of the area: these 3 

northernmost sites are located on serpentine substratum that contrasts with the 

ultra-basic (PC, OB) and granitoid (PR) soils found at the other locations. Serpentine 

soils are characterized by high levels of toxic heavy metals (Cr, Ni, Co) that are known 

to be stressful for plant growth. In fact, our previous study with AFLP revealed that 

serpentine soils had an impact on the genetic structure and variation of C. borjae. 

Serpentine populations had a larger occurrence of clones mates and a stronger small-

scale spatial genetic structure than non-serpentine locations (Lopez and Barreiro, 

2012). Therefore, the stressful ambient conditions generated by the serpentine soils 

may have led to smaller effective population sizes and more intense genetic drift.  

 Gene flow was low in C. borjae (Nm=0.6930), resembling estimates for other 

endemics with similar biological traits (Liu et al., 2010; Zhou et al., 2010). Moreover, 

the significant FST obtained for the chloroplast genome was almost four times higher 

than the FST calculated with nuclear markers. Maternally inherited markers are 

expected to display larger differentiation than biparentally inherited nuclear ones as 

the former can be dispersed between populations only by seeds whereas the latter 
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can migrate by both pollen and seeds (Ouborg et al., 1999; Ghazoul, 2005). Thus, the 

higher differentiation detected with cpDNA supports the conclusion that seeds in C. 

borjae disperse less than pollen (McCauley, 1995). Likewise, low dispersal seems 

consistent with several biological traits of C. borjae: lack of pappus, probable 

myrmecochory, and low germination success. Previous studies with another endemic 

Centaurea also indicated low dispersal and gene flow (Hardy et al., 2004; Imbert, 

2006). Finally, the lack of correlation between genetic and geographic patterns could 

be seeing as further evidence that the neighboring populations are not connected by 

gene flow. 

According to Petit et al. (1998), the criterion to select priority populations for 

conservation should encompass the uniqueness of a population and its diversity level, 

with an emphasis on allelic richness. In this regard, the uneven distribution of cpDNA 

polymorphism among populations leads to prioritizing four enclaves in terms of their 

contribution to haplotype richness and diversity: LI, VH, OB and PC. By preserving 

these four populations, all known haplotypes will be maintained. In comparison, 

neither OBB nor PR provided any significant contribution and their conservation might 

be seen as less relevant. These results complement our prior findings with nuclear 

markers. The Bayesian analysis of AFLP led to the designation of four MUs 

(Management Units; sensu Moritz, 1994) that, remarkably, clustered OB, OBB, and PC 

into a single unit. Therefore, should we stick to the conservation guidelines derived 

from AFLP data, OB and PC would be considered genetically redundant. By contrast, 

the cpDNA data revealed that both PC and OB have private alleles and are not 

interchangeable in conservations terms. Likewise important, the four populations 

identified as priority by cpDNA only included three of the four MUs designated with 

nuclear markers. The excluded MU was the geographically isolated PR that, according 

to AFLP, has a certain level of uniqueness: a private band and noticeably different 

marker frequencies (Lopez and Barreiro, 2012). The disagreement between markers 
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with different mode of inheritance is well known and it possibly reflects differences in 

the time-span covered by each set of markers (deep, longer-term historical structure 

for cpDNA; shallow, contemporary one for AFLP) (Avise, 2004). In this regard, the fact 

that PR showed a singular composition in nuclear markers but not in its chloroplast 

genome suggests that its separation from the main range of the species is a relatively 

recent event. According to Avise (2004), combining markers with different mode of 

inheritance is important to design accurate management strategies. In our study, the 

combination of AFLP and cpDNA data suggests that five, instead of four, management 

units should be designated for C. borjae: LI, VH, OB-OBB, PC, and PR.   

 In summary, our study highlights the convenience of combining markers with 

a different mode of inheritance to obtain a more comprehensive image of the genetic 

structure. This knowledge is essential to design appropriate conservation strategies. 

Both sets of markers supported the idea of restricted gene flow between populations 

with seed dispersal more constrained than pollen migration. However, cpDNA data 

showed symptoms of genetic depletion that went unnoticed to the nuclear markers. 

Moreover, the plastid sequences provided insights into the demographic history of 

the plant. PC and OB appear as the probable sites of long-persistence of the species 

whereas other sites may have derived from a latter colonization. The cpDNA data also 

allowed us to select candidate populations that should be given priority for 

conservation. Combined with AFLP data, it is proposed that five MUs should be 

designated to ensure the maintenance of all the genetic polymorphism detected in C. 

borjae.  
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ABSTRACT 

Genetic diversity is now regarded as a key component of biodiversity and its 

assessment has become a frequent addition to conservation studies. However, due to 

practical limitations, most studies assess genetic variation using neutral markers while 

the variability of evolutionary relevant quantitative traits is typically overlooked. Here, 

we simultaneously assessed neutral and quantitative variation in an endangered plant 

to identify the mechanism behind their spatial arrangement and to propose 

conservation guidelines for maximizing mid- to long-term survival. Omphalodes 

littoralis spp. gallaecica is a self-fertilizing therophyte with an extremely narrow and 

fragmented distribution. Regardless of the marker set (non-coding sequences of 

cpDNA or Amplified Fragment Length Polymorphism loci), the five extant populations 

of O. littoralis showed minimal to no neutral genetic diversity and a lack of gene flow 

between them. Moreover, genetic structure was identical in samples collected on two 

consecutive years suggesting that the seed bank cannot buffer against genetic loss. 

High rates of self-fertilization together with a strongly fragmented distribution and 

recurrent bottlenecks seem the likely mechanisms that may have led to a dramatic 

loss of genetic variation in a classic scenario drawn by genetic drift. Despite the 

extremely narrow distribution range, reciprocal transplant experiments revealed that 

the populations differed in several quantitative traits and that these differences likely 

have a genetic basis. Nevertheless, the pattern of differences among populations did 

not fit the expectations of local adaptation. Instead, phenotypic variation seemed 

another outcome of genetic drift with important implications for conservation 

because each population should be designated as an independent Evolutionary 

Significant Unit (ESU). Our study evidences the benefits of combining neutral markers 

with appropriate assessments of phenotype variation, and shows that even endemics 

with extremely narrow ranges can contain multiple conservation units. 
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INTRODUCTION 

Designing and implementing appropriate measure that enhance the long-term 

survival of populations is a major challenge in conservation (Ellstrand and Elam, 1993). 

In this regard, the genetic structure of endangered populations has become a primary 

focus of research since theory predicts that intraspecific genetic variation is pivotal 

for the persistence of species (Ouborg et al., 2006). Under the premise that 

populations may achieve their greatest evolutionary potential by maximizing their 

genetic diversity, conservation efforts often aim to preserve the most divergent 

populations and/or those displaying the largest levels of variation (Moritz, 1994).  

Due to practical limitations, the genetic structure is usually assessed with 

neutral molecular markers even if their suitability for the purposes of conservations 

has been repeatedly questioned (Landguth and Balkenhol, 2012; Reed and Frankham, 

2001). Instead, quantitative traits are those of most concern for conservation because 

they are directly related to the species’ fitness (Frankham et al., 2010). As natural 

selection act directly on phenotypes, not on genotypes, these traits reflect the 

species’ ability to undergo adaptive evolution as well as the consequences of 

inbreeding and outbreeding on reproductive fitness (Allendorf and Luikart, 2012). 

Unfortunately, current evidence suggests that neutral variation may not be an 

accurate indicator of quantitative variation; consequently, making decisions based 

only on genetic differences detected by neutral markers is not without risk (Frankham 

et al., 2010; Hedrick, 2001; Landguth and Balkenhol, 2012; Reed and Frankham, 2003). 

In this context, a multifaceted approach that combines neutral and phenotypic data 

should provide a more comprehensive picture of the genetic structure, eventually 

leading to better conservation management. 

Phenotypic variation among individuals results from the interaction between 

genotype and environment (Kawecki and Ebert, 2004). In the absence of other forces, 

populations are expected to develop traits that provide an advantage under their local 
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environment resulting in a pattern where resident genotypes are better fitted to their 

local conditions than genotypes from other habitats (Williams, 1996). This pattern is 

known as local adaptation (Ashton and Mitchell, 1989). Nevertheless, local adaptation 

may be hindered by gene flow, confounded by genetic drift, and constrained by a lack 

of genetic variation (Lenormand, 2002). Disentangling whether the variation observed 

in quantitative traits is inheritable or results from phenotypic plasticity is challenging 

because genotypes cannot be directly inferred from observed phenotypes (Frankham 

et al., 2010). Instead, reciprocal transplants are required to evaluate the relative 

contribution of phenotypic plasticity and genetics (Kawecki and Ebert, 2004).  

 From a conservation perspective, rare and/or endemic plants are of great 

concern because of their intrinsic characteristics: small population size, habitat 

specificity, and geographic isolation (Frankham et al., 2010). These features can be 

detrimental for the evolutionary potential of the species due to low genetic diversity, 

strong genetic drift, and inbreeding depression (Cole, 2003; Frankham et al., 2010; 

Höglund, 2009; Willi et al., 2006). However, rarity is only one of several factors known 

to have an impact on the species’ genetic structure. Life history traits, particularly life 

form and breeding system, have long been recognized as greatly influencing the 

distribution pattern of genetic diversity in plant populations (Hamrick and Godt, 

1996). Namely, selfing species can maintain lower levels of genetic diversity and 

higher levels of differentiation among populations compared to outcrossers (Nybom, 

2004; Hamrick and Godt, 1996).  

  The small annual Omphalodes littoralis spp. gallaecica M. Laínz (1971) is a rare 

herb (total occupancy <100000 m2) restricted to coastal dune systems in northwest 

Iberian Peninsula (Romero Buján, 2005; Serrano and Carbajal, 2011) (Fig. 1). In the last 

decades, its populations experience continuous decline due to the threats faced by its 

sensitive habitat (Bañares et al., 2004); as a result, its current distribution is extremely 

fragmented and today the plant is known to occur in just five dune systems. Because 
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of this rarity, O. littoralis spp. gallaecica is catalogued as “endangered” by both the 

IUCN and the Spanish Catalogue of Threatened Species (Serrano and Carbajal, 2011) 

(Ministerio de Medio Ambiente y Medio Rural y Marino, 2011), and listed as a priority 

species in the EU Habitats Directive (92/43/EEC, Annex II). Additionally, its habitat is 

considered as a Site of Community Importance (SCI) within the Natura 2000 network. 

O. littoralis spp. gallaecica is a self-compatible plant and autogamy has been 

suggested as the most probable mechanism of reproduction (Bañares et al., 2004). 

Flowering period is very short, from March to April, and the ephemeral flowers last 

less than three days (Romero Buján, 2005). Seed are thought to be dispersed by 

animals through the adhesiveness of the fruit to their hair (Bañares et al., 2004). 

Population size fluctuates greatly between years, multiplying or dividing by ten the 

number of individuals (Bañares et al., 2004). 

Fig. 1. Detail of Omphalodes littoralis spp. gallaecica with flower and its typical habitat. Picture belongs 
to Baldaios’ dune system. 

Despite the status of O. littoralis spp. gallaecica as a species of conservation 

concern, its population genetics and the variation of its ecophysiological traits 

between populations have never been addressed. Here, we aim to fill this gap with 

our knowledge with an exhaustive molecular and phenotypic study of the five extant 

populations of this rare herb. We used sequences of the chloroplast DNA trnT-F region 

and genotypes derived from mostly-nuclear Amplified Fragment Length 
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Polymorphism (AFLP) markers to address the following questions: a) is O. littoralis 

spp. gallaecica genetically impoverished as it might be suggested by its life history 

traits?; b) are its populations significantly differentiated from each other?; c) given 

that O. littoralis spp. gallaecica is a therophyte, are there significant between-year 

differences in its genetic structure? On the other hand, we performed a series of 

reciprocal transplant experiments to investigate the adaptive component of several 

quantitative traits related to fitness. Phenotypic variation was examined with an aim 

to answer: d) are there any phenotypic differences between populations?; if so, e) do 

these differences result from phenotypic plasticity or do they have a genetic basis?; f) 

are they adaptive?. Finally, we combined the molecular and phenotypic information 

to propose specific guidelines for the conservation of this endangered plant.  

MATERIAL AND METHODS 

Sample collection and DNA extraction 

 Samples for genetic analyses were collected on two consecutive years (2009 

and 2010). In March 2009, plants (31-34 per site) were randomly sampled along the 

whole area occupied by the species at each of the five dune systems currently 

inhabited by Omphalodes littoralis spp. gallaecica (see Fig. 2 in results). One year 

later, sampling was repeated at three of the systems (DN, BD, and XN). Sampling was 

non-destructive to meet the requirements of regional conservation authorities; only 

two-three leaves per individual were collected, dried in silica gel, and stored at -20°C 

until DNA extraction. DNA was extracted using the Wizard Magnetic Kit (Promega) 

and DNA extracts were further purified with PowerClean DNA Clean-up Kit (Mobio, 

CA, USA) following manufacturers’ protocols. The quality of the extracted DNA and 

negative controls were systematically checked on 1.5% agarose gels.  
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AFLP analyses and cpDNA sequencing 

Since AFLP performance can be sensitive to reaction conditions (Bonin et al., 

2004), we used several control measures to guarantee the reproducibility of our AFLP 

fingerprints. First, selective primer combinations were chosen after screening twenty-

four pairs of primers with three selective bases on 20 individuals (4 individuals per 

sampling site). The entire process was repeated with new, independent DNA 

extractions of the same individuals to assess reproducibility. Nine primer 

combinations were chosen due to their reproducible and easily scorable profiles 

(EcoRI/TruI: TCA/CAT, TAC/CAT, TAC/CAA, TCC/CTG, TAG/CTG, TCT/CTA, TCT/CAT, 

TGC/CAG and TGC/CAT). Second, replicate DNA extractions were obtained for 10% of 

the individuals used in the study (evenly distributed among the 5 sampling sites) and 

run in parallel with the other DNA samples to monitor reproducibility. Samples and 

replicates were run in a blind-manner to avoid any bias during scoring. Individuals 

from each sampling site were evenly partitioned between the various 96-well plates 

used for PCR while replicates and originals were always run in separate plates; both 

samples and replicates were randomly distributed within plates. Third, a negative 

control with no sampled tissue added was included in each set of DNA extractions (24 

samples) and went through the entire genotyping procedure. The estimated 

genotyping error (0.5%) was consistent with results of reproducibility tests conducted 

for AFLP both in plants and animals (Bonin et al., 2004); none of the individual loci 

exceeded the maximum acceptable error rate (10%) recommended by Bonin et al. 

(2007).  

AFLP analyses were performed according to Vos et al. (1995) with minor 

modifications and using nonradioactive fluorescent dye-labeled primers. 

Approximately 250 ng of genomic DNA were digested at 37°C for 3 hours in a final 

volume of 20 µl with 1.25 units of EcoRI and TruI (Fermentas) and 2x Tango Buffer 

(Fermentas). Digested DNA was ligated for 3 hours at 37ºC to double-stranded 
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adapters (50 pmols of adaptors E, 5’-CTCGTAGACTGCGTACC-3’ and 5’-

AATTGGTACGCAGTCTAC-3’, and M, 5’-GACGATGAGTCCTGAG-3’ and 5’-

TACTCAGGACTCAT-3’) using 0.5 units of T4 DNA ligase (Fermentas). Then, 2 µl of the 

ligation product was pre-amplified with 0.3 µM of each single selective primer (EcoRI-

T and TruI-C), 2.5 mM MgCl2, PCR buffer 1x (Applied Biosystems), 0.8 µM dNTPs, 0.04 

µg/µl BSA, 1M Betaine and 0.4 units of Taq polymerase (Applied Biosystems) in a final 

volume of 20 µl. Amplification conditions were 2 min at 72°C; 2 min at 94°C; 20 cycles 

of 30 s at 94 °C, 30 s at 56°C, and 2 min at 72 °C; and a final extension of 30 min at 

60°C. Pre-amplification fragments were diluted 1:5 with Milli-Q water; 2.5 µl of the 

resulting solution were selectively amplified using 0.6 µM of the selective primers, 0.8 

µM dNTPS, 2.5 mM MgCl2, 0.04 μg/μl BSA, PCR Buffer 1x (Applied Biosystems) and 

0.4 units of AmpliTaq Gold polymerase (Applied Biosystems) in a final volume of 10 

µl. Selective amplification was performed as follows: 4 min at 95°C; 12 of cycles of 30 

s at 94°C, 30 s at 65ºC (first cycle, then decreasing 0.7°C for each of the last 11 cycles), 

and 2 min at 72°C; 29 cycles of 30 s at 94ºC, 30 s at 56ºC, and 2 min at 72ºC; and a 

final extension of 30 min at 72°C. Digestion, ligation, and PCR reactions were 

performed in a PxE thermal cycler (Thermo Fisher Scientific Inc., Waltham, MA, USA). 

Selective amplification products were electrophoresed on an ABI 3130xl automated 

DNA (Applied Biosystems) sequencer with HD-500 as size standard (Applied 

Biosystems). Fragments from 70 to 400 bp were manually scored for 

presence/absence at each selected locus with the help of GeneMarker v.1.70 

(SoftGenetics LLC, State College, PA, USA) following common recommendations 

(Bonin et al., 2005). Scores of the nine primer combinations were assembled into a 

single binary data matrix. 

 The trnT-F region was sequenced according to Taberlet (1991) with minor 

modifications. PCR reactions for the intergenic spacer between trnT-trnL were 

performed in 25 µl using primers a and b (Taberlet et al., 1991), containing 1x reaction 
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buffer, 2 mM MgCl2, 0.2 of each dNTP, 0.5 µM of each primer, 1 µl of genomic DNA 

and 1.25 units of DNA polymerase (Applied Biosystems). The trnL intron and the 

intergenic spacer trnL-trnF were amplified using primers c-d and e-f, respectively. PCR 

mix incorporated 1x reaction buffer, 1.5 mM MgCl2, 0.2 of each dNTP, 0.5 µM of each 

primer, 1 µl of genomic DNA and 0.35 units of DNA polymerase (Applied Biosystems). 

PCR profiles consisted of 2 min denaturation at 94°C followed by 35 cycles of 1 min 

denaturation at 94°C, 1 min annealing at 50° C and 90 s of extension at 72°C with a 

final elongation of 3 min cycle at 72°C. PCR products were visualized on 1.5% agarose 

gels and purified with 1 µl of Exonuclease I (20 u/µl) and 2 µl of FastAP (10 u/µl) 

(Fermentas). Purified PCR products were bi-directionally sequenced on an Automatic 

Sequencer 3730XL (Applied Biosystems, USA) following manufacturer’s 

recommendations. Sequences were trimmed with CodonCode Aligner (CodonCode 

Co., MA, USA) and aligned using Clustal-W (Thompson et al., 1994) implemented in 

DnaSP v 5.0 (Librado and Rozas, 2009; Rozas et al., 2003). 

Reciprocal transplants and phenotypic measures 

In May and June 2009, seeds were collected from at least 40 randomly selected 

native plants growing in each of the five dune systems (sites). Seeds from each site 

were bulked and stored at 8º C in a cool chamber until sowed in November 2009. At 

each and every site, reciprocal transplants were accomplished by sowing seeds from 

the five origins in 10 haphazardly selected small plots. Plots where arranged into 

three/four areas within each site, covering all the possible environmental variability. 

Before sowing, the first 10 cm of the top soil of each plot were carefully inspected and 

any native Omphalodes littoralis spp. gallaecica seed was removed. Sowing plots 

consisted of shallowly buried plastic trays with 60 alveoli filled with local soil; alveoli 

(2 cm x 2 cm x 2 cm) were tagged according to the provenance of their seeds. Twelve 

seeds per origin were randomly sowed per tray (60 seed per tray; 600 seeds per site, 

120 from each origin). Considering that sand dune species are reported to achieve 
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maximum germination rates when buried 0.5-4 cm deep (Maun, 1994), seeds were 

sown two centimeters deep. The low depth of the alveoli allowed interactions among 

the root systems of the plants.   

 From the date of sowing until the end of the life cycle of O. littoralis spp. 

gallaecica in late May-early June (precise date varies with provenance), the 

experimental sites were visited at least once per month to record germination, 

establishment, and survival. Visit frequency increased as necessary at the time of 

fruiting to collect the new seeds before dispersal. At the end of the growing season, 

plants were individually harvested, transported to the laboratory, and separated into 

roots, shoots and reproductive mass. Roots were washed and all plant material was 

oven-dried at 35º C until constant weight to the nearest 0.0001 g (Mettler AJ100, 

Griefensee, Switzerland). Stem DW (dry weight) combined stems and leaves, 

reproductive DW included calyxes and seeds, while shoot DW included all above-

ground biomass (i.e. stems, leaves, and reproductive biomass). Total DW 

encompassed root and shoot DW.   

Data analysis 

 For data analyses, plants from each dune system were considered members of 

a putative population. With AFLP markers, genetic diversity was estimated with the 

help of GenAlex 6.41 (Peakall and Smouse, 2006) as the percentage of polymorphic 

bands (5% criterion), the expected heterozygosity (He) (equivalent to Nei’s gene 

diversity), and the Shannon-Weaver Index (HSW). Private bands unique to a single 

population were also detected with GenAlex 6.41 (Peakall and Smouse, 2006). Since 

autogamy has been suggested as the most probable mechanism of reproduction of O. 

littoralis subsp. gallaecica, the former estimates were complemented with measures 

of genotypic diversity based on the frequency of distinct multi-locus genotypes. 

Potential clone mates, i.e. individuals with identical banding pattern, were identified 

with the software GenoType (Meirmans and Van Tienderen, 2004). Since rates for 
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somatic mutations are difficult to determine for natural populations (Douhovnikoff 

and Dodd, 2003), the genotyping error rate estimated in our reproducibility tests was 

set as the threshold value for genotype detection (maximum distance between two 

individuals at which they are still assigned to the same genotype). Genotypic diversity 

was estimated with the help of GenoDive (Meirmans and Van Tienderen, 2004) as 

number of genotypes (G), effective number of genotypes (Geff=1/∑p i2, where pi is the 

frequency of each i genotype), proportion of distinguishable genotypes, (G/N, where 

N is the number of individuals), genotypic diversity (Gd=(n/n-1).(1-∑p i2), where n is 

the sample size), and evenness (Eve = Geff/G).  

The partitioning of the genetic diversity and the occurrence of differences 

between years were evaluated by the analysis of molecular variance (AMOVA) 

(Excoffier et al., 1992) implemented in GenAlex 6.41 (Peakall and Smouse, 2006). Its 

significance was tested by 9999 random permutations of individuals among 

populations/generations and genetic variation was expressed as ΦPT, an analogue of 

FST. Population structure was further investigated by calculating the pairwise simple-

matching dissimilarities between populations and depicted in a Principal Coordinates 

Analysis (PCoA) as in Kloda et al., (2008). Also, the correlation between pairwise ΦPT 

statistics and log-transformed geographic distances was assessed with the Mantel test 

(10000 bootstrap randomizations) implemented in the Isolation by Distance Web 

Service (Jensen et al., 2005). Finally, the arrangement of genetic differentiation was 

further investigated with the individual-based Bayesian approach implemented in 

BAPS 5.3 (Corander et al., 2008). The option for clustering of individuals was run 3 

times for each of K = 1–20. The optimal partition determined by the program was used 

to estimate the levels of genetic admixture of each individual (with 200 reference 

individuals simulated for each genetic group and each original individual analyzed 20 

times).   
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The trnT-trnF region of the cpDNA amplified in this study contains two 

intergenic spacers, trnT-trnL and trnL-trnF, and the trnL intron (Taberlet et al., 1991). 

Given the non-recombinant nature of cpDNA, the three fragments were combined 

into a single sequence for each individual. The various distinct haplotypes found in 

our data set were identified with the help of Geneious v.6.1.6 (Biomatters Ltd., 

Auckland, New Zealand). The phylogenetic relationships between haplotypes were 

inferred using the median-joining algorithm implemented in Network 4.6 (Bandelt et 

al., 1999). For the phylogeographic reconstruction, indels were treated as a fifth state 

(Simmons et al., 2007). Population diversity estimated as haplotype diversity (Hd) and 

nucleotide diversity (π) was calculated with Arlequin 3.5 (Excoffier et al., 2005) while 

intra-population genetic diversity (hs) and total genetic diversity (ht) were estimated 

using Permut (Pons and Petit, 1996). The contribution of each population to the total 

haplotype diversity (CT) and the total haplotypic richness (CTr) were estimated with 

Contrib (Petit et al., 1998). CT and CTr were partitioned into two components, the 

contribution due to a population’s own level of diversity (CS and CSr), and its 

differentiation from other populations (CD and CDr), respectively.  

Population structure was again estimated by an analysis of molecular variance 

(AMOVA) based on haplotype frequencies (Excoffier et al., 1992) and its significance 

assessed by calculating the FST statistic (after 1023 permutations) (Excoffier et al., 

2005). Since NST estimates significantly higher than GST values suggests the presence 

of phylogeographic structure, the software Permut (Pons and Petit, 1996) was used 

to estimate the GST statistic based on haplotype frequencies and NST values based on 

both haplotype frequencies and distances between haplotypes (number of 

mutational steps). Finally, the correlation between geographic and genetic distance 

was inferred using a Mantel test implemented in the IBD web service (Bohonak, 2002) 

and its significance was determined after 10000 randomizations.  
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The various phenotypic traits measured in the reciprocal transplant 

experiments were analyzed with a split-plot mixed-model design to test for 

differences among populations. The linear model tested was 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝜇𝜇𝑖𝑖𝑖𝑖𝑖𝑖 + 𝛾𝛾𝑖𝑖 +

𝑒𝑒(𝑃𝑃𝑃𝑃)𝑖𝑖𝑖𝑖 + 𝑒𝑒(𝑆𝑆𝑃𝑃)𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, where i indicates provenance (i=1,…, 5), j represents 

transplant site (j =1,…,5), k indicates the area within each site (k =1,…,4), ℓ indicates 

tray (ℓ = 1,…,10) and m is each individual observation (m=1,…,n). ijklmy  is the individual 

value for a variable, ijkµ  is the mean for the variable at the ijk treatment, lγ  indicates 

the effect of each ℓ tray where (0, )l N γγ σ≈ , ( )kle PC  is the random error due to the 

plot where ( ) (0, )kl PCe PC N σ≈ , and the last term in the model refers to the random 

error caused by the split where ( ) (0, )ijklm SPe SP N σ≈ . Given the controversy about 

the pattern of deme x habitat interaction that should be taken as diagnostic for local 

adaptation in reciprocal transplants, we followed the two criteria proposed by 

Kawecki and Ebert (2004). First, we tested the “local vs. foreign” hypothesis that 

compares demes within habitats: should local adaptation occur, “local” demes are 

expected to perform better than demes from other habitats (“foreign” demes). 

Second, we tested the “home vs. away” criterion that compares a deme’s fitness 

across habitats: should local adaptation occur, demes should perform better when 

growing at their own habitat (“home”) than at others (“away”). Although both criteria 

were examined, the “local vs. foreign” test provides more convincing evidence of local 

adaptation because the “home vs. away” test may confound the effects of divergent 

selection with intrinsic differences in habitat quality (Kawecki and Ebert, 2004).  In the 

“local vs. foreign” tests, we considered the error caused by origin, area, and tray while 

error in the “home vs. away” tests included sites, area, and tray. Significance of the 

interactions (p-value <0.05) was always tested with the Tukey's Studentized Range 

(HSD) (Montgomery, 2008) after Bonferroni correction (Wright, 1992). Analyses were 

conducted with the statistical software R v. 3.0.1. (R Development Core Team, 2013) 

using packages nlme and lsmeans. 
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RESULTS  

Genetic diversity and structure 

 A total of 276 reproducible AFLP markers were scored in the 165 individuals 

sampled in 2009. Eighty-one (29.35%) loci were segregating for the whole data set 

and were retained for diversity estimates. Overall, 26 private bands were detected in 

all populations: one in population DN; two in BD, PC, and TC each; and 19 in XN (Table 

1). Estimates of total genetic diversity for the species (He=0.356; HSW=0.530) were one 

or two orders of magnitude higher than the values observed at individual populations 

where diversity was consistently low. The various indices of genetic diversity were 

correlated across populations: diversity was low at DN (20.99% polymorphic loci, 

He=0.069, HSW=0.104), very low at PC and TC (1.23% polymorphic loci, He=0.006, 

HSW=0.008 and 3.70% polymorphic loci, He=0.011, HSW=0.016, respectively), and zero 

at BD and XN. 

Table 1: Genetic diversity in Omphalodes littoralis subsp. gallaecica based on AFLP data.  

 

 

 

 

 

N, number of individuals; PLP, percentage of polymorphic loci (under 5% criterion); Pb, number of 
private bands (percentage for the total data set based on 276 scorable loci); He; Expected 
Heterozygosity (± standard error); HWS Shannon-Weaver Index (± standard error); G, number of 
genotypes; Geff, number of effectives genotypes; Gd, genotypic diversity; Eve, evenness of the effective 
number of genotypes. Nei’s gene diversity was calculated using segregating fragments only. 

 The 165 individuals only produced 40 distinct genotypes (Geff=8.42, 

G/N=0.24); moreover, most individuals shared just seven genotypes, explaining the 

low evenness recorded at species level (Eve=0.21).Nevertheless, none of the 

genotypes detected in the study occurred in more than one population so that each 

Pop N PLP Pb He  (±SE) HSW G Geff G/N Gd Eve 

DN 34 17 (20.99) 1 0.069 (±0.017) 0.104 (±0.025) 33 32.11 0.97 0.99 0.97 

BD 34 0 (0.00) 2 0.000 0.000 1 1.00 0.03 0.00 0 

PC 34 1 (1.23) 2 0.006 (±0.006) 0.008 (±0.008) 2 1.84 0.06 0.47 0.92 

TC 30 3 (3.70) 2 0.011 (±0.008) 0.016 (±0.011) 3 2.76 0.10 0.66 0.92 

XN 33 0 (0.00) 19 0.000 0.000 1 1.00 0.03 0.00 0 

Total 165 81 (29.35) 26 0.356 (±0.016) 0.530 (±0.018) 40 8.42 0.24 0.89 0.21 
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local deme had a distinctive set of AFLP genotypes. Genotypic diversity echoed the 

changes between populations seen above for genetic diversity. However, while 

genetic diversity was consistently low across populations, genotypic diversity in DN 

could be described as high as almost every individual sampled at this site exhibited a 

distinct genotype (G=33, Geff=32.11, G/N=0.97, Gd=0.99). In contrast, most of the 

individuals sampled at the other four dune systems shared just one (BD, XN) or a very 

few (two in PC, three in TC) genotypes producing very low estimates of the G/N ratio 

at these sites (<0.10). Nonetheless, the high evenness recorded at PC and TC (0.92) 

indicates that the few haplotypes found on these sites were evenly partitioned among 

individuals.  

Genetic differentiation was extremely high and almost reached the theoretical 

limit of one (ΦPT = 0.963, P < 0.0001), indicating that nearly all the genetic variation 

(96%) was due to differences between populations. Pairwise comparisons were 

likewise high and significant (ΦPT > 0.79 and P < 0.05 after Bonferroni correction for 

each and every pairwise comparison). The most diverse population, DN, displayed the 

lowest pairwise ΦPT values while the southernmost and relatively isolated XN showed 

the highest differentiation (ΦPT > 0.94). A PCoA plot based on genetic distances among 

individuals (95.50% of variation explained by the first two axes, Fig. 3) revealed the 

three well-resolved groups that seemed consistent with the geographical placement 

of their population of origin. Thus, the genotype found at the southernmost site XN 

(33 individuals with identical AFLP genotype) was clearly separated from those 

recorded at other sites, echoing the very high pairwise ΦPT values estimated for this 

population. Likewise, the remaining four demes were arranged into two groups of 

geographically consecutive sites (BD-DN and PC-TC, respectively). Despite the 

apparent correlation between genetic distance and geographical position suggested 

by the PCoA, the Mantel test found no evidence of isolation-by-distance (r = 0.0462, 

Mantel P = 0.5323). As for changes over time, when the same set of AFLP markers was 
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scored in samples collected one year later at three of the sites (DN, BD and XN), the 

genetic structure and diversity were nearly identical to those obtained in 2009 to the 

point that AMOVA revealed non-significant differences between years (ΦPT = -0.009, 

P = 0.931).  

 

Fig. 3: Principal Coordinates Analysis calculated from simple-matching pairwise distances between 
individuals of Omphalodes littoralis spp gallaecica collected at five dune systems and scored with 81 
segregating AFLP loci.Individuals coded by sampling site: TC, open squares; PC, filled circles; BD, filled 
squares; DN, open triangles; XN, open diamonds. Individuals with identical AFLP genotype appear as a 
single symbol. Together, coordinates 1 and 2 explain 95.50% of the total variation.  

 The individual-based Bayesian analysis corroborated the results obtained with 

the population-based approaches confirming that most of the genetic variation 

occurred among populations. In BAPS, the optimal partition identified five genetic 

groups that perfectly matched the five sampling populations (log-likelihood value = -

1267.78, probability for 5 clusters = 0.9996). Moreover, no sing of genetic admixture 

was detected for any individual (Fig. 2). 

Among the three non-coding fragments sequenced for the trnT-trnF region, 

only the intergenic spacer trnT-trnL was polymorphic. Therefore, the trnL intron and 

the intergenic spacer trnL-trnF were excluded from further analyses. The alignment of 

the trnT-trnF fragment resulted in a final consensus sequence of 762 pb. Sequences 
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were rich in A and T nucleotides, with A/T content of 73.80%, in accordance with the 

nucleotide composition of non-coding chloroplast regions (Kelchner, 2000). One point 

mutation and two indels of 11 pb and 22 pb, respectively, defined four haplotypes. 

The phylogenetic relationships among haplotypes shown by the parsimony network 

displayed a star-like shape with haplotype H1 in a central position (Fig. 2).  

Fig. 2: Sampling sites, genetic structure based on AFLP genotypes, and cpDNA haplotypic network of 
Omphalodes littoralis subsp. gallaecica. Range occupancy is strongly fragmented into very small 
enclaves. Locations: DN, DB, PC, TC and XN. The histogram on the top depicts individual assignment by 
an admixture analysis performed for an optimal number of 5 genetic clusters (P=0.9996) using AFLP 
genotype data. Each vertical bar represents one individual with patterns indicating the probability of 
assignment to each cluster. Pie charts show the relative abundance of four cpDNA haplotypes (H1-H4) 
in each population; patterns match the haplotype median-joining network shown on the bottom-left. 
Circle size in the network is proportional to haplotype frequency across populations; black-dots indicate 
mutational steps. 

Haplotype H2 was separated from the central H1 by one mutational step, while 

both H3 and H4 were separated from H1 by two relatively large indels each (11-bp 
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long in H3, 22-bp long in H4). Most populations showed a single cpDNA haplotype 

except TC where two were detected. The central haplotype H1 also was the most 

abundant (nearly 47% of the individuals) and the most widely distributed. Unlike the 

other haplotypes, H1 was detected at three sites while H2, H3 and H4 were restricted 

to XN, TC, and PC, respectively. 

Estimates of total genetic diversity for the species based on cpDNA were Hd = 

0.687, πx102= 1.154, hs= 0.095 and ht= 0.829 respectively (Table 2). Population 

diversity was even lower than that recorded with AFLP. Four out of five populations 

were dominated by a single haplotype and their within population diversity was zero. 

Interestingly, the set of demes with no cpDNA variation included DN, the only site 

where almost each individual displayed a distinctive AFLP genotype. On the other 

hand, the only location with two haplotypes (TC) exhibited intermediate to high values 

of haplotypic and nucleotide diversity (Hd = 0.473, πx102=1.386) because its two 

haplotypes were evenly partitioned among individuals.  

Table 2: Genetic diversity measures of Omphalodes littoralis subsp. gallaecica based on cpDNA.  

Population N S H Hd (SD) πx102 (SD) 

DN 32 0 1 0.000 (0.000) 0.000 (0.000) 

BD 31 0 1 0.000 (0.000) 0.000 (0.000) 

PC 32 0 1 0.000 (0.000) 0.000 (0.000) 

TC 31 22 2 0.473 (0.054) 1.386 (0.723) 

XN 32 0 1 0.000 (0.000) 0.000 (0.000) 

Total 158 34 4 0.687 (0.023) 1.154 (0.593) 

N, number of sampled individuals; S, number of segregating sites; H, number of haplotypes; Hd, 
haplotypic diversity; and πx102, nucleotide diversity. 

 As for the contribution to haplotypic diversity and richness, some populations 

clearly contributed more than others (Fig. 4). Three populations contained all the 

cpDNA haplotypes detected in the species and, consequently, they were the only ones 

with a positive total contribution to haplotypic diversity (PC, XN) and richness (PC, XN, 
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and TC). Their positive contribution was mostly due to their differentiation from other 

populations (components CD and CDr) rather than to their own level of diversity 

(components CS and CSr). The latter reflects the fact that each population was mostly 

(TC) or totally (PC, XN) dominated by a private cpDNA haplotype. In comparison, the 

contribution of the two northernmost populations (BD and DN) was from negative 

(diversity, CT) to negligible (richness, CTr) because they only contained the widespread 

haplotype H1 that was occurred in TC.  

Fig. 4: Contribution to total cpDNA haplotype diversity (left, CT) and haplotypic richness (right, CTr) of 
each population of Omphalodes littoralis spp gallaecica. Grey and black bars represent the contribution 
due to the diversity (CS and CSr) and differentiation (CD and CDr) of each population. 

As seen with the AFLP genotypes, AMOVA revealed that most of the cpDNA 

variation (80.44%) was due to differences among populations, rendering a very high 

and significant FST estimate (0.804, P<0.001). Also, FST values were always high and 

significant except for the comparison DN-BD, two populations dominated by the same 

haplotype (H1). No evidence of phylogeographic structure was detected because the 

magnitude of population differentiation inferred from haplotype frequencies 

(GST=0.886) was not significantly different (P>0.05 after 1000 permutations) from the 

level inferred taking haplotype divergence into account (NST=0.873). Likewise, the 
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Mantel test found no support to an isolation by distance pattern (r=0.048; P=0.515 

after 10000 randomizations).  

Phenotypic analysis  

 Some trays were lost due to vandalism meaning that only 4 trays in XN, 7 in 

PC, and 8 in TC reached the end of the experiment. The GLM analysis showed that the 

partition of trays into several areas per site had no significant influence on the values 

of the various phenotypic traits with the only exception of mean seed DW (Table 3). 

Therefore, GLM analyses were repeated ignoring the arrangement into areas except 

for the latter variable. These analyses revealed significant differences between 

transplant sites for most variables suggesting that our plants performed better in 

some dune systems than in others. An examination of the mean values recorded at 

each transplant site revealed no obvious pattern (Fig. 5), although several variables 

(seed no., reproductive DW, total DW) seem to have reached higher values in the two 

southernmost sites.  

Table 3: General linear model, “local vs. foreign” and “home vs. away” tests for the quantitative traits 
investigated in the reciprocal transplants of Omphalodes littoralis subsp. gallaecica. 

The effects of Area, Site and Origin are specified for the GLM. Significance is represented as NS (not 
significant), * (0.05 ≤ p ≥ 0.001), ** (p<0.001) and *** (p<0.0001). Local vs. Foreign‡ indicates that it 
has been corrected by the origin while Home vs. Away‡ represents that it has been corrected by the 
location of growth. 

 Provenance (origin) also had a significant influence on phenotype indicating 

that part of the variation seen at the various traits must have a genetic basis. 

 GLM Local vs. Foreign Home vs. Away 

 Area Site Origin Local vs. Foreign‡  Home vs. Away‡ 

Seed number NS *** *** NS NS 

Mean seed weight (g DW) *** *** ** NS NS 

Reproductive weight (g DW) NS *** *** NS NS 

Root weight (g DW) NS NS *** NS NS 

Stem weight (g DW) NS ** *** NS NS 

Total weight (g DW) NS *** *** NS NS 
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Regardless of the transplant site, the individuals from DN usually outperformed those 

from other origins producing more biomass and more seeds, even when the plants 

from other provenances were growing at their own site of origin (Fig. 5).  

Fig. 5: Mean for the quantitative traits studied in Omphalodes littoralis subsp. gallaecica. Axis Y 
indicates the value of the studied phenotypic trait (from upper-left to the right-bottom: Seed number, 
Mean seed DW, Reproductive DW, Stem DW, Root DW and Total DW). Axis X represents the location 
of growth. For each location all possible origins are represented with colors (blue for DN, green for BD, 
grey for PC, purple for TC and yellow for XN). Each vertical bar represents the mean for a given 
phenotypic trait for a deme growing in a certain location and with a specific origin. The standard error 
is indicated in each vertical bar.  
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 The outperformance of DN was particularly pronounced when growing at their 

site of origin (at the north edge of the distribution range of the species) or when they 

had been transplanted to the two southernmost sites (TC, XN). In fact, DN plants 

produced more seeds and grew better (reproductive and total DW) at TC or XN that 

at home. TC plants were second to those from DN in terms of biomass production 

(stem, root, and total DW) but not in seed production. Despite the significant 

differences detected between sites and between origins, neither the “local vs. 

foreign” nor the “home vs. away” tests found significant differences for any 

quantitative trait, providing no support to the predictions of the hypothesis of local 

adaptation in Omphalodes littoralis spp. gallaecica.  

DISCUSSION 

 Taxa listed as endangered by the IUCN Red List of Threatened Species are 

considered to face a very high risk of extinction in the wild (IUCN 2012). In the 

particular case of Omphalodes littoralis spp. gallaecica, its status as endangered was 

granted attending to criteria of area of occupancy only: the plant occupies 10 hectares 

(well below the threshold of 500 km2 used by IUCN for endangered species), this area 

of occupancy is in continuing decline due to many threats, and populations undergo 

extreme fluctuations (Serrano and Carbajal, 2011). Leaving aside the fact that the 

plant possibly meets the IUCN’s criteria for a higher level of risk (Critically 

Endangered), we have found new reasons for concern about the mid- to long-term 

survival of this dune dweller. Our results strongly suggest that effective population 

sizes must be much smaller that census estimates. In fact, we found only 40 distinct 

genotypes among 165 genotyped individuals; to make things worse, three quarters of 

them were concentrated in a single local deme so that most populations contained 

one or very few distinct genotypes. Moreover, even the population with the highest 

number of genotypes showed very low genetic diversity indicating that its various 

genotypes were closely related to each other. Therefore, we think that the effective 
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abundance of this endangered plant is much smaller than previously thought and 

should be considered a further reason for concern.  

The low levels of within-population variation recorded in Omphalodes littoralis 

spp. gallaecica are consistent with its life history traits. Annual selfing taxa such as 

Omphalodes littoralis spp. gallaecica usually display the lowest levels of within-

population variation (Nybom, 2004). Also, various comparative studies have found 

that narrow endemics are often less diverse than widespread taxa (Cole, 2003; 

Gitzendanner and Soltis, 2000; Hamrick and Godt, 1990). Despite the above, the 

diversity shown by most of the extant populations of Omphalodes littoralis spp. 

gallaecica still is remarkably low. The estimates of He obtained with AFLP markers in 

four out of the five sites (range: 0.000-0.011) are one or two orders of magnitude 

below the average Hpop estimated for annuals and/or selfing plants using markers 

with the same mode of inheritance (Nybom, 2004). And the situation is even worse if 

we consider the variation displayed by the cpDNA because most populations 

seemingly contained a single haplotype.  

The spatial arrangement of genetic variation is typically explained by 

contemporary (e.g. effective population size, gene flow) and historical (e.g. 

fragmentation, founder events) factors (Schaal et al., 2003). AFLP markers are 

typically associated with recent processes while cpDNA is more often related to 

ancient history (Avise, 2004). In the particular case of Omphalodes littoralis spp. 

gallaecica, both AFLP and cpDNA suggest that gene flow must be very restricted. 

While acknowledging that caution must be exerted when drawing conclusions about 

gene flow based on ΦST (Marko and Hart, 2011; Whitlock and McCauley, 1999), the 

fact that an overwhelmingly majority of genetic variation was due to differences 

between populations is consistent with a scenario of restricted gene flow. Also, the 

occurrence of private ALFP markers at each and every population together with the 

fact that each population had its own ALFP genetic lineage in the Bayesian analysis 
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suggest that they must have been separated for a long time. This conclusion is 

reinforced by the analysis of the cpDNA variability where most of the haplotypes 

detected in our study were private to a single population and each population showed 

a distinct cpDNA composition except for the two northernmost sites (BD and DN). 

According to coalescent theory, central and widespread haplotypes such as H1 may 

be regarded as ancestral (Posada and Crandall, 2001). Thus, the occurrence of H1 in 

three non-adjacent populations possibly suggests that the various local demes might 

have been connected in a distant past. From a conservation perspective, the extreme 

fragmentation and isolation revealed by the lack of gene flow among local demes 

suggests that the genetic rescue of one population by others seems highly unlikely 

without external help. 

The strong among-populations differentiation detected using markers with 

different mode of inheritance is again consistent with the life history traits of 

Omphalodes littoralis spp. gallaecica. Selfing taxa are known to partition most of their 

genetic variation to differences between populations rather than to variability among 

individuals within populations (Duminil et al., 2007). Together with the extremely low 

within-population diversity showed before, this high differentiation among-

populations suggests that this small plant could be reflecting the effects of genetic 

drift. The latter would be exacerbated if we recall that this narrow endemic typically 

shows strong fluctuations in population size indicating that the plant could experience 

recurrent bottlenecks over the years. The very low within-population diversity shown 

by Omphalodes littoralis spp. gallaecica is a matter of concern. Populations with low 

genetic diversity can be threatened by stochasticity, even by relatively minor events, 

and are less capable to cope with environmental changes and/or stressful conditions 

(Frankham, 2005). Furthermore, small populations that fall below a certain effective 

size may enter an “extinction vortex” where reproductive dynamics favor inbreeding 

leading to lower reproduction, increased mortality, and smaller population sizes. In 
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this regard, high levels of self-fertilizing and small fragmented populations have been 

shown to be related to inbreeding depression (Angeloni et al., 2011; Leimu et al., 

2010). As inbreeding depression can lead to a decrease in the number of populations, 

often in an irreversible fashion, that may result in the extinction of the species (Lande, 

1993), there are reasons to worry that the long-term survival of this already 

endangered plant might be threatened. Nevertheless, while inbreeding depression 

has negative consequences for plant fitness, its impact is known to be smaller in self-

compatible than in obligate outcrossing species (Leimu et al., 2006). 

While the large fluctuations in population size experienced by many annuals 

could compromise their genetic diversity, other attributes of their life cycle can act in 

the opposite direction. Some annual taxa have a large reservoir of viable seeds from 

which individuals may be drawn in the future (Levin, 1990). In these cases, a stable 

seed bank could have an important role buffering against the genetic loss (McCue and 

Holtsford, 1998; Nunney, 2002). However, this seems not be the case in Omphalodes 

littoralis spp. gallaecica. In agreement with previous observations in other taxa 

(Honnay et al., 2008), our analysis revealed that the local demes of Omphalodes 

littoralis spp. gallaecica maintain a constant genetic composition between 

consecutive years. Thus, the inability of the seed bank to act as a reservoir of hidden 

genetic diversity adds further concern to the long-term persistence of the species. 

An interesting result of our study is the finding that populations separated by 

just a few kilometers show statistically significant differences in their quantitative 

traits. While this variation could simply be a phenotypic response to subtle changes in 

the local environment of each site, our reciprocal transplant experiments indicate it 

actually involves a genetic component. Unlike what would be expected in a scenario 

of local adaptation, the individuals from one site (DN) commonly outperformed those 

from the others regardless of the transplant location. Initially, there is no clear 

explanation to the better fitness of the plants from DN. The only obvious difference 
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between DN and the other populations is that the former displays higher levels of 

within-population genetic diversity. Therefore, it seems tempting to speculate that 

the increased performance of its individuals could be related to the higher variation 

detected using neutral markers. While a correlation between neutral genetic diversity 

and fitness is far from universal, it is widely accepted that a lack of diversity can lead 

to the deleterious effects of inbreeding (Angeloni et al., 2011; Landguth and 

Balkenhol, 2012; Reed and Frankham, 2003). 

Conventional wisdom assumes that self-compatible species are expected to 

display a strong adaptation to local conditions given their usually high levels of genetic 

differentiation (Leimu and Fischer, 2008). However, while the populations of 

Omphalodes littoralis spp. galaecica are strongly isolated from each other, the 

patterns of quantitative differences detected in our reciprocal transplant experiments 

do not match the expectations under local adaptation. Instead, the inheritable 

differences in quantitative traits detected among populations must result from 

processes other than local adaptation. In the absence of gene flow, local adaptation 

can be confounded by genetic drift and/or constrained by a lack of genetic variation 

(Kawecki and Ebert, 2004). This might be the case of Omphalodes littoralis spp. 

galaecica where the lack of evidence in support of local adaptation suggests that 

genetic drift might be responsible for the differences among demes in their 

quantitative traits. Also, the higher performance of the plants from DN suggests that 

this population may be particularly relevant for the preservation of the species.  

From a conservation perspective, the criterion to select priority populations 

should consider its uniqueness and variation level with an emphasis on allelic richness 

(Petit et al., 1998). Our cpDNA analysis revealed that three out of five populations 

cover the complete genetic variation of the species (PC, TC and XN) and should be 

designated at least as MUs (management units sensu Moritz, 1994). However, our 

results also indicate that cpDNA contains only a portion of the genetic history of the 
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species. The more variable AFLP markers showed that each population belonged to a 

different genetic lineage. Moreover, the AFLP results also revealed that DN is the 

population with the largest genetic variation even though its cpDNA diversity is zero 

and totally redundant with other sites (the only haplotype detected in DN also occurs 

in BD and TC). Therefore, and unlike the cpDNA results, the AFLP markers indicate that 

each and every extant population of Omphalodes littoralis spp. gallaecica should 

receive equal attention given their unique genetic composition; consequently, five 

rather than three conservation units should be designated, one per population. In 

fact, by a simple simulation exercise we can estimate the genetic loss derived from 

the disappearance of one population. Total gene diversity (He) decreases from 11.2% 

to 27.5% depending on which population is simulated to disappear. Eventually, it 

seems likewise reasonable to suggest that the five MUs should be designated as ESUs 

(evolutionary significant unit sensu Moritz, 1994) given the significant differences in 

inheritable quantitative traits detected among these populations. The proposal of five 

ESU is done while noticing that the differences in the quantitative traits among these 

ESUs are non-adaptive but a result of genetic drift. However, we still think that the 

occurrence of these differences indicate that the various local demes are not 

interchangeable and may have a different potential to evolve. In this regard, practices 

involving the translocation of individuals between sites are strongly discouraged 

because of the strong genetic isolation between the populations of this endangered 

therophyte (Sletvold et al., 2012). 

In summary, we have shown that by combining selfing with a strongly 

fragmented distribution, a narrow endemic plant can reach extremely low genetic 

variation within populations but high differentiation between local demes. Moreover, 

the various demes of Omphalodes littoralis spp. gallaecica also differ in their 

quantitative traits and these differences have a genetic basis, contradicting the initial 

assumption that populations living in a very narrow range under similar 
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environmental conditions should display a more homogeneous ecophysiology. Our 

reciprocal transplant experiments indicate that this variation in O. littoralis cannot be 

attributed to local adaptation. Instead, high rates of self-fertilization together with 

recurrent bottlenecks caused by dramatic interannual fluctuations in population size 

may have led to a decrease in genetic diversity in a classic scenario drawn by genetic 

drift. Regardless of the mechanism behind the pattern, the current arrangement of 

genetic diversity is of some concern from a conservation perspective. Effective 

population sizes are much smaller than previously thought while the lack of gene flow 

among local demes suggests that if the plant disappears from one dune system, 

recolonization without assistance is highly unlikely. The plants from the only deme 

with moderate genetic diversity consistently outperformed those from other 

populations with minimal to zero diversity, suggesting that the latter might have 

diminished their ability to cope with the environment. We recommend that each 

population should be designated as an independent ESU because of their distinctive 

genetic and phenotypic make-up. Eventually, our study highlights that range size, 

geographic distance, and homogeneous environment may not be accurate indicators 

to delineated conservation strategies.  
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ABSTRACT 

Simple Sequence Repeats (SSR) are widely used in population genetic studies 

but their de novo development is costly and time-consuming. The ever-increasing 

available DNA datasets generated by high-throughput techniques offer new and 

inexpensive alternatives for SSRs discovery. In particular, Expressed Sequence Tags 

(EST) have been used as a SSRs’ source for plants of economic relevance but their 

application to non-model species has been overlooked. We explored SSRs discovery 

from publicly available EST databases (GenBank-NCBI) of non-model species, with 

special emphasis on threatened plants (all genera with available EST listed by the 

International Union for Conservation of Nature and Natural Resources). EST 

sequences of two model genera with fully annotated genomes, Arabidopsis and 

Oryza, served as controls for EST-SSRs genome distribution analysis. From a total of 

14 498 726 EST sequences from 257 endangered genera, 17 076 SSRs from 222 genera 

had suitable primer information. Dimers and trimers were the prevalent repeats. 

Control genomes revealed that trimmers, together with hexamers, were mostly 

located in coding regions while dimers were largely associated with untranslated 

regions. Performance and transferability of EST-SSRs was tested in four species from 

two eudicot genera, Trifolium and Centaurea, finding considerable amplification 

success (41.67-66.67%) and very high (100%) transferability between congenerics. 

The high cross-species transferability suggests that the number of possible target 

species would potentially increase in a significant manner. Altogether, our study 

supports the use of EST databases as an extremely affordable and fast alternative for 

developing SSRs markers in threatened plants. 

Keywords: conservation, EST-SSR, functional markers, population genetics, 

threatened plants. 
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INTRODUCTION 

 Since the 1980s, the fast advent of molecular markers technology has 

revolutionized the field of genetics by changing the pace and accuracy of genetic 

analysis. Today, the analysis of DNA variation is a key component in plant genetics 

studies addressing relevant aspects such as evolution, phylogeny or conservation 

(Allendorf and Luikart, 2012; Frankham et al., 2004; Höglund, 2009). Among the 

various types of molecular marker used for these purposes, Simple Sequence Repeats 

(SSRs) are often regarded as the markers of choice. Microsatellites or SSRs are short 

tandemly repeated DNA regions that are ubiquitous in pro- and eukaryote genomes 

(Morgante et al., 2002; Tautz and Renz, 1984; Toth et al., 2000). They are considered 

“ideal” markers because of their abundance, multiallelic behavior, high polymorphism 

and codominant inheritance (Ritland, 2000). Unfortunately, de novo development of 

SSRs is an expensive and time-consuming task (Squirrell et al., 2003). Moreover, 

genomic SSR are usually species-specific, meaning that specific markers developed for 

one taxon cannot be directly transferred to another (Selkoe and Toonen, 2006).  

 With the recent and growing emphasis on structural functional genomics, the 

number of large datasets of DNA sequences generated by high-throughput 

technologies has greatly increased for a wide variety of taxa. In this context, Expressed 

Sequence Tags (ESTs) databases available for public use appear as an attractive 

alternative for SSRs mining and development (Ellis and Burke, 2007). Microsatellites 

generated from ESTs (EST-SSRs) display several advantages over those derived from 

genomic DNA. First, time and costs for SSRs development are considerably lower. 

Instead of the weeks required for SSRs development with conventional approaches, 

it takes 2-3 days to obtain a batch of EST-SSRs markers with primers from existing 

databases. Second, any type of SSR motif can be detected in EST-SSR mining while a 

subset of predefined motifs are favored in conventional approaches that involve an 

enrichment step. Third, SSRs have found to be moderately abundant (≈2-5%) in EST 
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sequences given their preferential association with the non-repetitive fraction of the 

plant genome (Morgante et al., 2002; Kantety et al., 2002). Finally, EST-SSRs located 

in conserved regions are highly transferable between related species, even across 

genera, because the conserved flanking sequences are ideally suited for primer 

design. Nevertheless, EST-SSRs also show some disadvantages. Their development is 

restricted to organisms with existing EST sequence data, although microsatellite 

mining from EST sequences of related species is a promising alternative. In addition, 

EST-SSRs are expected to display lower levels of polymorphism than anonymous SSRs 

as they are linked to conserved regions of the genome (Ellis and Burke, 2007; Varshney 

et al., 2005a). Nonetheless, several studies with EST-SSRs found moderate to high 

levels of polymorphism (Aleksic and Geburek, 2014; Fraser et al., 2004; Pashley, 

2006). Finally, another possible concern is that EST-SSRs might bias the estimates of 

population divergence if one assumes a neutral model of drift, mutation and 

migration (Luikart et al., 2003). However, Woodhead et al. (2005) reported that 

measures of population structure derived from ESR-SSRs were consistent with those 

from anonymous SSRs. In fact, several studies indicate that only a very small fraction 

of genes might have experienced recent positive selection (Tiffin and Hahn, 2002; 

Victoria et al., 2011)  

 EST-SSRs can be considered “functional markers” because ESTs represent a 

portion of the transcribed region of the genome under certain conditions (Andersen 

and Lübberstedt, 2003; Varshney et al., 2005a). For a majority of these markers, a 

“putative function” can be deduced by comparison against annotated reference 

genomes. EST-SSRs with dinucleotide motifs are known to be favored in Untranslated 

Regions (UTRs) and introns, while trinucleotides are frequent in coding regions (CDS) 

(Morgante et al., 2002). Thus, compared with anonymous SSR, EST-SSRs offer the 

opportunity to detect variation in transcribed portions of the genome that could show 

a marker-trait association (Varshney et al., 2005a). For example, contractions or 
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expansions in the 5’ UTRs can alter the transcription or translation of their respective 

genes (Li et al., 2004; Zhang et al., 2006) while length variation in microsatellite loci 

located in 3’ UTRs has been linked to gene silencing and expression levels of flanking 

genes, among others (Conne et al., 2000; Thornton et al., 1997). On the other hand, 

changes in coding regions may entail a change in function or, even, a loss of function 

(Li et al., 2004). 

 To date, EST-SSRs markers have been successfully used for resolving 

phylogenies (Tabbasam et al., 2013) and to increase resolution in comparative genetic 

mapping studies by cross-referencing genes between species (Varshney et al., 2005b; 

Yu et al., 2004). These studies have mostly focused on species of economic 

importance (i.e. crops) and model species (Aggarwal et al., 2007; Blair and Hurtado, 

2013; Fukuoka et al., 2010; Gao et al., 2003; Kantety et al., 2002; Mishra et al., 2011; 

Simko, 2009; Varshney et al., 2005b). Surprisingly, there are very few examples in the 

literature on the use of EST-SSRs in threatened plants, despite the fact that they could 

be regarded as a potentially powerful tool for addressing conservation-related 

questions (Aleksic and Geburek, 2014; Liewlaksaneeyanawin et al., 2004).  

 The present study explores a rather underexploited, yet clearly promising, 

application of EST-SSRs: developing markers from public EST databases for 

evolutionary and conservation genetic studies of non-model plant species, with a 

special emphasis in threatened ones. In particular, we searched all plant genera 

included in the International Union for Conservation of Nature and Natural Resources 

(IUCN) Plant Red List that had EST sequences available in the GenBank EST database 

(dbEST). Since most of these genera do not include model organisms, normally there 

are no available annotated reference genomes for comparison, thus hampering the 

location of the EST-SSRs within the genome (i.e. intergenic regions, introns, UTRs or 

exons). To minimize this obstacle, EST sequence data sets for two model genera with 

well-known annotated genomes were in-depth analyzed and used as a proxy. 
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Arabidopsis was selected as a control for eudicots while Oryza was used as a guide for 

monocots. Finally, a proof-of-concept study was undertaken by testing for 

amplification, cross-amplification and polymorphism twelve EST-SSRs in four species 

from two genera (Trifolium fragiferum, Trifolium saxatile, Centaurea valesiaca and 

Centaurea borjae). These four species are of conservation interest due to their 

threatened status: Trifolium saxatile and Centaurea borjae are listed by the IUCN 

while Trifolium fragiferum and Centaurea valesiaca are included in the Swiss Red List.   

MATHERIAL AND METHODS 

Sequence data sources  

  By September 2013, 16 031 555 EST sequences were downloaded from the 

dbEST database in GenBank at the NCBI website 

(http://www.ncbi.nlm.nih.gov/dbEST/). Batch files of EST sequences were 

downloaded in FASTA format. The dataset included 14 498 726 records for 257 genera 

(Oryza included) listed both in IUCN Red List and dbEST plus 1 532 829 records for 

Arabidosis. Whenever full-length cDNA sequences were available, they were included 

in the dataset along with the ESTs. 

EST-SSR detection and primer design 

 SSRs were detected in the EST dataset with the help of QDD, an open access 

software which provides a user-friendly tool for microsatellite detection and primer 

design from large sets of DNA sequences using FASTA files as input (Meglecz et al., 

2010). The output file is a list with the ID of the EST sequence that contains the SSR, 

number and type of repeats, location, and primers information. Before EST-SSR 

searches, QDD assembled the ESTs of each genus into unigenes (contigs and 

singletons) to avoid redundancy. Non-redundant EST unigenes were then screened 

for perfect SSRs. Only Class I microsatellites were considered (Temnykh et al., 2001), 

127 
 

http://www.ncbi.nlm.nih.gov/dbEST/


  CHAPTER 4 

defined as DNA sequences containing at least 20 bp, that is ten repeats for 

dinucleotides (DNRs), seven repeats for trinucleotides (TNRs), five repeats for 

tetranucleotides (TRNs) and four repeats for penta- (PNRs) and hexanucleotides 

respectively (HNRs). Mononucleotides were excluded from EST-SSR searches as their 

polymorphism is often difficult to interpret. To have enough flanking sequence of 

appropriate quality for primer design, only EST sequences larger than 100 bp were 

taken into account during EST-SSR searches. EST-SSRs primers were designed with the 

version of Primer3 embedded in QDD (Rozen and Skaletsky, 2000) under the following 

criteria: length ranging from 18-23 nucleotides (optimum 20 bp), annealing 

temperature 55-65 ºC (optimum 60ºC), GC content 30-70% (optimum 50%) and PCR 

product size from 90 to 320 bp. 

Basal Local Alignment Search Tool (BLAST) searches in Oryza and Arabidopsis 

 EST sequences for control genera Oryza and Arabidopsis were run in QDD 

following the criteria specified above. QDD output files were then used as input for a 

BLASTn search against Oryza sativa and Arabidopsis thaliana reference genomes using 

default parameters specified on the NCBI website. Whenever a positive hit was found 

(i.e. >98% of coincidence), the matching gene sequence was downloaded and aligned 

in Geneious 6.1.6 (created by Biomatters, available from http://www.geneious.com/) 

and the distribution of the SSRs along the genome (UTRs, exons, non-coding regions) 

was inferred using the annotated gene information derived from the BLASTn search. 

As a double-check, a BLASTx search against Oryza and Arabidopsis reference protein 

databases was also conducted for EST-SSRs using default criteria. 

DNA isolation, PCR conditions, and amplification of SSRs  

 Six individuals of Trifolium fragiferum, seven from Centaurea valesiaca, two of 

Trifolium saxatile and one from Centaurea borjae were used for testing amplification 

and polymorphism in twelve primer pairs of EST-SSRs. Fresh leaves were dried in silica 
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gel until DNA extraction. Leave tissue from each plant was collected in a 2.0 ml 

Eppendorf tube, frozen with liquid nitrogen and ground to fine powder with a Mini-

BeadBeater (Glen Mills Inc, NJ, US). DNA was extracted using the Wizard Magnetic Kit 

(Promega, US) according to the manufacturer’s instructions. The quality of the 

extracted DNA and negative controls were checked in 1.5% agarose gels. Amplification 

was tested with regular PCR reactions performed in 25 µl containing 1x reaction 

buffer, 2 mM MgCl2, 0.2 of each dNTP, 0.16 of each primer, 1 µl of genomic DNA and 

0.5 units of DNA polymerase (NZyTech, Portugal). PCR profiles consisted of 5 min 

denaturation at 94°C followed by 35 cycles of 30 s denaturation at 94°C, 50 s annealing 

at 59° C, and 45 s of extension at 72°C, with a final elongation step of 35 min at 72°C. 

PCR products were screened on 2% agarose gels. Primer pairs that had successfully 

amplified in the first round where re-tested with the M13 tail method of Schuelke 

(2000). PCR reactions were performed in 25 µl containing 1x reaction buffer, 2 mM 

MgCl2, 0.2 of each dNTP, 0.04 µM of the forward primer with the M13 tail, 0.16 of the 

reverse and the M13-FAM primer respectively, 1 µl of genomic DNA and 0.5 units of 

DNA polymerase (NZyTech, Portugal). PCR profiles included 5 min denaturation at 

94°C followed by 35 cycles of 30 s denaturation at 94°C, 50 s annealing at 59°C, and 

45 s of extension at 72°C, followed by eight additional cycles of 30 s denaturation at 

94°C, 45 s annealing at 53° C, and 45 s of extension at 72°C, and a final elongation step 

of 35 min at 72°C. PCR products were screened on 2% agarose gels and sized on an 

ABI-3730XL DNA analyzer (Applied Biosystems, US) using a 500HD size ladder. PCR 

reactions from one primer pair that produced PCR amplicons larger than expected 

were purified with 1 µl of Exonuclease I (20 u/µl) and 2 µl of FastAP (10 u/µl) and bi-

directionally sequenced (BigDye Terminator cycling conditions) in an Automatic 

Sequencer 3730XL (Applied Biosystems, US). 
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Compositional analysis of SSR mining  

 Occurrence and frequency of SSR motifs in the IUCN genera were analyzed 

after importing QDD output files into MATLAB and Statistics Toolbox 2013a 

(MathWorks Inc., MA, US). Repeat types, number of repeats, and frequency were 

calculated for each genus using a combination of sorting and counting functions. 

Results were displayed in tabular and graphical representations. To provide a broader 

view, results from IUCN genera were grouped into eight taxonomic groups following 

Ruhfel et al. (2014): Florideophyceae, Charophyceae, Monilophyta, Lycopodiophyta, 

Acrogymnospermae, Magnoliidae, Monocotyledoneae and Eudicotyledoneae.  

RESULTS 

Frequency and distribution of SSRs in Arabidopsis and Oryza  

 The dbEST database contained 1 342 281 Oryza ESTs sequences. After filtering 

out redundant and short (<100bp) records, 2626 EST sequences (1912 singletons and 

714 contigs) were left available for SSR search and produced 521 perfect EST-SSRs 

with primer pairs (19.19%). On the other hand, the Arabidopsis dataset contained 

1 532 829 EST sequences that, after filtering, was reduced to 899 EST sequences (616 

singletons and 283 contigs) that contained 151 perfect SSRs with primer pairs 

(16.80%). In both cases, filtering had a large impact on the number of EST records 

available for SSR search, suggesting a high rate of redundant and/or short records in 

the EST database. 

 Although only sequences assigned to Oryza were downloaded from the dbEST, 

just 23.80% of the sequences with EST-SSRs did not rendered a significant hit in the 

BLASTn search against the O. sativa reference genome. Similarly, the BLASTn 

comparison of Arabidopsis EST-SSRs sequences against the A. thaliana reference 

genome produced 7.95% of unsuccessful searches. The SSRs derived from these 

sequences were excluded from further analyses and distribution and position was 
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determined for 397 EST-SSR of Oryza and 139 of Arabidopsis (Table 1). Trinucleotide 

repeats were the commonest repeat size in both genera with very similar relative 

abudances: 61.96% in Oryza and 69.78% in Arabidopsis. Dimers were second in 

abundance, with a frequency of 23.29% in Oryza and 17.27% in Arabidopsis, while 

tetra- and pentanucleotides were scarce in both genera (<5%). Hexamers displayed 

intermediate frequencies in Oryza (11.59%) and Arabidopsis (8.63%). 

Table 1: Number and distribution of the EST-SSRs found for the EST sequences of Oryza and 
Arabidopsis.  

 

 

 

 

Included only EST sequences downloaded from the dbEST database (NCBI) that had a match in their 
respective reference genomes using BLASTn. SSRs search only consider EST sequences larger or equal 
to 100bp, and SSRs ≥20 bp. Numbers between parentheses correspond with the proportion for each 
class. 

 The various SSR motifs were grouped into classes according to base 

complementarity and depending on the reading frame (for groups see Fig. 1, from 

now on in the text will be identified with the first motif repeat). Dinucleotide motifs 

displayed similar patterns in both genera as the AG group was the most abundant, the 

AC group had an intermediate frequency, motifs from the AT group were rare and 

those from the GC group went undetected (Fig. 1). Despite that the AG group 

prevailed in both genera, it was clearly commoner in Oryza than in Arabidopsis. Unlike 

dimers, trimmers displayed different patterns in each genus. Various trimeric motifs 

that were common in Oryza, went unrecorded (GGC and ACG) or very rare (AGC, ACC 

and AGG) in Arabidopsis. GGC group dominated in Oryza, with a frequency of 19.51% 

while the motifs from the groups AAG, AGC and AGG had intermediate values, and 

the group AAT was clearly underrepresented with only a 1.15% (Fig. 1). In comparison, 
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trimmers in Arabidopsis were dominated by the AAG group with a 48.45% abundance, 

while two groups (AGC and AAT) were very scarce (i.e. only one and two SSR detected, 

respectively). No motif from the ATG group was found on either genera.  

Fig 1: Di- and trinucleotide distribution obtained with iQDD software in Oryza and Arabidopsis EST 
sequences that had positive hits in Oryza sativa (japonica cultivar-group) and Arabidopsis thaliana 
reference genomes with BLASTn (NCBI).  

 Four categories were considered for the position of the EST-SSRs along the 

genome according to the alignments derived from BLASTn results: genomic, introns, 

untranslated regions (UTRs), and exons. The majority of EST-SSRs were located in 

exons (42.57% in Oryza, 56.12% in Arabidopsis) followed by UTRs (33.00% and 35.25% 

in Oryza and Arabidopsis, respectively) (Table 1) and only a small fraction was found 

in non-coding regions (i.e. intergenic regions and introns). The proportion of EST-SSRs 

found in non-coding regions greatly varied between genera, representing 24.43% in 

Oryza but only 8.64% in Arabidopsis. Repeats of different size showed characteristic 

locations along the genome. Thus, trimmers and hexamers were mostly concentrated 

in coding regions (exons) with frequencies 57.72 and 52.17% respectively in Oryza, 

and 69.07 and 83.33% in Arabidopsis. By contrast, dimers mostly occurred in UTRs 

(39.73 and 66.67% in Oryza and Arabidopsis, respectively) but they were also 
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relatively common in non-coding regions. Tetra- and pentanucleotide repeats were 

scarce but they occurred preferentially associated to UTRs and non-coding regions in 

both genera. 

EST-SSRs analysis from the IUCN genera  

 Two hundred and fifty-seven genera from the IUCN plant red list were mined 

for SSR using EST sequences available in dbEST (NCBI). These 257 genera included two 

Floriedophyceae, one Cariophyceae, three Lycopodiophyta, five Monilophyta, 18 

Acrogymnospermae, three Magnoliidae, 58 Monocotyledoneae, and 167 

Eudicotyledoneae. Overall, 14 498 726 sequence were screened for SSR discovery 

(Table 2). In a few cases, SSR search and primer design were unsuccessful due to a 

very low number of EST sequences in the input file or sequences that did not fulfilled 

the predefined criteria (i.e. sequences under 100 bp or highly redundant sequences). 

As a result, 222 genera were successfully mined for SSR rendering 17 076 

microsatellites with primers (see Table S1 in supplementary material). Like in the 

control genomes, dimers (30.73%) and trimers (39.03%) were the commonest type of 

SSR while tetramers and pentamers were very scarce (<10%), and hexamers displayed 

an intermediate position. Nonetheless, when the frequency of the various classes of 

SSR was analyzed in detail, there were differences among taxonomic groups (Fig. 2). 

Trimers were commoner than dimers in eudicots and monocots. In 

Acrogymnospermae, hexamers clearly dominated representing more than one third 

of the SSRs. Furthermore, trimers were overwhelmingly overrepresented in 

Lycopodiophyta (64.1%) while dimers were heavily abundant in Monilophyta (81.65%) 

Finally, tetramers and pentamers were consistently rare across genera except in 

Florideophyceae. 
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 Overall, the most abundant dimeric motifs were from the AG group. For 

trimmers there was no consensus along all the groups studied but the AGT and AGC 

groups were the commonest. When each taxonomic group was considered 

separately, the AT group was also very common in Spermatophyta 

(Acrogymnospermae and Angioespermae), second only to the AG group. In red algae 

the ACG and GGC groups were the most frequent. Moreover, trimers rich in GC 

displayed high abundance in Monocotyledoneae while it was absent from the 

remaining groups of Streptophyta. Tetramers, pentamers and hexamers were too 

scarce in most taxa to allow an appropriate analysis of their distribution. Only in 

Acrogymnospermae, the distribution of hexanucleotides was examined in detail 

finding that ATCGGG and ATGGCG were the main motifs. 

Fig 2: Distribution of SSRs motif in 222 IUCN red list genera grouped into eight large taxonomic gropus 
(Florideophyceae, Cariophyceae, Lycopodiophyta, Monilophyta, Acrogymnopermae, Magnoliidae, 
Monocotyledoneae and Eudicotiledonea). The axis Y (logarithmic scale) represents the number of SSR.  
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Amplification and transferability of the EST-SSRs 

 A subset of 24 pairs of EST-SSRs primers (12 pairs per genus) were chosen to 

test amplification performance in two genus of Eucotyledonae, Trifolium and 

Centaurea (Table 3). A total of 85 293 Trifolium EST sequences were run for SSR search 

rendering 130 EST-SSR with their primers. Likewise, the 53 422 EST sequences 

analyzed for Centaurea returned 306 EST-SSRs and their primers. Thirteen out of the 

24 pairs of primers yielded a clear amplification product (amplification rate 54.2%). 

Nevertheless, the amplification success differed between genera and Centaurea 

displayed a higher amplification rate (66.7%) than Trifolium (41.7%). All loci produced 

amplification products of the expected size, except for locus C6 of Centaurea that 

generated an amplicon longer than expected, suggesting the presence of a non-

transcribed intron inside; which was further confirmed by the sequencing of the PCR 

product. The protocol from Schuelke (2000) had mostly no impact on PCR 

performance since all the pair of primers that amplified in the first round with 

untransformed primers also did with the M13-tail ones. However, locus C7 produced 

an unspecific second band, larger than the one obtained in the first round, with 

method of Schuelke (2000). 

 The selected primers were also used to assess the cross-species transferability 

in two species, C. borjae and T. saxatile. Only two individuals of each species were 

used in this process as the aim was test the level of transferability among species of 

the same genus rather than polymorphism. Cross-species amplification was 

considered successful when an amplification band was observed in the 

electrophoresis gel. Under this criterion, the rate of successful transferability was 

100%, since all the primers that worked on one species also did it on its counterpart. 
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Table 3: Characteristics of the EST-SSR loci tested for amplification in Trifolium and Centaurea. Loci 
with several GenBank EST gi correspond to consensus sequences generated by QDD. 

Genus GenBank EST gi  Repeat motif Primer sequence PCR product 
T6-Trifolium gi86106666 

gi86105378 
(AG)11 T6_F: CAACCAGTGGTGTGAGTAGGAG 113-115bp 

T6_R: ACGTTGGTGGAGAGGTTGAG 
T7-Trifolium gi428283538 (AG)13 T7_F: ATCACGCTTCACTCCTCCAC no PCR 

product T7_R: CAACTCCAAGCTTAAGATCGTGTA 
T1-Trifolium gi428292074 (AG)11 T1_F: AGATTCCCACCAATCTCCCT 257-261bp 

T1_R: CAATACGCGGGTCTTGATCT 
T2-Trifolium gi86106666 

gi86105378 
(AAT)7 T2_F: TTCCGGTTAGGTTAGGGTTT no PCR 

product T2_R: TTTTCACATCTTCCGAAGCC 
T3-Trifolium gi428285635 (AGT)8 T3_F: CACCACATATGCAACCACAA  no PCR 

product T3_R: GTCGACGACGGTTGTTACCT 
T8-Trifolium gi428291122 (ACC)7 T8_F: GCAAAACTCAAGAGAACGGC no PCR 

product T8_R: GGATGTCTTCGGAGGTGAGA 
T9-Trifolium gi428292435 (ACC)7 T9_F: ACAACCCATTTGCCTCAAAG 124-127bp 

T9_R: TTTTCACTTCCACCACCTCC 
T10-Trifolium gi86119186 (ACC)9 T10_F: TCCACTAGTTCTAGAGCGGC no PCR 

product T10_R: TCCTGTAAACTGGAGGAGCC 
T11-Trifolium gi86124411 (AGG)8 T11_F: TGGCGGTGGTGACTTATACA no PCR 

product T11_R: TGTTTGGCAGTGGTGATGTT 
T4-Trifolium gi86125686 (ACC)8 T4_F: GCTGCCACAGCACTACCAG 110bp 

T4_R: AATATTACCGTGAATGAAGCTCAG 
T5-Trifolium gi86097190 (ACCT)5 T5_F: TGAGTTCCGAGTTAAGGCTCA 227-231bp 

T5_R: TTCGGTAACTCCGAGGATTG 
T12-Trifolium gi428282514 (AATCC)20 T12_F: GATTATTCAACCAAACGCCG no PCR 

product T12_R: TAGAAAGCCACGCCAAGACT 
C6-Centaurea gi124618051 (AC)11 C6_F: TGGGATGCAGTCCAGTCATA 256bp  

C6_R: TTGCAACTTGCCTGTACCAC 
C1-Centaurea gi148298213 (AC)10 C1_F: GGGAACCACACCTTTCATCT 133-135bp 

C1_R: GATCTGGCTTGACCCAAGAA 
C7-Centaurea gi124669731 

gi124688599 
(AC)12 C7_F: TCGTTTTCCGATCACAAACTC 141-143bp 

C7_R: CAATTTGGCGACATCTCCTT 
C2-Centaurea gi124680442 (AAG)7 C2_F: CGCATTATGGAATAAACCCG 305bp 

C2_R: GCTTTCGACTTCATAAGCGG 
C8-Centaurea gi148296795 (ACC)7 C8_F: CGATGTATACAGGTGGTGCG 141-144bp 

C8_R: GGAGAAGGGGAGACGTAAGG 
C9-Centaurea gi124675484 (ACC)9 C9_F: AACGGTAGGAACCAGCATTG no PCR 

product C9_R: GATCCTCTGGCAGGGTCATA 
C10-Centaurea gi124661102 (AGC)7 C10_F: AGTTGCCAGAAAGGAGCAAG no PCR 

product C10_R: TCGAGAACAATGGCCTATCC 
C11-Centaurea gi148292432 (AGG)7 C11_F: TCCATGGATACAACCACCAA 160-172bp 

C11_R: GCGATATTCGGATGCAAAGT 
C3-Centaurea gi124632630 (AGT)7 C3_F: GCCATCCCCTTCTCTACTCC no PCR 

product C3_R: GTTACAGGTGACGATGGGGT 
C4-Centaurea gi124691992 (AGGT)5 C4_F: CTGCACCTACCCAGAGAAGC 103-107bp 

C4_R: CGGGAGAGGGTAAATTGTGA 
C12-Centaurea gi124632477 (AATCGG)4 C12_F: ATGCATTGAGAAGGCCAATC no PCR 

product C12_R: AACTCGCAAGCCTTTTCAAG 
C5-Centaurea gi124673348 

gi124676118 
gi124669484 

(AAGCAG)5 C5_F: TTAAGCATTCTTCGAGGCGT no PCR 
product C5_R: TCTATGCCTACGCCGATCTC 
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 Despite the small number of individuals used in the polymorphism tests, two 

out of the seven EST-SSRs (28.75%) that yielded a PCR product of the expected size in 

Centaurea displayed polymorphism within species (Table 3): loci C1 and C11 in 

produced two and three genotypes, respectively. On the other hand, one of the 

dimeric loci of Trifolium (T1) displayed a stutter-peak profile and was discarded from 

further analysis. Among the four remaining loci, T5 and T9 were polymorphic revealing 

three and two genotypes, respectively (50% polymorphism). Finally, six out of the 

seven loci of Centaurea produced different genotypes in the two species used in our 

tests (87.77%) while three out of the four loci of Trifolium were polymorphic between 

species (75%). 

DISCUSSION 

 Computational approaches allow the fast discovery of molecular markers from 

the ever-increasing publicly available genomic resources. Thus, SSRs derived from EST 

sequences arise as an excellent alternative to the classical techniques of anonymous 

microsatellites because of their fast and inexpensive discovery (Ellis and Burke, 2007). 

Besides, unlike anonymous SSRs, EST-SSRs markers have proven of great value in 

cross-species studies, linkage maps, and in discovering markers linked to genes rather 

than only in traditional population structure studies (Varshney et al., 2005b). Thus far, 

EST-SSR development have almost exclusively targeted crop and model species, 

ignoring non-model ones (Aggarwal et al., 2007; Blair and Hurtado, 2013; Fukuoka et 

al., 2010; Gao et al., 2003; Kantety et al., 2002; Mishra et al., 2011; Simko, 2009; 

Varshney et al., 2005b). In this context, the present study has tried to fill this gap by 

focusing on developing EST-SSRs for evolutionary and conservation studies in non-

model species, with a special emphasis on threatened plants. 
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Frequency and distribution of SSRs in Arabidopsis and Oryza  

 The frequency and distribution of short tandem repeats in EST sequences is 

highly variable among studies, in part because the efficiency of SSR discovery relies 

on several factors such as the mining tool used, the mining criteria, or the size of the 

EST sequences dataset (Aggarwal et al., 2007; Blair and Hurtado, 2013). Differences in 

mining criteria such as searching for perfect and/or imperfect repeats, minimum 

numbers of repeats, or length of spacer in compound repeats usually lead to 

significant deviations in the number of microsatellites identified in a given species 

using the same dataset (Aggarwal et al., 2007). Here, we opted for highly conservative 

criteria and only perfect repeats with a length equal or larger than 20 bp were 

considered (Blair and Hurtado, 2013). We did so in an effort to increase the 

polymorphism of the detected SSRs but, as a consequence, we probably obtained a 

lower number of EST-SSRs than would have been found if more relaxed parameters 

were set for the searching.  

 The in-depth analysis of EST-SSR frequency and distribution in Arabidopsis and 

Oryza revealed that trimmers and dimers contained more than 85% of the SSRs found. 

Furthermore, trinucleotide repeats comprehended the vast majority of SSRs, 

accounting for more than 60% of the detected loci. High frequencies of trimmers are 

known to be favored in higher plants in comparison with algae or mosses and have 

been invariably reported in most studies (Kantety et al., 2002; Varshney et al., 2005b; 

Victoria et al., 2011). As expected in vascular plants, the AG group was the most 

abundant dinucleotide motif and low frequencies of the AT group were recorded in 

both genera (Kantety et al., 2002; Morgante et al., 2002; Temnykh et al., 2001; 

Victoria et al., 2011). In agreement with previous studies of monocots and eudicots, 

we found differences in the trinucleotide repeats of Oryza and Arabidopsis. GC-rich 

motifs, commonly dominant in monocots, were the most frequent trimmers in Oryza 

as the group GGC (Gao et al., 2003; Temnykh et al., 2001; Kantety et al., 2002; Victoria 
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et al., 2011) while the AAG group prevailed in Arabidopsis where GC-rich motifs were 

scarce (Victoria et al., 2011). 

 Overall, a major fraction of EST-SSRs were located in CDS regions, an 

observation that seems consistent with the fact that EST-SSR derive from transcribed 

regions. Nevertheless, not every type of nucleotide repeat appeared in CDS regions 

with equal probability. Di, tetra and pentamers mostly concentrated in UTRs and, to 

a lesser extent, in other non-coding regions. However, trimmers and hexamers 

regularly occurred in CDS regions. Since the frequency and distribution of the various 

SSR repeats and motifs are a function of the dynamics and history of genome 

evolution, the predominance of trimeric repeats, especially trinucleotides, in ESTs has 

been attributed to selection against frameshift mutations caused by length variation 

in non-trimeric motifs (Morgante et al., 2002). Large frequencies of dimers in UTRs 

and a prevalence of trimmers in CDS regions have been consistently reported in other 

plant studies (Gao et al., 2003; Wang et al., 1994). Since EST sequences derive from 

mRNA, the frequency of EST-SSRs located in non-coding regions might seem 

unexpectedly high. However, transcripts of unknown function with apparently little 

protein coding capacity are now known to overlap with protein-coding regions and 

they are often distributed in intergenic regions (Gingeras, 2007).  

 Interestingly, trinucleotides in Oryza were rich in GC motifs and more than 70% 

of these GC-rich trimmers were linked to CDS regions. CCG repeats have been found 

to be involved in many gene functions such as stress resistance, transcription 

regulation, or metabolic enzyme biosynthesis (Gao et al., 2003). As trinucleotide 

repeats are usually related to coding regions, they usually involve a moderate number 

of repeats based on the limitation to non-perturbation of the triplet codon, which may 

result in low levels of polymorphism (Cho et al., 2000). In contrast, dimers tend to 

display higher levels of variation as consequence of their association with UTRs and 

non-coding regions (Liewlaksaneeyanawin et al., 2004; Yu et al., 2004).  
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EST-SSRs analysis from the IUCN genera  

 The frequencies of the various nucleotide repeats and motifs in IUCN genera 

were highly consistent with the results obtained in the control genomes of Oryza and 

Arabidopsis. Trimers and dimers accounted for >60% of the EST-SSRs, while tetramers, 

pentamers and hexamers displayed lower frequencies. However, the abundance of 

the various types of nucleotide repeat differed between groups. Results for mocots 

and eudicots were highly consistent with those obtained in the two control genomes. 

They were likewise in agreement with previous findings in flowering plants where 

trimmers were the most abundant motifs followed by dimers (Victoria et al., 2011). 

Similarly, AG was the commonest dimer, as it seems typically the case in angiosperms 

(Kantety et al., 2002; Morgante et al., 2002; Temnykh et al., 2001; Victoria et al., 

2011). The pattern seen in the trimeric motifs of IUCN genera agreed with what we 

found in Oryza and Arabidopsis, corroborating the high abundance of CG-rich motifs 

in monocots and the AAG group in eudicots (Gao et al., 2003; Kantety et al., 2002; 

Temnykh et al., 2001; Victoria et al., 2011). Differences in the frequency of the various 

types of repeat and motif between taxonomic groups were expected because the SSR 

distribution is affected by the dynamics and history of genome evolution (Morgante 

et al., 2002). Thus, Acrogymnospermae revealed a higher proportion of hexamers 

than mono and eudicots, and the leading motif in Acrogymnospermae, the AT group, 

was very scarce in angiosperms. Similar results have been reported for this group of 

plants in previous studies (Pinosio et al. 2014; Victoria et al. 2011). Unfortunately, the 

four groups of non-vascular plants were represented by too few genera to allow 

generalizations.  

Amplification and transferability of the EST-SSRs 

 Amplification success in this study was similar to values reported in some 

studies of EST-SSRs (Cordeiro et al., 2000; Rungis et al., 2004) but lower than others 
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(Eujayl et al., 2004; Wöhrmann and Weising, 2011). Unsuccessful primer amplification 

can be a consequence of non-transcribed introns located in the annealing primer 

region (Ellis and Burke, 2007). Also, some of the EST-SSRs detected in our searches 

could actually belong to a different species because, as revealed by our analysis of 

control genomes, a portion of EST sequences do not find a match in control genomes 

and might be a result of RNA contamination (Varshney et al., 2005a). 

 Given their association with conserved regions of the genome, EST-SSRs are 

often assumed to be less polymorphic than their genomic counterparts (Ellis and 

Burke, 2007; Russell et al., 2004; Varshney et al., 2005a). However, studies comparing 

both types of marker showed that this premise does not always hold true and similar 

levels of polymorphism have been found in anonymous versus EST-SSRs (Fraser et al., 

2004; Pashley, 2006). In our study, polymorphism ranged from 25 to 28.57% within 

species and from 75 to 87.77% between species. Since only eight individuals of each 

species/genus were used to assess polymorphism, the levels estimated here must be 

taken with caution and cannot be consider a general attribute of EST-SSRs. The quality 

of the banding patterns was high, with clear peaks (except for locus T1), a flat baseline, 

and no null allele was detected. Cleaner profiles and lower frequencies of null alleles 

than those found in anonymous SSRs appears to be a general property of EST-SSRs 

(Pashley, 2006; Woodhead et al., 2005; Wöhrmann and Weising, 2011). The lower 

levels of polymorphism usually attributed to EST-SSRs compared with anonymous 

SSRs may be compensated by their high rate of cross-species transferability (Aggarwal 

et al., 2007; Pashley, 2006; Wöhrmann and Weising, 2011), which has been reported 

not only among congenerics but also across different genera (Varshney et al., 2005b). 

Our results are highly congruent with the premise of high-transferability in EST-SSRs. 

All of the tested loci that successfully amplified in one species did the same in its 

counterpart, supporting that EST-SSRs are markers with a great potential for 

comparative studies among species. 
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Use of EST-SSR as molecular markers for studying threatened species 

 Whereas EST-SSRs can be essentially used for the same purposes of the 

genomic SSRs, their association with translated regions offers a range of possibilities 

not usually available in anonymous SSRs. Since microsatellites derived from EST 

sequences are associated with CDS regions, the function of these genes can often be 

identified by aligning the ESTs of interest against genomic sequence of a model 

organism such as Arabidopsis for eudicots and Oryza for monocots. Therefore, these 

markers could be useful in quantitative trait locus mapping within species and in 

comparative genomics studies among species due to their high cross-species 

transferability (Varshney et al., 2005b). Likewise, EST-SSRs have also been considered 

a better option than anonymous SSRs for resolving phylogenetic studies (Tabbasam 

et al., 2013).  

 Even if genomic SSRs seem a more suitable option for studies detecting 

intraspecific variation because they tend to display higher levels of polymorphism, this 

can be compensated combining both types of markers (Aleksic and Geburek, 2014; 

Wöhrmann et al., 2011). A possible concern when dealing with EST-SSRs is that, as 

consequence of their association with genic regions, selection may influence the 

estimates of population genetic parameters (Pashley, 2006). However, several studies 

suggest that this may not be an issue as estimates of population differentiation were 

largely consistent with those derived from anonymous SSRs (Woodhead et al., 2005). 

Of course, not every EST-SSR will behave as a neutral marker and loci linked to genes 

involving relevant traits may display a signature of selection. However, the latter may 

offer the chance to target “adaptive variation”, an issue of high relevance in studies 

addressing conservation issues (Frankham et al., 2010). Our results suggest that 

conservation studies with adaptive variation in mind should focus on trimmers. 

Trinucleotide repeats are very likely to be located within exons, they are commoner 

and more polymorphic than hexamers. Besides, and as noted before, EST sequences 
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with SSRs can be cross-referenced with annotated genomes for sequence similarity 

and gene discovery. Dinucleotide repeats could be another good choice because they 

are known to be very polymorphic and our results show that they are mainly linked to 

UTRs, which are known to be involved in gene expression and other control functions 

(Conne et al., 2000).  

 In summary, this study represents the first attempt to test the potential of 

publicly accessible EST databases as a source of SSRs discovery for threatened plant 

species at a broad scale. We successfully detected SSRs with primers for more than 

87% of the 257 IUCN plant genera analyzed, thus providing EST-SSRs ready to test for 

222 genera. Since EST-SSRs have proved to be highly transferable among species, the 

number of species that could be potentially targeted in studies using the set of loci 

presented here could eventually be quite large. A common limitation for many 

population genetics studies with non-model organism is the development of the set 

of molecular markers. Our study shows that EST databases are a valuable and suitable 

source for SSRs discovery. Once accessed the EST database, a set of EST-SSRs with 

primers can be produced in a couple of days with no further cost. In conclusion, our 

results highly support the use of existing EST databases for SSRs discovery in non-

model plants as a bench tool for evolutionary and/or conservation studies of 

population geneticists and molecular ecologists.   
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SUPLEMENTARY MATERIAL 

Table S1: List of IUCN plant genera mined for EST-SSRs with raw results. EX = extinct, 
EW = extinct in the wild, CR =critically endangered, EN = endangered, VU = 
vulnerable, NT =near threatened, LC =least concern, DD =data deficient.  
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General conclusions 

Throughout the chapters of this thesis, various molecular tools were used to 

study the genetic variation and population structure of rare and/or threatened 

species. Results derived from this thesis support the use of molecular markers for 

conservation purposes. Conservation actions such as defining management units or 

establishing minimum inter-plant distance for seed collection for ex situ germplasm 

collection require population genetic information. Results also highlight the 

importance of combining molecular markers with different modes of inheritance for 

designing accurate management strategies. Management measures based in one type 

of molecular marker only can sometimes overlook populations of conservation 

concern.  

Specific conclusions 

Chapter 1: 

 Clonal growth seemed relatively restricted in C. borjae although clonal

diversity differed among populations and the northernmost ones have a higher 

abundance of clones. The only consistent difference between populations with higher 

and lower clonal incidence was the geological substratum. Northernmost populations 

occur on serpentine soils and it is speculated that these soils may affect plant growth 

by favoring clonal propagation.  

 No evidences of genetic impoverishment were detected in Centaurea borjae.

Instead, our data revealed relatively high levels of genetic variation at species and at 

population level. Diversity levels detected in C. boraje were comparable to those 

obtained in plants with similar life-history traits and fell within the range of values 

inferred for other endemic members of the genus Centaurea investigated with 

dominant markers. 
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 We found evidence of restricted gene flow among populations, in agreement

with the poor dispersal abilities attributed to C. borjae. Likewise, the fine-scale SGS 

found in Centaurea borjae indicates that rosette leaves at close distances can be more 

related than spatially random pairs. The results fitted again with the expectations for 

a plant with low dispersal capabilities, clonal reproduction, and/or low density. For 

germplasm collection, rosettes separated <80 m should be generally avoided tp 

prevent collecting genetically close plants and/or clone mates. 

 AFLP data consistently identified four genetic clusters that were designated as

an independent management unit based on the restricted gene flow among 

populations detected and their genetic uniqueness. One MU was formed by the three 

central populations PC-OC-OBB, while the remaining three MUs encompassed one 

population each.   

Chapter 2: 

 Unlike AFLPs, chloroplast sequence data provided some evidence of genetic

depletion in C. borjae. The incongruence between AFLP and cpDNA data was 

attributed to differences in mutation rate and effective population size. 

 Like in the AFLP study, gene flow was low. In fact, estimates with cpDNA were

lower than with AFLPs and seem consistent with several biological traits of C. borjae: 

lack of pappus, probable myrmecochory, and low germination success. 

 The current arrangement of haplotypes suggest that the species might have

persisted for a longer period of time at the center of its current distribution range. 

 The uneven distribution of cpDNA polymorphism among populations leads to

prioritizing four enclaves in terms of their contribution to haplotype richness and 

diversity: LI, VH, OB and PC. By preserving these four populations, all known 

haplotypes will be maintained. These results complement prior findings with nuclear 

markers because cpDNA data reveal that PC and OB have private alleles and are not 

interchangeable in conservations terms. Likewise important, the four populations 

156 



CONCLUSIONS 

identified as priority by cpDNA only included three of the four MUs designated with 

nuclear markers. The excluded MU was the geographically isolated PR that, according 

to AFLP, has a certain level of uniqueness (a private band and noticeably different 

marker frequencies). 

Chapter 3: 

 Both AFLP and cpDNA recorded an extremely low genetic diversity in

Omphalodes littoralis spp. gallaecica and minimal gene flow among populations. It is 

speculated that this pattern may be a consequence of strong genetic drift within 

populations.  

 Still, cpDNA data suggests that the various local demes might have been

connected in a distant past. 

 The pattern of low genetic diversity and strong differentiation seems stable on

consecutive years, suggesting the inability of the seed bank to act as a reservoir of 

hidden genetic diversity. 

 The various populations differed in a number of quantitative traits and

reciprocal transplant experiments indicated that these differences had a genetic 

component. However, the variation in quantitative traits could not be attributed to 

local adaptation.  

 From a conservation perspective, the combination of genetic and quantitative

trait analysis led to the designation of five Evolutionary Management Units (ESUs) and 

each population is recommended to be considered as a single ESUs given its molecular 

and phenotypic uniqueness. 

Chapter 4: 

 Trimers, followed by dimers, were the commonest SSR motifs in EST sequences

of the control genomes of Arabidopsis and Oryza. We found differences in the type of 

motif between monocots and dicots: monocots were abundant in GC-rich motif. 

 In general, EST-SSRs derived from control genomes were mostly located in

coding regions. However, trimmers and hexamers were commonly found in CDS 
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regions while other motifs were mainly located in UTRs and, to a lesser extent, other 

non-coding regions. 

 EST-SSRs with primers were found for 222 out of 257 genera of threatened

plants. 

 Trimers were also the commonest nucleotide repeats in IUCN genera but the

frequency of the various types of SSR repeat differed among the studied taxonomic 

groups. Results for Angyospermae were consistent with those found in the control 

genomes where trimmers and dimers were the most abundant but the 

Acrogymnospermae revealed a high proportion of hexamers. 

 Empirical tests indicate that our EST-SSRs have notable amplification success

and very high transferability between congenerics, supporting the use of existing EST 

databases for developing SSRs in non-model plants as bench tool for evolutionary 

and/or conservation studies of population geneticists and molecular ecologists. 
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EXTENDED SUMMARY 

TÍTULO: Genética de la conservación de plantas amenazadas en el NW de la 

Península Ibérica: una aproximación práctica 

Genética de la conservación 

La genética de la conservación es una disciplina aplicada que se beneficia del 

uso de herramientas moleculares y evolutivas para conservar la biodiversidad (Avise 

and Hamrick, 1996; Frankham et al., 2010; Mills, 2006). La diversidad de los genes 

constituye la materia prima de las especies para evolucionar y adaptarse en un 

ambiente en continuo cambio. Por lo tanto, para diseñar estrategias de conservación 

adecuadas es imprescindible conocer el nivel y la distribución de la diversidad 

genética dentro y entre poblaciones (Frankham, 2005; Frankham et al., 2002; Hamrick 

and Godt, 1996). Este conocimiento es aún más importante en especies raras y/o 

amenazadas. 

Las especies raras y/o amenazadas a menudo poseen características tales 

como un pequeño tamaño de población, especificidad por un hábitat y/o aislamiento, 

que las hacen más susceptibles a sufrir procesos de erosión genética (Ellstrand and 

Elam, 1993; Cole, 2003; Hamrick and Godt, 1996; Leimu et al., 2006). Las plantas con 

pequeños tamaños poblacionales son más suscceptibles a a sufrir cuellos de botella y 

deriva genética (Hamrick et al., 1991). Los cuellos de botella conllevan una fuerte 

reducción en el número de individuos que habitualmente va acompañada de una 

disminución de la diversidad genética (Willi et al., 2006). Del mismo modo, la deriva 

genética resulta en la pérdida de alelos por azar (Hamrick and Godt, 1996). Varias 

revisiones sugieren que las plantas raras y/o amenazadas tienden a poseer niveles de 

diversidad genética menores que los de especies más ampliamente distribuidas (Cole, 

2003; Ellstrand and Elam, 1993). Sin embargo, esta afirmación está lejos de ser 

universal y necesita ser examinada con mayor detalle (Gitzendanner and Soltis, 2000). 
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Además, unos niveles bajos de diversidad genética neutral no necesariamente 

correlacionan con una pérdida de de variabilidad adaptativa (Bekessy et al., 2003; 

Landguth and Balkenhol, 2012; Reed and Frankham, 2001; Reed and Frankham, 2003). 

 El patrón de diversidad genética en plantas está influenciado por múltiples 

factores entre los cuales cabe destacar el efecto de los rasgos vitales de la especie 

(Hamrick et al., 1991; Nybom, 2004). La forma de vida, el rango de distribución y el 

tipo de reproducción afectan a la diversidad genética tanto a nivel de la especie como 

a nivel de la población. Las especies anuales, especies que se reproducen por 

autogamia y/o especies con rangos de distribución reducidos tienden a poseer menor 

diversidad genética que las perennes, de fecundación cruzada y/o ampliamente 

distribuidas (Hamrick et al., 1991, Nybom, 2004). Por otra parte, las plantas anuales 

y/o autógamas acostumbran a manifestar mayor diferenciación entre poblaciones 

que las que tienen fecundación cruzada o son perennes (Gitzendanner and Soltis, 

2000; Hamrick and Godt, 1990; Honnay and Jacquemyn, 2007). La dispersión es otro 

proceso determinante de la estructura genética (Garcia et al., 2007). Especies con un 

movimiento restringido de polen y/o semillas suelen presentar fuerte estrucura 

genética mientras que las plantas con una elevada tasa de dispersión tienden a 

presentar una distribución aleatoria de genotipos (Turner et al., 1982; Wright, 1943; 

Wright, 1978). Finalmente, la diferenciación genética entre poblaciones puede ser 

consecuencia de procesos de adaptación local en lugar de deriva genética o baja 

dispersión. 

 Para conocer el nivel y estructura genéticos de las poblaciones es necesario 

emplear marcadores moleculares. Actualmente, hay muchos tipos de marcador 

molecular pero ninguno es el marcador perfecto y la elección de cuál utilizar depende 

de la cuestión abordada. Entre los marcadores más utilizados en genética de 

conservación de plantas encontramos los AFLPs (Amplified Fragment Length 

Polymotphism), los microsatélites o SSRs (Short Sequence Repeats) y la secuenciación 
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de regiones del cloroplasto (Mba and Tohme, 2005; Selkoe and Toonen, 2006; 

Taberlet et al., 1991). Los AFLP son marcadores que cubren todo el genoma 

amplificando fragmentos de restricción mediante la adición de ligandos. Una de sus 

principales ventajas es que no requieren conocimiento previo del genoma (Allendorf 

and Luikart, 2013) pero son marcadores dominantes que no permiten detectar 

heterocigotos. Sin embargo, su naturaleza dominante se ve compensada por el alto 

número de loci que pueden detectar. Los microsatélites son muy utilizados en 

genética de poblaciones por su naturaleza co-dominante, alto polimorfismo y 

considerable abundancia a lo largo del genoma (Selkoe and Toonen, 2006). Sin 

embargo, también tienen desventajas y su desarrollo es una tarea que consume 

tiempo y dinero. La secuenciación de fragmentos de ADN del cloroplasto es una 

información muy valiosa debido a que su modo de herencia difiere del de los 

marcadores moleculares neutrales como AFLPs y SSRs (McCauly, 1995). El ADN del 

cloroplasto se hereda principalmente de forma maternal en angiospermas y, por lo 

tanto, solo puede ser dispersado por semillas (McCauly, 1995). Además, sus 

secuencias puede ser ordenadas históricamente proporcionando información sobre 

la historia de las poblaciones (Avise, 2004).  

La información derivada de marcadores neutrales como los citados arriba es 

un elemento crucial en el desarrollo de iniciativas de conservación efectivas, tanto in 

situ como ex situ. Por un lado, los esfuerzos de conservación ex situ consisten 

típicamente en el almacenar germoplasma (principalmente semillas). Para el 

muestreo de germoplasma es necesario mantener una distancia mínima de muestreo 

entre individuos que se determina mediante un análisis espacial de la estructura 

genética (Vekemans and Hardy, 2004). Por otra parte, la gestión in situ de poblaciones 

silvestres suele implicar el definir unidades de manejo (MUs) (Palsboll et al., 2007) 

que se diagnostican como poblaciones que presentan diferencias en las frecuencias 

alélicas de ADN de orgánulos y/o loci nucleares (Avise, 1995; Moritz, 1994). Cuando 
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la diferenciación va más allá de la simple divergencia en las frecuencias alélicas e 

implica también diferencias en rasgos cuantitativos se emplea el término unidad 

evolutivamente significativa (ESU) (Crandall et al, 2000; Moritz, 1999). Es importante 

saber con qué tipo o unidad se está tratando ya que intercambiar individuos entre 

Mus puede ser recomendable pero no lo es entre ESUs.  

 A pesar de que los marcadores neutrales son útiles para determinar las 

relaciones genéticas entre individuos, el flujo de genes, la estructura de la población, 

y la historia demográfica (Reed and Frankham, 2001) su uso como indicadores del 

potencial adaptativo de una especie es,  en el mejor de lo casos, escaso (Bekessy et 

al., 2003; Reed and Frankham, 2001). Con el reciente aumento de la disponibilidad de 

conjuntos de datos de ADN generados por NGS (Next Generation Sequencing) y el 

creciente énfasis en la genómica funcional, las nuevas técnicas y enfoques de datos 

ahora pueden ser aplicadas a las poblaciones naturales (Allendorf et al., 2010; Luikart 

et al., 2003). Es en este contexto donde la genética de la conservación va un paso más 

allá convirtiéndose en genómica de conservación, una disciplina todavía en su infancia 

resulta muy prometedora (Ouborg et al., 2010; Primmer, 2009).  

Especies objeto de estudio 

 La presente tesis se centra en el estudio de la diversidad y estructura genética 

de dos endemismos del noroeste de España: Centaurea borjae Valdés- Bermejo y 

Rivas Goday (1978) y Omphalodes littoralis spp. gallaecica M. Lainz (1971). Ambas 

especies están catalogadas como "en peligro " por la IUCN y el Catálogo Español de 

Especies Amenazadas (Serrano y Carbajal, 2011; Ministerio de Medio Ambiente y 

Medio Rural y Marino, 2011), y catalogadas como especies prioritarias en la Directiva 

de Hábitats de la UE (92/43/CEE, Anexo II). Su ocupación total se estima que es muy 

reducida siendo una de las principales razones a las que deben su estatus de en 

peligro. Además, sus hábitats son considerados como lugares de importancia 

comunitaria (LIC) dentro de la red Natura 2000. 
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Centaurea borjae se encuentra sólo en seis localidades, todas ellas acantilados 

situados a lo largo de <40 km de la línea costera (Valdés- Bermejo and Rivas Goday, 

1978). Se estima que la ocupación total de la especie no supera 5.000 m2 (Bañares et 

al., 2004). C. borjae es una pequeña planta (<6 cm de altura), con polinización cruzada 

entomófila y flores hermafroditas (Valdés-Bermejo and Agudo Mata, 1983; Valdés- 

Bermejo and Rivas Goday 1978). Su éxito de germinación parece ser muy bajo 

(Gómez-Orellana Rodríguez, 2004; Pers comm. R. Retuerto; pero ver Izco et al., 2003 

para otras estimas) y se pueden encontrar fácilmente larvas de insectos 

alimentándose dentro de los frutos (Fernández Casas and Susanna, 1986). El fruto 

carece de vilano y posee un elaiosoma que sugiere que las hormigas podrían 

desempeñar un papel en la dispersión de las semillas. C. borjae produce rizomas que 

pueden extenderse hasta varios metros y dar lugar a nuevas rosetas. 

A pesar de su estatus como especie prioritaria para la conservación, no hay 

datos de la magnitud y estructura de su diversidad genética. Sus rasgos vitales pueden 

conducir a hipótesis contradictorias sobre su variación genética. Por un lado, la 

propagación clonal junto con la baja germinación llevan a pensar que las poblaciones 

podrían tener baja diversidad genética. Por otro lado, como especie de fecundación 

cruzada podría mostrar niveles considerables la diversidad genética (Cole, 2003; 

Hamrick and Godt, 1996; Nybom, 2004) y, además, los poliploides suelen mantener 

niveles más altos de diversidad genética en poblaciones pequeñas que los diploides 

(Soltis and Soltis, 2000). Finalmente, la presencia de frutos sin vilano y la probable 

mirmecocoria pueden considerarse indicadores de una dispersión restringida de 

semillas (Cousens et al., 2008; Gómez and Espadaler, 1998) que podría resultar en la 

diferenciación genética significativa a pequeñas escalas espaciales. 

Omphalodes littoralis. spp. gallaecica es un pequeño terófito con una 

ocupación total <100.000 m2 y cuya presencia está restringida a cinco sistemas de 

dunas costeras (Romero Buján, 2005; Serrano and Carbajal, 2011). Debido a las 
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amenazas que enfrenta su hábitat, las poblaciones de esta planta han sufrido una 

disminución continua en las últimas décadas (Bañares et al., 2004). O. littoralis spp. 

gallaecica es una planta auto-compatible y la autogamia se ha sugerido como el 

mecanismo más probable de la reproducción (Bañares et al., 2004). El período de 

floración es muy corto y las flores duran menos de tres días (Romero Buján, 2005). La 

semillas se cree que son dispersadas por animales a adheridas al pelo del animal 

(Bañares et al., 2004). Su tamaño de población fluctúa mucho entre años, pudiendo 

multiplicar o dividir por diez el número de individuos (Bañares et al., 2004). 

 Como en C. borjae, a pesar del interés para la conservación de O. littoralis spp. 

gallaecica, nunca se ha estudiado ni su diversidad y estructura genética, ni la variación 

de sus características ecofisiológicas. La probable autogamia sugiere que los niveles 

de diversidad dentro de poblaciones podrían ser bajos (Hamrick et al., 1999; Nybom, 

2004). Del mismo modo, las grandes fluctuaciones de tamaño de población entre años 

podrían conllevar una erosión genética por cuellos de botella consecutivos (Willi et 

al., 2006). Por último, las altas tasas de autofecundación podrían resultar en una gran 

diferenciación entre poblaciones (Nybom, 2004; Hamrick and Godt, 1996). Si esos 

altos niveles de diferenciación se mantienen en el tiempo, es posible que las 

poblaciones evolucionen independientemente resultando en adaptación local (Leimu 

and Fischer, 2008). Por lo tanto, se esperaría que O. littoralis spp. gallaecica exhiba 

una gran diferenciación entre poblaciones que podría conducir a la adaptación local 

de éstas. 

Objetivos 

Objetivos generales: 

• El objetivo principal de esta tesis es aplicar marcadores moleculares al estudio de la 

diversidad y estructura de población de plantas raras y/o amenazadas. Los resultados 
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se interpretan desde un punto de vista aplicado y se proponen medidas de 

conservación específicas. 

Objetivos específicos: 

• Capítulo 1: se utilizaron fenotipos AFLP para investigar la variación genética y la

estructura poblacional de Centaurea borjae. La información derivada de los AFLPs se 

utilizó para (1) inferir la contribución de la reproducción clonal, (2) determinar si las 

poblaciones muestran signos de empobrecimiento genético; (3) inferir la distancia 

mínima entre plantas para la recolección de semillas para bancos de germoplasma; 

(4) determinar si las poblaciones se diferencian significativamente entre sí, y de ser 

así, si es posible delimitar unidades de gestión 

• Capítulo 2: se estudia la estructura genética de Centaurea borjae a lo largo de su

área de distribución y los procesos históricos detrás de ésta empleando secuencias de 

la región no codificante trnT-F del cloroplasto (cpDNA) (Taberlet et al., 1991). 

Específicamente, en este capítulo se abordan los siguientes objetivos: (1) estimar la 

diversidad genética de C. borjae utilizando secuencias cpDNA, (2) investigar su pasado 

demográfico, (3) evaluar su estructura de la población, (4) identificar las poblaciones 

de mayor interés para la conservación y comparar el patrón obtenido con los 

resultados de los AFLP del capítulo 1. 

• Capítulo 3: En este capítulo se lleva a cabo estudios moleculares y fenotípicos

exhaustivos de las cinco poblaciones existentes de Omphalodes littoralis spp. 

gallaecica. Se utilizaron secuencias de la región trnT-F del cloroplasto y genotipos 

AFLP para  determinar (1) si O. littoralis spp. gallaecica está empobrecida 

genéticamente como podrían indicar sus rasgos vitales; (2) comprobar si sus 

poblaciones están significativamente diferenciadas entre sí; (3) dado que O. littoralis 

spp. gallaecica es un terófito, determinar si hay diferencias significativas entre años 

consecutivos en su estructura genética. Además, se realizaron experimentos de 
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trasplante recíproco para investigar el componente adaptativo de varios rasgos 

cuantitativos relacionados con la fitness. Las informaciones molecular y fenotípica se 

combinaron para proponer directrices específicas para la conservación de esta 

especie en peligro de extinción. 

• Capítulo 4: Este capítulo explora una aproximación todavía poco explotada, pero 

prometedora, de los EST-SSRs: el desarrollo de marcadores a partir de secuencias EST 

disponibles en bases de datos de públicas para utilizarlos en estudios de genética 

evolutiva y de conservación de plantas no-modelo, con énfasis en especies 

amenazadas. Se buscaron SSR en todos los géneros de planta de la Lista Roja de 

Plantas de la Unión Internacional para la Conservación de la Naturaleza y los Recursos 

Naturales (UICN) con secuencias EST disponibles en la base de datos GenBank EST 

(dbEST). Dado que la mayoría de estos géneros de plantas no incluyen organismos 

modelo, no hay genomas de referencia anotados disponibles, lo que dificulta la 

localización de los EST-SSRs dentro del genoma. Para minimizar este obstáculo, 

también se analizaron las secuencias EST de dos géneros modelo que sirvieron de 

especies sustitutas/representativas: Arabidopsis se seleccionó como control de 

eudicotiledóneas y Oryza como guía para monocotiledóneas. Por último, se testó la 

amplificación, polimorfismo y transferibilidad entre congéneres de doce loci SSR para 

cada genéro usando dos especies de cada género: Trifolium fragiferum, Trifolium 

saxatile, Centaurea valesiaca y Centaurea borjae. 

Resultados y discusión 

- Centaurea borjae 

 Una de las principales preocupaciones para la preservación a largo plazo de 

Centaurea borjae derivaba de la sospecha de que las poblaciones podrían estar 

formadas solo por unos pocos genetos con numerosos rametos. Los resultados 

mostraron que existen clones en todas las poblaciones pero su presencia no era tan 
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alta como se especulaba. Además, su abundancia variaba entre localidades, las 

localidades más al norte mostraron mayor abundancia de clones que las centrales y 

las de más al sur. Estas diferencias en diversidad clonal entre poblaciones parecen ser 

algo frecuente en plantas (ver Arnaud-Haond et al., 2007 y sus referencias 

bibliográficas) y estudios anteriores han encontrado que la clonalidad aumenta con la 

edad de la población o la latitud (Silvertown, 2008). Sin embargo, la única diferencia 

consistente entre nuestros dos grupos de poblaciones es el sustrato geológico: 

serpentinitas en los 3 sitios más septentrionales; gneises, anfibolitas y granitos en los 

otros 3. Los suelos de serpentina se caracterizan por niveles altos de metales tóxicos 

que pueden afectar el crecimiento de la planta, lo que sugirie que las condiciones 

creadas por el suelo de serpentina podrían, al menos en parte, favorecer la 

propagación clonal en C. borjae. En este sentido, estudios experimentales anteriores 

con otras especies han demostrado que las plantas clonales mejorar los efectos 

estresantes de suelos a través de la integración fisiológica de sus rametos (Roiloa and 

Retuerto, 2006). 

Las estimas de diversidad derivadas de los análisis AFLPs mostraron que 

Centaurea borjae no está genéticamente empobrecida y posee niveles de diversidad 

genética similares a otras especies con rasgo vitales similares (i.e. plantas perennes 

y/o con fecundación cruzada) (Nybom, 2004). Los valores encontrados caen dentro 

del rango de estimas obtenidas con marcadores dominantes en otros miembros de 

género Centaurea. Sin embargo, las estimas de diversidad obtenidas con cpDNA 

mostraron evidencias de empobrecimiento genético cuando se comparan con otras 

plantas raras.  

Los análisis de estructura de población apuntaron a diferencias genéticas 

significativas entre poblaciones con ambos marcadores, lo que sería consistente con 

un escenario de flujo genético reducido. Ese flujo genético reducido entre poblaciones 

parece consistente con la capacidad de dispersión limitada que sugieren ciertas 
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características de C. borjae. La dispersión del polen mediada por animales puede ser 

limitada en función del comportamiento del animal dispersor y/o la frecuencia y 

distribución de los recursos florales (Ghazoul, 2005). Del mismo modo, la ausencia de 

vilano y la probable mimecocoria de C. borjae sugieren que la dispersión de semillas 

podría limitarse a distancias cortas (Cousens et al., 2008; Gómez and Espadaler, 1998). 

La idea de flujo genético reducido se vio reforzada por los análisis AFLP de estructura 

genética espacial a pequeña escala que mostraron que plantas más próximas entre sí 

también estaban genéticamente más emparentadas. Por tanto, nuestros resultados 

mostraron una fuerte estructura espacial a pequeña escala típica de especies con baja 

dispersión, reproducción clonal, y/o de baja densidad poblacional (Vekemans and 

Hardy, 2004). Como el alcance de esa estructura a pequeña escala varía entre 

localidades (35-40 m a 80 m), se recomienda que las muestras para bancos de 

germoplasma estén separadas al menos 80 m. 

 La disposición actual de haplotipos de cpDNA puede ser una consecuencia de 

la historia demográfica de la planta. Basándonos en predicciones de la teoría de 

coalescencia (Posada and Crandall, 2001), los haplotipos H1 y H2 serían ancestrales y 

su co-ocurrencia en las localidades PC y OB sugiere que esta zona es un sitio de gran 

persistencia de la especie. La misma conclusión se alcanza con el análisis de la 

distribución espacial de la diversidad genética y haplotipos privados ya que las 

poblaciones más antiguas acostumbran ser más diversa y contenien haplotipos 

privados (Maggs et al., 2008.), dos condiciones que se encuentran en PC y OB. En este 

escenario, los restantes sitios habrían derivado de la posterior colonización desde la 

zona central y su diversidad genética más baja sería producto de un efecto fundador.   

 Finalmente, se designaron 5 unidades de manejo en base a diferencias en las 

frecuencias de los loci AFLP y las frecuencias haplotípicas del cpDNA (LI, VH, OB-OBB, 

PC, and PR). Designar MUs en base a los de AFLPs o cpDNA por separado podría llevar 

a errores ya que con los AFLPs PC se consideraría parte de la MU OB-OBB mientras 
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que con cpDNA PR tampoco sería considerada una MU independiente. Esto pone de 

manifiesto la necesidad de combinar marcadores con distinto modo de herencia para 

formular medidas de conservación más precisas.  

- Omphalodes littoralis spp. gallaecica 

 Los análisis genéticos de las poblaciones de Omphalodes littoralis spp. 

gallaecica revelaron niveles de diversidad muy bajos o nulos, en concordancia con sus 

rasgos de vida (especie anual que se reproduce por autogamia; Nybom, 2004). Así 

mismo, la estructura de población puso de manifiesto la ausencia de flujo genético 

entre poblaciones. El hecho de que todas las poblaciones poseyeran bandas AFLP 

privadas es indicativo de un fuerte aislamiento mantenido en el tiempo. Esto último 

fue confirmado por los resultados de las secuencias de cpDNA donde la casi todas las 

poblaciones mostraron una composición diferente y la mayoría de los haplotipos eran 

privados. De nuevo, esta enorme diferenciación fue consistente con los rasgos de vida 

de este pequeño terófito (Nybom, 2004). De acuerdo con la teoría coalescente, el 

haplotipo H1 podría ser considerado como ancestral y su aparición en tres 

poblaciones no adyacentes, sugiere que los diversos grupos locales podrían haber 

estado conectados en un pasado distante.   

La extremadamente baja diversidad genética de las poblaciones, junto con su 

enorme diferenciación genética, sugiere que esta pequeña planta podría estar 

reflejando los efectos de la deriva genética. Este último podría estar agravado por 

cuellos de botella recurrentes como consecuencia de las fuertes fluctuaciones de 

tamaño poblacional típicas de este endemismo. La extremadamente baja diversidad 

de las poblaciones de O. littoralis spp. gallaecica es motivo de preocupación ya que 

pueden tener menor capacidad de respuestas frente a cambios ambientales y/o 

condiciones de estrés (Frankham, 2005). Las poblaciones pequeñas que caen por 

debajo de cierto tamaño efectivo pueden entrar en un "vórtice de extinción" donde 

la dinámica reproductiva favorecen la endogamia conduciendo a una disminución en 
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la reproducción, un aumento de la mortalidad y una reducción en el tamaño de las 

poblaciones más pequeñas. Por otra parte, la extrema fragmentación de la especie y 

el aislamiento entre sus poblaciones sugieren que es improbable un rescate genético 

de una población por otras.  

 Mientras que las grandes fluctuaciones de tamaño poblacional podrían 

comprometer la diversidad genética de O. littoralis spp. gallaecica, otros atributos de 

su ciclo de vida pueden actuar en dirección opuesta . Algunos taxa anuales tienen un 

gran banco de semillas viables de las que se pueden extraer individuos en el futuro 

que amortigüen la pérdida genética (McCue and Holtsford, 1998; Nunney, 2002). Sin 

embargo, este no parece ser el caso en Omphalodes littoralis spp. gallaecica  ya que 

nuestros datos revelaron una composición genética constante en generaciones 

consecutivas. Por lo tanto, la incapacidad del banco de semillas para actuar como 

depósito de diversidad genética añade más preocupación sobre la persistencia a largo 

plazo de esta especie. 

 Los análisis de rasgos cuantitativos mostraron que poblaciones separadas por 

pocos kilómetros eran fenotípicamente diferentes. Si bien esta variación podría ser 

simplemente una respuesta fenotípica a sutiles cambios en el entorno local de cada 

lugar, nuestros experimentos de trasplantes recíprocos indican que en realidad 

poseen un componente genético. Sin embargo, a diferencia de lo que cabría esperar 

en un escenario de adaptación local, las plantas de un mismo sitio (DN) solían superar 

a las de los demás, independientemente de la ubicación del trasplante. Inicialmente, 

no hay una explicación clara para el mejor funcionamiento de las plantas de DN. La 

única diferencia evidente entre DN y las otras poblaciones es que DN muestra los 

niveles más altos de diversidad genética. Por lo tanto, parece tentador especular que 

el mayor rendimiento de sus individuos podría estar relacionado con la mayor 

variación genética neutral detectada por los marcadores moleculares. 
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Desde una perspectiva de conservación, al combinar los datos genéticos y 

fenotípicos, se recomienda establecer cinco ESUs. Es importante resaltar que la 

existencia de estas diferencias indican que los diversos grupos locales no son 

intercambiables entre si y pueden tener un potencial diferente para evolucionar. En 

este sentido, las prácticas de gestión que impliquen un desplazamiento de individuos 

entre sitios no parecen recomendables visto el fuerte aislamiento genético entre las 

poblaciones de este terófito en peligro de extinción (Sletvold et al., 2012). 

- EST-SSR para géneros de plantas amenazadas de la IUCN. 

Las aproximaciones computacionales permiten desarrollar, rápida y 

económicamente, marcadores moleculares a partir de recursos genómicos 

disponibles al público. En este contexto, el desarrollo de SSR derivados de secuencias 

EST surgen como una excelente alternativa a las técnicas clásicas de desarrollo de SSR 

anónimos (Ellis and Burke, 2007). El análisis de los genomas de control mostró que los 

trímeros y los dímeros constituyen más de 85% de los SSR encontrados, siendo 

trinucleótidos >60%. Estos resultados fueron consistentes con lo esperado para 

plantas superiores (Kantety et al., 2002; Varshney et al., 2005; Victoria et al., 2011). 

Así mismo, AG fue el motivo más abundante en dinucleótidos mientras que AT mostró 

frecuencias bajas (Kantety et al., 2002; Morgante et al., 2002; Temnykh et al., 2001; 

Victoria et al., 2011). En lo que respecta a los trinucleótidos, los motivos ricos en GC 

fueron los más abundantes en Oryza, en concordancia con lo esperado en 

monocotiledóneas (Gao et al., 2003; Temnykh et al., 2001; Kantety et al., 2002; 

Victoria et al., 2011). En contraposición, los motivos ricos en GC eran escasos en 

Arabidopsis, lo que de nuevo coincide con resultados publicados en otros trabajos 

(Victoria et al., 2011). El análisis de distribución a lo largo del genoma mostró que los 

EST-SSRs se localizan principalmente en regiones codificantes del genoma (CDSs), lo 

cual es consistente con el hecho de que estos marcadores están asociados con la 

porción que se transcribe. Sin embargo, la frecuencia de los distintos tipos de 
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repetición varía ampliamente a lo largo de las distintas regiones genómicas. Dímeros, 

tetrámeros y pentámeros se asociaron principalmente con UTRs y otras regiones no 

codificantes, mientras que trímeros y hexámeros se localizaron mayoritariamente en 

CDSs. Dado que la frecuencia y distribución de las diferentes repeticiones SSR y sus 

motivos son función de la dinámica y de la historia de la evolución del genoma, el 

predominio de repeticiones de triméricas en los ESTs se atribuye a la selección en 

contra de mutaciones que alteren el marco de lectura (Morgante et al., 2002). La 

elevada frecuencia de dímeros en UTRs y la prevalencia de trímeros en CDS se han 

visto anteriormente en otros estudios de plantas (Gao et al., 2003; Wang et al., 1994).  

 El análisis de frecuencias de los diferentes tipos de repeticiones en los géneros 

de la UICN fue muy consistente con los resultados derivados de los genomas control 

de Oryza y Arabidopsis. Trímeros y dímeros representaron más del 60 % de los EST-

SSRs, mientras que tetrámeros, pentámeros y hexámeros mostraron frecuencias más 

bajas. Sin embargo, la frecuencia de los diferentes tipos de repeticiones de 

nucleótidos divergió entre los grupos taxonómicos estudiados. Los resultados de 

angiospermas fueron consistentes con los obtenidos en los genomas control y con 

resultados anteriores en plantas con flores donde los trímeros eran los motivos más 

abundantes seguidos de dímeros (Victoria et al., 2011). Así mismo, el grupo más 

común de motivos era AG, como se ha visto en otras angiospermas (Kantety et al., 

2002; Morgante et al., 2002; Temnykh et al., 2001; Victoria et al., 2011). El patrón de 

los motivos triméricos fue el mismo que para Oryza y Arabidopsis, corroborando la 

presencia de motivos ricos en GC en monocotiledóneas y el grupo AAG en las 

restantes angioespermas (Gao et al., 2003; Kantety et al., 2002; Temnykh et al., 2001; 

Victoria et al., 2011). Las diferencias de frecuencia de los diferentes tipos de SSR entre 

grupos taxonómicos es función de la dinámica y la historia evolutiva del genoma 

(Morgante et al., 2002). De acuerdo con estudios previos, el grupo 

Acrogymnospermae reveló una alta proporción de hexámeros en comparación con 
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gimnospermas y el motivo más común fue de TA, que era muy escaso en angiosperma 

(Pinosio et al., 2014; Victoria et al., 2011). Los cuatro grupos que representan a las 

plantas no vasculares están representados por pocos géneros en nuestros análisis y 

no es posible hacer generalizaciones.  

La tasa de éxito de amplificación fueron similares a las de algunos estudios 

anteriores con EST- SSR (Cordeiro et al., 2000; Rungis et al., 2004). Debido a la 

asociación de los EST con regiones conservadas del genoma, los EST-SSRs suelen 

mostrar menos polimórfismo que los SSRs clásicos (Ellis and Burke, 2007; Russell et 

al., 2004; Varshney et al., 2005). Sin embargo, esta premisa no es necesariamente 

cierta (Fraser et al., 2004; Pashley, 2006) y, en nuestro estudio, el nivel de 

polimorfismo varió desde 25 hasta 28,57% dentro de las especies y de 75 a 87,77% 

entre especies. Dado que sólo se ensayaron ocho individuos de cada género, estos 

niveles de polimorfismo podrían estar subestimados y el polimorfismo real de 

nuestros EST-SSR podría ser mayor. Una de las mayores ventajas de los EST-SSRs es su 

alta tasa de transferibilidad entre especies (Aggarwal et al., 2007; Pashley, 2006; 

Wöhrmann and Weising, 2011) de un mismo género o, incluso, especies de diferentes 

géneros (Varshney et al., 2005). Los resultados obtenidos en el presente estudio son 

congruentes con la premisa de alta transferibilidad en EST-SSRs ya que todos los 

cebadores que amplificaron con éxito en una especie también lo hicieron en su 

congénere.  

En resumen, este trabajo pone de manifiesto el gran potencial del uso de 

secuencias EST disponibles en bases de datos públicas como fuente de SSR para 

plantas amenazadas. Se detectaron SSR con cebadores en 222 géneros de plantas. 

Teniendo en cuenta su elevada transferibilidad, el número de especies que se podrían 

favorecer de estos marcadores podría ser considerable. Además, como el desarrollo 

de marcadores es uno de los pasos donde se invierte más tiempo en los estudios de 

poblaciones, parece razonable sugerir que las bases de datos de EST son una valiosa 
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alternativa para el desarrollo de SSR ya que una vez que se accede a la base de datos 

de EST, solo se necesitan un par de días para tener una batería de SSR con cebadores 

listos para probar sin ningún coste. 
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