
UNIVERSIDADE DA CORUÑA
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Resumen

La retina es la única parte del cuerpo humano en donde se pueden observar los vasos

sangúıneos directamente de una forma no invasiva mediante un examen de fondo de ojo.

De esta manera, la imagen de la retina mediante las técnicas de procesamiento de imágenes

se convirtió en un campo de clave para el diagnóstico precoz de varias enfermedades

sistémicas que provocan alteraciones visibles en dicha imagen. Aśı, alteraciones en el

ancho de los vasos retinianos se asocian con patoloǵıas tales como diabetes o hipertensión.

De hecho, el estrechamiento de las arterias constituye un indicio precoz de la hipertensión

arterial sistémica, siendo una caracteŕıstica del grado I de la retinopat́ıa hipertensiva de

acuerdo con la clasificación de Keith-Wagener-Barker. En este sentido, se han realizado

esfuerzos para desarrollar programas asistidos por ordenador para medir con precisión

los cambios en el ancho de los vasos a través del ı́ndice arteriovenoso (IAV), es decir, la

relación entre los calibres de las arterias y las venas. Sin embargo, aunque estos sistemas

se han usado en muchos estudios con fines de investigación, su aplicabilidad en la práctica

cĺınica diaria es todav́ıa discutida.

En este trabajo, se propone una nueva metodoloǵıa para el cálculo del IAV con el fin

de estratificar el riesgo cardiovascular de los hipertensos. Por un lado, se ha desarrollado

un método completamente automático para estimar el IAV en una imagen de fondo de ojo

de un paciente. Por otro lado, se propone un sistema para monitorizar el IAV del paciente

a lo largo del tiempo. Para este fin, las mediciones del IAV en las diferentes imágenes

adquiridas sobre el mismo ojo del paciente en diferentes fechas se estiman usando el mismo

conjunto de vasos medidos en las mismas áreas. Por lo tanto, la mediciones obtenidos de

esta manera son comparables y precisas, debido a que son independientes en el conjunto

de vasos seleccionados para el cálculo.

Las dos técnicas se han integrado en SIRIUS, un sistema web destinado a incluir

diferentes servicios en el campo del análisis de la imagen retiniana. El sistema incluye

también gestión de pacientes y revisiones, lo que facilita el análisis de las lesiones retinianas

causadas por diferentes patoloǵıas y su evolución después de un determinado tratamiento.
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Además al ser una aplicación distribúıda a través de la web, proporciona un entorno de

colaboración entre diferentes médicos, investigadores y centros.



Resumo

A retina é a única parte do corpo humano onde se poden observar os vasos sangúıneos

directamente dunha maneira non invasiva mediante un examen do fondo do ollo. Desta

maneira, a imaxe da retina mediante as técnicas de procesamento de imáxenes converteuse

nun campo chave para o diagnóstico precoz de varias enfermidades sistémicas que provocan

alteracións visibles en dita imaxe. Aśı, cambios no ancho dos vasos retinianos asócianse

con patolox́ıas tales como a diabetes ou a hipertensión. De feito, o estreitamento das

arterias constitúe un indicio prematuro da hipertensión arterial sistémica, sendo unha

caracteŕıstica do grado I da retinopat́ıa hipertensiva dacordo coa clasificación de Keith-

Wagener-Barker. Neste sentido, fixerónse moitos esforzos para desenvolver programas

asistidos por ordenador para medir con precisión os cambios no ancho dos vasos a través

do ı́ndice arteriovenoso (IAV), é dicir, a relación entre os calibres das arterias e das

veas. Nembargantes, áında que estes sistemas foron usados en moitos estudios con fins

investigadores, a sua aplicabilidade na práctica cĺınica diaria áında é discutida.

Neste traballo, proponse unha nova metodolox́ıa para o cálculo do IAV co fin de

estratificar o risco cardiovascular dos hipertensos. Por un lado, desenvolveuse un método

completamente automático para estimar o IAV nunha imaxe de fondo de ollo dun doente.

Por outra banda, proponse un sistema para monitorizar o IAV dun doente a lo longo do

tempo. Para isto, as medicións do IAV nas diferentes imaxes adquiridas sobre o mesmo

ollo do doente en diferentes datas fanse usando o mesmo conxunto de vasos medidos nas

mesmas áreas. Polo tanto, as medicións obtidas desta maneira son comparables e precisas,

debido a que son independentes do conxunto de vasos seleccionados para o cálculo.

As dúas técnicas foron integradas no SIRIUS, un sistema web destinado a incluir

diferentes servicios no campo da análise da imaxe retiniana. O sistema inclúe tamén

xestión de doentes e revisións, facilitando a análise e estudo das lesións retinianas causadas

por diferentes patolox́ıas e a súa evolución despois dun determinado tratamento. Ademais

ao ser unha aplicación distribúıda a través da web, proporciona un entorno de colaboración

entre diferentes médicos, investigadores e centros.
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Summary

Retina is the only part in the human body where blood vessels can be directly observed in a

non-invasive way through an eye fundus examination. In this manner, the retinal imaging

assisted by image processing techniques became a key field for the early diagnosis of several

systemic diseases which cause visible alterations in the fundus image. Thus, changes in

the retinal vessel widths are associated with pathologies such as diabetes or hypertension.

In fact, arteriolar narrowing constitutes an early sign of systemic hypertension, being a

feature for the grade I of hypertension retinopathy according to Keith-Wagener-Barker

classification. In this sense, some efforts have been made to develop computer-assisted

programs to measure accurately abnormalities in the vessel widths through the arteri-

ovenous ratio (AVR), that is, the relation between arteriolar and venular vessel widths.

However, although these systems have been used in many studies for research purposes,

their applicability to daily clinical practice is yet discussed.

In this work, a new methodology for the AVR computation is proposed in order to

stratify the cardiovascular risk of hypertension. On one hand, a fully automatic method

to estimate the AVR in a sample patient’s image is developed. On the other hand, an

AVR monitoring system to compute the patient’s AVR over time was implemented. To

this end, the AVR measurements computed in the different patient’s images acquired from

the same eye at different dates, uses the same set of vessels measured at the same areas.

Thus, the measurements achieved in this manner are comparable and precise due to they

are independent on the set of vessels selected for the calculus.

The two approaches have been integrated in SIRIUS, a web-based system aimed to

include different services in the field of retinal image analysis. It includes patient and

checkup management, making easier to analyze the retinal lesions caused by different

pathologies and their evolution after a specific treatment. Moreover, being a application

distributed via the web, it provides a collaborative environment among different physi-

cians, researchers and medical centers.
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1. Resumen

La retina es la única parte del cuerpo humano en donde se pueden observar los vasos

sangúıneos directamente de una forma no invasiva mediante un examen de fondo de ojo.

De esta manera, la imagen de la retina mediante las técnicas de procesamiento de imágenes

se convirtió en un campo de clave para el diagnóstico precoz de varias enfermedades

sistémicas que provocan alteraciones visibles en dicha imagen. Aśı, alteraciones en el

ancho de los vasos retinianos se asocian con patoloǵıas tales como diabetes o hipertensión.

De hecho, el estrechamiento de las arterias constituye un signo precoz de la hipertensión

arterial sistémica, siendo una caracteŕıstica del grado I de la retinopat́ıa hipertensiva de

acuerdo con la clasificación de Keith-Wagener-Barker. En este sentido, se han realizado

esfuerzos para desarrollar programas asistidos por ordenador para medir con precisión

los cambios en el ancho de los vasos a través del ı́ndice arteriovenoso (IAV), es decir, la

relación entre los calibres de las arterias y las venas. Sin embargo, aunque estos sistemas

se han usado en muchos estudios con fines de investigación, su aplicabilidad en la práctica

cĺınica diaria es todav́ıa discutida.

En este trabajo, se propone una nueva metodoloǵıa para el cálculo del IAV con el fin

de estratificar el riesgo cardiovascular de los hipertensos. Por un lado, se ha desarrollado

un método completamente automático para estimar el IAV en una imagen de fondo de ojo

de un paciente. Por otro lado, se propone un sistema para monitorizar el IAV del paciente

a lo largo del tiempo. Para este fin, las mediciones del IAV en las diferentes imágenes

adquiridas sobre el mismo ojo del paciente en diferentes fechas se estiman usando el mismo

conjunto de vasos medidos en las mismas áreas. Por lo tanto, la mediciones obtenidos de

esta manera son comparables y precisas, debido a que son independientes en el conjunto

de vasos seleccionados para el cálculo.

Las dos técnicas se han integrado en SIRIUS, un sistema web destinado a incluir

diferentes servicios en el campo del análisis de la imagen retiniana. El sistema incluye

también gestión de pacientes y revisiones, lo que facilita el análisis de las lesiones retinianas

causadas por diferentes patoloǵıas y su evolución después de un determinado tratamiento.
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Además al ser una aplicación distribuida a través de la web, proporciona un entorno de

colaboración entre diferentes médicos, investigadores y centros.

2. Metodoloǵıa

El objetivo de este trabajo es desarrollar un método automático para calcular la ı́ndice

arteriovenoso (IAV) en imágenes de fondo de ojo con el fin de evaluar las alteraciones en

el calibre de las arterias y de las venas causadas por diferentes enfermedades. El IAV se

ha relacionado con diversas patoloǵıas tales como la diabetes, el śındrome metabólico, la

hipertensión o el fallo card́ıaco entre otros.

Este trabajo se centra en analizar la relación entre el IAV y la hipertensión. La res-

puesta primaria de los vasos de la retina a la hipertensión sistémica es el estrechamiento

arterial, que caracteriza el grado I de la retinopat́ıa hipertensiva. Sin embargo, la dificultad

para obtener una medida cuantitativa precisa y fiable del estrechamiento arterial generali-

zado impide correlacionar el grado I de la retinopat́ıa hipertensiva con la hipertensión. En

el primer caṕıtulo de este trabajo se presenta una extensa descripción de la retinopat́ıa

hipertensiva, aśı como de la necesidad de desarrollar métodos fiables para medir el es-

trechamiento arterial a través del IAV con el fin de estratificar el riesgo cardiovascular

asociado a la hipertensión.

El método propuesto para calcular el IAV es completamente automático. De acuerdo

con varios estudios [1, 2, 3], el IAV se calcula como ratio entre los calibres de las arterias

y las venas medidos en varias circunferencias centradas en el disco óptico. Aśı, en el

Caṕıtulo 2 se describe el método para delimitar la región de interés, es decir, se localiza

el disco óptico y los segmentos de vasos en las circunferencias de análisis. El método de

localización del disco óptico se basa en un filtrado de diferencia de gaussianas (DoG) y

en la transformada de Hough, mientras que las ĺıneas centrales de los segmentos de vasos

en las circunferencias de análisis se detectan a través del operador MLSEC-ST.

Las técnicas propuestas para medir el calibre de los vasos y discriminar los vasos en
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arterias y venas se describen en el Caṕıtulo 3. El método de medición se basa en modelos

deformables, mientras que la clasificación combina un clustering local usando el algoritmo

K-means y un seguimiento de los vasos basado en caminos mı́nimos.

El Caṕıtulo 4 propone el algoritmo para seleccionar el conjunto de segmentos de vasos

adecuados para la estimación del IAV que emula la selección realizada por los expertos

médicos. Por otra parte, se presenta también un nuevo método basado en el registro de

vasos con el fin de calcular el IAV del paciente en imágenes adquiridas en diferentes fechas

utilizando el mismo conjunto de vasos medidos en los mismos puntos.

La metodoloǵıa para estimar el IAV, aśı como en el método de monitorización se

integraron en la aplicación web SIRIUS descrita en el Caṕıtulo 5.

Cada caṕıtulo citado anteriormente incluye además una amplia revisión de otras

técnicas presentadas en la literatura para cada paso de la metodoloǵıa propuesta.

En el Caṕıtulo 6 se resumen los experimentos llevados a cabo para validar la metodo-

loǵıa propuesta aśı como también los estudios cĺınicos realizados.

Finalmente el Caṕıtulo 7 resume las principales aportaciones del trabajo aśı como

futuras ĺıneas de investigación.

3. Conclusiones y Aportaciones

De acuerdo con la validación realizada en el Caṕıtulo 6 se pueden hacer las siguientes

observaciones. Por un lado, el método propuesto para localizar el disco óptico funciona

muy bien en imágenes sanas pero presenta limitaciones en algunas retinas enfermas. Esto

se debe a que se basa fundamentalmente en la detección de las áreas ms brillantes de

la imagen en las que se han detectado un gran número de ĺıneas centrales de vasos.

Sin embargo, las imágenes no saludables pueden presentar zonas brillantes que no se

corresponden con el disco óptico y donde falsos positivos en las ĺıneas centrales de los

vasos son más probables. Por otro lado, en el estudio POSTEL, la detección de vasos

se ha comparado con ART-VENA, un método semiautomático para el cálculo del IAV
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cĺınicamente validado. El enfoque propuesto mejora la sensibilidad y reduce los vasos

falsos positivos logrados con ART-VENA en una base de datos compuesta por imágenes

tomadas en dos centros diferentes.

La evaluación del método de medición del calibre vascular realizada en la base de

datos pública REVIEW indica que el método es comparable y, en algunos casos, supera

el rendimiento alcanzado por otras técnicas. Sin embargo, las imágenes del conjunto

REVIEW con alto reflejo vascular en el centro de los vasos y compresión JPEG causan

bordes difusos que evidencian limitaciones en el detector de bordes de Canny. El principal

inconveniente de este método es el tratamiento de las imágenes de alta resolución con

un alto reflejo vascular en el centro de los vasos, en el que los detectores de las ĺınea

centrales de los vasos y los detectores de bordes pueden interpretar como un único vaso

dos vasos diferentes. Este fenómeno no aparece si se reduce la imagen. Por lo tanto, un

preprocesamiento para localizar o filtrar el reflejo vascular podŕıa mejorar el método.

Con respecto a la clasificación de los vasos en arterias y venas, el algoritmo de clustering

local permite a mitigar el efecto de la luminosidad no uniforme en la clasificación, mientras

que el método de seguimiento de los vasos proporciona una manera de garantizar la clase

de un vaso teniendo en cuenta la información de color a lo largo de la estructura vascular.

Otros métodos de clasificación supervisadas y no supervisados, en combinación con varios

vectores de caracteŕısticas han sido probados y el enfoque propuesto demostró ser el mejor

para el conjunto de imágnes utilizadas.

Los experimentos llevados a cabo en un conjunto de imágenes grande para probar el

cálculo IAV seleccionando diferentes conjuntos de vasos demostraron que el método pro-

porciona una estimación del IAV próxima a la obtenida por los expertos médicos. Por

otra parte, los experimentos han puesto de manifiesto la alta influencia de los vasos selec-

cionados en el cálculo, y la necesidad de estimar el IAV de un paciente utilizando el mismo

conjunto de vasos. Este hallazgo fue presentado también previamente por Knudtson et

al. [4] quienes se dieron cuenta de que las fórmulas de Hubbard [2] depend́ıan del número

de vasos seleccionados y propusieron una reformulación usando sólo las seis principales

arterias y venas.
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El sistema de monitorización del IAV es otra importante contribución de este trabajo

ya que proporciona una medida fiable de la evolución del calibre vascular. La correlación

obtenida entre el IAV calculado por el sistema de monitorización y un experto médico

demostró que el sistema se comporta casi como otro experto médico.

La metodoloǵıa propuesta para calcular el IAV, aśı como el sistema de monitorización

se integraron en la aplicación web SIRIUS. Los estudios cĺınicos y experimentos realiza-

dos a lo largo de este trabajo demostraron que el sistema SIRIUS ofrece un entorno de

colaboración perfecto para médicos e investigadores de diferentes centros.

La utilidad del sistema se demostró con las validaciones cĺınicas realizadas en los

estudios POSTEL y VAMPAHICA con imágenes obtenidas en diferentes centros de salud

y tomadas con distintos retinógrafos. El primer estudio mostró un incremento en el

IAV y en el calibre arteriolar medio en pacientes hipertensos después de seis meses de

tratamiento. Por el contrario, el segundo reveló un incremento en el IAV en el cuartil

más alto al final de un año de seguimiento mientras la hipertrofia ventricular izquierda

y la cantidad de órganos diana dañados experimentaron un resultado favorable. A pesar

de estos hallazgos, seŕıa interesante realizar más estudios con mayor número de pacientes

y durante un peŕıodo más largo de seguimiento para definitivamente establecer el AVR

como indicador pronóstico en la hipertensión y para estratificar el riesgo cardiovascular.
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To my parents





“No one can lie,

no one can hide anything,

when he looks directly

into someone’s eyes.”

PAULO COELHO

“The eye is the window of the human body

through which it feels its way and enjoys the beauty of the world.

Owing to the eye the soul is content to stay in its bodily prison,

for without it such bodily prison is torture.”

LEONARDO DA VINCI
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Chapter 1

Introduction

The transparency of the retina makes it in a direct window for the human vasculature

through an eye fundus examination. Thus, some systemic diseases cause alterations in

the retinal vessels or in the eye fundus which can be observed in retinal images. In this

sense, with the increasing development of image processing techniques, retina imaging

constitutes a key for diagnosis support.

Between the cited alterations, the arteriolar narrowing is considered an early sign

of hypertension which is rated by the World Health Organization as one of the most

important causes of premature worldwide. Some efforts have been made to stratify the

hypertension risk from the arteriolar narrowing, however reliable methods which measure

alterations in the arteriolar widths are needed.

This chapter is introductory, and it is devoted to describe the main features of the

eye fundus image, as well as to characterize the hypertensive retinopathy focusing on the

arteriolar narrowing.

In the first section, we give a brief description of the eye’s and retina’s anatomy,

the fundus image and the equipment needed to capture it, as well as the parts and

lesions of the retina which are visible in that image. The next section is devoted to

characterize hypertensive retinopathy, detailing which lesions are consequence of it. The

1
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Section 1.3 focuses on the arteriolar narrowing lesion and the measure to assess it, that is,

the arteriovenous ratio (AVR) whose computation is the objective of this work. Finally,

in the Section 1.4, a work overview is given.

1.1 Retina

The eyeball is composed of three tunics or layers and a refracting media called the hu-

mours. The first and most external tunic is formed by the sclera and cornea, the second

one is composed of choroid, ciliary body and iris ; finally, the third and inner tunic is the

retina (Figure 1.1).

Pupil
Iris

Posterior chamber

Lens

Cornea

Anterior chamber
(aqueous humour)

Ciliary muscle

Sclera

Choroid

Retina

Zonular
fibres

Optic disc

Optic nerve Fovea

Hyaloid
canal

Suspensory
ligament

Retinal
blood vessels

Vitreous
humour

Figure 1.1: Schematic diagram of the human eye.

Despite that the retina is located in a peripheral area, it is actually part of the central

nervous system [5] and its function is to translate light into nerve signals and send them

to the brain via the optic nerve. There are five types of neurons in the retina which

are stacked in layers. Among these, the photoreceptors (rods and cones), are specialized

in different aspects of the vision. The former are very sensitive to light and they are
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responsible for vision in dim light, whereas the latter are responsible of the visual acuity

and color perception.

Regarding the circulation, the retina is irrigated by two vascular networks, the retinal

and the choroidal vessels [6]. The latter are the responsible of irrigating the external retina

whereas the internal area is irrigated by the central retinal artery. This vessel enters the

retina in the optic nerve and branches into four vessels at level of the optic nerve head.

Thus, each retina quadrant is irrigated by a vessel. The central retinal artery branches

off the ophthalmic artery which, in term, branches off the carotid artery. The venular

drainage in the retina is realized almost exclusively through the central retinal vein which

drains in the superior ophthalmic vein.

1.1.1 Eye fundus image

Leonardo da Vinci said that the “The eye is the window of the human body”. Thus,

the eye, and specifically, the retina, due to its transparency and the accessibility to the

vascular structures, provides a unique opportunity to study the microvasculature directly

in a non-invasive manner.

The first instrument for looking into the eye was invented in 1841 by Charles Babbage,

but it was unable to obtain an image with it. It was in 1851 when the ophthalmoscope

of Hermann von Helmholtz made possible to observe the human eye fundus. The Augen-

spiegel (eye mirror) of Helmholtz was a curve mirror with a hole, illuminated by a candle

(Figure 1.2). The source light rays passed through the pupil, and the reflected rays from

the subject’s retina went through the hole, creating the subject’s retina image directly

on observer’s retina. The candle was quickly replaced by the gravity-fed oil lamp, the

Argand gas-burning lamp and finally, the bulb, in 1885.

The modern fundus camera was created by the Carl Zeiss Company in 1926. In 1953,

with the Kodachrome color film, the Zeiss camera was converted in the standard for

color retinal images. The fluorescein angiography supposed a great impact in the retina

understanding in 1960. From this, the continuous advances of manufacturers such as
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Figure 1.2: Fundus examination with the ophthalmoscope (Fig. 1) and ophthalmoscope oper-

ating schemes with a concave mirror (Fig. 2), concave mirror and convex lens (Fig. 3) and

concave mirror and concave lens (Fig. 4).
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Zeiss, Topcon, or Canon, and the digital photography have revolutionized the field of

retinal imaging.

Samples of left and right eye fundus images are shown in the Figure 1.3. This figure

shows the quadrants in which the retina is divided for description purposes. Thus, a

vertical line divides the retina into nasal and temporal divisions, whereas an horizontal

line divides it into superior and inferior divisions. Moreover, the area centered on the

macula and located between the superior and inferior temporal vessel arcades is called

the posterior pole. The different parts of the retina that can be observed in an eye fundus

examination are shown in the Figure 1.4. The brightest area where the optic nerve exits

the retina, is the optic disc, papilla or optic nerve head. Also it is known as the blind

spot since there are no photoreceptors in this area. It is the main entry of the retinal

vascular network. The macula or macula lutea is located approximately 3mm temporal

to the optic disc and its diameter is around 1.5mm. The name macula lutea is due

to the presence of xanthophyll, a yellow carotenoid pigment. Its center is the fovea, a

0.35mm-wide depression specialized in the visual acuity. Thus, the highest density of cone

photoreceptors is in this area.

1

3

4 5

2

(a)

1

2 3

45

(b)

Figure 1.3: Retinal division in quadrants in (a) left and (b) right eyes. The zone (1) is the

posterior pole centered on the fovea, (2) and (5) are the superior and inferior temporal areas,

respectively, whereas, (3) and (4) are the superior and inferior nasal zones, respectively.



6 CHAPTER 1. INTRODUCTION

Optic discMacula

Artery

Vein

Fovea

Figure 1.4: Sample of eye fundus image.

1.1.2 Lesions in the eye fundus

Certain diseases cause alterations in retina which are visible in a fundus image. These

lesions can be classified according to the part of retina affected: the blood vessels or the

retina itself. Some of the lesions are cited below:

• Alterations in the blood vessels

– Vessel narrowing o widening. Several diseases cause narrowing or widening

of the retinal vessels which affect veins and arteries differently. Some studies

[7] associate the venular widening with hyperglycemia, diabetes and metabolic

syndrome whereas hypertension causes a generalized arteriolar vasoconstriction

which reduces the arteriolar width visibly. As Figure 1.5 shows, the arteriolar

narrowing can be generalized or focal. The arteriolar width must be determined

respect to the vein width. Normally the artery-vein relation is 3/4, existing an

alteration when it is lower than 2/3. The focal narrowing is due to spasms

produced by a no sclerotic arteries.

– Arteriovenous nicking. The effect of the blood pressure over the artery walls

can produce sclerosis in the arteries. This can be due to hypertension or due

to the aging. The hardened artery compresses the vein which has a thinner
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(a) (b)

Figure 1.5: Example of (a) generalized and (b) focal arteriolar narrowing.

wall causing an alteration in the vein width, the Gunn’s sign (Figure 1.6(a)),

or abrupt change in the vein route at the crossing, the Salus’s sign (Figure

1.6(b)). These alterations can be observed when the artery is over the vein at

the crossing, which occurs in 70% of cases.

(a) (b)

Figure 1.6: Example of arteriovenous nicking.(a) Gunn’s sign, (b) Salus’s sign.

– Irregularities in the route of blood vessels. The retinal vessels in normal patients
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are slightly crooked and winding. However, the vessel morphology can be mod-

ified, becoming more tortuous (Figure 1.7) or straighter and more elongated, in

response to pathologies such as hypertension. The tortuosity in big arteries is a

sign of vascular sclerosis but it can also appear at early stages of hypertension.

Vein tortuosity may not be related to hypertension, but it can increase due to

heart failure or hypotension.

Figure 1.7: Example of vessel tortuosity.

– Vascular reflex changes. In healthy patients the blood vessel walls are trans-

parent and no visible ophthalmoscopically. Thus, the red colors of arteries and

veins are due to blood flow. This flow under the opthalmoscope light, produces

a reflex in the vessel wall of 1/3 the vessel width. However, the arteriosclerosis

increases the density of the vessel walls so the reflex can be wider. Moreover,

the reflex can lose its reddish appearance and becomes more metallic, coppery

and wider, the so-called copper wire arteriole (Figure 1.8(a)). If the lost of

transparency is total and the central reflex occupies the whole width of the

artery is known as silver wire arteriole (Figure 1.8(b)).

– Neovascularization. It consists on the proliferation of new blood vessels (Figure

1.9). Their appearance is winding and tortuous and they can arise isolated or

in small bunchs.
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(a) (b)

Figure 1.8: Example of vascular reflex changes.(a) Coper wire arteries, (b) Silver wire arteries.

Figure 1.9: Example of neovascularization.
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• Alterations in the retina fundus

– Hard exudates. The hard or lipidic exudates, are yellowish deposits (Figure

1.10(a)) of lipids and proteins which come from the extravasation of intravas-

cular content due to an increment in the permeability, or due to the remains

of hemorrhages. They are small spots with sharp contours but they tend to

group in plaques, rings or stars (Figure 1.10(b)). The possible causes includes:

hypertension, diabetes, arteriosclerosis, vasculitis, vascular malformations, and

venous occlusions.

(a) (b)

Figure 1.10: Example of hard exudates, (a) isolated or (b) grouped in a macular star.

– Soft exudates or cotton wool spots. They are white and cottony spots bigger

than hard exudates with a round or oval shape of ill-defined borders (Figures

1.10(b) and 1.11). They are located at the posterior pole. The soft exudates are

due to severe ischemia produced by an intense arteriolar vasoconstriction which

can cause necrosis of the artery itself. They are signs of malignant hypertension,

diabetes, gravidic retinopathy, dysproteinemia, vasculitis, anemia, leucosis, and

venous occlusions.

– Aneurysms. Two kinds can be distinguished: microaneurysms and macroa-

neurysms. The microaneurysms are small swelling of the vessels, and they are

the most characteristic lesion of diabetic retinopathy. The macroaneurysms are
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(a) (b)

Figure 1.11: Example of soft exudates.

dilations of the large arterioles of the retina associated with systemic hyperten-

sion, exudation and hemorrhages.

Figure 1.12: Examples of aneurysms.

– Hemorrhages. They are blood residues which can occur on the retinal surface,

preretinal hemorrhages (Figure 1.13(a)), or in the retinal tissue, intraretinal

hemorrhages, (Figures 1.10(a) and 1.13(b)). The preretinal hemorrhages are

large and they usually take on a keel shape. On the contrary, the intraretinal

hemorrhages can present a flame or splinter shape if they affect the superficial

nerve fiber layer, or, they can have a round or amorphous shape in case of deeper
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hemorrhages. They can appear in hypertension, diabetes, blood dyscrasias,

trauma as well as subarachnoid and subdural hemorrhages.

(a) (b)

Figure 1.13: Examples of (a) preretinal and (b) intraretinal hemorrhages, superficial (in flame

of splinter) and deeper (rounded).

– Papilledema. It is a non-inflammatory swelling of the optic nerve head which

affect to patients with increased intracranial pressure and ocular venous outflow

obstruction (Figure 1.14). It coexists with other alterations mentioned above as

a result of hypertension, although, in malignant hypertension may occur alone.

Figure 1.14: Example of papilledema.
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1.2 Hypertensive retinopathy

Systemic hypertension is diagnosed by repeatable measurements of an high blood pressure,

that is, when the diastolic blood pressure is 90 mmHg or above, or the systolic pressure is

140 mmHg or above [8]. Hypertension increases cardiovascular risk causing target-organ

damage, including retinopathy. Thus, since the retina can be visualized directly and in

a non-invasive manner, the identification of hypertensive retinopathy is a important way

to stratify cardiovascular risk.

The primary response of the retinal arterioles to the systemic hypertension is the

vasoconstriction. However, this constriction may not be observed in older patients due to

the involutional sclerosis of the arteries caused by aging. In addition, the atherosclerosis

can lead as well to alterations in retinal blood vessels.

Thus, since Marcus Gunn’s described in 1898 [9] the alterations in retinal vessels

in hypertensive patients, several classification systems tried to correlate the observed

changes with the disease. The first and most used classification of the retinal alterations

related to the hypertension is the Keith-Wagener-Barker [10, 11]. It is based on clinical

findings and established four grades of hypertensive retinopathy with increasing severity.

In the Scheie’s work [12], a modification of this classification is proposed to discriminate

between hypertensive and arteriosclerotic abnormalities. Both classifications are shown

in the Table 1.1.

Despite these classifications are the standard used to assess the hypertensive retinopa-

thy, several studies have questioned them due to, among others reasons, the poor corre-

lation with the severity of the disease. Thus, other classifications appeared which focus

on describing the appearance of the eye fundus rather than grading the retinopathy, such

as, the two-grade classification (non-malignant vs malignant) proposed in [13].

As Table 1.1 shows, the alterations which characterize the hypertensive retinopathy

are: focal and generalized arteriolar narrowing, hemorrhages, hard exudates, cotton-wool

spots, changes in arteriolar reflex or even papilledema. However, the first alteration gener-
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Keith-Wagener-Barker [10, 11] Scheie [12]

Grade Features Grade Features

0 No changes

I
Mild generalized retinal arteriolar

narrowing
1

Barely detectable arterial

narrowing

II
Definite focal narrowing and

arteriovenous nipping
2

Obvious arterial narrowing with

focal irregularities plus light reflex

changes

III
The above and retinal hemorrhages,

exudates and cotton-wool spots
3

Grade 2 plus copper wiring and

retinal hemorrhages/exudate

IV Severe grade III and papilledema 4
Grade 3 plus silver wiring and

papilledema

Table 1.1: Keith-Wagener-Barker and Scheie classifications of hypertensive retinopathy.

ally consists on an arteriolar narrowing [12]. In fact, this lesion constitutes the first grade

of the hypertensive retinopathy in the two classifications. Moreover, nowadays, lesions of

grades 3 and 4 such as hemorrhages or exudates are rarely observed [14, 15]. Thus, it

seems that the arteriolar narrowing could be the best indicator to stratify cardiovascular

risk.

1.3 Arteriolar narrowing and arteriovenous ratio

The previous section showed that the arteriolar narrowing is the primary response of

the retinal vessels to the systemic hypertension [12]. However, the difficulty to obtain

a reliable quantitative measure of the generalized narrowing prevents to correlate the

grades I and II of the hypertensive retinopathy with hypertension, arteriosclerosis, cerebral

vasculopathy or other systemic pathologies. For this reason some studies [16] question

the use of arteriolar narrowing for the risk stratification in hypertensive patients, whereas

this does not occur with the other advanced lesions of eye fundus (exudates, hemorrhages

or papilledema) [17, 15]. Also, the European guidelines for the management of arterial

hypertension [14, 15] explicitly exclude arteriolar narrowing and the arteriovenous nicking,
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the grades I and II, to stratify the cardiovascular risk of hypertension and they confine to

research the use of some methods which measure the vessel widths.

In this sense, some efforts have been made to develop no subjective, precise and repro-

ducible methods to measure the degree of narrowing in arteries through the arteriovenous

ratio (AVR), that is, the ratio between arteriolar and venular vessel widths measured in

an area centered in the optic disc. Thus, an automatic procedure which estimate the AVR

must locate the optic disc, detect and measure the retinal vessels in the region of interest

and classify them into arteries and veins.

The use of more objective methods in some studies such as, the Atherosclerosis Risk

in Communities Study (ARIC) [2, 18] or the Blue Mountains Eye Study [19], allows to

show the association between the AVR and the hypertension.

In addition, the AVR has been also associated with metabolic syndrome [20], diabetes

mellitus [21], cerebral white matter lesions [22], carotid stiffness [23], heart failure [24],

cardiovascular morbidity and mortality [25] and stroke [26].

Thus, the aim of this work is the development of an automatic method for the AVR

computation. The measure obtained must be repeatable and reliable in order to assess

the patient’s microvasculature over the time. Furthermore, the connection between alter-

ations in microcirculation and the systemic hypertension will be analyzed, assessing the

effectiveness of the AVR as a prognostic indicator of this disease.

The proposed method will be integrated in a telemedicine system to allow the collab-

oration between physicians and researches working in different places.

1.4 Work overview

This work is organized as follows.

Chapter 2 focuses on delimiting the region of interest where the AVR is estimated.

This encompasses the optic disc segmentation and the location of the vascular structures.
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Chapter 3 is devoted to explain the most important phases in the AVR computation,

these are, the measurement of the retinal vessel widths in the region of interest and their

distinction in artery and vein types.

Chapter 4 is devoted to present two procedures for the AVR computation. The former

computes the AVR automatically within a patient’s image independently, whereas, the

latter obtains the measure in new patient’s images from an AVR result achieved in a

reference image. This last manner is one of the most important contributions of this

work, that is, the use of a vessel registration procedure to compute the patient’s AVR in

distinct images acquired at different times using the same set of vessels, and measured in

the same areas.

Chapter 5 presents SIRIUS (System for the Integration of Retinal Images Understand-

ing Services), a telemedicine system for the retinal image analysis where the proposed AVR

methods have been integrated.

Chapter 6 shows the results obtained in the system validation as well as the clinical

validation.

Finally, Chapter 7 provides a brief overview of some concluding remarks and future

directions.



Chapter 2

ROI extraction

The aim of this chapter is to describe the algorithms for identifying the region of interest,

that is, the areas where the vessel widths are measured for computing the arteriovenous

ratio (AVR). In the previous chapter, several methodologies to estimate the AVR have

been mentioned. Despite their differences, all of these methods share a common bond:

the measurement area, a concentric zone around the optic disc (OD) in order to measure

the retinal vessels at equidistant points from the vascular network center. Hence, the

goal of this chapter is present an automatic method to delimit this region of interest

(ROI) where the AVR will be estimated. Thus, the algorithm proposed to detect the OD

is described in Section 2.1, whereas, Section 2.2 explains how the vessels are located in

several circumferences of analysis concentric to the OD.

2.1 Optic disc location

The optic disc (OD) can be considered one of the most relevant structures of the eye

fundus since, besides representing an important diagnosis and prevention indicator for

several pathologies such as glaucoma and diabetic retinopathy, it is the major landmark

to detect other structures in the eye. Thus, the OD location is probably the first stage of

any automatic algorithm for retinal analysis. In this case, it is an essential step to develop

17
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an automatic tool for AVR computation.

2.1.1 Review of available methods

The OD is normally the brightest area in the fundus image and it is the entrance into the

eyeball of the optic nerve and the blood vessel network. These two characteristics of the

OD constitute the principal bases used in the most OD location techniques.

Looking through the techniques found in the literature, the OD location issue can be

divided into two different problems: the location of the OD center and the OD segmen-

tation, that is, its boundary extraction. Most of the approaches which resolve the first

problem rely on template matching [27, 28, 29] and on identifying the area with the high-

est intensity or color variation respect to adjacent blood vessels [30, 31]. In some cases,

the obtained OD center is roughly located and it must be readjusted by the segmentation

method. The boundary extraction techniques are mainly based on the Hough transform

[31, 32, 33] and deformable models [28, 29, 34].

Specifically, Akita and Kuga [35] proposed locating the OD by vessel backtracking.

Mendels et al. [34] used morphological filtering to remove the vessel structures and GVF-

based snakes to find the OD boundary. Walter and Klein [36] approximated the OD locus

by the centroid of the brightest parts in the luminance of the HSL color space obtained

by an area threshold, whereas the OD boundary is located in the red component of RGB

color model applying a watershed transformation. Foracchia et al. [37] presented a new

method that consist of modeling the main retinal vessels by two parabolas which have a

common vertex, the OD center. A thresholded edge mask result of Sobel operator is used

as the input of the circle Hough transform in [32]. Hoover and Goldbaum [38] proposed

a fuzzy vessel convergence as main feature to locate the OD position. The OD center is

found as the intersection point between finite lines (vessel segments). If the convergence is

not strong, the center is approximated by the brightest point after an image equalization.

In [39], after a vessel tree segmentation and a vessel direction map identification, the optic

disc is located by matching its neighbor vessels to an expected vessel’s direction filter.
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Niemeijer et al. [40] reformulated the problem of finding a certain structure in retina

images as a regression problem. For that, they made some assumptions about the way

in which the image has been captured such as centered in fovea or centered in OD. In

[33] three different methods are combined to get a reliable initial approximation of the

OD center. The first method approximates the center by the point of largest difference

between the maxima and minima intensity in a neighborhood. The second one proposes as

center the point of maximum intensity variance; and the third one selects the maximum of

a Gaussian low pass filter. The boundary segmentation is performed using the components

R and G of the RGB color space in parallel combining morphological and edge detection

techniques. Finally, a Hough transform is applied to readjust the OD center. Recently,

Mendonça et al. [41] proposed a new method to measure the vessel convergence founded

in entropy of vessel directions.

2.1.2 Proposed method

The main purpose of this step is obtain a precise location of the OD center since it is

essential for the AVR calculus, whereas an approximated OD segmentation is enough to

delimit the region of interest where the vessels will be measured. The procedure to detect

the OD used combines an intensity-based approach, and another based on the convergence

of the vessel tree. The aim of the former is to delimit the region of interest where the

OD is approximately situated, whereas, the latter tunes the segmentation by the circular

Hough transform [42] using the centerlines and the edges of the vessels.

The algorithm is based on the approach proposed in [43]. First, the region of interest

(ROI) is demarcated using a blob detection method, the Difference of Gaussian or DoG

operator. Thus, given the input image I(x, y), the difference of Gaussian is defined as

the subtraction between two blurred version of I(x, y) smoothed with two different scaled

Gaussian filters.

Given a two-dimensional Gaussian filter, gσ(x, y) with variance σ2

gσ(x, y) =
1√

2πσ2
e−(x2+y2)/2σ2

(2.1)
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the difference of Gaussian can be defined by the following equation

gσ1(x, y) ∗ I(x, y)− gσ2(x, y) ∗ I(x, y) =

=
1√

2πσ2
1

e−(x2+y2)/2σ2
1 ∗ I(x, y)− 1√

2πσ2
2

e−(x2+y2)/2σ2
2 ∗ I(x, y)

(2.2)

Hence, the DoG as an operator or convolution kernel is determined by next formula

DoG = gσ1(x, y)− gσ2(x, y) =
1√
2π

[
1

σ1

e−(x2+y2)/2σ2
1 − 1

σ2

e(x2+y2)/2σ2
2

]
(2.3)

where σ1 and σ2 take typical values of the optic disc radius, being σ2 > σ1. For the images

of the experiments, we have used σ1 = 30 and σ2 = 60 pixels.

The ROI center, that is, the first approximation of OD center (c′x, c
′
y) is located at the

maximum of the difference of Gaussian

(c′x, c
′
y) = arg

x,y
max{DoG ∗ I(x, y)} (2.4)

However wrong OD detection can happen within images which present areas brighter

than the optic disc. To avoid this situation, vascular evidences are taking into account to

obtain the first approximation of OD center. Then, since the optic nerve is the input of

the vascular network, a neighborhood centered on the OD center must contain multiple

vessels. Thereby, the vessel centerline binary image IC is calculated by the Multilocal

Level Set Extrinsic Curvature (MLSEC) enhanced by the Structure Tensor (MLSEC-ST)

operator proposed in [44] and it is explained in detail in the Appendix A. It requires that

the 1% of the pixels in a squared neighborhood of size σ1, ℵ(σ1), centered in the expected

OD center belong to centerline vessels. Hence the equation 2.4 could be rewritten as

follows

(c′x, c
′
y) = arg

x,y
max{DoG ∗ I(x, y) /

∑
(i,j)∈ℵ(σ1)

IC(i, j) > 0.01σ2
1} (2.5)

The ROI is bounded by cropping the input image around the center (c′x, c
′
y) using

domain information about the optic disc diameter.

ROI = I(x, y)

 x ∈ [c′x − offset, . . . , c′x + offset]

y ∈ [c′y − offset, . . . , c′y + offset]
(2.6)
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Figure 2.1 shows the result of DoG and the final ROI as well as the green channel of

the RGB original image which it is the input image of the OD location method.

(a) (b) (c)

Figure 2.1: Optic disc ROI detection. (a) Input green channel of RGB color space. (b) DoG

result whose maximum value will be the rough optic disc center. (c) Cropped region of interest.

The circular Hough transform [45] is appropriated for the OD segmentation since it

allows determine the parameters of a circle when a number of points lying on that circle

are known. The Hough transform is widely used in Computer Vision to recognize shapes

which can be defined by parametric equations. It considers the characteristics of the

shape not in the image space, but in the parameter space. That is, each point in the

image space votes for a shape determined by its parameters. These votes are stored in an

accumulator array. The maximum of the accumulator array corresponds to the desired

shape. In case of circle detection, all circles of radius r and center (cx, cy) passing through

a point (x, y) obey the next parametric equations:

x = cx + r cos(θ)

y = cy + r sin(θ)
(2.7)

Hence, the accumulator array is a 3D structure of size Nx × Ny × Nr, representing the

space of parameters center-radius delimited by the limits ([c′x − coffset, c′x + coffset], [c
′
y −

coffset, c
′
y + coffset], [rmin, rmax]). The values for the images used in the experiments per-

formed were coffset = 40, rmin = 35 and rmax = 50 pixels.

Thus, for each voting edge pixel p = (x, y) and for each possible radius, given the

orientation θp computed by the gradient, the center to vote is obtained working out the
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value of cx and cy in the equation 2.7 and obtaining the closest center in the accumulator

array. The value of each vote is inversely proportional to the radius size. After that, a

Gaussian function is applied to the accumulator array at each dimension to vote not only

for an unique center and radius but a neighborhood in order to minimize round-off errors

and diffuse edges.

The points which votes in the Hough transform are the edge points of the ROI per-

forming with the Canny operator. However, as it is shown in the Figure 2.2(a), the result

of the Canny operator includes not only the optic nerve edge, but also the edges of the

vessel structures and noise. So, it is necessary a procedure to avoid the vessel edges par-

ticipate in the Hough transform voting. To this end, the image IC computed previously

and cropped to the ROI (Figure 2.2(b)) is used to discard the vessels from the voting.

Hence, the points suitable for the OD circle voting, PHough, are the subset of edges points

which are not close to a centerline point (Figure 2.2(c)).

PHough = {(x, y)/IEdge(x, y) = 1 ∧
∑

(i,j)∈ℵ(σ)

IC(i, j) = 0} (2.8)

where IEdge and IC are the binary edge and centerline images, respectively, in the ROI

and ℵ(σ) is the neighborhood of size σ whose value depends on the image size. For images

with a resolution of 768× 576, we used σ = 6, a value around the width of large vessels.

Hence, the center and radius of the OD are those parameters which maximizes the

accumulator array of the Hough transform applied to the subset of points defined in the

Equation 2.8 (Figure 2.3).

2.2 Retinal vessel detection

As the location of the optic disc, the detection of the retinal vascular tree is a fundamental

step in the development of computer-assisted diagnostic systems. Vessel features as length,

tortuosity, width and branching index are extensively used by physicians to detect several

pathologies at early stages.
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(a) (b) (c)

Figure 2.2: Location of the Hough transform input points. (a) Edge points result of Canny edge

detector in the ROI, (b) Centerline points result of the MLSEC-ST operator in the ROI, (c)

Edge points that votes in the Hough transform.

Figure 2.3: Final optic disc center and boundary location through the circle Hough transform.
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2.2.1 Review of available methods

The difficulty of detecting the retinal vessel lies in its similarity in shape and gray level

with some background features. Furthermore, the presence of noise, pathologies, or the

vessel central light reflex, especially in high-resolution images, make the task more difficult.

Many authors have suggested methods to segment the retinal vascular network. Recently,

Fraz et al. [46] presented a complete survey of the vessel tree segmentation techniques.

The authors performed a classification of existing methods among which we highlight the

next ones.

• Matched filtering algorithms: filters the image with a 2D kernel which tries to model

a vessel feature in different orientations [47, 48, 49, 50].

• Pattern recognition techniques: classifies the pixels into vessels and background in

a supervised or unsupervised manner. Some examples of the supervised methods

are the k-NN classifier [51, 52], the Gaussian mixture model [53] or the AdaBoost

algorithm [54]. The Fuzzy C-means [55] or the or a entropy based [56] are examples

of the unsupervised segmentation methods.

• Morphological operators: extracts the vessel shape, such as the edges or the vessel

skeleton based on mathematical morphology [57, 46].

• Tracking algorithms: starts with a seed from the centerline or edges of vessels and

follows the entire vessel guided by direction or other local information [58, 59].

• The model based approaches: are subdivided into profile models where the cross-

sectional profile are fitted by one or several Gaussian functions [47, 48] and de-

formable models [60, 61].

2.2.2 Proposed method

The proposed method seeks to locate the retinal vessels in the circumferences of analysis

where their widths will be measured. The purpose is not to segment the entire vessels



2.2. RETINAL VESSEL DETECTION 25

but locating their centerlines in order to use them as seeds of deformable models in the

vessel width measurement stage. The technique was proposed by Caderno el al. in [62].

Thus, the MLSEC-ST crease detector (Appendix A) algorithm and a subsequent crease

tracking to ensure their continuity are applied. Figure 2.4 shows a schema of the vessel

detection model.

Centerline extraction
 (MLSEC-ST)

Centerline tracking

Contrast estimation 
and 

Automatic parameter 
selection

Figure 2.4: Schema of the retinal vessel detection model.

The number and quality of the creases extracted are heavily influenced by the values

taken by parameters of the MLSEC-ST operator as Figure 2.5 shows. In this way, the

authors proposed an automatic adjustment of parameters depending on the characteris-

tics of the input image, specifically, depending on its contrast. Thus, the images were

classified into four classes according to their contrast (low, medium, high and very high)

and the parameters were optimized for each class. The image contrast is estimated by

analyzing the pixel intensity in the first circumference of analysis, the so-called linear

profile. As Figure 2.6 shows, the vessels are darker than the background, so they appear

as valleys in the linear profile. Thus, the deeper the vessels, the greater the contrast of

the image. Thereby, the contrast can be estimated by the variability of the linear profile

extreme values, these are, the minimum values located in the valley middle points and the

maximum ones located between valleys. Before computing the maximum and minimum

values an average filter is applied to minimize the image noise (Figure 2.6). The variabil-

ity of the linear profile extreme values is computed with the average absolute deviation,

D̄ as follows:

D̄ =
1

n

n∑
i=0

|ei − µ| (2.9)

where ei represents the intensity of the i-extreme, µ is the average of the extreme inten-
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sities and n is the number of extremes. Thus, the values of D̄ are used to classify the

images into the four contrast categories.

(a) (b) (c)

Figure 2.5: Examples of centerline images obtained from the MLSEC-ST operator using different

parameters.

(a) (b)

Figure 2.6: (a) Original histogram of the circumference intensity, smoothed histogram after

applying the average filter, histogram extrema where the goodness extrema variance is used as

contrastness measure. Middle, upper and lower lines represent µ and the µ − σ2 and µ + σ2

of the extrema intensities. (b)The same graphics in (a) obtained increasing the image contrast

artificially.

After the crease extraction, the centerline vessel points in each circumference of anal-

ysis Cr, CPCr , are the crease points which belong to the circumference in the radius of

analysis, that is:

CPCr
r0≤r<rm

= {(x, y)/ICr(x, y) = 1 ∧ ICrease(x, y) = 1} (2.10)
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where ICr is the mask image of the r-circumference, ICrease is the image result of the

crease extraction and m are the number of radius of analysis.

However, due to the presence of noise in the image two undesirable situations may

happen: structures which do not belong to vessels are detected as a crease point or

discontinuities of a crease in the radius of analysis cause the loss of that vessel (Figure

2.7). Thereby, a tracking is performed with two main purposes in mind: one, to verify

the continuity of each crease and avoid false positives as well as loss of vessels; second, to

obtain a centerline segment which will be used in the next phase. To this end, the tracking

algorithm analyzes the creases in 2n+ 1 circumferences spaced a unit distance and which

range from r − n to r + n. n = 10 was used to guarantee that small creases coming from

noise are not taken into account and to avoid vessel bifurcations and crossovers which are

most likely in a bigger area. At each circumference Ci, i ∈ {r − n, r − n + 1, . . . , r + n},

the centerline vessel points, pi, are those crease points which belong to the circumference

Ci in the same manner as it was defined in the Equation 2.10. Thus, the Equation 2.10

can be rewritten as follows:

CPCi
r−n≤i≤r+n

= {pi(x, y)/ICi
(x, y) = 1 ∧ ICrease(x, y) = 1} (2.11)

Then a thresholding is applied to avoid false positive creases. For that, the intensity in

a 3×3 neighborhood centered in each possible vessel point is analyzed. Then, the point is

considered as belonging to the background if the highest intensity in that neighborhood

is less than a threshold called the crease minimum force (f = 150). Formally this can be

expressed as follows:

pi ∈ Background
pi(x,y)∈CPCi

, i∈{r−n,...,r+n}
⇐⇒ max{ICrease(k, l) , (k, l) ∈ ℵ(σ)} < f (2.12)

where σ = 3.

In addition, another situation must be considered: in a specific circumference i, close

crease points may belong to the same vessel segment vij. This is the case of creases

parallel to the circumference of analysis or bifurcations located over it. In order to detect

if these points are part of the same vessel segment, the euclidean distance between each
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pair of centerline points is calculated. The centerline points belong to the same vessel if

the distance is less than a threshold d. Formally this can be expressed as follows:

p1 , p2 ∈ vij ⇐⇒ distance(p1, p2) < d, p1 , p2 ∈ CPCi
(2.13)

where d = 9 was used and distance is the euclidean distance.

Finally, the angles between the line connecting each centerline point with the optic disc

center (cx, cy) and the X axis are calculated in order to track the centerline points along

the different circumferences. Hence, two centerline points in consecutive circumferences

are registered as belonging to the same vessel segment vij if their angular difference is less

than a threshold tθ (Figure 2.7).

p1 , p2 ∈ vij
p1∈CPCi

, p2∈CPCi+1

⇐⇒ |angle(c, p1)− angle(c, p2)| < tθ (2.14)

where angle(c, p1) and angle(c, p2) are the angles which form the points p1 and p2 with

the optic disc center and the abscissa axis and tθ = 0.052 radians (3◦) was used.

Each time a centerline point is registered as part of a vessel, Vj, a vote is cast to that

vessel. At the end, only the vessels whose number of votes exceeds 2n/3 votes will be

taken into account.

Vj =

{
vij /

∑
p ∈ vij >

2n

3

}
(2.15)
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Optic disc

Broken centerline 

r

Noise

r+nr-n

Angular differences between centerlines 
at consecutive circumferences 

Figure 2.7: Vessel centerline tracking schema.
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Chapter 3

Width measurement and vessel

classification

This chapter covers, perhaps, the two most important steps in the automatic calculation

of the arteriovenous ratio (AVR): These stages are the precise measurement of retinal

vessel widths and their separation between arteries and veins.

The proposed techniques for both stages as well as other approaches found in the

literature are discussed in detail in the two sections of this chapter.

3.1 Vessel width measurement

Normal aging, diabetes, hypertension or atherosclerosis, among other factors can lead to

alterations in the vessel width. Thus, the automatic measurement of the retinal vessel

width plays an important role in diagnosis and assessment of the patient condition. Accu-

rate measurement is wholly dependent on the vessel tree segmentation. In turn, this task

is complicated by diverse factors such as the wide variety of images (resolution, cameras,

centers,. . . ), low and variable contrast, alterations in vessels and background caused by

different pathologies or the vessel central reflex. Moreover, precise segmentation algo-

rithms are time-consuming, making them useless for clinical practice.

31
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In this section a brief review of some approaches proposed in the literature is provided.

After that, the proposed method to width measurement is described. This algorithm is

fast and precise. It takes as input the vessel centerline segments detected in the previous

phase. From these lines the entire vessel segment is demarcated and its width measured.

3.1.1 Literature review

Numerous algorithms have been presented in the literature to segment the retinal vas-

cular tree. However, not many of them calculate the retinal vessel width. Among

them, Brinchmann-Hansen and Heier [63] presented in 1986 the Half-Height Full-Width

(HHFW) algorithm which defines the width as the distance between the “half height

points” on the left and right sides of the initial midpoint of the profile. To locate the two

points, the minimum and maximum intensity levels are computed at each side, and the

points are located where the profile crosses the midpoint in intensity between the minimum

and maximum. The Gregson’s method [64] applies a thresholding to extract the vessels

from the background and obtains the centerline by thinning. The vessel is measured in

the centerline normal direction by fitting a rectangle to the vessel profile, estimating the

area under the profile by the area under the rectangle. Zhou et al. proposed in 1994 a 1-D

Gaussian method to fit the vessel profile [65]. Latter, in 2004, Lowell et al. [66] modeled

the vessel profile as a 2-D Gaussian to take into account the light reflex. Mosquera et

al. presented ART-VENA [67] a semiautomatic system to measure the retinal width. It

detects as vessels the valleys in a gray level profile along a circumference centered on the

optic disc whose height exceeds a specific threshold. Moreover, the valleys should have

continuity in radial direction through several circumferences separated one pixel. Once

the edges have been detected and fitted to a line, the vessel width is achieved by the line

segment perpendicular to the edges. In Al-Diri’s et al. method (ESP) [61], the tram-line

algorithm is used to locate the vessel centerlines and two pairs of active contour models

are used to detect the vessel boundaries. Xu et al. presented a graph-based method

[68] in order to detect the two vessel boundaries simultaneously. Recently, Kumar et al.

introduced the unsupervised linear discriminant analysis diameter measurement (ULDM)
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[69]. This technique consists on locating the vessel edges first and then classifying the

intensity profiles into background or vessel sections by means the LDA classifier.

3.1.2 Proposed method

The purpose of the method is obtain a precise measurement of the vessels widths from

the centerline segments located in the previous step. The width measurement of each

vessel segment detected in the previous step is achieved by a snake. First, the snake is

initialized at the corresponding centerline segment and the snake energies are defined.

Then, the snake deformation is performed until a minimum energy is achieved. Finally,

once reached a stable configuration the width is measured. The algorithm is outlined in

Figure 3.1.

Vessel detection model

Contrast estimation
Automatic parameter selection

Vessel measurement model

Centerline extraction
 (MLSEC-ST)

Centerline tracking

Snake initialization 

Energy definition

Snake deformation

Width measurement

Gradient

Edge-drivenInternal

Stationary

Topological
Adjustment

Figure 3.1: Schema of vessel width measurement approach.
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Snake model

The method based on snakes used to measure the vessel widths was originally proposed in

[62, 70]. A snake [71] is a contour defined within the image which evolves to fit some image

features guided by internal and external forces. The internal force controls its flexibility

and elasticity whereas the external force points it towards the feature edges. Its shape

becomes stable achieving a minimum level of energy when the snake reaches the target

feature edges. Thus, the snake can be defined by υ(s) = [x(s), y(s)], where x(s), y(s)

are the x and y coordinates along the contour and s ∈ [0, 1] is the parameter domain.

Discretizing the model a snake node with coordinates (xi, yi) can be referenced by υi.

Hence, the width of each vessel segment is determined by a specific snake. Adapting

the snake model to the specific domain includes to define the snake shape, its energy terms

and the seed, that is, its initial contour points. In this case, the vessel centerline segment

result of the vessel location step constitutes the snake seed. In particular, the initial snake

contour consist of two chains of nodes initialized at the points of the centerline segment,

as Figure 3.2 shows. The advance direction of both chains of nodes is normal to the vessel

centerline but with opposite senses to reach the two vessel boundaries. There are two

kind of nodes: common nodes and corner nodes. The former fit the vessel edges, whereas

the latter are adjusted to the corners of the vessel segment to be measured.

Snake energies

The snake energy to be minimized is described as follows∫ 1

0

Esnake(υ(s))ds =

∫ 1

0

Eint(υ(s))ds+

∫ 1

0

Eext(υ(s))ds (3.1)

where Eint and Eext represent the internal and external energy respectively.

The internal energy for this model can be written as

Eint(υ(s)) = α(s)

∣∣∣∣∂υs(s)∂s

∣∣∣∣+ β(s)

∣∣∣∣∂2υs(s)

∂s2

∣∣∣∣ (3.2)

where the first and second term represent the first and second order derivatives, respec-

tively. The parameters α(s) and β(s) control the snake shape. Large values of α(s)
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Figure 3.2: Evolution of snake nodes.

makes the snake stretch more and more, whereas large values of β(s) makes the snake

bend. These values are constant for common nodes, specifically we have used α(s) = 0.25

and β(s) = 0.01. This α(s) value causes neighboring nodes tend to be closed since this

is the configuration which minimizes the energy but avoiding entanglement, whereas β(s)

generates continuous and smooth curves. The corner nodes have null internal energy

(α(s) = β(s) = 0) which implies the presence of discontinuities in the corners. Thus,

these nodes interact individually guided only by the external forces without any bonding

force between them.

The derivatives in each node υi are estimated using the technique of the finite differ-

ences as follows ∣∣∣∣∂υi(s)∂s

∣∣∣∣ = υi − υi−1 = (xi − xi−1)2 + (yi − yi−1)2 (3.3)

∣∣∣∣∂2υi(s)

∂s2

∣∣∣∣ = υi−1 − 2υi + υi+1

= (xi−1 − 2xi + xi+1)2 + (yi−1 − 2yi + yi+1)2

(3.4)

The external energy which attracts the snake to the target shape can be expressed by
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the following equation

Eext(υ(s)) = γη̄ + δEdist(υ(s)) + εEgrad(υ(s)) + ωEstat(υ(s)) (3.5)

where η̄ is the dilation pressure, Edist(υ(s)) is the edge-driven energy, Egrad(υ(s)) is the

gradient energy, Estat(υ(s)) is the stationary energy and γ,δ,ε and ω are the energy weights

whose values have been established to 1.0, 2.0,1.5 and 0.4, respectively.

The dilation pressure, η̄ is a vectorial magnitude which adjusts the direction and sense

of advance of each snake node.

The edge-driven energy of a node, Edist(υi) is given by the distance to the nearest vessel

edge. The vessel edges are computed by the Canny operator [72]. Thus, the edge-driven

energy is defined by

Edist(υi) = dist(υi, Icanny) (3.6)

where Icanny is the edge image and dist represents the euclidean distance.

These two terms are responsible for reaching the vessel edges. On the contrary, the

two latter terms are stooping forces which have been introduced in the model to com-

pensate the image noise and the imprecisions of the edge detector. The gradient energy,

Egrad(υ(s)) stops a node if its gradient is negative, that is, contrary to the advance direc-

tion. For a node, υi, the gradient is computed as the gray level difference in two positions

of the node in the input image as it is shown below

grad(υi) = I(υ̂i)− I(υi) (3.7)

where υ̂i is a possible new position of the node according to the advance direction and υi

is its current position.

Thus, the gradient energy is defined as follows

Egrad(υi) =

 0 if grad(υi) ≥ 0

grad(υi)
2 otherwise

(3.8)

Finally, the stationary energy is based on the idea that probably a node should stop

(keep on moving) if their adjacent nodes stopped (kept on moving). In this manner, it
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prevents that a node moves without control when its neighboring nodes have stopped or

that a node stops in a local minimum when its neighboring nodes keep on moving. Being

m the number of adjacent nodes, the stationary energy is described by the following

equation

Estat(υi) = 1− exp

(
−1

2m

i+m∑
j=i−m

Eext(υj)

)
(3.9)

Snake deformation

The snake deformation is performed by a greedy algorithm. Thus, at each step of the

algorithm, each non stable snake node is moved to its optimum energy level as Algorithm

1 describes. This process is repeated until all nodes are stable, that is, they achieved their

minimum energy, or the maximum number of iterations has been reached. In order to

locate the new position of each node, the snake energy at three adjacent positions in an

eight neighborhood is computed. The three adjacent positions correspond to the position

given by the direction and sense of the dilation pressure η̄ and its two neighbor positions

which form angles of −45◦ and 45◦ with the dilation pressure vector.

In addition, once the positions and energies of all snake nodes have been updated, we

check if the distance between two consecutive common nodes exceeds a certain threshold.

If this happened, a new node is inserted in the middle point of the two nodes as Algorithm

2 describes. However, if the maximum number of nodes allowed in each snake is exceeded,

the insertion fails and the snake is invalidated.

Topological check

After the energy minimization, the snake contour should have a parallelogram shape and

the nodes should be positioned in the vessel edges. However, image noise and discontinu-

ities in the edge image may cause some nodes are placed outside or inside the edges. Hence

an adjustment of snake contour is needed to correct the wrong nodes. First, the wrong

nodes are identified and after that a regression correction model is applied to reorganize
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Algorithm 1 Snake deformation algorithm

Definitions:

• υi(t) = (x, y): snake node υi in the current position at the step t

• υi(t + 1): snake node υi in the position at the step t + 1, υi(t + 1) ∈ ℵ(3), where ℵ(3) is 3 × 3

neighborhood centered on υi(t)

• η̄υi : dilation pressure which gives the direction and sense of advance of the node υi

• α = angle(η̄υi) : angle which forms the dilation pressure vector with the abscissa axis

• (xα, yα) ∈ ℵ(3): the position in the neighborhood ℵ(3) given by the angle α

• Esnake(υi(t)): the current energy of node υi

• Emin and (xmin, ymin): minimum energy and position where Emin is obtained, respectively

• iter: current number of iterations, and maxIter: maximum number of iterations

Initialization:

• Set maxIter to be 100, and set iter to be 0

Body:

• While a snake node is unstable and iter is less than maxIter

– For each υi(t) = (x, y) ∈ snake

∗ Compute Esnake(xα, yα), Esnake(xα−45◦ , yα−45◦) and Esnake(xα+45◦ , yα+45◦)

∗ Set Emin to min(Esnake(xα, yα), Esnake(xα−45◦ , yα−45◦), Esnake(xα+45◦ , yα+45◦))

∗ Set (xmin, ymin) to the position with energy equal to Emin

∗ If Emin is greater than or equal to Esnake(υi(t))

· Set υi to stable

∗ Else

· Set Esnake(υi(t+ 1)) to Emin

· Move the node υi to (xmin, ymin), υi(t+ 1) = (xmin, ymin)

– Add one to iter and Add new snake nodes if it was necessary (Algorithm 2)
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Algorithm 2 Algorithm for addition of new nodes in a snake

Definitions:

• υi = (xi, yi): snake node

• υi+1 = (xi+1, yi+1): snake node consecutive to the node υi

• υj = (xj , yj): new node

• η̄υi : dilation pressure which gives the direction and sense of advance of the node υi

• η̄υj : dilation pressure which gives the direction and sense of advance of the new node υj

• Esnake(υj): energy of the new node υj

• maxDist: maximum allowable distance between nodes

Initialization:

• Set maxDist to be 10

Body:

• For each υi = (xi, yi) ∈ snake and υi ∈ common nodes

– If distance(υi, υi+1) is greater than maxDist

∗ Add new node υj = (xj , yj) to snake

∗ Update xj to
xi + xi+1

2
and yj to

yi + yi+1

2

∗ Update η̄υj to η̄υi

∗ Compute Esnake(υj)
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them. If the correction is not possible, the snake is ruled out since it is inappropriate to

be measured.

A node, υi, is considered as wrong if it satisfies any of the next conditions:

• The minimum distance between υi and the snake seed is greater than the largest

allowed vessel width, λdist, which depends on the image resolution.

• As edges are parallel to the centerline, the angles that form each with the abscissa

axis should be similar. Thus, υi is a wrong node if the angle formed by the seed and

abscissa axis, and the angle formed by υi, its next node and the abscissa axis differ

more than a threshold λang = 0.081 rad.

• The number of iterations needed for υi to reach its final position and the average

of the iterations needed by the nodes of the same edge differ more than a threshold

λiter = 4.

Mathematically, these conditions can be expressed as follows

υi ∈ {Wrong nodes} ⇔


dist(υi, seed) > λdist

|ang(υi, υi+1)− ang(seed)| > λang∣∣∣iter(υi)− 1
k

∑k−1
j=1 υj

∣∣∣ > λiter

(3.10)

where dist is the euclidean distance, ang is the angle with respect to abscissa axis, iter

represents the number of iterations and k is the number of nodes in the same snake edge

of υi.

Once the wrong nodes are detected, a simple linear regression model is applied to the

right nodes from left and right edge independently, achieving two regression lines. For

each line, the explanatory variable is selected depending on what is the dominant axis,

abscissa or ordinate axis, according to the next equations

y − ȳ =
σxy
σ2
x

(x− x̄)

x− x̄ =
σxy
σ2
y

(y − ȳ)
(3.11)
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where σxy is the covariance and σ2
x, σ

2
y are the X and Y variances, respectively. A mini-

mum percentage of right nodes (75%) is required in order to apply the regression model,

otherwise, the snake is discarded. Moreover, the adjustment quality of the regression

model is measured by the coefficient of determination, R2, which in case of the simple

linear regression, is equal to the squared of the correlation coefficient. The adjustment is

good enough when R2 > 0.75, or else the snake is ruled out.

R2 = ρ2
x,y =

(
σxy
σxσy

)2

(3.12)

Vessel measurements

Having the final configuration of the snake, the next goal is to estimate the vessel width

from it. The euclidean distance between the vessel edges can be used to obtain the vessel

width. However, in order to remove noise, the input image has been smoothed by a

convolution with a Gaussian mask in the edge detection. Thus, the measurement of the

vessel width using a simple distance measure can be imprecise since the standard deviation

of Gaussian smoothing often shifts the real edges. Hence, a parabolic regression model

has been implemented and combined with the euclidean distance to obtain an accurate

vessel width.

Seven profiles perpendicular to the centerline are considered within each snake. At

each profile, j, two distance measures are computed: the euclidean distance between the

profile end points (Figure 3.3), ω̂j euc, and a distance based on the parabolic regression

model, ω̂j par. Thus, the profile gray levels are fitted to a parabola. To this end, only

five points in the profile are taken into account: the end points, the point located at

the vessel centerline segment and the two points with the maximum gray level placed

on either side of the latter. The parabola is generated using these five points, being the

dependent variable the gray level and the explanatory variable the euclidean distance to

the centerline point. The width of each profile is compute as the average of both measures

as follows

ω̂j =
ω̂j euc + ω̂j par

2
(3.13)
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The final vessel width, ω̂, is estimated by the average of the three central values of the

seven profiles widths. Assuming that the widths have been ordered, this can be expressed

as follows

ω̂ =
ω̂3 + ω̂4 + ω̂5

3
(3.14)

Figure 3.3: Seven end points perpendicular to the vessel centerline considered for the width

measurement (color points). White points depict the snake parallelogram.

3.2 Vessel classification

This section tackles the characterization of retinal vessels into arteries and veins. Despite

the efforts made in the last years by several authors to solve this problem, a precise char-

acterization remains an open issue. According to medical experts, most of the proposed

approaches use color information to separate the two types of vessels automatically, since

arteries and lighter than veins. However, this difference in color is practically imper-

ceptible in small vessels. Furthermore, other peculiarities of retina images hinders the

classification task. On one hand, the lack of intra-image color homogeneity due mainly

to low quality image acquisition processes and the spherical surface of the eye exposed

to a non-uniform illumination. On the other hand, the inter-image variation in color and

lightness related to biological characteristics, such as skin pigmentation [73] or caused
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by different devices and agents involved in the capturing process. Thus, considering al-

ternatives to mitigate the influence of the lightness variability is a mandatory question.

Between these, the lightness and contrast normalization, and performing the classification

in local areas, are the alternatives considered in this work.

3.2.1 Literature review

Even though numerous works on vessel segmentation have appeared in the literature, the

classification of vessels has not gained momentum until recently. The techniques found in

the literature to discriminate between arteries and veins can be divided in two categories:

tracking-based and color-based methods. The former are mostly semiautomatic since are

based on spreading the manual classification made by a medical expert along the vessel

tree [74, 75, 76]. To this end, an algorithm to track the vessels and identify the crossovers

and bifurcations is needed. Their capacity to classify the entire vascular tree is their

main advantage. On the contrary, the latter ones do not require user interaction and

they base the classification mainly on color features [77, 78, 79, 73, 80]. Among these

methods, Simó and de Ves proposed in 1999 [77] the first automatic method, a Bayesian

pixel classifier which distinguished between background, fovea, veins and arteries. Li et al.

[78] based their approach on the fact that central light reflex is more apparent in arteries.

To this end, the vessel profiles, represented by two Gaussian functions, are the input of

a supervised minimum distance classifier. Grisan and Ruggeri [79] identified arteries and

veins using a Fuzzy C-means clustering. To resolve the lightness and contrast variability

problem, they proposed to apply a contrast normalization and divide the retinal image

into four quadrants which are classified independently. The mean of H in HSL color space

and the variance of R in RGB are used as classification features. An error rate of 12.4%

was obtained in a dataset of 24 images. Jelinek et al. [73] tested 13 different classifier

algorithms implemented in the Weka toolbox [81] in a set of 8 images. The best results

were achieved with the Näıve-Bayes, the Decision Table and the J48 classifiers, obtaining

an error of 30% at the test phases. Niemeijer et al. [80] distinguished between artery

and vein centerline pixels using a supervised method over a set of 12 features. An area of
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0.88 under a ROC curve has been achieved in a dataset composed of 20 images. Recently,

Zamperini et al. [82] performed several tests using different supervised classifiers along

with color and contrast features located inside and outside the vessels. They reported

interesting findings: the same features achieved best results with a small resolution image

whereas the most discriminant feature was the contrast between vessels and background.

However, despite these results, a high accuracy in the classification in large data sets is

still a pending challenge.

3.2.2 Proposed method

The methodology proposed to classify the retinal vessels combines color and tracking

based methods [83, 84, 85]. The former involves a local clustering of the vessel segments

measured in the previous section. The latter one, based on the minimal path approach [86]

(Appendix C), connects the vessel segments which belong to the same retinal vessel and

combines the local clusterings to ensure the classification. In this way, the local clustering

avoids the influence of color variability in the classification whereas the tracking strategy

prevents a high reliance on local color information. Figure 3.4 summarizes the main stages

of the proposed methodology.

Local clustering

The aim of the local vessel clustering [87, 83, 84, 88] is to classify the vessel segments

detected in the circumferences of analysis minimizing the influence of the lightness and

contrast variability. To this end, each circumference is classified separately and the vessel

segments found are grouped into overlapping subsets which are classified independently.

The color features used to classify the vessels are obtained from the profiles, a 1-pixel

thick lines perpendicular to the vessels within the snake parallelogram (Figure 3.5). To

this end, we determine first the snake contour points that lie on the right and left edges.

After that, each set of contour points is fitted to a line by the linear least square algorithm.

Then, we calculate the line perpendicular to the right edge line which intersects the left
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Figure 3.4: Main stages of the vessel classification methodology.

edge line. The profile is the line segment delimited by both edges. The pixels that belong

to the profile line are determined by the Bresenham’s line algorithm. The number of

profiles traced in each vessel segment depends on the parallelogram size.

(a) (b)

Figure 3.5: (a) Sample of several profiles extracted from the vessel segments shown in (b).
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Several types of color features over different color spaces have been analyzed. We have

tested the red (R) and green (G) channels of the RGB color model , the hue component

(H) of HSL color space and a gray scale image obtained by means of I = 0.299R +

0.587G+0.114B. We can define three types of features from the vessel segments regarding

the involved pixels:

• Features based on the whole vessel segment, e.g. the mean of the vessel segment

pixels in a given color component.

• Features based on each profile pixel. We have considered the pixel value in a color

component or the combination of pixel values in several color components for all

pixels in each profile.

• Features based on groups of pixels. We have considered features based in each

profile, such as the mean or the median, or we can select several values to represent

the profile, e.g., the n most repeated color values in the profile pixels.

The features based on the whole vessel segments are ruled out due to the variation

within a class. Moreover of the features mentioned above, we have analyzed another

feature vector proposed by Grisan and Ruggeri [79] which consists of two components,

the mean of the H component and the variance of the R component in the profile. The

following list summarizes the feature vectors that we have finally used:

• Pixel based features

– One single value: (R), (G), (H), I

– Combination of values: (G,R)

• Profile based features

– One single value:

∗ Mean: (µ(X)) where X ∈ {R,G,H, I}

∗ Median: (x̃(X)) where X ∈ {R,G,H, I}
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∗ n most repeated values: (X1), (X2) . . . (Xn) where

X ∈ {R,G,H, I}

∗ Mean of n most repeated values: (µ(n most repeated values(X)) where X ∈

{R,G,H, I}

– Combination of values:

∗ n most repeated values: (G1, R1), (G2, R2) . . . (Gn, Rn)

∗ Mean of n most repeated values:

(µ(n most repeated values(G)), µ(n most repeated values(R)))

∗ Mean of H and variance of R (Grisan et al.’s features): (µ(H), σ(R))

Moreover, since the lack of color constancy influences the classification results, color

features extracted from the normalized image obtained by the Retinex techniques [84]

(Appendix B) are also analyzed. The tests performed using the different features are

detailed in the Results (Chapter 6).

In order to group the feature vectors into local subsets, the retina image is divided into

four quadrants centered at the optic disc and the K-means clustering algorithm is applied

to the vessel feature vectors found in that quadrant. The number of clusters used is two,

one for veins and another for arteries. The classification results in the four quadrants are

stored and the quadrants are rotated an angle θ = 20◦. These two steps are repeated

from 0◦ to 180◦ (Figure 3.6). In this manner, a vessel segment can be classified several

times in different quadrants with different neighboring vessel segments. In each quadrant,

the K-means algorithm classifies each feature vector into artery or vein. Then, the cluster

of the vessel segment is determined by probabilities according to the number of vessel

feature vectors labeled in each class. The empirical probability P of the vessel segment,

vj, to be a vein or an artery is computed as follows

P [vj ∈ Artery in q] =
naj

naj + nvj

P [vj ∈ Vein in q] =
nvj

naj + nvj

(3.15)

where q is the current quadrant, naj and nvj are the number of feature vectors from the

vessel segment j that were classified as artery and vein, respectively.
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o
20

Figure 3.6: Quadrant rotation for local clustering.

Finally, the final artery and vein probabilities are computed as the mean of the prob-

abilities in all the quadrants, m, where the vessel segment was classified. This can be

expressed as follows

P [vj ∈ Artery] =
m∑
q=1

P [vj ∈ Artery in q]

P [vj ∈ Vein] =
m∑
q=1

P [vj ∈ Vein in q]

(3.16)

Then, the vessel segment is assigned to the cluster of the highest probability. If both

vein and artery probabilities are equal, the vessel segment is not classified.

Vessel tracking

A vessel tracking procedure [89, 85] was developed in order to combine the local classifica-

tions obtained for the same retinal vessel in the different circumferences and increase the

certainty of the labeling. The algorithm involves to find the minimal path [86] (Appendix

C) between the vessel segments in consecutive circumferences given the optic disc center

and the middle points of the vessel parallelograms.

The searching of minimal path, Pmin, between two points, p0 and p1, involves the

computation of the surface of minimal action, U , between the initial and final point. The

minimal action, U represents the necessary cost to reach one point from the other. After
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that, the path of minimal cost is found from the surface U using gradient descent.

The calculation of the minimal action involves defining the potential, P , that is, the

relation between the image features and the cost of the path. In this case, the path between

the vessel segments should follow the vessels, so the potential has to be define based on

the vascular tree and it should be low inside the vessels. Hence, in order to compute

the surface of the minimal action, a vessel tree enhancement is necessary to remove the

lightness and tone variability as well as the central reflexes along the vessels. Moreover,

in this case, the unique acceptable paths are those that run through the vascular tree, so

a vessel tree segmentation is necessary as well.

Vessel tree enhancement First, a morphological 25 × 25 black-hat top-hat filter is

applied in order to reduce the variance of the background and increase the difference

between the background and the vessel tree. The result of the top-hat filter is defined by

T = G−G • b (3.17)

where G represents the G channel of the RGB input image, b is a square structuring

element and • represents the closing morphological operation.

Then, the central vessel reflexes are smoothed or removed by a 3 × 3 median filter.

Hence the enhanced image can be defined as follows

IEnh = fmedian(T ) (3.18)

The enhanced image can be seen in Figure 3.7(b).

Vessel tree segmentation Two alternatives have been considered to segment the retinal

vessel tree. The first one is simpler and further but it gets approximate results, whereas,

the second one is more precise. The first algorithm determines the likelihood that a vessel

is present according to the mean and standard deviation values in a neighborhood, while

the second is through Hessian eigenvalues.
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First algorithm Each pixel in the enhanced image is considered belonging to the

vessel tree if its gray level is darker than the mean computed in a neighborhood centered in

the pixel and the standard deviation in the same neighborhood is higher than a threshold.

Otherwise, the pixel is marked as background. Formally, this can be expressed by

p = (x, y) ∈ Vessel tree⇔

 G(x, y) < µ(G(i, j)) , (i, j) ∈ ℵ(σ1)

σ(G(i, j)) > tσ , (i, j) ∈ ℵ(σ1)
(3.19)

where G represents the G channel of the RGB input image, tσ = 3 is a threshold and ℵ(σ1)

represents the neighborhood centered in the point (x, y) with size σ1 = 11. As Figure

3.7(c) shows, this algorithm produces a rough segmentation, but it has a really useful

property: the segmentation clearly delimits vessel boundaries and fills the intersections

between vessels.

Second algorithm This algorithm is based on the approach proposed by Condurache

and Ach [90]. In this case, a second enhancement process [91] is applied. This performs

a multi-scale analysis of the Hessian eigenvalues to determine the likelihood that a vessel

is present. So for each pixel, this measure was calculated at three different scales. After

that, a hysteresis thresholding is performed using two thresholds computed by a percentile

based rule [91], specifying the percentages of the image surface certainly occupied by

background and vessel pixels. After that, a recursive procedure to remove pixels that do

not belong to the vessel tree is applied. Finally, the isolated pixels that are not connected

to a minimum number of neighbors are marked as background. Figure 3.7(d) shows the

output of the vessel tree segmentation using this algorithm. This algorithm reduces the

noise, but it has two drawbacks: it is time-consuming and many vessels can disappear if

the selected parameters are inadequate.

Initial and final point sets The goal is obtain the minimal path, Pmin, between the

vessel segments in consecutive circumferences. Therefore, in each circumference of analysis

with radius ri, the initial and final points will be the mid-points of the vessel segments

at the circumferences ri and ri+1, respectively. However, it could happen that vessel
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(a) (b) (c) (d)

Figure 3.7: Image enhancement and vessel tree segmentation. (a) Green channel of input image.

(b) Enhanced image result of the top-hat and median filter. (c) Vessel tree segmentation with

the first algorithm. (d) Vessel tree segmentation using the second algorithm.

segments from the same vessel were not detected in all circumferences. For this reason,

auxiliary points are included in the tracking algorithm. These points are the intersection

points between a circumference image mask and the segmented vessel tree as shown in

the following equation

Paux = {p = (x, y)/IC(x, y) = 1 ∧ Itree(x, y) = 1} (3.20)

where IC is the mask of the circumference and Itree is the segmented vessel tree.

In addition, other intermediate vessel points can be included in the tracking in or-

der to improve the performance. Thus, we include the intersections points between the

segmented vessel tree and all the circumferences of radius ri+ri+1

2
.

Figure 3.8 shows all points taken into account in the algorithm for five initial circum-

ferences.

Minimal path computation The path between the vessel segments should follow the

vessels, so the potential has to be define based on the vascular tree and it should be low

inside the vessels. Specifically, it should be low in points with similar gray level values to

the path starting point. This way, the potential function is defined as

P = |IEnh − IEnh(p0)|+ w, (3.21)
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Figure 3.8: Initial and final point sets for the minimal path algorithm. In red, points detected

with the snake segmentation algorithm, that is, the mid-points of the vessel segments to track. In

blue, points detected by the intersection of each circumference with the vessel tree segmentation.

The intermediate circumferences are also shown in blue.

where IEnh is the enhanced image, IEnh(p0) is the intensity value at the starting point,

and w is the regularization parameter. The value of w = 1 controls the path roughness,

thus, to decrease the path curvature, we have to increase this parameter or smooth the

potential image.

Thus, to find the points connected to a starting point, p0, the front is propagated from

the circumference where p0 is located to the next circumference along the vessel tree,

calculating the potential and the surface of minimal action, U , centered on the point.

The front starts always at the input vessel segments, that is, the starting point, p0 can

not be an auxiliary point since these points can not belong actually to the vascular tree.

As the vessels are propagated from the optic disc outwards, a vessel point cannot be

connected to other ones in the same circumference. Therefore, only connections between

a point and other points in outermost circumferences are accepted.

The classic minimal path approach presented by Cohen and Kimmel allows the front

propagation in any direction. However, in this case, paths which run outside the vessels

are not suitable. So, some restrictions are added to the minimal action computation. This

way, we allow the propagation over a reached point pr if it satisfies the following rules
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• The point pr = (xr, yr) is marked as part of the vessel tree. That is, Itree(xr, yr) = 1.

• The point pr = (xr, yr) is placed on the ring delimited by the starting circumference

with radius rs and the candidate circumference with radius rc. Thus, given c the

optic disc center and dist the euclidean distance, this can be expressed by rs <

dist(pr, c) < rc.

These restrictions make that a point p0 can only reach points located in the same vessel

or in a vessel that crosses it. Since the possible reached points are limited, the surface of

minimal action U for a point p0 can be calculated in a small window centered on it (Figure

3.8). The window size depends on the gap between the circumference that contains p0

and the candidate circumference. Specifically, if this gap value is g, the window size is

g+ 2n+ 1, where 2n+ 1 is the maximum length of the centerline segments considered as

snake seeds. This ensures that potential candidate points are within the window and can

be reached by the front since the final vessel midpoints can not over the circumference

due to snake deformation.

Figure 3.9 shows three potential images for different starting points and the corre-

sponding surfaces of minimal action whose intensity values represent the minimal cost

necessary to reach each point from the starting point. Note, in some cases, the points

are not exactly over the circumference because the deformation process of the snakes can

move its center.

In the propagation from a point p0, the front can reach vessel points in the same cir-

cumference (conflicting points), Confp0 or in the next circumference (candidate points),

Candp0 . When the front propagation stops and the surface of minimal action was com-

puted, three situations can occur

1. No conflicting points were found (Figure 3.9 first row). In this case, there can be

several candidate points, but it does not imply that every candidate point should

be linked with p0 because some candidates can be noise or belong to another close

vessel. However, points that belong to the same vessel have the same intensity.

So, a threshold value, tc, for the candidates’ cost is taken into account. Then, the
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Figure 3.9: The first row shows some potential images computed in small windows centered

at the starting point p0, and, the second row, the corresponding surfaces of minimal action U

between the starting point and the candidate points in the candidate circumference. The starting

and candidate circumferences have been superimposed in orange and yellow, respectively, as well

as, the initial point, p0, in black, the candidate points in blue and the conflicting points in green.
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candidate point with the lowest cost is selected and the other candidate points with

a cost higher than β times the lowest cost are discarded. All the remaining candidate

points are included in the list of points connected to the starting point p0, Lp0 . This

can be expressed as follows

p1 ∈ Lp0 ⇔ U(x1, y1) ≤ tc = β ·min{U(xi, yi), (xi, yi) ∈ Candp0} (3.22)

where p1 = (x1, y1) ∈ Candp0 .

2. There are several conflicting points and a single candidate point (Figure 3.10, sec-

ond row). There are two subcases. This case is equal to the previous one when

the conflicting points and p0 have been reached by the propagation of the same

starting point of a previous circumference (Figure 3.10 (e)). Otherwise, we discard

the candidate point since it is over a vessel intersection and different vessels could

be merged. In this case, we propagate the front to the next circumference and we

repeat the point analysis. For example, in Figure 3.10(f), we can see a candidate

point (p1) with a starting point (p0) and a conflicting point (p2). Clearly, point p1

may be linked with point p0, but, since it is over an intersection, there is a high

probability of errors. We remove the point p1 and we propagate the solution from

p0 to the next circumference.

3. There are conflicting points and several candidate points (Figure 3.10, third row).

This means that either there is an intersection between the circumferences (Figure

3.10(g)) or there are some noise points due to the vessel tree segmentation (Figs.

3.10(h) and 3.10(i)). In both cases, new fronts from the conflicting points to the

candidate points are propagated in order to check if the candidate points are con-

nected actually to the starting point p0 or, conversely they can be connected to the

conflicting points. Each candidate point, p1 = (x1, y1) ∈ Candp0 , is included in the

list of points connected to p0, Lp0 , if it fulfills one of the next requirements for each

conflicting point p3

• The cost from the conflicting point to the candidate point is higher than the

threshold tc

Up3(x1, y1) > tc ⇒ p1 ∈ Lp0 (3.23)
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where Up3 is the surface of minimal action of the conflicting point p3 and tc =

β ·min{Up0(xi, yi), (xi, yi) ∈ Candp0}.

• The costs are similar but the path curvature between the starting point is lower

than the obtained with the conflicting point

Up3(x1, y1)β > Up0(x1, y1)

∧

κ(Pminp0→p1) < κ(Pminp3→p1)

⇒ p1 ∈ Lp0 (3.24)

where Up0 is the surface of the minimal action of the starting point p0, κ repre-

sents the curvature whereas Pminp0→p1 and Pminp3→p1 are the minimal paths

from the starting and conflicting point to the candidate point.

Otherwise, the candidate point is not considered to be in the same vessel than

the starting point. Probably it belongs to the same vessel as the conflicting

point. After checking these cases, we also discard the candidate points which

are far from the lowest cost, applying the threshold tc. All the remaining points

are linked to p0. In Figure 3.10(g), point p0 is linked with point p1. Since vessel

intensities are similar, we obtain the path curvature between (p0, p1), (p0, p2),

(p3, p1) and (p3, p2). Obviously, the (p0, p1) curvature is lower than (p3, p1)

curvature so the candidate point p1 is connected to the starting point p0.

The front propagation is repeated between two consecutive circumferences, from the

optic disc outwards. Finally, the minimal paths are computed by the gradient descent from

the outer to the inner circumferences. Thus, at each step, the point with the lowest cost

in a four neighborhood within the surface of minimal action is included in the minimal

path. This is repeated until achieving the global minimum, that is, the starting point

where the cost is 1. If we reach a local minimum, this is not included in the minimal

path and the search for the lowest cost point is performed backward. Thus, a point pm is

included in the minimal path to a starting point if it fulfill the next equation

pm ∈ Pmin⇔

 U(xm, ym) < U(xi, yi), (xi, yi) ∈ ℵ(xm−1,ym−1)(4)

U(xm, ym) > U(xi, yi), (xi, yi) ∈ ℵ(xm,ym)(4)
(3.25)



3.2. VESSEL CLASSIFICATION 57

p
0

p
1

(a)

p
0

p
2

p
1

(b)

p
0

p
1

p
2

(c)

p
1p

0

p
2

(d)

p
0

p
1

p
2p

(e)

p
0

p
1

p
2

(f)

p
0

p
3

p
1

p
2

(g)

p
0

p
1
p
2
p
3

(h)

p
0

p
1
p
2

p
3

p
4

(i)

Figure 3.10: Propagation cases. First row: only candidate points; (a) a single candidate;

(b) two candidates, one could be noise; (c) two candidates in a branch. Second row: only

one candidate point and several conflicting points; (d) the conflicting point is noise, (e) the

conflicting and starting point have been reached by the propagation of the same point p in a

previous circumference; (f) the candidate point is over a crossing. Third row: several candidates

and conflicting points; (g) there is a crossing between the circumferences; (h) and (i) no crossings,

only noise or points in the same vessel.

where pm = (xm, ym) and ℵ(xm−1,ym−1)(4) and ℵ(xm,ym)(4) are the four neighborhood cen-

tered in the previous minimal path point pm−1 = (xm−1, ym−1) and in the current point

pm = (xm, ym), respectively
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Once we have obtained the list of connected vessel segments, a voting strategy decides

the final category of each vessel, assigning the most voted label to the entire vessel. If a

vessel contains the same number of vein and artery vessel segments, all its segments will

not be classified.



Chapter 4

AVR computation

This chapter is focused on the arteriovenous ratio (AVR) computation. Its purposes are,

first, to summarize the different methodologies presented in the literature to estimate the

AVR, and second, to explain how the AVR is computed and integrated in our methodology.

Different formulas to estimate the AVR have been proposed in the literature: the

Parr-Hubbard procedure [92, 2] and the revised Knudtson-Parr-Hubbard formula [4] who

estimate the AVR as the quotient of the Central Retinal Artery and Vein Equivalents,

as well as, the method of the quotient between the averages of artery and vein widths

[93, 3]. The main problem in the AVR computation using these procedures is the lack

of repeatability since each time it is computed from a patient’s image, a different set of

vessels, measured at different points is used. Thus, in this chapter, we propose to use a

vessel registration procedure between different patient’s images acquired from the same

eye, in order to use the same set of vessels in all AVR measurements.

The chapter is structured as follows. The first section provides a brief review of the

different approaches proposed in the literature to compute the AVR. The next section

explains the procedure used in this methodology to select a suitable set of vessels to

compute the AVR automatically in a sample patient’s image. Finally, the last section

describes the system to monitor the patient’s AVR over time using the same set of vessels

for the AVR calculus in all patient’s images.

59
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4.1 Introduction

The AVR is computed as the ratio between artery and vein widths measured in several

circumferences centered at the optic disc. It was proposed by Stokoe and Turner in 1966

[1] as an average of width ratios between comparable pairs of arteries and veins. In the

literature, several methods have been proposed to estimate this measure. In most of the

approaches, the AVR is calculated in the region between the circumferences with radii 2r

and 3r, with r the optic disc radius [2, 4, 94, 95], in this manner, many crossovers between

vessels are avoided. Although, in Hubbard et al. [2], the experts can move outside this

region in order to measure the branches of an artery. On the contrary, Benavent et al.

[96] considered the region between 1r and 3r and Pose et al. [3] take into account a region

from 2r outwards.

Regarding the number of times which a vessel width is included in the AVR com-

putation, there are also differences between authors. It seems that the manual method

proposed by Hubbard et al. [2] takes into account only a measurement for each vessel

found in the region 2r−3r, except for arteries whose width is equal or greater than 80µm,

in which case, the grader measures the artery branch segments as well. On the contrary,

Benavent et al. [96] take three measurements in each vessel corresponding with the inter-

sections between the vessels and the circumferences of analysis with radii 1r, 2r and 3r.

Also, Pose et al. [3] consider several measurements for the same vessel over the analysis

radii. All segments found in the tracking process from 2r to 3r are measured in the Li

et al.’s approach [94], whereas, Niemeijer et al. [95] calculate an AVR in each analysis

radius and after that they compute the final AVR as the average of these values.

Regarding the formulas used to estimate the AVR, there are also differences between

the approaches found in the literature. In [93, 3], the AVR is computed as the quotient

between the averages of arteriolar and venular widths as Equation 4.1 shows.

AV R =

∑nA
i=1 ωi/nA∑nV
j=1 ωj/nV

(4.1)

where nA and nV are the number of arteries and veins, and ωi and ωj represents an artery

and vein width, respectively.
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Parr and Spears [97, 92] and, subsequently Hubbard et al. [2] derived formulas widely

used in popular studies [18] and in other methods for the AVR calculus [94, 95]. In

these methods, the AVR is computed as the quotient of two variables, the Central Retinal

Artery Equivalent (CRAE) and the Central Retinal Vein Equivalent (CRVE) as follows

AV R =
CRAE

CRV E
(4.2)

The CRAE and CRVE equivalents represent the relation among a vessel trunk and its

two branches. However, they are computed iteratively using all vessels without differen-

tiating trunks from branches as Algorithm 3 summarizes. At each step of the algorithm,

the smallest, ωAs, ωVs, and biggest, ωAb, ωVb, arteriolar and venular widths are replaced

by the corresponding Parr-Hubbard’s formulas shown below

ωA =
√

0.87ω2
As + 1.01ω2

Ab − 0.22wAsωAb − 10.76

ωV =
√

0.72ω2
Vs + 0.91ω2

Vb + 450.05

(4.3)

The previous formulas to estimate the equivalents have been derived theoretically and

empirically, observing a fixed data set, and some reformulations have been introduced.

In fact, Knudtson et al. [4] realized that the Hubbard’s formulas were dependent on the

number of selected vessels and they propounded the following reformulation using only

the six main arteries and veins.

ωA =
√

0.88(ω2
Asω

2
Ab)

ωV =
√

0.95(ω2
Vs + ω2

Vb)

(4.4)

Recently, Patton et al. [98] proposed a revised CRAE formula, where the branching

coefficient, BC, is not a constant as in the Knudtson’s formula but a linear function

dependent on the asymmetry index, AI, BC = 0.78 + 0.63 ∗ AI, where the asymmetry

index is the quotient between the width of the two branches.
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Algorithm 3 Algorithm for CRAE and CRVE computations

Definitions:

• A set: list of arteriolar vessel widths

• V set: list of venular vessel widths

• CRAE: Central Retinal Artery Equivalent

• CRV E: Central Retinal Vein Equivalent

Initialization:

• Convert A and V to microns in case of using Parr-Hubbard’s formulas

Loop:

• Remove from A the smallest, ωAs, and biggest, ωAb, arteriolar widths

• Remove from V the smallest, ωVs, and biggest, ωVb, venular widths

• Compute the new arteriolar width, ωA, using ωAs and ωAb in the corresponding formula of Equa-

tions 4.3 or 4.4

• Insert ωA in A

• Compute the new venular width, ωV , using ωVs and ωVb in the corresponding formula of Equations

4.3 or 4.4

• Insert ωV in V

Output:

• Set CRAE to be the last width in A

• Set CRV E to be the last width in V
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4.2 Vessel selection for AVR computation

Once the optic disc was located and the vessel segments were measured and classified, the

last step consists on selecting a suitable set of vessels to use in AVR computation.

In a semiautomatic procedure for the AVR computation [99, 100], once the medical

expert had classified the vessels into arteries and veins, the AVR is computed as the quo-

tient between the averages of the artery and vein widths selected by the expert. However,

the medical experts do not classify all the detected vessels but only a subset of them.

They follow some unwritten rules to select the most suitable vessels and, although two

experts do not select exactly the same subset, the correlation between them is high [100].

For this reason, in [101] we analyzed the set of vessels selected by two medical experts

in a large image data set trying to emulate the selection made by them. As a result, the

following set of hypothesis about the selection rules used by experts has been derived

• H1: Experts rule out the vessels whose width has been over- or sub-estimated.

• H2: Experts do not take into account vessel segments found over a bifurcation or a

crossover.

• H3: Experts do not select the same number of arteries and veins at each analysis

radius.

• H4: Experts select the same global number of arteries and veins.

• H5: Experts do not take into account thin vessels, either because it is more difficult

to know their classes or because it is more probable to overestimate their width.

• H6: Experts rule out false positive vessels detected in the background.

Taking into account the hypothesis cited above, an algorithm for the vessel selection

has been implemented as follows:

• The H1 hypothesis has been implemented taking into account the result of the vessel

tracking algorithm used in the classification stage, that is, the sets of connected vessel
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segments which belong to the same retinal vessel. Thus, a vessel segment is over-

or sub-estimated and therefore it is ruled out if its width is larger than the double

or smaller than the half the median width of its list of connected segments which it

belongs to. This can be formulated as follows.(
ω̂vi <

1

2
x̃(Ω)

)
∨ (ω̂vi > 2x̃(Ω))⇒ vi is ruled out (4.5)

where ω̂vi is the width of the vessel segment vi, Ω represents the widths in a set of

connected vessels segments and x̃ represents the median.

In addition, these extreme vessels can be also detected by means of percentiles,

discarding the vessels whose widths are less than the p percentile or larger than the

100-p percentile.

• A method which detects bifurcation and crossovers [102] has been applied to im-

plement the H2 hypothesis. In this case, we have two alternatives, since the vessel

segments over a crossover or bifurcation can be discarded before or after the clas-

sification procedure. Removing them before the classification can be an advantage

in case of crossovers because the snake parallelogram embraces the two vessels of

different type and the classification can be altered with feature vectors which include

color information of both classes, arteries and veins.

Given p a crossover or bifurcation point and vi the vessel segment whose snake

parallelogram is delimited by the vertex points (u1, u2, u3, u4), the vessel vi is ruled

out if the parallelogram contains the point p. This was implemented as follows

∑3
i=1 angle((p, ui), (p, ui+1)) > 360◦ ⇒ vi is ruled out (4.6)

where (p, ui) denotes the vector formed by the point p and the vertex ui.

• Hypothesis H3 and H4 were carried out excluding, iteratively, the smallest arteries

and veins while the number of vessel segments in both classes is distinct globally, or

in each circumference, respectively.

• Hypothesis H5 is implemented by three different ways. On one hand, thin vessels

are detected by percentiles, ruling out those segments whose width is smaller than
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p percentile. In the first manner, a single percentile is computed for both classes,

whereas, in the second, a percentile for veins, and another for arteries are calculated.

The values p=5 and p=10 were used. On the other hand, thin vessels are discarded

when more restrictive parameters in the MLSEC-ST operator are used.

• For the H6 hypothesis, we have also two possible implementations. The first one

consists on using the vessel tracking output to remove all the isolated vessel segments

which are not connected to any other. The second way to reduce the number of false

positives implies the use of more restrictive MLSEC-ST parameters.

In addition, according to some authors, we try another selection method which just

consists on taking into account the six main arteries and six main veins to estimate the

AVR. In this case, we only consider the 12 main vessels with the largest median width

along the vessel.

After the vessel selection, the AVR is computed applying the appropriate formulas.

4.3 AVR monitoring system

The main problem of the previous proposal is the high dependency of the AVR value on

the selected set of vessels and the area where they are measured. We showed this influence

in [101] when the AVR is computed as an average width ratio. The same problem occurs

with the Parr-Hubbard’s formulas. In fact, Knudtson et al. proposed a revision of these

due to their dependency on the vessels. The same issue could happen using the Knudtson’s

formulas when, for example, it is not possible the detection of six veins or arteries in the

image or the measurement area varies significantly between different patient’s images. In

addition, in many cases the AVR values estimated by an expert and an automatic system

are similar in average but the correlation is not so high, even, when the correlation was

calculated between the AVR values achieved by medical experts using semiautomatic tools

[95, 101]. Thus, reliable AVR computations should involve the measurement of the same

set of vessels at the same points for each patient’s eye.
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In [103], we propose an AVR monitoring system to compute the patient’s AVR over

time by means of a two-stage methodology. The end of this method is to provide a reliable

and repeatable way to calculate the AVR not influenced by the set of selected vessels.

The methodology consists on computing automatically the AVR in a new sample

patient’s image acquired at time ti from a stored AVR result. This reference value was

calculated in a sample image of the same patient’s eye acquired at time t0, the so-called

reference image.

The reference AVR is computed by means of the methodology proposed in the previ-

ous section, being the output supervised by an user. Figure 4.1 shows a schema of the

monitoring process.

Reference sample t

AVR

Database

Sample t

Alignment to reference image

Transformation
matrix

AVR

Optic disc center
Vessel points
Vessel classes

0

Figure 4.1: Schema of the AVR monitoring process

The method to estimate the non reference AVR results is based on a vessel registration

approach since it allows to measure the vessel widths at the same points from different

sample images taken at different dates. Thus, the new AVR results are computed by

registering the vessel segments used in the reference AVR. To this end, some useful data
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must be stored after any AVR calculus, in particular, the optic disc center, the class of

each vessel segment and the intersection points between each analysis circumference and

the vessel centerlines, that is, the middle points of the snake centerline seeds.

Thus, in the first step of the vessel registration, the new image is registered to the

reference image by means of crease alignment (Appendix D). Once a suitable transforma-

tion matrix, τ , between the two images has been obtained and the transformation quality

has been proved, we can measure the vessel widths in the new image at the same points

considered in the reference image. To this end, first, the stored reference optic disc and

intersection points are transformed into the new sample image (Figure 4.2). For each

transformed intersection point, pt, we determine the centerline vessel segment centered in

pt by the crease tracking algorithm described in the Chapter 2. To this end, the euclidean

distance, d, from the point pt to the transformed optic disc center is calculated. And,

then, taking d as analysis radius, and the crease image previously computed to make

the registration, the crease tracking is performed in 2n+ 1 circumferences in the interval

[d− n, d+ n]. n = 10 was used like in the reference AVR computation.

Once obtained the centerline vessel segment, the vessel segment width can be measured

by a snake, following the procedure explained in the Chapter 3.

The vessel classification is obtained from the corresponding vessel segment in the

reference image. Finally, the AVR is computed as the ratio between the average artery

and vein vessel widths.

Note that, we use the middle point of the snake initialization for the vessel registration

and not the middle point in the final snake configuration. This is due to the fact that

the middle point of the final snake could be slightly displaced from the initial position

because of its deformation. If the snakes evolve from the same starting points in both

images, there is a higher probability of similar deformations and, as a consequence, a

measurement exactly in the same area.

Thus, the AVR computed in this way is not influenced by set of vessels and the area

where they were measured, providing a reliable monitoring system of the patient’s AVR
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Intersection point

Optic disc

Analysis radius

d

pt

Figure 4.2: Schema of the vessel registration procedure. In the new image (right), the vessel

widths are measured at the intersection points registered from the reference image (left). Note

that the same set of vessel segments is used to estimate the AVR.

over time.



Chapter 5

SIRIUS web application

This chapter is devoted to explain the SIRIUS (System for the Integration of Retinal

Images Understanding Services) system for retinal image analysis. SIRIUS is a web ap-

plication designed to join several services in the field of retinal image processing [99].

Among these services are the detection of red dots, the semiautomatic computation of

the AVR or the vessel tortuosity measurement. Moreover, the system includes user and

patient management. Additional services have been included on SIRIUS as well as more

patient’s information related to pathologies such as, hypertension and diabetes or the

automatic computation of the AVR.

In this chapter, we will give an overview of the system, its architecture and the imple-

mentation details focusing on the use cases related to the AVR computation services.

5.1 Introduction

Fundamentally, SIRIUS appeared as a tool for physicians and researchers to study the

relation between signs in the retina with different pathologies and their evolution after

a specific treatment. To this end, it is not enough analyze only the evolution of the

retina signs but also much more patient’s information, such as, habits, many laboratory

test results and medical findings in different screening visits. Thus, these diagnostic or

69
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research studies require assess large amount of data from many patients generated in

different health care centers. In addition, collaborations between centers are established,

overall in research studies.

Hence, the main objectives of the SIRIUS system are, firstly, to provide physicians and

researchers from different locations or medical health centers, a collaborative environment

which makes the patient and retinal image management easier. Second, the system have

to supply fast and reliable semi or automatic procedures to analyze different variables or

features in the field of retina imaging.

5.1.1 Similar applications

The use of telecommunication and information technologies in the clinical health care at

distance is known as telemedicine. Telemedicine systems offer to physicians and patients

an environment to store, transfer and share clinical data. Moreover, these services are

improved when the distribution of the information is done in a standard manner through

the Web.

Handels et al. [104] presented KAMEDIN, a telemedicine system to exchange, share

and analyze remotely digital images in radiology. Magrabi et al. [105] proposed WebECG,

a web-based service to collect, analyze and store a longitudinal ECG record from the

patient’s home. Lundberg et al. [106] demonstrated that telemedicine systems can be

useful in studies of the tympanic membrane by evaluating the agreement between different

graders assessing inflammatory disease in endoscopy images. Azar et al. [107] presented a

telemedicine web system which allow diabetic patients communicate their blood glucose

levels via glucometer uploads and receive the medication adjustments from the caregivers.

Mahmoudi et al. [108] presented a web-based system to visualize and process 2D/3D

medical images. A wide variety of general preprocessing, segmentation and registration

algorithms from ITK library are available for the users via ASP.Net and AJAX. Other

recent work is the biomedical image-mining framework proposed by Goudas et al. [109]

which allow defining dynamic workflows for image processing and analysis. In the work,
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the system was applied to the classification of microscopic kidney biopsies.

Regarding content-based image retrieval (CBIR), many specific systems for medical

applications have appeared, since global image descriptors of color, texture and shape

are insufficient to characterize and annote medical images. Among those, [110] presented

SPIRS (Spine Pathology & Image Retrieval System) which allows explore large databases

of spine X-ray and uterine cervix images by textual and visual queries. The Assert

system [111] classifies high resolution tomographies of the lung. IRMA system [112, 113]

which classifies varied medical images regardless of anatomical area, image modality, body

orientation, and biological system. In [114] there is a review of these systems.

Regarding retinal analysis, except the recent works of Yaqin et al. [115] and Tramontan

et al. [116], no telemedicine systems have been proposed. The first one is TRIAD, a

telemedical system for diagnosis diabetic retinopathy. It focuses on the detection of two

major lesions associated with DR: microaneurysms and exudates in retinal images and

compare the detected features with past diagnosed images through a CBIR engine. The

second one is AVRnet, a web application which computes the AVR automatically for a

loaded image, however it do not include a patient’s data management. Nevertheless, many

standalone applications have been developed lately for assessment of retinal vessels in a

semiautomatic way. Examples of these tools are IVAN [2], RISA [117], ROPtool [118], IDx

[119], CAIAR [120], ROPnet [121] or VAMPIRE [122]. In addition, SIVA [18] includes

automatic retinal vasculature tracing, vessel classification, and optic disc detection.

5.2 Analysis

The most important goal of the system is provide a collaborative environment among

different medical centers. To this end, the system was designed as a web application

employing an client-server architecture as Figure 5.1 shows.

A three-tier architecture is proposed in order to make the business logic independent

of the client and make easier its integration on other clients than browsers in the future.



72 CHAPTER 5. SIRIUS WEB APPLICATION

Sirius app

Data storage

Image
processing

Users Server

Network
(Internet/Intranet)

Web browser

Figure 5.1: SIRIUS client-server architecture.

• Tier 1: Data Access Layer. It is the layer which controls the data access, it handles

the requests and the responses.

• Tier 2: Application Layer. It is where the business logic lives. This layer is subdi-

vided into the following sub-layers:

– Image Service Layer. It encloses all parts of the logic related to the image

processing and analysis. This layer do not query the data, it just processes the

given data and returns results.

– Business Layer. The remaining business logic lives here, including the queries

for the data.

– Facade Layer. It constitutes the interconnection layer between the Application

Layer and the Presentation Layer. It provides a simple interface to make the

presentation independent of the business logic.

• Tier 3: Presentation Layer. This layer is the responsible of presenting the data in

a format readable by the client, in this case, HTML.

Three different actors or roles can interact with the system:
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• Doctor. He/She is a regular user which represents a physician in a specific medical

center. The actions or use cases which can be performed by this user are related to

the management of his/her patients, and the analysis of their retinal images. Some

of the most important actions are the following:

– Patient management: Create, Read, Update and Delete (CRUD) actions for

patients, their checkups and the retinal images acquired in a specific checkup.

Other examples are: View a patient report or Export a patient report to Excel.

– Image analysis: Compute the AVR, Modify/Save AVR result, Monitor AVR

from a template result.

• Supervisor. He/She is a special doctor which can view the patients of other doctors,

supervise the AVR results computed by these doctors and obtain new AVR results

for these patients. But, he/she can have also his/her own patients. His/Her use

cases are the cited above but for his/her patients and for other doctor’s patients.

• Administrator or superuser. He/She is the administrator of the application who is

the responsible of management of medical centers and users. The main use cases are

the following:

– Center management: (CRUD) actions for centers.

– User management: (CRUD) actions for users.

Figure 5.2 shows a diagram with some of the most important use cases cited above.

5.3 Design

The system has been designed according to the Model-View-Controller (MVC) architec-

tural pattern which allow to decouple the presentation or graphic interface (View) from

the business logic (Model) through a Controller. Moreover, each of these parts is struc-

tured as well in layers using the architectural pattern Layers to hide the technology used

on each one from the others. The View is the Presentation Layer cited in the analysis,
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whereas the Model corresponds to the Application Layer which implements the entire

business logic of the SIRIUS system.

In order to store and manage the data, we use a relational database. In Figure 5.2 the

entity-relationship model is shown.

supervisor

User management

Center management

Create
Read

Update

Delete

Create Read

Update

Delete

<<include>>

<<include>>

<<include>>
<<include>>

<<include>> <<include>>
<<include>>

<<include>>

administrator

Patient management

Checkup management

Image management

CRUD actions for my
patients' checkup

Read other
patients' checkups

<<include>>

<<include>>

CRUD actions for my
patient's images Read other

patients' images

<<include>>

<<include>>

CRUD actions for
my patients

Read other patients
Delete other

patients

View my patient
report

<<include>>

<<include>>

<<include>>

<<include>>

<<include>>

Delete other
patients' checkups

Delete other
patients' images

<<include>>

Image analysis on
my patients

Compute AVR Monitor AVR from
reference AVR result

<<include>> <<include>>

Image analysis on
other patients

Compute AVR Monitor AVR form
reference AVR result

<<include>>

<<include>>

View report other
patients

Export my patient
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Export report
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<<include>>

<<include>>

<<include>>

doctor

Figure 5.2: Diagram of the main use cases.
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Each entity mapped to a database table corresponds to an object which implements

the Transfer Object (TO) or Data Transfer Object design pattern. Thus, the transfer of

messages intra and inter layers is minimized since this pattern groups several attributes

or fields belonging to one o several tables in a unique object. Moreover, to encapsulate

the data access making the rest of the application independent on it, and to provide a

uniform interface for different data sources, the design pattern Data Access Object (DAO)

was used. Hence, each TO has the corresponding DAO which implements the data access.

As several DAO can coexist to implement different data sources, the pattern Abstract

Factory is used to select the appropriate DAO as Figure 5.4 shows.

To provide to the presentation layer a simple and unified interface, we use the pattern

Facade. Each method of this object includes the workflow between DAOs to implement

an use case. To hide the technology of the model, the Facade implements, in addition,

the pattern Business Delegate. Figure 5.5 shows an example of the Facade. As in the

DAO pattern case, an Abstract Factory is used to implement the appropriate facade. In

order to visualize the results (list of patients, checkups or images) by blocks, the design

pattern Page by Page Iterator is used.

5.4 Implementation

The implementation of the system is performed using two different programming lan-

guages. Thus, the image service layer was implemented in GNU C++, whereas the

remaining layers corresponding to the web application itself were implemented in JAVA,

specifically the J2EE API was used. This choice is due to C++ is faster and there

are several efficient libraries for image processing such as Opencv which was the library

used to implement the image service layer. Whereas, the existence of many web servers,

frameworks and libraries makes JAVA more appropriate for the web development.

The integration between the two heterogeneous parts is performed by the XML-RPC

protocol. The main advantage of this technology compared to others such as Common

Object Request Broker Architecture (CORBA) is the simplicity of implementation. In
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PatientTO
-patientId: Integer
-code: String
-gender: String
-birthDay: Calendar
-insertDay: Calendar
-race: String
-height: Double
-hypertensive: Boolean
-diabetic: Boolean
-dyslipidemic: Boolean
-tabaquism: Boolean
-comments: String
-doctor: String

+PatientTO(patientId:Integer,code:String): PatientTO
+PatientVO(patientId:Integer,code:String,
           gender:String,birthDay:Calendar,
           insertDay:Calendar,race:String,
           height:Double,hypertensive:Boolean,
           diabetic:Boolean,dyslipidemic:Boolean,
           tabaquism:Boolean,comments:String,
           doctor:String): PatientVO
+getPatientId(): Integer
+getCode(): String
+getGender(): String
+getBirthDay(): Calendar
+getInsertDay(): Calendar
+getRace(): String
+getHeight(): Double
+getHypertensive(): Boolean
+getDiabetic(): Boolean
+getDyslipidemic(): Boolean
+getTabaquism(): Boolean
+getComments(): String
+getDoctor(): String
+setPatientId(patientId:Integer): void
+setCode(code:String): void
+setGender(gender:String): void
+setBirthDay(birthDay:Calendar): void
+setInsertDay(insertDay:Calendar): void
+setRace(race:String): void
+setHeight(height:Double): void
+setHypertensive(hypertensive:Boolean): void
+setDiabetic(diabetic:Boolean): void
+setDyslipidemic(dyslipidemic:Boolean): void
+setTabaquism(tabaquism:Boolean): void
+setComments(comments:String): void
+setDoctor(doctor:String): void

<<interface>>

SQLPatientDAO

+create(connection:Connection,patientTO:PatientTO): int
+exists(connection:Connection,patientId:Integer): boolean
+find(connection:Connection,patientId:Integer): PatientTO
+findAllByDoctor(connection:Connection,doctor:String): List<PatientTO>
+update(connection:Connection,patientTO:PatientTO): void
+remove(connection:Connection,patientId:Integer): void

AbstractSQLPatientDAO

+create(connection:Connection,patientTO:PatientTO): int
+exists(connection:Connection,patientId:Integer): boolean
+find(connection:Connection,patientId:Integer): PatientTO
+findAllByDoctor(connection:Connection,doctor:String): List<PatientTO>
+update(connection:Connection,patientTO:PatientTO): void
+remove(connection:Connection,patientId:Integer): void

IGSQLPatientDAO

+create(connection:Connection,patientTO:PatientTO): int

SQLPatientDAOFactory
+DAO_CLASS_NAME_PARAMETER: String
+daoClass: Class

+SQLPatientDAOFactory()
+getDAOClass(): Class
+getDAO(): SQLPatientDAO

{instantiate}

{instantiate}

Figure 5.4: Examples of Transfer Object and Data Access Object design patterns for the patient.

<<interface>>

PatientFacadeDelegate

+registerPatient(patientTO:PatientTO): int
+existsPatient(patientId:Integer): boolean
+findPatient(patientId:Integer): PatientTO
+findAllPatientsByDoctor(doctor:String): List<PatientTO>
+updatePatient(patientTO:PatientTO): void
+removePatient(patientId:Integer): void

PatientFacadeDelegateFactory
+DELEGATE_CLASS_NAME_PARAMETER: String
+delegateClass: Class

+PatientFacadeDelegateFactory()
+getDelegateClass(): Class
+getDelegate(): PatientFacadeDelegate

PlainPatientFacadeDelegate

-getDataSource(): DataSource
+registerPatient(patientTO:PatientTO): int
+existsPatient(patientId:Integer): boolean
+findPatient(patientId:Integer): PatientTO
+findAllPatientsByDoctor(doctor:String): List<PatientTO>
+updatePatient(patientTO:PatientTO): void
+removePatient(patientId:Integer): void

DataSourceLocator

PlainActionProcessor

actions

RegisterPatientAction

FindPatientAction

<<instantiate>>

<<use>>

<<use>>

<<use>>

Figure 5.5: Examples of Facade and Abstract Factory design patterns.
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addition, this protocol allows to connect applications written in different programing

languages local or remotely, whereas other technologies such as Java Native Interface

(JNI) do not allow remote connection.

The library used to implement the XML-RCP specification, xmlrpc-c, uses the HTTP

protocol for the communication whereas the transmitted data are encoding using XML.

Thus, the server which implements the XML-RPC protocol is included in the image service

layer, whereas the xmlrpc client is created by the corresponding DAO object involved in

a request from a facade. Before calling the server, the request in XML format with the

appropriate data must be created. The response are given also in XML format. The

communication between the two parts can be observed in the Figure 5.6 which shows a

sequence diagram for the use case of automatic AVR calculus.

Regarding the other components, the API of J2SE, JDBC, is used for the access to

the relational database. The database management system selected was PostgreSQL.

For the controller and view layers, we use the framework Jakarta Struts which gives

the support to the MVC pattern. Moreover, it provides a complete tag library for the

Java Serves Pages (JSP) to implement the graphic interface. In the JSP pages, we use,

additionally, the JSP Standard Tag Library (JSTL) offered by J2EE. Furthermore, some

use case such as, View/Edit an AVR result use AJAX techniques to incorporate new data

in a page already loaded into the browser. The data are passed in JavaScript Object

Notation (JSON) format. Other JavaScript libraries such as JQuery are used in the view.

Regarding the image management in the web application, we use JMagick library, a Java

interface for ImageMagick.

Figure 5.7 shows screenshots from the SIRIUS system where the main use cases of the

Administrator user can be seen. Also samples of the patient and checkup managements

are displayed in Figures 5.8 and 5.9. Figure 5.10 includes two screenshots which show the

integration of the AVR monitoring system in the SIRIUS web application.
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:View :Controller

1:showMyPatients()
2: 3:

4:

:ShowPatientsAction

:PatientFacade

:FindAllPatientsAction

:PatientDAO

6:

7:8:

5:

9:10:11:

12:showCheckup()
13: 14:

15:

:ShowCheckupAction

:PatientFacade

:FindCheckupByPatientId

:CheckupDAO

16:

17:

18:19:20:21:22
23:showImages()

24: 25:

26:

:ShowImageAction

:PatientFacade

:FindImageByCheckupId

:ImageDAO

27:

28:

29:30:
31:32:

34:calculateAVR()
33:

35:
36:

37:

:ComputeAVRAction

:MethodFacade

:ComputeAVR

:AVRDAO

38:

39:

:XmlRpcClient

40:

41:

:xmlrpc_c::server

42:

:AVRMethod

43:44:45:

o1:AVRTO

46:

47:o1
48:o149:o150:o151:o1

doctor

Figure 5.6: Sequence diagram for the use case of automatic AVR calculus.
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Figure 5.7: Screenshots of samples of the user and center management in SIRIUS system.



5.4. IMPLEMENTATION 81

Figure 5.8: Screenshots of samples of the patient management in SIRIUS system.
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Figure 5.9: Screenshots of samples of the checkup management in SIRIUS system.
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(a)

(b)

Figure 5.10: Screenshot of the AVR monitoring system in the SIRIUS web application. (a)

The interface for visualization and edition the AVR in a new sample image (first tab) and

in the reference image (second tab). (a) Interface which shows at right the list of the AVR

measurements computed in new sample images using the reference AVR displayed at left side.
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Chapter 6

Results

In this chapter, the experiments performed to test the methodology for the AVR computa-

tion are described, summarizing the main obtained results. Each step of the methodology

is analyzed using different public retinal image databases. Our results are compared with

other methods found in the literature. Furthermore clinical results are reported.

This chapter is structured as follows. Section 6.1 describes the different databases used

in the performed experiments, Section 6.2 focuses on the evaluation of the methodology,

whereas Section 6.3 is directed to the clinical validation.

6.1 Materials

This section describes the fundus image datasets used in the diverse experiments. These

databases were created in several laboratories and research groups in order to test different

algorithms of retinal image analysis. They are publicly accessible on the Internet.

6.1.1 DRIVE database

DRIVE [123] is a public database widely used for retinal blood vessels segmentation. It

is make up of forty images randomly selected from 400 diabetic subjects between 25-90

85
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years of age; 33 images do not show diabetic signs, whereas 7 reveal signs of mild early

diabetic retinopathy. The images have been taken using a Cannon CR5 non-mydriatic

3CCD camera with a 45 degree field of view. Each image has 8 bits per color channel

and a resolution of 768 × 584 pixels. The images have been grouped in a training and a

test set of 20 images each. For the training set, there is a manual segmentation available,

whereas for the test set there are two.

6.1.2 REVIEW database

It was published recently [124] and it constitutes the unique publicly available database

which includes ground truth vessel width measurements. Three observers have marked

the vessel boundaries using a graphical user interface.

REVIEW is composed of sixteen heterogeneous images grouped in four different sub-

sets: CLRIS, HRIS, VDIS, and KPIS. CLRIS contains two retinal images which present

early atherosclerotic changes such as stiffness and strong central light reflex. In this set,

the image resolution is 2160 × 1440 and the observers have marked 285 vessel profiles.

The HRIS subset consist of four high resolution images of 3584 × 2438 pixels which

present alterations related to different grades of diabetic retinopathy. In this set, 2368

profiles have been measured by the observers. The images of both subsets are centered in

the macula. The VDIS subset is made up of eight nasal and temporal noisy images with

a resolution of 1360 × 1024 pixels. These images are affected by pathologies like diabetic

retinopathy. The set contains 2249 vessel profiles. The last subset, KPIS, contains 164

profiles in two small resolution images (288 × 119 and 170 × 92 pixels). Each image is

the result of cropping a 3300 × 2600 pixel image around a big vessel segment.

In total, the database contains 5066 vessel profiles marked by the three observers. For

each profile, the Cartesian coordinates of the two end points, (x1, y1) and (x2, y2), marked

by the each observer are given, being the vessel width the euclidean distance between

these points.
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6.1.3 POSTEL database

POSTEL database [125] was created in the POSTEL project developed by the VARPA

group and the Service of the Internal Medicine of the Conxo Hospital in Santiago de

Compostela, Spain. The project was funded by Boehringer Ingelheim España, S.A. and

it lied in the clinical validation of the semiautomatic method for the AVR computation

integrated in the SIRIUS system.

The database is composed of images acquired from 96 hypertensive patients. The

images have been acquired centered on the optic disc in the service of internal medicine

of the Conxo Hospital in Santiago de Compostela, Spain and the Abente Lago Hospital

in A Coruña, Spain. Two images, one per eye, have been acquired with a Cannon CR6-

45NM non-mydriatic retinal camera for almost all patients. The images were stored with

a resolution of 768× 576 pixels in JPEG format and 8 bits per color channel.

Each patient, after a basal assessment and an image acquisition, started an anti-

hypertensive treatment. After 6 months, a new image was acquired.

Two ophthalmologists with many years of experience in the study of the hypertensive

retinopathy as well as, its evolution and treatment, have computed the AVR with the

SIRIUS application in a semiautomatic mode. That is, each expert selected manually the

optic disc position and the set of vessel segments to compute the AVR, classifying them

into arteries and veins.

6.1.4 VICAVR database

This database is a subset of 58 images taken randomly from the POSTEL dataset. Three

experts have computed the AVR using five circumferences concentric to the optic disc.

The radii of the circumferences are equally spaced and they range from 1.5r to 2.5r, where

r is the optic disc radius. From 3816 vessel segments, the experts classified into artery

and vein classes 2471, 2778, and 2943 vessels, respectively. The classification agreement

among experts is considerably high as Table 6.1 shows. The agreement is computed as
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the quotient between the number of vessels that were classified in the same class by all

experts and the number of vessels that were simultaneously labeled by them.

Expert1 Expert2 Expert3

Expert1 - 98.12% 96.69%

Expert2 - - 97.37%

Expert3 - - -

Three-agreement 96.53%

Table 6.1: Percentage of the artery/vein classification agreement among the three experts in the

VICAVR database.

VICAVR database has been published [126, 83], including the ground truth of the

vessel widths measured at different analysis radii as well as the vessel type (artery/vein)

labeled by the three experts.

The dataset was enlarged to 100 images constituting the VICAVR-2 database [127, 85].

In this case, each image was manually labeled by two different medical experts who focused

on the vessel classification of all known vessel segments instead of selecting and classifying

just a suitable set of vessels for the AVR computation. The medical experts have classified

the vessels found within seven analysis radii equally spaced from 1.5r to 3.0r, where r is

the optic disc radius.

6.1.5 VAMPAHICA database

This dataset was created in the VAMPAHICA study (acronym in Spanish for Assessment

of the self monitoring of blood pressure in the diagnosis of isolated clinical hypertension)

[128]. This study was a multi-center prospective study which involved 14 primary care

centers in the Healthcare Region of Girona (Spain). Patients involved in this study were

untreated, and recently diagnosed hypertensive patients recruited from 2003 to 2006.

For each patient, two fundus images, one per eye, have been acquired using a retino-

graph equipped with a non-mydriatic fundus camera (Canon CR6-45NM, Camera EOS

D30). After one year of treatment, two new retinal images have been taken for each
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patient.

Each image was captured centered at macula using 8 bits per color plane at 2160×1440

pixels with JPEG compression.

6.2 Evaluation of the AVR computation methodology

The experiments carried out to evaluate the performance of each step of the proposed

methodology are summarized in the following sections. An outline of the experiments is

given in the Table 6.2.

Experiment Description Database

Optic disc
The performance of the optic disc location

method is tested
POSTEL, DRIVE

Vessel width
The vessel width measurement approach is

compared with manual assessments
REVIEW

Vessel classification
The characterization of vessels in arteries

and veins is compared with manual labelings
VICAVR, VICAVR-2

AVR
The AVR computation methodology and the

AVR monitoring system are tested
POSTEL

Table 6.2: Outline of the experiments carried out to evaluate the AVR computation methodology.

6.2.1 Optic disc location

In this section the methodology for the OD location is tested in the DRIVE and POSTEL

databases. The main aim is to minimize the distance between the detected center and

the true center. To validate our methodology and according to Hoover et al. [38], we

considered that an OD location is correct if the distance from its center to the real center

is lower or equal to 60 pixels. Table 6.3 shows our success rates for both databases, as

well as, the results achieved by other techniques proposed in the literature. The results

indicate the method is satisfactory in these datasets however it needs an improvement in
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retinas with diseases. The main drawback of the proposed method in unhealthy images is

that it is based fundamentally on detecting the brightest region on the image where there

is high presence of centerline vessels. However, in these images, there are other regions

brighter than the OD due to big hard exudates or due to an inappropriate capture process

where the false positive vessels are more likely.

Figures 6.1 and 6.2 show some examples of the OD location in DRIVE and POSTEL

databases.

Success rate (%)

Method POSTEL DRIVE

Our method 94.30 95

Youssif et al. [39] - 100

Mendonça et al. [41] - 100

Table 6.3: Optic disc location accuracy in DRIVE and POSTEL databases.

Figure 6.1: Examples of optic disc location in DRIVE database, including the two images where

the method failed.

6.2.2 Vessel width measurement

The aim of this section is to check the performance of the method proposed for the vessel

width measurement regarding the manual estimation made by human experts. To this

end, we use the REVIEW database.
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Figure 6.2: Examples of optic disc location in POSTEL database.

The REVIEW images are not centered in the optic disc and the published gold stan-

dards measured by the three observers are scattered over the vascular tree. However,

our method does not segment the whole vascular tree, it just measures the widths in the

vessel segments found in a few analysis radii around the optic disc. Hence, to get high

sensitivity and to compare our measurements with the largest number of profiles measured

by the observers, many radii as necessary to cover the entire retina surface were taken

into account. Thus, the method was applied in all circumferences spaced a distance 0.1r

with analysis radii from 1.5r up to the image boundaries, being r the optic disc radius

manually determined (Figure 6.3).

In order to maximize the sensitivity, for each vessel segment, we consider the seven

assessments obtained in the seven profiles instead of taking into account only the average

of the three profile central values. Moreover, the images of the high resolution sets, HRIS

and CLRIS, are resized to half their size before applying the method in order to prevent

wrong edge detection at the central light reflexes.

The average between the coordinates of the three observers is established as the ref-

erence standard. Then, a profile, P , detected and measured by the proposed method is

considered a success measurement, that is, it is included in the evaluation, if it matches

a profile S in the reference standard. The matching is successful if the distance between

the middle points of both profiles is less than 3 pixels as follows

P matches S ⇔ dist(mP ,mS) < 3 (6.1)

where mP =
(
p1x+p2x

2
, p1y+p2y

2

)
is the middle point of profile P , being p1 and p2 the profile
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Figure 6.3: Analysis radii used to test the vessel width measurement in a sample image of VDIS

subset from the REVIEW database

end points, whereas mS =
(
s1x+s2x

2
, s1y+s2y

2

)
is the middle point of profile S with s1 and

s2 the end points.

The influence of different image color spaces in the vessel measurement has been eval-

uated. We have tested the green channel of the RGB color model (G), the lightness from

the Lab color space (L) and two gray transformations. The first one obtains a light gray

scale image and is obtained by means of I = 0.299R + 0.587G + 0.114B. The second

gray transformation (J) produces a darker image in order to remove background noise

and small vessels. It is computed as follows:
X

∈{R,G,B}
=


X

12.92
ifX ≤ 0.03928

(
(X + 0.055)

1.055

)2.4

otherwise

J = 0.2126R + 0.7152G+ 0.0722B

(6.2)

Tables 6.4 and 6.5 show the accuracy of the proposed method in the four REVIEW

subsets as well as the performance obtained by other techniques: the Gregson’s [64],
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HHFW [63], 1D Gaussian [65], 2D Gaussian [66], ESP [61], the Graph-based [68] and

ULDM [69] methods. The first row block shows the observer’s results. The accuracy

of the proposed method using different images is provided in the second one. Finally,

the last block of the table shows the accuracy obtained for other algorithms provided in

[61, 68, 69]. In addition, the rate of profiles included in the test is shown in the first

column. The next two columns contain the mean and the standard deviation of the vessel

width measurement. Finally, the last columns show the mean and the standard deviation

of the differences respect to the reference standard point by point.

In general, the results reflect the proposed method underestimates the vessel widths

respect to the reference standard like other techniques. In the case of KPIS subset, this

underestimation is greater than a pixel. This fact can be appreciated in Figure 6.4 which

shows a sample KPIS image. However, in this image, it seems the observers overestimate

the real vessel width.

The CLRIS subset constitutes the exception of the vessel width underestimation. The

boundary returned by the Canny edge detector has an offset in some vessel segments

as Figure 6.5 shows. The reason for this performance could be the JPEG compression

applied to this set of images. In fact, in the figure, we can see a phenomenon that causes

diffuse edges, specially in arteries, hindering the location of these even for the observers.

Figure 6.4: Vessel width measurement in a sample image of KPIS dataset from REVIEW

database. White points correspond to the reference standard obtained from the three observers,

whereas black points depict the segmentation of the proposed method.

Regarding the color spaces, the maximal sensitivity is achieved using the G image
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KPIS CLRIS

Method Profiles Measurement Difference Profiles Measurement Difference

Name % µ σ µ σ % µ σ µ σ

Observer 1 100 6.99 0.52 -0.51 0.23 100 13.19 4.00 -0.59 0.56

Observer 2 100 7.60 0.42 0.09 0.21 100 13.68 4.22 -0.10 0.69

Observer 3 100 7.97 0.47 0.46 0.23 100 14.52 4.25 0.72 0.56

Standard 100 7.51 0.41 0 0 100 13.79 4.11 0 0

Sirius G 100 6.20 0.63 -1.28 0.76 91.58 14.69 3.69 0.83 2.17

Sirius L 100 6.15 0.61 -1.33 0.74 74.39 16.10 4.74 1.20 4.26

Sirius J 100 6.44 0.63 -1.05 0.73 80.35 16.04 3.61 1.52 2.30

Sirius I 100 6.23 0.63 -1.26 0.75 75.79 15.85 3.52 1.27 2.51

Gregson’s 100 7.29 - -0.23 0.60 100 12.8 - -1.0 2.84

HHFW 96.3 6.47 - -1.05 0.38 - - - - -

1D Gaussian 100 4.95 - -2.57 0.39 98.6 6.3 - -7.5 4.13

2D Gaussian 100 5.87 - -1.65 0.33 26.7 7.0 - -6.8 6.01

ESP 100 6.56 - -0.96 0.32 93.0 15.7 - -1.90 1.46

Graph-based 99.4 6.38 0.59 -1.14 0.67 94.1 14.05 4.47 0.08 1.78

ULDM 100 7.02 0.67 -0.50 0.60 98.2 13.23 3.55 -0.55 1.79

Table 6.4: Vessel width measurement accuracy in KPIS (164 profiles) and CLRIS (285 profiles)

sets from REVIEW database.

(a) (b)

Figure 6.5: Vessel width measurement in a sample image of CLRIS dataset from REVIEW

database. (a) Canny output superimposed on the resized image. (b) the boundary points

corresponding to the reference standard (in white) and detected by the method (in black),

superimposed on the original image.
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which presents the highest contrast, whereas in the J image less profiles are detected.

The mean width and standard deviation indicate that G and L widths are the smallest,

whereas J width tends to be the largest one. In fact, the L width has always the smallest

deviation, except in CLRIS subset where the less sensitivity and some atypical values

could produce the largest deviation. These results are also reflected in the differences

point to point where the smallest difference respect to the observers is achieved with J ,

except for the CLRIS subset where the method overestimates the width. In this case,

G width is the closest to the observers. However, despite these differences the widths

achieved with the different components are very similar.

Moreover, it should be noted that in all sets except CLRIS, the standard deviation of

the differences point to point is small, less than or around 1.

VDIS HRIS

Method Profiles Measurement Difference Profiles Measurement Difference

Name % µ σ µ σ % µ σ µ σ

Observer 1 100 8.49 2.54 -0.33 0.54 100 4.11 1.25 -0.22 0.26

Observer 2 100 8.90 2.69 0.072 0.62 100 4.35 1.34 0.007 0.27

Observer 3 100 9.14 2.67 0.31 0.67 100 4.58 1.25 0.23 0.30

Standard 100 8.83 2.5 0 0 100 4.34 1.25 0 0

Sirius G 78.70 8.13 2.45 -0.95 1.11 78.89 4.26 1.10 -0.13 0.85

Sirius L 69.68 8.17 2.19 -1.29 1.08 81.71 4.16 1.07 -0.22 0.88

Sirius J 57.80 8.44 2.39 -0.84 1.19 73.86 4.35 1.12 0.08 0.80

Sirius I 74.34 8.18 2.36 -1.17 1.12 83.36 4.25 1.17 -0.14 0.96

Gregson’s 100 10.07 - 1.22 1.49 100 7.64 - 3.29 2.84

HHFW 78.4 7.94 - -0.91 0.87 88.3 4.97 - 0.62 0.92

1D Gaussian 99.9 5.78 - -3.07 2.11 99.6 3.81 - -0.54 4.13

2D Gaussian 77.2 6.59 - -2.26 1.32 98.9 4.18 - -0.17 6.01

ESP 99.6 8.80 - -0.05 0.76 99.7 4.63 - 0.28 0.42

Graph-based 96.0 8.35 3.00 -0.53 1.43 100 4.56 1.30 0.21 0.56

ULDM 96.3 8.68 2.82 -0.64 1.18 99.6 4.19 1.35 0.21 0.79

Table 6.5: Vessel width measurement accuracy in VDIS (2249 profiles) and HRIS (2368 profiles)

sets from REVIEW database.
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6.2.3 Vessel classification

This section is devoted to test the proposed characterization of retinal vessels into arteries

and veins. The aim is to minimize the classification error rate taking into account the

grading made by medical experts. To assess the validity of the classification, we have

considered several statistical measures: The sensitivity and specificity of the method for

detecting artery (SensA,SpecA) and vein (SensV ,SpecV) vessels segments. The sensitivity

measures the proportion of actual positives which are correctly identified, whereas, the

specificity measures the proportion of negatives which are classified properly. They are

computed as follows

SensA =
TPA

TPA + FNA
SensV =

TPV
TPV + FNV

SpecA =
TNA

TNA + FPA
SpecV =

TNV
TNV + FPV

(6.3)

where TP, FP represent the proportion of true and false positives, respectively, whereas

TN and FN depict the proportion of true and false negatives. A vessel segment is con-

sidered as a positive vein (artery) if its probability to be vein (artery) is greater than

0.5.

Moreover, we calculate also global measures, the accuracy rate (AR), that is, the

percentage of the vessel segments which have been correctly classified to the total of

vessels segments detected by the system, as well as the error rate (ER), the percentage

of miss-classifications without taking into account the vessels which are classified by the

system as not labeled.

AR =
ncorrect

nvessels

· 100 =
TPA + TPV
nvessels

· 100

ER =
nincorrect

nlabeled vessels

· 100 =
FPA + FPV
nlabeled vessels

· 100

(6.4)

where ncorrect and nincorrect are the number of vessel segments, veins and arteries, correctly

and incorrectly classified, respectively, and nvessels is the total number of detected vessel

segments that includes the number of vessel segments which have not been able to classify

whereas nlabeled vessels does not take into account the no labeled vessels.
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Local clustering

The proposed local classification was tested in the VICAVR dataset as well as in a subset

of 20 images taken randomly from this database.

The first experiment presented focuses on comparing the proposed rotating quadrant

procedure with two other strategies in the subset of 20 images using different feature vec-

tors. Both strategies classify the vessel segments found in each analysis radius separately

as the rotating quadrant method does. However, the first strategy performs an unique

classification for all vessel segments found in each analysis radius, whereas in the second

one, the retina image is divided into four quadrants and the clustering is applying at each

quadrant. Three circumferences of analysis with radii 2r, 2.5r and 3r were considered,

being r the optic disc radius. Table 6.6 shows the sensitivity, specificity and the accu-

racy rate for the three strategies using different pixel based feature vectors described in

Chapter 3. In order to make the tables more readable, only the results obtained respect

to the agreement among the three experts are shown. In the three strategies, the best

results were achieved with the H, G and the union of G and R components, whereas the

worst results were obtained with the R component and the union of the mean of H and

variance of R. Regarding the strategies, the rotating quadrant method obtains the highest

accuracy. It is worth to point out that the low accuracy rate in the quadrant division

strategy is mainly due to the high number of unclassified vessels mainly since a minimum

of three vessel segments is required to perform the classification in a quadrant.

In a second experiment, we try to minimize the error committed with the rotating

quadrant strategy. To this end, instead of considering the image component values in all

points of the profiles, we analyze different statistical measures to minimize the effect of

both noise and outliers in the profile color information. So, we test the average (µ) and

the median (x̃) of all the values in the profile as well as the five most repeated values in

the profile and the mean of these five values. The classification performance using these

profile based feature vectors in the analysis radius 2.5r is shown in the Table 6.7. The

median of the G component turned out to be the most discriminant feature.
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H 87.88 68.09 68.09 87.88 78.24 81.37 74.26 74.26 81.37 77.83 82.24 69.70 68.69 82.24 75.73

R 71.72 64.89 64.89 73.74 68.39 69.61 71.29 71.29 69.61 70.44 65.42 72.73 72.73 65.42 68.93

G 83.84 69.15 69.15 83.84 76.68 85.29 70.30 70.30 85.29 77.83 85.05 60.61 59.60 85.05 72.82

I 83.84 69.15 69.15 83.84 76.68 84.31 68.32 68.32 84.31 76.35 82.24 59.60 59.60 82.24 71.36

G,R 83.84 70.21 70.21 83.84 77.20 82.35 70.30 70.30 82.35 76.35 82.24 66.67 65.66 82.24 74.27

µH , σR 79.80 63.83 63.83 79.80 72.02 76.47 63.37 61.39 78.43 68.97 85.05 50.51 50.51 85.05 68.45

Q
u
a
d
ra

n
t

d
iv

is
io

n H 72.73 84.04 68.09 91.92 70.47 78.43 79.21 70.30 90.20 74.38 71.03 74.75 69.70 84.11 70.39

R 64.65 70.21 54.26 83.84 59.59 70.59 76.24 66.34 82.35 68.47 66.36 77.78 71.72 79.44 68.93

G 73.74 79.79 63.83 92.93 68.91 78.43 79.21 70.30 90.20 74.38 74.77 74.75 67.68 89.72 71.36

I 73.74 75.53 59.57 92.93 66.84 78.43 73.27 61.39 90.20 69.95 76.64 76.77 71.72 89.72 74.27

G,R 71.72 77.66 60.64 90.91 66.32 77.45 81.19 72.28 89.22 74.88 69.16 80.81 75.76 83.18 72.33

µH , σR 63.64 76.60 60.64 84.85 62.18 59.80 65.35 55.45 72.55 57.64 63.55 65.66 59.60 79.44 61.65

Q
u
a
d
ra

n
t

ro
ta

ti
o
n H 90.91 79.79 79.79 90.91 85.49 86.27 82.18 82.18 86.27 84.24 82.24 77.78 77.78 82.24 80.10

R 79.80 64.89 64.89 79.80 72.54 80.39 73.27 73.27 80.39 76.85 79.44 74.75 74.75 79.44 77.18

G 91.92 78.72 78.72 91.92 85.49 90.20 80.20 80.20 90.20 85.22 88.79 71.72 71.72 88.79 80.58

I 90.91 74.47 74.47 90.91 82.90 90.20 74.26 74.26 90.20 82.27 88.79 71.72 71.72 88.79 80.58

G,R 89.90 78.72 78.72 89.90 84.46 88.24 81.19 81.19 88.24 84.73 85.98 78.79 78.79 85.98 82.52

µH , σR 81.82 73.40 73.40 81.82 77.72 77.45 63.37 63.37 78.43 70.44 77.57 63.64 63.64 77.57 70.87

Table 6.6: Vessel classification accuracy in a subset of 20 images from VICAVR database using different strategies and pixel based

feature vectors.
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Features SensV SpecV SensA SpecA AR

µ

H 84.31 85.15 84.16 84.31 84.24

R 78.43 83.17 83.17 78.43 80.79

G 86.27 87.13 87.13 87.25 86.70

I 85.29 86.14 86.14 85.29 85.71

G,R 85.29 87.13 87.13 85.29 86.21

x̃
H 81.37 85.15 85.15 81.37 83.25

R 80.39 81.19 80.20 80.39 80.30

G 87.25 87.13 87.13 88.24 87.19

I 87.25 85.15 85.15 87.25 86.21

G,R 86.27 86.14 85.15 86.27 85.71

5
fr

eq
u
en

t
va

lu
es H 86.27 83.17 83.17 86.27 84.73

R 82.35 72.28 72.28 82.35 77.34

G 90.20 77.23 77.23 90.20 83.74

I 89.22 72.28 72.28 89.22 80.79

G,R 89.22 80.20 80.20 89.22 84.73

µ
5

fr
e
q
u
e
n
t

v
a
lu

e
s H 83.33 85.15 84.16 83.33 83.74

R 78.43 84.16 84.16 78.43 81.28

G 84.31 87.13 87.13 87.25 85.71

I 86.27 87.13 87.13 86.27 86.70

G,R 85.29 87.13 87.13 85.29 86.21

Table 6.7: Vessel classification accuracy in a subset of 20 images from VICAVR database using

the rotating quadrant strategy and profile based feature vectors in an analysis radius of 2.5r.

To confirm the previous results, we have tested the different strategies and feature

vectors in a larger dataset, the VICAVR database. We have considered the five analysis

radii equally spaced from 1.5r to 2.5r with r the optic disc radius. The best accuracy

rate taking the agreement among the three experts as the gold standard was 86.34%

achieved with the rotating quadrant strategy and the median of the G component of each

profile. An area under the ROC curve of 0.93 indicates that the classification accuracy is

good (Figure 6.6). In addition, the ROC curves show that the best thresholds to balance

sensitivity and specificity in this set are 0.7 for veins and 0.3 for arteries. However, it

may be interesting using other values in order to increase the specificity, in our case,

considering probabilities higher than 0.5 as positives gives good specificities, 80.30 for

veins and 93.81 for arteries.

The next experiment is devoted to test the local classification incorporating a light-
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Figure 6.6: ROC curves for the local clustering in the VICAVR database taking as positives the

arteries (a) and the veins (b). It was computed using different threshold probability values and

considering the agreement among the three experts as the gold standard.

ness and contrast normalization, the Retinex image enhancement B, in order to avoid

the influence of the non color constancy. In this manner, the feature vectors used in the

classification are selected from the retinex output image. We have applied the Sim-

ple Scale Retinex (SSR) and Multi-Scale Retinex (MSR) techniques to the VICAVR

database, testing different scales in function of the image size. The scales are defined

as σd = min(height,width)/d, with d ∈ {1, 2, 4, 8, 16}. Since the VICAVR images have a

resolution of 768×576 pixels, the scales were σ1 = 576, σ2 = 288 , σ4 = 144, σ8 = 72, and

σ16 = 36 pixels. Table 6.8 summarizes the best results obtained with the different retinex

configurations applying quadrant rotation or without performing any division in the reti-

nal image. There is not much difference between SSR and MSR results for the scales

shown in the table. Nevertheless, with the smallest scales, the image loses tonal rendition

and the number of miss-classifications increases. For the no division strategy, the table

shows an increment in the accuracy rate over 8% using retinex. Thus, the inclusion of

the normalization using retinex techniques offers the possibility of classifying the whole

set of vessel segments together, without performing any partition. However, the rotating
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quadrant strategy carries on minimizing the miss-classifications. It is worth pointing out

as well that applying retinex, the feature formed by the G component value in each profile

point, G, discriminates better than the median of G in the profile in most of cases. This

could be due to the fact that retinex behaves as the median function removing outliers. If

we consider only the miss-classifications, the best error percentages obtained applying the

retinex technique were 9.49% and 8.38% for x̃(G) and G, respectively. On the contrary,

before applying retinex these values were 12.63% and 13.95%, respectively.

No division Quadrant rotation

R
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Before retinex
x̃(G) 91.25 71.68 70.36 91.60 81.52 92.66 80.30 79.09 93.81 86.34

G 93.55 65.48 64.77 93.72 80.15 95.14 74.62 74.31 96.20 85.44

MSRσ1σ2σ8

x̃(G) 89.12 87.82 87.01 89.57 88.14 91.25 88.63 88.02 92.31 89.74

G 89.83 87.92 87.61 90.27 88.80 92.22 87.51 87.11 93.37 89.84

MSRσ2σ4σ8

x̃(G) 87.80 89.44 88.73 88.95 88.23 91.07 88.32 87.51 92.22 89.41

G 88.77 89.34 88.83 89.30 88.80 92.75 88.02 87.51 93.90 90.31

SSRσ2

x̃(G) 86.56 88.73 88.53 87.00 87.48 90.10 88.93 88.22 91.42 89.22

G 86.56 90.46 90.15 87.00 88.23 90.72 90.25 89.95 91.78 90.36

SSRσ4

x̃(G) 87.71 88.63 87.71 88.63 87.81 90.63 87.51 87.01 91.87 88.94

G 87.44 89.64 89.34 88.15 88.33 91.78 87.51 87.11 93.10 89.60

SSRσ3

x̃(G) 86.91 90.05 89.44 87.71 88.09 90.45 89.34 88.63 91.60 89.60

G 86.03 92.18 91.88 86.47 88.75 91.25 90.86 90.46 92.40 90.88

Table 6.8: Vessel classification accuracy in VICAVR database using Retinex image enhancement

and different strategies of classification.

Vessel tracking

The presented results focus mainly in the evaluation of the vessel tracking procedure in

the VICAVR-2 database which has been labeled specifically for testing the classification,

and more secondary vessels than in VICAVR have been classified by the experts. The

aim is to analyze different configurations of the algorithm. Thus, we evaluated the two

proposed segmentation algorithms, different values for the β parameter, that is, the factor

which multiplies the cost of the less costly candidate path used to discard other candidate
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paths, as well as the use of intermediate circumferences. Moreover, different number of

analysis radii and gap between them are tested. The different configurations, the number

of vessel segments labeled for each expert and the classification agreement among them

in each one are shown in Table 6.9.

Configuration
Total

segments
Expert1 Expert2

Expert

agreement(%)

A: 7 radii labeled by the experts 9383 9042 8599 97.82

B: 3 radii (1.5r, 2.25r and 3r) 6894 6654 6353 98.03

C: 4 radii (1.5r, 2r, 2.5r and 3r) 3926 3779 3587 97.49

D: the first 5 radii 5283 5091 4841 97.81

E: the last 5 radii 6610 6370 6038 97.61

Table 6.9: Number of detected vessel segments, number of the vessel segments that have been

labeled by Expert1 and Expert2 and percentage of agreement among the experts in the different

radius configurations in VICAVR-2 database.

• β parameter. At first glance, β parameter seems quite influential on the classification

results because high values of this parameter allow us to join more vessels in branches.

At the same time, this fact increases the probability of joining points that do not

belong to the same vessel (compare Figures 6.7(a) obtained with β = 1.8 and Figure

6.7(b) with β = 1.2). Nevertheless, the experiments conducted in the whole dataset

revealed a small influence of β. This can be observed in the Figure 6.8 where almost

all ROC curves computed using different β values are overlapped. The best value

for the β parameter for all configurations was 1.10. Therefore, we fixed this value

for β and we analyzed the remaining parameters. Table 6.10 shows the classification

accuracy for the different configurations.

• Vessel tree segmentation algorithm. The two vessel tree segmentation algorithms

obtain similar results. Hence, we choose the first algorithm since it is faster, simpler

and requires no parameter tuning.

• Intermediate circumferences. An increment of the error rate is observed in the most

of cases with the inclusion of intermediate circumferences. This could be due to the

fact that artificial points which can not belong to vessel tree are added and these
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points can be the union points between vessel points from different vessels. However,

they could increase the performance in case of larger gaps between the analysis

radius, but, in this case, considering intermediate circumferences just increases the

complexity of the problem.

• Radius configuration. Concerning the radius configurations, there are no significant

differences in the accuracy, hence, the method is robust to distinct analysis radius.

The C configuration is the most specific, although it identifies correctly fewer ac-

tual positives. In this case, this is the most appropriate configuration because it is

preferable to label fewer vessels and produce fewer misclassifications. The number

of radii used (four) and the analysis of distant segments can make that C obtains

better results than other configurations, such as A or B. That is, selecting many

close segments can decrease the performance due to the high variation of color along

the vessel and the existence of large vessel pieces where the color is totally different

from the rest of vessel.

(a) (b)

Figure 6.7: Tracking results with β = 1.8 (a) and β = 1.2 (b). In both cases, the first

segmentation algorithm was used together with radius configuration A and without intermediate

circumferences.

Figure 6.9 shows the ROC curves achieved by the local clustering and including the

vessel tracking with the first vessel tree segmentation algorithm, the C configuration and

without intermediate circumferences. The vessel tracking post-processing increases the

area under the ROC curve from 0.87 to 0.89 when arteries are considered the positives,
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Figure 6.8: ROC curves for vessel tracking classifier using different β values, radius configura-

tions, the first segmentation algorithm, and including (a) or not (b) intermediate circumferences.

The curves have been computed taking arteries as positives.

No intermediate circ. Intermediate circ.
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A
I 76.76 93.56 89.48 80.15 83.50 13.24 76.86 93.23 89.12 80.05 83.36 13.46

II 77.11 93.54 89.97 79.99 83.93 13.26 76.68 93.27 89.97 79.64 83.73 13.56

B
I 75.20 92.34 86.47 81.23 81.13 13.74 74.65 92.28 86.47 80.63 80.87 14.07

II 74.23 92.77 85.65 80.81 80.24 13.85 74.47 92.50 86.09 80.02 80.58 14.27

C
I 73.70 94.52 87.27 82.07 80.87 12.32 73.70 94.20 87.64 81.66 81.06 12.63

II 74.02 94.68 87.07 81.48 80.91 12.49 74.24 94.24 87.56 81.17 81.27 12.80

D
I 76.49 92.65 88.88 79.68 83.09 13.89 76.35 92.32 88.67 79.51 82.92 14.15

II 76.83 92.62 88.94 79.44 83.29 13.98 76.49 92.32 89.15 79.48 83.24 14.12

E
I 76.71 92.90 89.08 79.91 83.31 13.65 76.89 92.78 89.18 79.87 83.44 13.70

II 76.67 93.06 89.59 79.29 83.56 13.79 76.85 92.97 90.10 79.32 83.92 13.77

Table 6.10: Vessel classification accuracy in VICAVR-2 database using vessel tracking with

different configurations of analysis radii, vessel tree segmentation algorithms and using or not

intermediate circumferences.
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or from 0.88 to 0.89 if the positives are the veins.

Table 6.11 summarizes the classification performance in VICAVR and VICAVR-2

databases obtained by the local clustering and including the vessel tracking procedure.

In both cases, the median of the G component in the profile from the MSRσ1σ2σ8 output

was utilized as classification feature. It is worth to point out that the difference in the

accuracy between the databases are possibly related with the fact that a higher number

of secondary vessels were classified by the experts in VICAVR-2. The color information

of secondary veins is more similar to color of arteries than the color values of the main

veins. In fact, in VICAVR, the specificity for arteries is high, whereas this value decreases

in VICAVR-2. It is also worth noting that the accuracy rate is reduced using the vessel

tracking post-processing since in case of tie in the number of vessel segments labeled as

arteries and veins in the same vessel, all segments are not classified. Moreover, the error

rate and the specificity are increased.
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Figure 6.9: ROC curves of Local clustering vs Vessel tracking in VICAVR-2 database taking as

positives the arteries (a) and the veins (b). It was computed using different threshold probability

values and considering the agreement among the two experts as the gold standard.



106 CHAPTER 6. RESULTS

Local clustering Vessel tracking
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VICAVR 91.25 88.63 88.02 92.31 89.74 9.49 93.46 90.76 89.95 95.58 91.82 6.77

VICAVR-2 75.13 89.80 89.00 77.15 82.45 16.40 73.70 94.52 87.27 82.07 80.87 12.32

Table 6.11: Accuracy rate using local clustering and vessel tracking in VICAVR and VICAVR-2

databases considering as gold standard the agreement among all experts.

Comparison with other techniques

It is difficult to make a comparison between the techniques of vessel classification found in

the literature due to mainly different retinal databases are used. Table 6.12 summarizes

the results obtained with our methodology and the results achieved by other techniques.

Grisan and Ruggeri’s method [79] gets a low percentage of miss-classifications, 12.4%, in

24 images, however the strict division in quadrants forces to unclassify a high number of

vessels, 7.70%, and makes the labeling of a vessel very dependent on the vessel neighbors.

The error rates obtained by Jelinek et al. [73] are high, around the 30% in a set of 8

images. Niemeijer et al. [80] achieved an area under the ROC curve of 0.88 in a set of 20

images, however the results are not comparable because they only take into account the

main vessels whereas the problems arise with thinner vessels.

Technique Classification algorithm ER

Grisan and Ruggeri [79] Fuzzy C-means 12.4%

H.F. Jelinek et al. [73]

Näıve-Bayes 31%

Decision Table 30%

J48 30%

Niemeijer et al. [80] K-Nearest Neighbor 0.88 (ROC curve area)

Our method Local clustering & Tracking
6.77% (VICAVR)

12.32% (VICAVR-2)

Table 6.12: Vessel classification performance comparative among techniques found in the liter-

ature.

To make a more precise comparison with the methods above mentioned, we have

analyzed these approaches in the VICAVR dataset. First, the method proposed by Grisan
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et al. [79] is similar to the quadrant division strategy analyzed in this work using the

feature vector made up of the mean of the H component and the variance of the R

component in the profile. The error rate obtained in the VICAVR dataset using this

configuration was 35.79% with a 16.16% of unclassified vessels.

We have also applied the methodology proposed by Jelinek et al. [73] to the VICAVR

dataset. First, we applied a gross median filter to estimate the background of each channel

and then we subtracted this estimation from the channel. Then, we use the normalized

images to compute the features proposed by the authors, the mean and standard deviation

of H, G, R and B color components in the profiles. The Correlation-based Feature Subset

Evaluation method of Weka software [81] was applied to select the features. The features

selected by this method in the VICAVR dataset were the mean and standard deviation

of G, the standard deviation of R, and the standard deviation of H. These features, as

well as the features selected in the Jelinek’s et al. dataset have been tested with the

proposed classifiers: Näıve Bayes, DecisionTable and J48 implemented in Weka using

a 10-fold cross-validation. The classification error rate for our features was 34.85% with

Näıve Bayes, 26.20% with the Decision Table and 22.81% using J48. The results using the

features selected by the Correlation-based Feature Subset Evaluation method in authors’

dataset, the mean of G and the mean and the standard deviation of H, were 35.18%,

32.37%, and 31.855% respectively. These results are similar to those achieved by Jelinek

et al. in both cases.

Niemeijer et al. [80] tried Support Vector Machine (SVM) and k-Nearest Neighbor

(kNN) classifiers. They found that the kNN provided the best performance. We only

tested the SVM using a 5-5 fold cross-validation in VICAVR. To this end, we have analyzed

a big set of features similar to those used by the authors except for the steerable filters.

These features consist of color features (the mean and the median of profile values in each

component of the RBG and HSL color spaces, the central value of the profile, the mean and

the median of centerline values, the percentiles 10, 20, 90 and 80 in the profile. . . ), contrast

features (the standard deviation of the profile and centerline values for the mentioned color

components), shape features (skewness and kurtosis of the profiles) and quality features
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(the caliber of the vessel, the features previously mentioned normalized by their value in

the image or normalized by the caliber of the vessel). Before classifying the feature vectors

with SVM, several feature selection methods of the Weka toolbox as well as the library

mRMR for Matlab which combines the Max-Relevance and Min-Redundancy criteria

have been applied. The best classification error rate was 21.46% and it was achieved with

12 features selected by the Correlation-based Feature Subset Evaluation method. We

also tried the retinex image enhancement with SVM. In this case, the lower error rates

were achieved with 14 features selected by Correlation-based Feature Subset Evaluation

method, 19.21%, and with 10 features obtained by the mRMR, 20.63. In addition, in order

to improve the results, we applied a voting system for vector features which belong to the

same vessel segment, in the same manner that in the proposed method. This improves the

performance, obtaining an error rate of 17.62% using retinex and the 3 features selected

by mRMR from the retinex output image.

As a conclusion, the best performance in VICAVR database was obtained with the

approach proposed in this thesis.

6.2.4 AVR computation methodology

The aim of this section is to compare the AVR measurements achieved automatically

with the proposed methodology and with the AVR monitoring system regarding the AVR

estimations supervised by medical experts. In this manner, first, we show the experi-

ments carried out to obtain the rules which emulate the vessel selection made by medical

experts. Second, the proposed AVR monitoring system is tested. In both cases, the AVR

is computed by the ratio between the averages of artery and vein vessel widths.

Vessel selection

The hypothesis made in Chapter 4 about the vessel selection rules employed by the medical

experts are evaluated in this section using a subset of 86 images randomly selected from

POSTEL database. To this end, we compare the AVR computed with different vessel
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selection methods respect the the AVR gold standard obtained using the automatic mode

of the SIRIUS system under the supervision of two ophthalmologists. The SIRIUS system

estimated the AVR taking into account all detected vessel segments, however the experts

could remove the vessel segments which they consider unsuitable for the computation.

Moreover, they could also change an incorrect location of the optic disc or correct wrong

artery/vein classifications.

In order to find the best vessel selection method, all possible combinations of hypothesis

with all their implementations were considered to compute the the AVR automatically.

This involved testing 649 combinations of hypothesis. A statistical analysis has been

performed to compare the AVR values obtained by each expert, denoted by Expert1

and Expert2, with the value computed by the system using a specific combination of

hypothesis C, SystemC . Moreover, the agreement among the experts is also analyzed.

Thus, a two-sided hypothesis test on Pearson’s correlation coefficient as well as, a two-

sided Welch’s t-test have been conducted.

A Pearson’s correlation coefficient of 0.7981, as well as, a significant test with null

hypothesis in the form H0 : ρExpert1,Expert2 = 0 indicate satisfactory correlation among

experts (Table 6.13). This correlation increases if only the 6 main arteries and veins are

taken into account. Moreover, the p-value of the Welch’s t-test (H0 : µExpert1 −µExpert2 =

0) reveals the AVR’s supervised by the experts are equal in average.

Regarding the comparative between each expert and the system, only the most sig-

nificant values are shown in Table 6.13. It shows the three highest Pearson’s correlation

coefficients when the Welch’s t-test resulted non significant. Figures 6.10 and 6.11 show

dispersion and boxplot graphs of the AVR estimated by the different experts, including

the system. The results demonstrate that the system provides an estimation of the AVR

close to the estimation measured by medical experts in a quite large data set.

In general, the best options for the vessel selection algorithm are those which im-

plement the H1 (ruling out over- or sub-estimated vessel segments), H5 (deleting thin

vessels), and H2 (removing vessel segments found over a bifurcation or a crossover) hy-
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Pearson’s

correlation

coefficient

Pearson’s test

p-value

Welch’s t-test

p-value

Expert1 vs Expert2 0.7981 < 2.2e− 16 0.2496

Expert1 vs SystemH1H5 0.7466 < 2.2e− 16 0.8641

Expert2 vs SystemH1H5H2 0.7466 0 0.0138

Expert2 vs SystemH1H5 0.7860 0 0.34

6 main vessels

Expert1 vs Expert2 0.8546 < 2.2e− 16 < 2.2e− 16

Expert1 vs System 0.7472 < 2.2e− 16 0.6036

Expert2 vs System 0.7161 9.104e− 15 0.3464

Table 6.13: Automatic AVR accuracy using different vessel selection options.

Figure 6.10: Dispersion graphs that show the dependence between the AVR measured by differ-

ent experts.
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Figure 6.11: Boxplot of AVR values estimated by different experts. SystemH1H5 denotes the

most correlated AVR between both experts and the system.

pothesis. Hypothesis H5 has two different implementations but the correlation results

were similar. The best results were obtained eliminating those arteries and veins whose

width is smaller than the 10-percentiles computed for each class. In addition, if we only

take into account the 6 main vessels, the correlation between each expert and the system

is lower. Thus, this analysis shows that the vessel selection has a high influence on the

AVR value.

AVR monitoring system

The monitoring system was tested in a subset of 89 patients taken from the 96 patients

of the POSTEL database. The patients considered were those who have at least two

images, the basal and the image acquired after six months of treatment. Hence, 158 pairs

of images taken before and after treatment have been used in the experiment.

To evaluate the AVR monitoring system, each image taken at month 0 was considered

the reference image and its AVR value graded by the expert represents the AVR reference.

From this reference value, the system obtained the AVR in the image taken at month 6

and this result was compared with the AVR graded by the expert in the same image.
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A statistical analysis has been performed to test if the monitoring system behaves like

an human expert, that is, if the AVR values obtained by the expert and the monitoring

system are similar, despite using different vessels for the estimation. The AVR obtained

by the monitoring system in the images taken at month 6 is denoted by AVR6MMonitoring ,

whereas, AVR6MExpert represents the value measured by the medical expert. A two-sided

hypothesis test on Pearson’s correlation coefficient (H0 : ρAVR6MMonitoring ,AVR6MExpert
= 0),

as well as, a two-sided Welch’s t-test (H0 : µAVR6MMonitoring
− µAVR6MExpert

= 0) have been

conducted. The first test provides evidence of correlation by means of a p-value less than

2.2e−16 and a Pearson’s correlation coefficient of 0.61 as Table 6.13 shows. Moreover,

the result of the second test with a p-value of 0.20 reveals the AVR values are equal

in average. However, these values are increased to 0.92 and 0.89, respectively, in case of

reducing the dataset to the 90 images with the lowest differences between the AVR values.

This increment in the correlation can be also appreciated in the dispersion graphs of the

Figure 6.12.

Images Configuration

Pearson’s

correlation

coefficient

Pearson’s

test

p-value

Welch’s

test

p-value

158 - 0.616 < 2.2e−16 0.209

133 |AVR6MMonitoring −AVR6MExpert | < 0.1 0.796 < 2.2e−16 0.833

90 |AVR6MMonitoring −AVR6MExpert | < 0.05 0.921 < 2.2e−16 0.899

Table 6.14: AVR monitoring system accuracy. Hypothesis test results between the AVR values

obtained by the medical expert and the system in the images taken after 6 months of treatment.

If we analyze the 25 images which present the highest AVR difference between expert

and system (|AVR6MMonitoring − AVR6MExpert | ≥ 0.1) we derive the following assumptions:

• The number of vessels taken into account to compute the AVR differs greatly from

the image graded by the expert to the image measured by the monitoring system.

This occurs mainly because the expert has selected a different number of vessels at

months 0 and 6 as Figure 6.13 shows, or because the system does not detect some

vessels at month 6 due to the image quality.
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Figure 6.12: AVR monitoring system accuracy. Dispersion graphs which show the dependence

between the AVR measured by the medical expert and the system in (a) the whole dataset of

158 images or in (b) 133 and (c) 90 images result of eliminating the images with AVR differences

higher or equal to 0.1 and 0.05, respectively.

• In other cases, it seems that the AVR value is different because the expert has

selected a very characteristic vessel (wide or narrow) with a huge influence in the

AVR in only one of the images (Figure 6.13).

• Moreover, an incorrect snake deformation is also possible, resulting in an under-

or overestimation of the vessel width in one image whereas the width was properly

measured in the other image.

Improvement of vessel detection To prevent the removal, the measurement method is

modified, so each time a snake is invalidated, it is thrown again, using as seed point a

pixel located in the 8-neighborhood of the initial seed. In case of any of the 8 possible

seeds produces an enclosed snake, the snake is definitely invalidated. Pearson’s correlation

coefficient in the 158 images increases slightly to 0.6329 while the p-value of the mean

difference test remains the same, 0.209. At this point, this solution was incorporated in

the method.

However, most of the missing vessels in the new sample image are lost because their

centerlines are not detected because the image quality. In order to detect a greater number

of vessels, the MLSEC-ST parameters are modified. These parameters are optimized to
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(a) (b)

(c) (d)

Figure 6.13: Influence of the vessel segments selected by the expert in the AVR obtained in

POSTEL images. AVR computed (a) by the expert in the reference image at month 0, (b) by

the monitoring system in the image taken at month 6 using the vessel segments selected in (a),

(c) by the expert in the image taken at month 6 and, (d) using the result (c) but labeling two

heavy vessels, one artery (19 and 36) and one vein (3, 17 and 31) which have not been considered

by the expert in the image taken at month 6 but, they were selected in the reference image. Red

points represent arteries, blue points are veins and white points, unclassified vessels.
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avoid false positives, but, since the vessel positions are known in the new sample image,

we can be less restrictive. Despite the change, the correlation value is reduced to 0.6325.

This could happen because these parameters have a high influence on the vessel widths

since the length of the vessel segments depends on them. Hence, the correlation can

decrease because we compare widths obtained with different parameter values.

To test the influence of the third assumption, we remove from the new AVR the

vessels whose widths differ more than 1/3 from them corresponding widths measured in

the reference image. The Pearson’s correlation coefficient increases a bit to 0.6389, but

the results are more different in mean with a p-value of 0.127. This could be due to an

increment of the difference between the vessel sets.

The influence of the vessels selected by the expert To test the influence of the vessels

selected by the expert in the images at months 0 and 6, the AVR values at month 6 are

recalculated taken into account only the vessel segments labeled in common by the expert

at month 0 and 6. Both, the AVR system and the computed by the expert must be

recalculated.

The matching of two vessel segments in the images at months 0 and 6 is successful

if they belong to the same circumference and the angles formed by each vessel and the

x-axis are similar. Thus, given the two lines connecting the middle point of each vessel

segment with the optic disc center, we calculate the angle formed by each line and the

x-axis. If the difference between the angles are smaller than a preestablished threshold,

the vessel segments coincide. Moreover, we only take into account those pairs of images

with, at least, 4 veins and 4 arteries selected by the expert in order to discard those cases

with few vessel segments in common. Thus, in a dataset of 125 images, the Pearson’s

correlation coefficient was 0.87 and the p-value of the mean difference test was 0.85.
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Computation times

The average computation times to calculate the reference AVR and a new AVR obtained

with the vessel registration method were 6.57 and 7.42 seconds, respectively. We have

performed the test in an Intel Pentium Core 2 Duo 2.4GHz and 4GB of RAM runnig

GNU/Linux Debian, over the 158 pairs of images of the POSTEL database.

6.3 Clinical validation

The proposed AVR methodology included in the web-based Sirius system was used in

the clinical studies POSTEL [125] and VAMPAHICA [128] related to the assessment and

diagnosis of hypertension.

6.3.1 POSTEL study

Pose et al. [125] validated clinically the semiautomatic method for the AVR computation

integrated in the SIRIUS system. The method was applied to the POSTEL database by

the supervision of two graders.

The method was compared with a previous developed system validated clinically, the

ART-VENA [67]. First, the sensitivity and the false positives in the vessel detection

achieved with both methods were computed in a representative subset of 21 images from

POSTEL dataset. The new method increases the sensitivity respect ART-VENA from

84.6% to 89.5% reducing also the false positives from 8% to 1%.

After that a statistical analysis has been carried out over the whole dataset, although

separating into two groups according to the place of origin of the images, Santiago de Com-

postela, and Coruña. The average and standard deviation of AVR’s were 0.7805± 0.0610

for the patients of Coruña and 0.7813± 0.0666 for the group of Santiago de Compostela.

The Cronbach’s α with the interclass correlation coefficient were 0.974 and 0.949 for the

group of Santiago; whereas 0.9223 and 0.8557 are the values for Coruña. Thus, two
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methods are highly correlated.

In other work related to POSTEL study, Pena-Seijo et al. [129] showed an AVR growth

after six months of antihypertensive treatment with Telmisartan in 139 hypertensive pa-

tients the POSTEL database. In the right eye, the AVR increased from 0.7676±0.0589 to

0.8149± 0.056, whereas the rise in the left eye was from 0.7748± 0.062 to 0.8143± 0.061.

Moreover, considering the averages of the arteriolar and venular widths separately, they

proved a significant increase (p < 0.001) of the arteriolar width in both eyes. On the

contrary, the venular width did not suffer any variation.

6.3.2 VAMPAHICA study

Coll de Tuero et al. [130] analyzed if the AVR evolution in newly diagnosed hypertensive

patients is associated with better or worse outcomes of target organ damage (TOD) during

a one-year follow-up.

The VAMPAHICA patients included in this study were those who fulfill the follow-

ing criteria: aged 15-75 years; hypertension defined as the average of blood pressure

(BP) readings, separated by two minutes, taken in three different readings, with values

≥ 140mmHg and/or ≥ 90mmHg; recently diagnosed hypertensive patients who never

received any treatment for hypertension and patients who provided corrected self-blood

pressure measurement (SBPM) and ambulatory BP monitoring (ABPM).

Exclusion criteria were the following: inability, in the health professional’s opinion,

to perform SBPM; diabetes mellitus; secondary hypertension; previous cardiovascular

disease; renal insufficiency (serum creatinine > 2mg/dL); liver insufficiency; alcoholism

or severe psychiatric disease; endocrine or severe hematological disease, or other severe

diseases or limitations which, in the physician’s opinion, were a reason for exclusion.

Hence, a total of 133 patients from VAMPAHICA database with 59% proportion of

mens and ages in 57± 10.7 were analyzed.

Several variables were analyzed, among them: age, gender, systolic and diastolic clinic
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blood pressure (CBP), systolic and diastolic self-blood pressure measurement (SBPM),

systolic and diastolic ABPM-day, total cholesterol, left ventricular hypertrophy (LVH) by

electrocardiographic criteria, urinary albumin excretion rate (UAER), glomerular filtra-

tion rate (GFR), advanced lesions in fundus occuli (FO) and antihypertensive treatment

at each follow-up visit. . . Among these variables, LVH, advanced lesions in FO, low esti-

mated GFR, and high UAER were considered TOD.

The AVR values in both eyes, at baseline and at 1-year follow up, were estimated using

the SIRIUS system. Baseline AVR at each eye was computed automatically without user

supervision, whereas the final AVR was computed from the baseline AVR using the AVR

monitoring method. In this case, the AVR values were computed as the ratio between

the arteriolar and venular median widths to avoid any influence of outliers. The final

baseline and 1-year follow-up AVR values were obtained as the average of the two eye

measurements. Due to image quality of several images in the VAMPAHICA database, the

Foracchia et al’s contrast image enhancement described in the Appendix B was applied

before the vessel detection.

The baseline and final values of the variables in study were analyzed stratifying or not

the AVR and the difference between final and baseline AVR (AVRdif) by quartiles.

Several statistical tests have been conducted including a Chi-squared test to analyze

the association between the good TOD evolution and the quartiles of the AVR and the

AVRdif values. Also the relationship between the fourth quartile of the AVRdif and the

good TOD evolution was adjusted by means of logistic regression. To this end, LVH,

advanced lesion in FO, GFR and amount of TOD constituted the response variables.

The AVR baseline stratification in quartiles was: Q1 < 0.772, Q2 : 0.772 − 0.833,

Q3 : 0.833−0.901 and Q4 > 0.90. On the contrary the quartile stratification for the AVRdif

was: Q1 < −0.068875, Q2 : −0.068875− 0.017, Q3 : 0.017− 0.081750 and Q4 > 0.081750.

The most promising results were the good evolution of TOD and the amount of TOD

(the number of TOD remained unchanged (if pre-existing) or increased) respect the base-

line AVR quartiles as Table 6.15 shows. Advanced lesions in the FO is inversely associated
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with the higher baseline quartiles, whereas, there is a direct trend between the amount of

TOD and the higher baseline quartiles.

No trend has been found between any TOD or amount of TOD and the AVRdif quar-

tiles, as it is shown in Table 6.16. However, there is a trend to a better evolution of LVH

(p-value = 0.07) and the amount of TOD (p-value = 0.04) when the upper quartile (Q4)

is compared with the lower ones (≤ Q3).

Moreover the results of multivariate analytical models to see the good evolution of

TOD according to AVRdif demonstrated that patients with an increase in the Q4 quartile

of AVRdif show a good evolution of LVH and amount of TOD.

Q1 Q2 Q3 Q4 p-value
Q4 vs ≤ Q3

n = 33 n = 33 n = 34 n = 33 for trend

High UAER n(%) 32 (97.0) 32 (97.0) 32 (94.1) 32 (97.0) 0.742 ns

LVH n(%) 25 (75.8) 23 (69.7) 24 (70.6) 27 (81.8) 0.562 ns

FO advanced lesions n(%) 32 (97.0) 31 (94.0) 31 (91.2) 29 (88.0) < 0.001 < 0.001

Amount of TOD n(%) 32 (97.0) 31 (94.0) 31 (91.2) 29 (88.0) < 0.001 < 0.001

Table 6.15: Evolution of TOD according to AVR baseline quartiles.

Q1 Q2 Q3 Q4 p-value
Q4 vs ≤ Q3

n = 33 n = 33 n = 34 n = 33 for trend

High UAER n(%) 33 (100.0) 31 (91.2) 31 (93.9) 33 (100.0) 0.921 ns

LVH n(%) 24 (72.7) 26 (76.4) 20 (60.6) 29 (87.9) 0.658 0.07

FO advanced lesions n(%) 24 (72.7) 26 (76.4) 20 (60.6) 29 (87.9) 0.658 0.07

Amount of TOD n(%) 27 (81.8) 30 (88.2) 28 (84.8) 33 (100.0) 0.171 0.04

Table 6.16: Evolution of TOD according to the quartiles of difference between final and baseline

AVR.

6.3.3 Current studies

Currently, several studies are underway to analyze the relation between the AVR and

diverse pathologies making use the SIRIUS web application. Among them, it is worth

mentioning the following projects:
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• Association between retinal microcirculation and macrocirculation. A project funded

by the Spanish Ministry of Science and Innovation to analyze the association between

the microcirculation in the retina and the macrocirculation through an automatic

processing of carotid images. This study is conducted by the VARPA group in

collaboration with the Research Unit of the Institut d’Assistència Sanitària, IAS,

Girona; the CIBER of Epidemiology and Public Health, CIBERESP; the Research

Group on Statistics, Econometrics and Health (GRECS), University of Girona in

Spain; the Service of Internal Medicine of Conxo Hospital, Santiago de Compostela

in Spain and the Instituto de Engenharia Biomédica of the University of Porto in

Portugal.

Several steps have been already taken in this direction. An automatic method for

the intima-media thickness measurement on carotid ultrasound as well as a semi-

automatic method for the AVR computation, both developed by the Instituto de

Engenharia Biomédica of the University of Porto, were translate to C++ program-

ing language and incorporated to a web application similar to SIRIUS system in

order to correlate both measurements with other patients’ variables [131].

• Association between retinal and cerebral microcirculations Another study worth men-

tioning is the analysis of relation between the retinal and cerebral microcircula-

tions, through the AVR measurements in Alzheimer patients. This study is con-

ducted by the VARPA group in collaboration with the Research Unit of the In-

stitut d’Assistència Sanitària, IAS, Girona; the CIBER of Epidemiology and Public

Health, CIBERESP and the Research Group on Statistics, Econometrics and Health

(GRECS), University of Girona in Spain.
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Conclusions

The aim of this work is to develop an automatic methodology to compute the arteri-

ovenous ratio (AVR) in retinal images in order to assess the alterations in arteriolar and

venular vessel widths caused by different diseases. The AVR has been related with several

pathologies such as diabetes, metabolic syndrome, hypertension or heart failure.

This work focuses on analyzing the relation between the AVR and the hypertension.

The primary response of the retinal vessels to systemic hypertension is the arteriolar

narrowing which characterizes the grade I of hypertension retinopathy. However, the

difficulty to obtain a precise and reliable quantitative measure of the generalized narrowing

prevents the correlation of the grade I of the hypertensive retinopathy with hypertension.

In this work, we present an extensive characterization of the hypertension retinopathy as

well as the need to develop reliable methods to measure the arteriolar narrowing through

the AVR in order to stratify the cardiovascular risk associated to hypertension.

The method proposed to compute the AVR is fully automatic. The AVR is estimated

as the ratio between artery and vein widths measured in several circumferences centered

at the optic disc. Hence, the optic disc is located with a method based on the DoG

filtering and the Hough transform whereas the centerlines of vessels segments in the

circumferences of analysis are detected by the MLSEC-ST operator. According to the

validation tests performed, the following remarks can be made. On one hand, the approach

121



122 CHAPTER 7. CONCLUSIONS

used for the optic disc location is good for healthy images but it presents limitations

in some ailing retinas because its basis is the detection of brightest areas with large

number of centerlines. However, unhealthy images can present shining zones which do not

correspond with the optic disc and where false positive centerlines are more likely. On the

other hand, in POSTEL study, the vessel detection has been compared with ART-VENA,

a semiautomatic method for the AVR computation clinically validated. The proposed

approach improved the sensitivity and reduced the false positive vessels achieved with

ART-VENA in a database composed of images acquired at two different centers.

The vessel width measurement method is based on deformable models initialized at the

centerline vessels detected in the previous step. The evaluation of the method made in the

REVIEW public database indicates that the method is comparable and, in some cases,

overcomes the performance achieved by other techniques. However, REVIEW images

with high central light reflex and JPEG compression cause diffuse edges which evinced

limitations in the Canny edge detector. The main drawback of the method is the treatment

of the high resolution images with strong central light reflex, in which the centerline and

edge detectors can interpret one vessel as two different vessels. This phenomenon does

not appear if the image is reduced. Therefore, a preprocessing step to locate the central

light reflex would improve the method.

The vessel classification into arteries and veins combines a local clustering using the

K-means algorithm and a vessel tracking based on the minimal path approach. This

step is one of the main contributions of this work. The local clustering approach allows

to mitigate the effect of the uneven lightness in the classification, whereas the tracking

procedure provides a way to ensure the class of a vessel taking into account the color

information along the vascular structure. Other unsupervised and supervised classification

methods in combination with several feature vectors have been tested and the proposed

approach demonstrated to be the best for the large dataset used.

An algorithm to select the set of suitable vessels segments for the AVR calculus which

emulates the selection made by medical experts is also proposed. On one hand, the exper-

iments carried out to test the AVR computation with different sets of vessel segments have
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demonstrated that the method provides an estimation of the AVR close to the estimation

measured by medical experts in a quite large dataset. On the other hand, the experiments

have made evident the high influence of the selected vessels in the calculus, and the need

of estimating the AVR using the same set of vessels for a patient. This finding was also

previously reported by Knudtson et al. [4] who realized that the Hubbard’s formulas were

dependent on the number of selected vessels so they propounded a reformulation using

only the six main arteries and veins.

Moreover, a novel method based on vessel registration is presented in order to compute

the patient’s AVR at different images acquired over time using the same set of vessel

measured at the same points. This AVR monitoring is another main contribution of this

work providing a valuable and reliable assessment of the vessel width evolution. The

correlation obtained between the AVR computed by monitoring system and an expert at

six month follow-up images revealed that the system behaves almost like another medical

expert.

The AVR computation methodology as well as the monitoring system were integrated

in the SIRIUS web application. The clinical studies and experiments made throughout

this work demonstrated that the system offers a perfect collaborative environment for

physicians and researchers of different centers.

The system’s usefulness was verified with the clinical validations made in the POSTEL

and VAMPAHICA studies with images acquired at different health care centers and dis-

tinct retinal cameras. The former showed an increment in the AVR and in the arteriolar

average width of hypertensive patients after six months of treatment. The latter revealed

an increment in the AVR in the highest quartile at the end of one year follow-up were

left ventricular hypertrophy and amount of target organ damage experienced a favor-

able outcome. Although the amount of target organ damage has not yet been definitely

shown as a prognostic indicatorfactor, greater cardiovascular risk risk has been described

in patients with a higher amount of target organ damage.
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7.1 Further work

The usefulness of the SIRIUS system and the AVR methodology was demonstrated in

this thesis, however tools for image analysis in the medical field should be continuously

improving and adapting to the needs and trends of the moment as well as to new datasets.

Regarding the proposed AVR methodology, the following improvements could be con-

sidered. In the optic disc detection, methods to measure the vessel convergence could

be included in the proposed OD detection approach to avoid its limitations in case of

unhealthy retinal images. Moreover, in the vessel detection, other boundaries detection

techniques could be tested in order to improve the performance in case of diffuse edges.

The use of a bilateral filter in the noise reducing step of Canny edge detector could prevent

the offset in edges caused by the Gaussian filtering. Furthermore, an algorithm for the

identification or filtering of the central light reflex could also improve the vessel detection

method.

One of the goals should be to become SIRIUS system in a complete retinal analysis

tool. In addition to the modules developed in this work, SIRIUS has algorithms for the

automatic detection an evolution of the microaneurysms related to diabetic retinopathy as

well as for the measurement of the vessel tortuosity. It would be advantageous including in

SIRIUS more modules for recognizing other fundus image alterations such as arteriovenous

nicking, hard and soft exudates, papilledema or macular degeneration among others.

Furthermore, more patient’s clinical variables associated to different pathologies of study

could also be incorporated in order to correlate the automatic measures derived from the

retinal images with the clinical ones.

From a clinical standpoint, further studies are needed with more patients and for a

longer follow-up period to definitively establish the AVR as prognostic indicatorfactor in

hypertension and can stratify the cardiovascular risk. Moreover, it would be interesting

to propose other studies to analyze the relationship between the retinal microcirculation

and other diseases, taking advantage of the direct observation of retinal vessels and the

capabilities offered in this work.



Appendix A

MLSEC-ST operator

This Appendix is devoted to explain the operator Multilocal Level Set Extrinsic Curvature

enhanced by the Structure Tensor (MLSEC-ST) proposed by Lopez et al. in [44].

Given a function L : Ω ⊂ Rd → R, the set points Sl = {x ∈ Ω|L(x) = l} is the level

set associated to a constant l. In 2D (d = 2), L can be thought of as a topographic relief

whose level curves constitute the mentioned level sets. Moreover, a discrete image can be

defined as the sampling of a d-dimensional continuous function L : Ω ⊂ Rd → Γ ⊂ R.

As Figure A.1 shows the curvature extrema of the level curves forms connected curves

called vertex curves, which mark the top of ridges and bottoms of valleys in the image, that

is, the creases [132]. Specifically, negative minima of the level curve curvature (m−), level

by level, form valley-like curves and positive maxima (M+), ridge-like curves. Thus, in

[132, 133] the definition of crease implies to find the zeros of the directional first derivative

of the level curve curvature as follows:

∇κ · v = 0,

{
vt · ∇∇κ · v < 0 and κ > 0 for ridges

vt · ∇∇κ · v > 0 and κ < 0 for valleys
(A.1)

where t means transpose, · represents the matrix product, κ is the level set curvature, v the

level curve tangent, the operators ∇ = (∂/∂x1, . . . , ∂/∂xd) and ∇∇ = (∇t∇) designate

the gradient and the Hessian of a function, respectively.

For d-dimensional images, level curves have to be generalized to level sets. In general, a
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v
w

Level curves
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Valley-like curves
Level curve tangent v
Gradient direction v ww

Figure A.1: Crease curves (ridges and valleys) as the loci of extrema of the level-curve curvature

κ.

level set, Sl, can be defined as (d−1)-dimensional hypersurfaces on Ω. Each x ∈ Ω belongs

just to one of these hypersurfaces, defined implicitly by F (y) = L(y)−L(x) = L(y)−l = 0.

Thus, Lopez et al. [44] reformulate the level definition [133] of creases for d-dimensional

images as follows: Let |ξ1| ≥ · · · ≥ |ξd| be the principal curvatures of the level hypersurface

passing through x, with t1, . . . , td their corresponding principal directions. Then, x is an

r-dimensional crease if

∀i ∈ Id−r ∇ξi · ti = 0,

{
tti · ∇∇ξi · ti < 0 and ξi > 0 if ridge

tti · ∇∇ξi · ti > 0 and ξi < 0 if valley
(A.2)

According to tensorial calculus, the LSEC can be expressed in terms of the derivatives

of L as follows:

κd = (LαLβLαβ − LαLαLββ)(LγLγ)
− 3

2 , α, β, γ ∈ Xd (A.3)

For d = 2 and using Cartesian coordinates, the level curve curvature is obtained as:

κ = κ2 = (2LxLyLxy − L2
yLxx − L2

xLyy)(L
2
xL

2
y)
− 3

2 (A.4)

where

Lα =
∂L

∂α
, Lαβ =

∂2L

∂α∂β
, α, β ∈ {x, y} (A.5)

Even though in theory, the LSEC is a good creaseness measure, in practice, its local

definition makes it inappropriate for discrete domains. LSEC does not fulfill the continuity
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and homogeneity properties expected. It contains discontinuities at the center of elongated

objects and takes different values.

To avoid the lack of continuity and homogeneity of LSEC in discrete domains, Lopez

et al. [44] proposed the MLSEC operator as creaseness measure. In 2D, the level curve

curvature, κ, can be defined through the orthogonal relationship between level curves

and the slope lines which integrate the gradient vector w. This orthogonality implies a

connection between the level curve curvature and the degree of parallelism of the slope

lines. That is, when the level curves are parallel and straight lines, the slope lines are

also parallel and straight, whereas if level curves bend, the slope lines diverge/converge.

Thus, using the divergence operator which measures the degree of parallelism, the level

set curvature can be defined as follows:

κ̄d = −div(w̄) (A.6)

where w̄, the normalized gradient vector field, is defined as:

w̄ =

{
w/‖w‖ if ‖w‖ > 0

0d if ‖w‖ = 0
(A.7)

In the 2D case, let x be a point where the divergence of a 2D vector field u has to

be computed. Let C a simple closed curve in R2, parameterized by `, which encloses the

point x; let n be its unitary normal vector and ω the area enclosed by C. Then, the

divergence of u at x can also be defined as:

div(u) = lim
ω→0

1

ω

∫
C
ut · nd` (A.8)

This definition can be generalized for any dimension d, assuming that C is a (d −

1)-dimensional simple closed boundary of a neighborhood W (∂W = C) of volume ω

including x and that d` is the (d−1)-dimensional volume element of C. So, the multilocal

level set extrinsic curvature, (MLSEC), denoted by κ̄d, is defined as a discretized version

of Eq. A.8, where the multilocality is achieved assuming as selectable parameters the

neighborhood W or its boundary C. That is, the gradient vectors along the path C

around x are taken into account to compute div(w̄) at x. Thus, the MLSEC operator for



128 APPENDIX A. MLSEC-ST OPERATOR

a discrete domains is defined as:

κ̄d = −div(w̄) = −d
r

r∑
k=1

w̄t
k · nk (A.9)

where the adjacency r will be given by the specific C. For example, the simplest case in

2D case (d = 2) is given by the four nearest neighbors of each pixel (r = 4).

Once κ̄d has been established as a good creaseness measure, Lopez et al. [44] proposed

filtering the gradient vector field of the image using the structure tensor, a well-known tool

for analyzing oriented textures. The objective is achieving a higher creaseness, increasing

the degree of attraction/repulsion at ridge/valley creases. At the same time, the creaseness

measure is attenuated at not interesting zones.

In the d-dimensional space, given a symmetric neighborhood of size σI centered at a

given point x, called as N (x;σI), the structure tensor is defined to be the symmetric and

semi-positive definite d× d matrix

S(x;σI) = N (x;σI) ∗ (w(x) ·wt(x) (A.10)

where the convolution “∗” is element wise.

The eigenvector which corresponds to the highest eigenvalue of S(x;σI), say w′(x;σI),

yields the dominant gradient orientation at x, where “dominant” means inside the neigh-

borhood N (x;σI). A suitable choice for this window is a d-dimensional Gaussian, i.e.,

N (x;σI) = G(x;σI), which implies that a gradient vector at a point y inside the neigh-

borhood contributes to the computation of S(x;σI) weighted as a function of the distance

from x to y. The eigenvector which corresponds to the lowest eigenvalue of S(x;σI),

namely, v′(x;σI), yields the dominant orientation at x, which is perpendicular to the

dominant gradient orientation.

This analysis assumes that within each neighborhood there is a single dominant orien-

tation. In order to verify this assumption, a normalized confidence measure is introduced:

a real value C ∈ [0, 1] which can be computed from the eigenvalues of the structure tensor,

is associated to each orientation. A suitable function is:

C(x;σI ; c) = 1− e−(λ∆(x;σI))2/2c2 (A.11)
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where c is a predefined threshold and λδ is obtained from the eigenvalues of S, λ1, . . . , λd

λ∆(x;σI) =
d∑
i=1

d∑
j=i+1

(λi(x;σI)− λj(x;σI))
2 (A.12)

Thus, the MLSEC-ST creaseness measure for a 2D image is achieved following the

next steps:

1. Compute the structure tensor S based on the gradient vector field w

S(x;σI) =

(
s11(x;σI ;σD)s12(x;σI ;σD)

s12(x;σI ;σD)s22(x;σI ;σD)

)

s11(x;σI ;σD) = G(x;σI) ∗ (Lx(x;σD)Lx(x;σD))

s12(x;σI ;σD) = G(x;σI) ∗ (Lx(x;σD)Ly(x;σD))

s22(x;σI ;σD) = G(x;σI) ∗ (Ly(x;σD)Ly(x;σD))

(A.13)

where σD called the differentiation scale, denotes the standard deviation of the

Gaussian kernel involved in the differentiation process to compute w. In opposition,

σI is called the integration scale. The first parameter is tuned to the size of the

objects whose orientation has to be determined, whereas, the second one is adjusted

to the size of the neighborhood in which an orientation is dominant.

2. Perform the eigensystem analysis of S. The dominant gradient orientation is given

by the normalized eigenvector w′ corresponding to the highest eigenvalue. In the

structure tensor analysis, opposite directions are equally treated. So, to recover the

direction, in 2D, w′ and w are put in the same quadrant. Then, the new vector field

is obtained as:

w̃ = sign(w′tw)w′ (A.14)

where

sign(x) =


+1 if x > 0

−1 if x < 0

0 if x = 0

In this manner, attraction/repulsion of vector is reinforced.
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3. Compute the new creaseness measure, the MLSEC-ST as:

κ̃d = −div(w̃) (A.15)

4. Compute a confidence measure C to reduce creaseness in not interesting structures.

Then, Cκ̃d is taken as final creaseness measure.

Additionally, in the algorithm used in this work, two another confidence measures are

considered in order to ensure that the final creases correspond to vessel centerlines. The

first confidence measure is the crease strength, whereas the second one is its length. Thus,

first, the creases whose Cκ̃d is less than a preestablished threshold, tS, are set to zero.

After that, the creases are filtered by counting the number of connected pixels. Those

creases whose number of points is less than a threshold, tL, are set also to zero.



Appendix B

Lightness and contrast normalization

This Appendix describes two techniques to normalize the lightness and contrast in retinal

images used in this work. The methods are the Foracchia et al’s approach [134] and the

Multiple-Scale Retinex (MSR) proposed by Jobson et al. [135].

B.1 Foracchia et al’s approach

Foracchia et al. [134] proposed a method to normalize the lightness and contrast variability

in retinal images based on estimating both features in background small areas, spreading

to the whole image and then removing from it. The method assumes the following model

of the retinal image:

I = f(I◦) = f(I◦b + I◦f ) (B.1)

where I◦ is the original image, I◦b is the original background, that is, the ideal background

free of vasculature and other retinal structures included any lesion which are modeled in

the original foreground, I◦f , and f represents the transformation made at the acquisition

process which produces the lightness and contrast deformation.

The original background image follows a normal distribution with mean the ideal

uniform lightness, µb, and standard deviation, σb, is the natural variation in the retinal

pigmentation, (I◦b ∼ N (µb, σb)).
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A captured image is modeled as follows:

I(x, y) = f(I◦(x, y)) = C(x, y)I◦(x, y) + L(x, y)

= C(x, y)I◦b (x, y) + C(x, y)I◦f (x, y) + L(x, y)
(B.2)

where C(x, y) and L(x, y) represent the deviation factor of contrast and lightness respec-

tively, which can be considered as images since they are space-dependent functions.

Thus, the normalized image is computed estimating the contrast and lightness, Ĉ and

L̂, as follows:

Î◦(x, y) =
I(x, y)− L̂(x, y)

Ĉ(x, y)
(B.3)

Taking into account only the background pixels ((x, y) ∈ B) where, by definition,

I◦f = 0, the equation B.1 is as follows:

I(x, y) = C(x, y)I◦b (x, y) + L(x, y) , (x, y) ∈ B (B.4)

Considering the statistical model of I◦b , (I◦b ∼ N (µb, σb)), from the previous equation

is deduced that I(x, y) ∼ N (L(x, y), C(x, y)) for (x, y) ∈ B. Then, the normalized image

is achieved through the equation B.3, estimating L̂(x, y) and Ĉ(x, y) by the mean and

standard deviation of the background pixels in the observed image (I(x, y), (x, y) ∈ B).

To estimate the mean and standard deviation in the background, first, the background

pixels have to be determined. In that way, the image is divided in a tessellation of squares

Si with side s, where s is selected to obey the next three premises: L and C are constant

in the square, at least the 50% of pixels in the region belong to background, and the

intensity of the background and foreground pixels are very different. Then, the mean

µ̂(Sm
s
×n

s
) and standard deviation σ̂(Sm

s
×n

s
) images are build, computing the mean µ̂(Si)

and the standard deviation σ̂(Si) for each Si. The full images µ̂(Sm×n) and σ̂(Sm×n) are

computed by bicubic interpolation from the small images µ̂(Sm
s
×n

s
) and σ̂(Sm

s
×n

s
), being

m× n the original image resolution. Hence, the membership to the background for each

pixel in the image is determined by means of the Mahalanobis distance as follows:

(x, y) ∈ B ↔
∣∣∣∣I(x, y)− µ̂(Sm×n)(x, y)

σ̂(Sm×n)(x, y)

∣∣∣∣ < t (B.5)
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where t is a threshold that was set to 1, while a value of 200 for the tessella side was

selected empirically.

Once the background pixels are determined, the same tessellation of squares is taken

into account and the mean and standard deviation for the background pixels at each

tessella are computed. Then, a bicubic interpolation is applied again to achieve L̂(x, y)

and Ĉ(x, y). Finally, the normalized image is obtained applying the equation B.3. It

should be noted that as the input image is a color image, this normalization has to made

to each color component and then combining the results.

B.2 Retinex technique

The color constancy is a feature of the human color perception system to ensure that

the perceived color of objects remains relatively constant under varying illumination con-

ditions. Various models in the literature try to emulate the color constancy of human

visual system, but the Land’s retinex theory [136, 137] further reduced the computational

complexity of the model.

Land’s retinex theory assumes that the three classes of cone receptors, corresponding to

the three long, middle and short-wavelenght regions of the visible spectrum, or colloquially,

red, green and blue, are independent. With this assumption, at each channel i, the

lightness Ii is the product of the illumination Mi and the reflectance Ri.

Ii(x, y) = Mi(x, y)Ri(x, y) (B.6)

Taking the logarithm of the previous equation the multiplication is transformed into

addition

I ′i(x, y) = log(Ii(x, y)) = log(Mi(x, y)) + log(Ri(x, y)) (B.7)

Another main assumption of the retinex theory is that the illumination varies slowly

in space, so its wavelength is large an its frequency low; whereas the sharp changes are

due to the reflectance.
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Following the previous assumptions, the implementations of the retinex theory and

other techniques such as, homomorphic filtering, produce an image that depends only on

reflectance Ri(x, y), subtracting from the original image an approximation of the illumi-

nation Mi(x, y). While, the homomorphic filtering separates the illumination by a low

pass filtering in Fourier space, the retinex implementations are applied in spatial domain.

The retinex implementations proposed in this work to reduce, or ideally, to remove

the lightness variation in retinal images are the Jobson et al. approaches, the Single-Scale

Retinex (SSR) [138] and the Multiple-Scale Retinex (MSR) [135].

In the SSR, the illumination is estimated by means of a Gaussian form and, then, it is

subtracted from the original image to obtain a description invariant to illumination. This

is given by the next equation:

R′i(x, y) = log Ii(x, y)− log[F (x, y) ∗ Ii(x, y)] (B.8)

where R′i(x, y) is the retinex output, that is, the estimated reflectance in log domain,

Ii(x, y) is the i-th component of original image, ’∗’ denotes the convolution operation and

F (x, y) is the weighting function

F (x, y) = Ke

−x2 + y2

c2 (B.9)

where K is selected to obey ∫ ∫
F (x, y)dxdy = 1 (B.10)

then K =
1

(
∑
x

∑
y

F (x, y))
and c is the scale that controls the Gaussian surround. Small

values for c imply more dynamic range compression preserving the fine details in the

image, but also they can affect negatively the quality of color image. Moreover, halo

artifacts may be generated when two closed areas have very different intensities. Thus,

to balance the positive and negative effects of small and large scales and to reduce halo

artifact induced by the single-scale retinex, the multi-scale approach arises [135]. The

MSR is simply a weighted sum of several different SSR outputs computed with different
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scales as follows:

RMSRi
=

N∑
n=1

wnR
′
ni

(B.11)

where RMSRi
is the MSR output in the i-th color component, N is the number of scales,

R′ni
is the SSR output in the i-th color component on the n-th scale and wn is the weight

of the output of the n-th scale. Jobson et al. [135], experimentally, achieved that equal

weighting of the scales wn = 1/3, with N = 3 was enough for most of the applications.

The main advantages of these two retinex algorithms are the easy implementation

and manipulation of parameters and the lack of requirements for scene calibration. In

addition, the MSR came up to get simultaneously the dynamic range compression of the

retinex in small scale and the tonal rendition of the big-scale retinex.
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Appendix C

Minimal paths

This Appendix summarizes the minimal path approach presented by Cohen and Kimmel

[86].

A snake or active contour is a curve guided by external constraint forces and image

forces which push it towards image feature edges. From the classical active contour

equation presented by Kass et al. [71], many approaches have emerged to solve different

problems in varied domains and to overcome the main drawbacks of the original model:

manual initialization, the stucking in local minima and the unchangeable topology.

Following the approach of the geodesic active contours [139], Cohen and Kimmmel

reformulated the classical snake equation [71]. The aim of this model is to find the curve

C(s) that minimizes the following equation:

E(C) =
∫

Ω
Eint(C(s)) + Eext(C(s))ds

=
∫

Ω
w‖∂C

∂s
(s)‖2 + P (C(s))ds

(C.1)

where Ω ∈ [0, L] and L is the length of the curve. The internal energy is the partial

derivative of the curve with respect to its arc-length parameter, s, and controls the regu-

larity in the contour by the parameter w. The external energy term is the potential, P ,

which represents the desired image features.

Since s represents the arc-length parameter, ‖∂C
∂s

= 1‖ and the energy of the model
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has the following form:

E(C) =

∫
Ω

w + P (C(s))ds =

∫
Ω

P̃ (C(s))ds (C.2)

The regularization of this model is achieved by the constant w > 0. This term integrates

as
∫

Ω
wds = w × length(C) and allows us to control the smoothness of the contour.

Given a potential P > 0 that takes lower values near desired features, we are looking

for paths along that minimize the previous equation. Then, the surface of minimal action

U is defined as the minimal energy integrated along a path between a starting point p0

and any point p:

U(p) = inf
Ap0,p

∫
Ω

(w + P (C(s)))ds

= inf
Ap0,p

∫
Ω
P̃ (C(s))ds

(C.3)

where Ap0,p is the set of all paths between the points p0 and p. Hence, the minimal path

between two points p0 and p1 is computed from this surface map by backpropagation

starting from p1 until p0.

In order to compute U , a front propagation equation related to C.3 is defined:

∂C(s, t)

∂t
=

1

P̃
~n(s, t) (C.4)

where t represents the time, P̃ = P + w, and ~n(s, t) is the normal to the closed curve

C(., t). This equation evolves the front from a small circle centered at p0 up to each point

inside the image domain. The value of U(p) is the time t when the front passes over p.

There are several numerical approaches to compute the surface of minimal action.

However, the Fast Marching Method [140] is recommended for any real time application.

Given the potential values Pi,j = P (i∆x, j∆y) in a grid, where ∆x = ∆y = 1, the Fast

Marching method approximates Ui,j by u using the following equation:

P 2
i,j = (max{u− Ui−1,j, u− Ui+1,j, 0})2

+ (max{u− Ui,j−1, u− Ui,j+1, 0})2
(C.5)

Algorithm 4 summarizes the steps involved in the computation of the surface of min-

imal action. Since the method selects the pixels in a specific order, it is only necessary

one pass on the image.
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Algorithm 4 Fast Marching method

Definitions:

• Alive set: points of the grid for which U has been computed and it will not be modified.

• Trial set: next points in the grid to be examined (4-connectivity) for which a estimation of U is

computed using the points in alive set.

• Far set: the remaining points of the grid for which there is not an estimate for U .

Initialization:

• For each point in the grid, let Ui,j =∞ (large positive value).

Put all points in the far set.

• Set the start point (i, j) = p0 to be zero:

Up0 = 0, and put it in the trial set.

Marching loop:

• Select p = (imin, jmin) from trial with the lowest value of U .

• If p is equal to p1 being p1 the final point then we finish.

• Else put p in alive and remove it from the trial set.

• For each of the 4 neighboring grid points (k, l) of (imin, jmin):

– If (k, l) belongs to far set, then put (k, l) in trial set.

– If (k, l) is not in alive set, then set Uk,l with Equation C.5.
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Finally, the minimal path is obtained by back-propagation from p1 to p0 using a discrete

steepest descent algorithm, selecting at each step the connected pixel with the lowest U .

However, this method accumulates an angular error, so more precise methods, such as

Heun or Runge-Kutta, could be also used.



Appendix D

Image registration

This Appendix is devoted to explain the image registration technique used in the AVR

monitoring system.

The registration algorithm is a feature-based registration method whose landmark is

the vessel tree [141]. Following the idea that the vessels can be thought as creases (ridges

and valleys) when images are seen as landscapes, the registration process is based on the

alignment of crease images. Thus, the first stage of the algorithm is to obtain the crease

images of the reference and the new sample images using the MLSEC-ST operator [44].

After obtaining the crease images, an iterative optimization process to align both images

is performed. That is, the reference image is fixed and the other one is transformed until

a global maximum is accomplished. A suitable function to measure the alignment quality

is the correlation function:

Corrτ =
∑

x∈f f(x)g(τ(x)) (D.1)

where f and g are the crease images and τ represent the transformation whose five pa-

rameters (x and y translation, tx, ty, rotation angle θ in clockwise direction and x and y

scale, sx, sy) we want to test.

The search space is defined by the function Corrτ and the five parameters of the

transformation. The function is non monotonic, that is, it has many local maxima and
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it is expensive to compute since it involves image transformations. Thus, to simplify the

optimization process, the multiple resolution approach proposed by Elsen et al. [142] is

carried out. Moreover, with the same aim in mind, the transformation is not applied to all

pixels in the image, only the main creases with pixel values higher than a fixed threshold

are transformed.

The multiple resolution approach is handled by two pyramids (Figure D.1) where the

two crease images to register are at the bottom and each pyramid level is a half-resolution

version of the image in the previous level, until images have a size of 64 pixels in one

dimension.

seed candidates

seed candidates

+

R
e
so

lu
ti

o
n

-

final best transformation

Crease based registration
Multiresolution Pyramid of Crease Images

Figure D.1: Schema of the multiple resolution registration process

The search starts at the top of the pyramid where an exhaustive search can be ac-

complished at the Fourier domain to compute the correlation. Thus, the search seeds are

the image transformations which maximize Corrτ computed in the frequency domain. At

this level, the transformations performed involve only rotations of an angle of 5◦ during a

certain number of iterations. For a pyramid of three levels, the number of iterations was

10 and the number of seeds considered at each level were 6, 3 and 1, respectively. In the

remaining levels, a Downhill Simplex algorithm is applied to optimize the correlation. At
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those levels, the search seed are the optimized transformations of the previous level and

the search process finishes when the difference between the maximum and the minimum

values found in a neighborhood is lower than a preestablished threshold.

Once the registration process has been finished and the two images are aligned, the

registered crease images are used to obtain a similarity measure between them in order

to determine the quality of the register process. This measure is the normalized cross-

correlation coefficient, γ defined as:

γ =
∑

x,y [f(x,y)−f̄ ] [g(x,y)−ḡ ]√∑
x,y [f(x,y)−f̄ ]2

∑
x,y [g(x,y)−ḡ ]2 (D.2)

where ḡ is the mean of the registered image and f̄ is the mean of the reference image.

The registration process is valid if γ is higher than a threshold, otherwise, the AVR can

not be computed using monitoring.

In order to evaluate the registration method, a dataset composed of 20 retinal im-

ages was used. The images were taken with a Canon CR6-45NM non-mydriatic retinal

camera with a 768 × 584 pixel resolution. For each image, 50 random transformations

were applied with maximum translation and rotation values of ±100 pixels and ±5◦,

respectively, and without scaling. These transformations represent the maximum trans-

formation values of the majority of the analyzed images. Table D.1 shows the mean and

standard deviation values of the absolute difference between the transformation applied

and the transformation recovered by the method, the mean square error (MSE) of the

recovered transformations and the registration accuracy (RA). The absolute difference

was computed as τa − τr = |(tx − t′x) + (ty − t′y) + (θ − θ′) + (sx − s′x) + (sy − s′y)|, where

τa and τr represent the applied and the recovered transformations being tx, ty, θ, sx, sy

and t′x, t
′
y, θ
′, s′x, s

′
y their translation, rotation and scaling parameters, respectively. The

registration accuracy represents the percentage of the transformations where the applied

and the recovered transformations are equal with ±1 pixel of difference. To obtain this

measure, four points are selected manually and their positions in the transformed and the

dynamic images are compared. Thus, the average of the euclidean distances between the
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positions of the four points is calculated. If the absolute value of the average is less or

equal than 1 pixel, the applied and the recovered transformation are aligned. The small

MSE value and the high RA indicate the good performance of the image registration

method.

τ a − τ r MSE RA(%)

Mean 0.033 0.097 99.100

Standard deviation 0.050 0.070 1.550

Table D.1: Image registration accuracy in a dataset of 20 retinal images.



Appendix E

Crossover and bifurcation detection

This Appendix explains the algorithm used to detect the crossover and bifurcation points

in retinal vessels in order to discard these points from the AVR computation. The method

was described in [143] for locating the landmark points in a personal authentication sys-

tem based on the retinal vessel tree. We select this method because the detection of points

of interest is performed directly on the vessel centerlines obtained with MLSEC-ST al-

gorithm, without a segmentation of the vascular tree and a subsequent skeletonization

thereof.

The algorithm consists on tracking the vessel centerlines in order to obtain the rela-

tionships between them. The vessel centerlines given by the MLSEC-ST algorithm present

discontinuities in crossovers and bifurcations because the different orientations of the ves-

sels involved or in other areas with low contrast or noise. Thus, before locating the points

of interest, the centerline segments are joined to build the whole vascular tree.

The first step of the algorithm is the tracking and labeling of the centerline segments

as line of 1 pixel width. To this end, each pixel of the centerline image is examined

from top to bottom and from left to right, starting the segment tracking when a non-null

pixel is found. In case the pixel is isolated, it is removed. Otherwise, the 4 pixels in a

8-neighborhood which have not been tracked yet (the three at bottom and the one to the

right as Figure E.1 shows) are analyzed and the tracking starts in one or two directions
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depending on the number of the neighbors which belong to centerlines. Thus, if the pixel

has only one neighbor, the tracking is performed in one direction and the pixel is marked

as endpoint. In case of two or more neighbors, two tracking process are thrown. At each

step of the tracking, only one neighbor is selected as next point of the segment. The pixel

selected is the one with the most non-flagged neighbors corresponding to the segment

pixels in order to keep segments of 1-pixel width. In case of tie, the pixel is selected

according to the most repeated orientation in the previous steps.

Non-null pixel 4 neighbors

Centerline

Figure E.1: Four neighbors to analyze for each non-null pixel found in the centerline tracking.

Once the segments have been labeled in the whole image and the endpoints were

located, the relationships between segments are identified. The simplest relationship is

the union which occurs when a segment is the continuation of the other in the same

retinal vessel. To find this situation, pairs of close segments are joined through a straight

line, and the smoothness of the joining is analyzed by the angles between the line and

the direction of segments calculated by the orientation of the endpoints. The union is

accepted if both angles are less than a threshold, tθ. A value tθ = 3π
4

rad was used with

success in all cases.

Crossovers and bifurcations are the other relationships between segments to be located.

However these can be simplified to bifurcations since a crossover can be seen as two

close bifurcations from the same vessel. The criterion to locate bifurcations is to find an

endpoint close to a segment where the segment of the endpoint starts. Thus, for each

endpoint in the image, its direction is computed and it is prolonged in that direction

a fixed maximum distance by a straight line. A neighborhood near the prolongation is

analyzed in order to locate other segments. In case a point, pb which belongs to other

segment is located, the angle between its direction and the endpoint direction is computed.
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If the angle is less than a threshold, tα, and the distance between pb and the extremes of

its segment is larger than a threshold, db, the point pb is marked as bifurcation and it is

joined to the endpoint. We have used tα = π rad and db = 5 pixels.

Finally, two close bifurcation points are merged into a crossover point by the midpoint

between them.

Additionally, in the tracking process a segment filtering is performed. Thus, segments

whose length does not exceed a certain threshold are not taken into account. The mini-

mum length required for a centerline segment was 24 pixels.
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IUS, Computerized Tool for Automatic Analysis of Retinal Microcirculation”, Journal

of Hypertension, 29, e202, 2011.

M. Pena, S. G. Vázquez, A. Pose-Reino, J.L. Daz, M. Suárez, M. G. Penedo, R. Monte-
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