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Resumo da Tese de Doutoramento

Introducción

O interese que a comunidade da computación de altas prestacións (High Perfor-

mance Computing, HPC) vén demostrando na linguaxe Java, aumentou considera-

blemente nos últimos anos grazas á mellora experimentada en canto a rendemento

e ás caracteŕısticas que fan de Java unha linguaxe altamente productiva. Entre elas,

cabe destacar a portabilidade e independenza da plataforma, a simplicidade, a ro-

bustez, a seguridade, a orientación a obxectos e contar cunha grande comunidade

de desarrolladores, tanto no mundo académico coma no empresarial. Ademais da

mellora de rendemento, hai dúas caracteŕısticas cruciais que propiciaron a progre-

siva adopción de Java na computación de altas prestacións: o soporte para redes

de interconexión e a incorporación de multithreading no núcleo da linguaxe. Estas

dúas calidades fan de Java unha linguaxe idónea para a programación en contornos

paralelos.

Dentro dos contornos paralelos actuais, os sistemas de memoria compartida vol-

ven a cobrar forza nun escenario que, ata hai pouco, estaba dominado por clusters

de sistemas monoprocesador, que permit́ıan constrúır contornos de computación de

altas prestacións reducindo os costes. Non obstante, o incremento de rendemento dos

procesadores empezou a acadar ĺımites f́ısicos, o que levou á aparición de problemas

de disipación de calor e de alta ineficiencia enerxética. Para superar estes obstácu-

los, os fabricantes de hardware comezaron a centrarse na mellora do rendemento

dos procesadores mediante o incremento do número de núcleos presentes en cada un

deles, o que se coñece como procesadores multi-core ou multi-núcleo. De feito, na

actualidade, procesadores de catro ou máis núcleos son comúns en ordenadores de
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uso persoal.

O incremento progresivo no número de núcleos está conducindo tamén á xerali-

zación de procesadores many-core para a computación de ámbito xeral. E neste eido

volve a aparecer o problema do consumo enerxético, xa que ter un grande número

de núcleos por procesador en situacións nas que só se precisa unha pequena parte,

provoca unha grande ineficiencia enerxética. Para solventar este problema, aparecen

os aceleradores de uso espećıfico, como as tarxetas gráficas (Graphics Processing

Unit, GPU), arquitecturas many-core que só se utilizan para tareas espećıficas de

procesamento de gráficos mentres outro procesador (host) é o que se encarga da com-

putación xeral. As caracteŕısticas destes aceleradores e as súas elevadas capacidades

de cómputo fixeron que fosen adoptadas para a aceleración de códigos vectoriais non

necesariamente relacionados coa computación gráfica. Sen embargo, as dificultades

de programación destes aceleradores favoreceron a aparición de aceleradores de ar-

quitecturas x86 que soportan linguaxes e paradigmas tradicionais de programación,

coma o coprocesador Xeon Phi comercializado por Intel.

O éxito das arquitecturas multi- e many-core indica a necesidade de ferramentas e

libreŕıas de programación que exploten o rendemento en memoria compartida, onde

Java, co soporte para multithreading, presenta unha grande vantaxe. O principal

problema é que a API de manexo de threads é complicada, sendo o usuario o que

ten que lidiar coa creación/destrucción de threads e, o que é máis importante, coa

posibilidade de aparición de race conditions e inconsistencias. Para solventar isto,

Java inclúe unha libreŕıa de concorrencia na que se traballa con pools de threads

e cun paradigma de programación orientado á descomposición da carga de traballo

en tarefas (que pode ser recursiva utilizando a funcionalidade de fork/join). Este

paradigma obliga a que os algoritmos paralelos non orientados a tarefas teñan que

ser reescritos ou utilizar estas ferramentas de maneira non eficiente.

Esta Tese presenta unha análise detallada do estado da arte en canto á situación

de Java para a programación de sistemas de memoria compartida, centrándose en

solucións axeitadas para a computación de altas prestacións. Os principais obxec-

tivos deste traballo son a análise do estado do soporte Java á computación de altas

prestacións en memoria compartida e o desenvolvemento de middleware para mel-

lorar tanto o rendemento como a productividade. En consecuencia, levouse a cabo

un estudo do soporte software dispoñible para a programación multi-núcleo en Java
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e realizouse o deseño, implementación e avaliación dun dispositivo de comunicacións

de paso de mensaxes en Java optimizado para memoria compartida. Este dispositivo

proporciona unha API de alto nivel que elimina a necesidade de manexar threads

ou a descomposición en tarefas. Esta API segue a especificación Java de paso de

mensaxes (Message Passing in Java, MPJ) baseada no estándar MPI, amplamente

utilizado en computación de altas prestacións. Tamén se inclúe unha optimización

de patróns de comunicacións entre procesos ou threads (operacións colectivas), tan-

to bloqueantes coma non bloqueantes, para contornos baseados en sistemas multi-

núcleo, alén dunha análise da adecuación e potencial das colectivas non bloqueantes

en contornos de memoria compartida. Por outra banda, f́ıxose un estudo e avaliación

de solucións dispoñibles para a explotación de sistemas many-core en aplicacións Ja-

va. A principal conclusión deste estudo é que o uso de Java en contornos many-core

é productivo e pode proporcionar resultados de alto rendemento.

Metodolox́ıa de Traballo

A metodolox́ıa de investigación seguida na presente Tese de Doutoramento con-

sistiu en:

Definir a lista de obxectivos identificando as tarefas necesarias para acadalos,

tendo en conta os traballos previos e os recursos dispoñibles.

Determinar a secuencia de execución das tarefas aténdose ás restriccións que

puidesen existir e buscando a orde máis axeitada.

Establecer a duración das tarefas e a oportunidade de desenvolvemento nun

momento determinado.

Organizar os obxectivos e tarefas en bloques de certa entidade que definan

etapas.

Definir, para cada etapa, os fitos, ou metas a acadar en tempo definido, tendo

en conta que cada etapa pode constar dunha ou varias metas.

Os obxectivos e tarefas foron definidos de maneira iterativa para poder aproveitar

o coñecemento adquirido en etapas previas.
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A continuación, enumérase a lista de obxectivos (O), agrupados en bloques (B),

detallando as tarefas (T ) que foron desenvolvidas na Tese para acadar cada un dos

obxectivos.

B 1. Análise das capacidades da linguaxe Java para a programación de altas prestacións

en memoria compartida.

O 1.1. Análise da programación en Java para memoria compartida.

T 1.1.1. Estudo da usabilidade e rendemento de Java para programación de

altas prestacións.

T 1.1.2. Análise das carateŕısticas internas de Java para programación par-

alela en memoria compartida.

T 1.1.3. Análise doutros modelos de programación paralela utilizados en Java

actualmente.

T 1.1.4. Avaliación das necesidades de optimización do soporte Java para ar-

quitecturas de memoria compartida.

O 1.2. Análise do estado actual de dispoñibilidade do soporte en Java para pro-

gramación heteroxénea.

T 1.2.1. Búsqueda bibliográfica de solucións e proxectos existentes que den

soporte á programación heteroxénea en Java.

T 1.2.2. Análise do soporte dispoñible e identificación de carencias.

B 2. Estudo das principais arquitecturas de memoria compartida dispoñibles.

O 2.1. Estudo e avaliación de arquitecturas de memoria compartida con soporte

para a execución de instruccións x86.

T 2.1.1. Análise detallada de arquitecturas multi-core dispoñibles.

T 2.1.2. Análise detallada de arquitecturas many-core x86 dispoñibles.

O 2.2. Estudo e avaliación doutras arquitecturas de memoria compartida.

T 2.2.1. Análise detallada de unidades de procesamento gráfico (Graphics

Processing Units, GPU) para programación de propósito xeral.

B 3. Análise, deseño e implementación dunha solución de paso de mensaxes en Java

para memoria compartida.
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O 3.1. Avaliación do estado da arte do paso de mensaxes en Java para memoria

compartida.

T 3.1.1. Análise de proxectos de paso de mensaxes noutras linguaxes con so-

porte espećıfico para memoria compartida.

T 3.1.2. Análise do soporte para paso de mensaxes en Java.

O 3.2. Deseño e implementación dunha solución de paso de mensaxes en Java

para memoria compartida.

T 3.2.1. Deseño da solución tendo en conta as caracteŕısticas espećıficas de

Java e o seu soporte para programación paralela en memoria com-

partida.

T 3.2.2. Implementación do deseño de paso de mensaxes proposto.

T 3.2.3. Optimización da solución implementada facendo especial fincapé nos

puntos de sincronización entre threads.

O 3.3. Avaliación da solución proposta.

T 3.3.1. Deseño do conxunto de probas a realizar e selección das libreŕıas

máis relevantes entre as atopadas no punto O 3.1 para comparar

coa solución proposta.

T 3.3.2. Análise e selección dos contornos de probas e do hardware dispoñible.

T 3.3.3. Realización de probas e análise de resultados coa consecuente extrac-

ción de conclusións e posible re-optimización.

B 4. Análise do rendemento e optimización de operacións colectivas para memoria

compartida en Java.

O 4.1. Análise e implementación de operacións colectivas para contornos con

procesadores multi-core.

T 4.1.1. Análise do estado da arte das operacións colectivas, tanto en Java

coma en linguaxes nativas, e da súa adecuación a contornos multi-

core.

T 4.1.2. Implementación de algoritmos de operacións colectivas optimizados

para sistemas con nodos multi-core, tanto aislados (memoria com-

partida) coma conectados mediante redes de interconexión (memoria

compartida-distribúıda).
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O 4.2. Análise do potencial das operacións colectivas non bloqueantes para memo-

ria compartida en Java.

T 4.2.1. Estudo das implementacións existentes e da adecuación dunha im-

plementación para memoria compartida utilizando Java.

T 4.2.2. Deseño e implementación dunha libreŕıa de colectivas non bloqueantes

para Java optimizada para memoria compartida.

O 4.3. Avaliación e análise do rendemento das libreŕıas de colectivas implemen-

tadas.

T 4.3.1. Deseño do conxunto de probas.

T 4.3.2. Análise e selección dos contornos de probas e do hardware dispoñible.

T 4.3.3. Realización de probas e análise de rendemento coa consecuente ex-

tracción de conclusións e posible re-optimización.

B 5. Análise da situación actual de Java para programación heteroxénea.

O 5.1. Avaliación da programación heteroxénea en Java utilizando coprocesadores

con arquitectura x86.

T 5.1.1. Análise bibliográfica de solucións existentes.

T 5.1.2. Avaliación do rendemento das solucións identificadas a través do

deseño dun conxunto de benchmarks.

O 5.2. Avaliación da programación heteroxénea en Java utilizando aceleradores

gráficos.

T 5.2.1. Análise bibliográfica de solucións existentes para a programación de

propósito xeral en GPUs e noutros aceleradores utilizando Java.

T 5.2.2. Avaliación dunha selección das solucións atopadas a través do deseño

dun conxunto de benchmarks.

O 5.3. Análise da productividade das solucións para programación heteroxénea

en Java.

T 5.3.1. Análise bibliográfica de métricas existentes para a avaliación da pro-

ductividade.

T 5.3.2. Avaliación da productividade mediante o deseño dun conxunto de

medidas.
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B 6. Conclusións e análise das futuras liñas de traballo.

O 6.1. Exposición das principais leccións aprendidas.

T 6.1.1. Resumo do traballo feito, principais aportacións e conclusións.

T 6.1.2. Análise das posibles liñas de traballo futuro.

O 6.2. Elaboración da memoria final da Tese de Doutoramento.

T 6.2.1. Estructuración e organización dos informes do traballo realizado.

T 6.2.2. Redacción da memoria.

Medios

Para a elaboración desta Tese de Doutoramento utilizáronse os medios descritos

a continuación:

Material de traballo e financiamento económico proporcionados polo Grupo de

Arquitectura de Computadores da Universidade da Coruña, o Ministerio de

Educación (bolsa predoutoral FPU AP2009-2112) e a Universidade da Coruña

(contrato de profesor axudante).

Proxectos de investigación que financiaron esta Tese:

• Con financiamento europeo: European Network of Excellence on High

Performance and Embedded Architecture and Compilation HiPEAC-2

(7o PM, ICT-217068), HiPEAC-3 (7o PM, ICT-287759) e Open European

Network for High Performance Computing on Complex Environments

(ComplexHPC, COST Action ref. IC0805).

• Con financiamento estatal: proxectos do Plan Nacional de I+D “Arquitec-

turas, sistemas y herramientas para computación de altas prestaciones”

(TIN2010-16735) e “Soporte hardware y software para computación de

altas prestaciones” (TIN2007-67537-C03-02).

• Con financiamento autonómico: Programa de Consolidación e Estruc-

turación de Unidades de Investigación Competitivas da Xunta de Galicia,

na modalidade de Grupos de Referencia Competitiva (Grupo de Arquitec-

tura de Computadores, refs. 2010/6 e 2006/3) e na modalidade de Redes
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de Investigación (Rede Galega de Computación de Altas Prestacións, refs.

2010/53 e 2007/147).

• Con financiamento privado: proxecto High Performance Computing for

High Performance Trading (HPC4HPT), financiado pola Fundación Bar-

rié, e o proxecto FastMPJ Cloud, financiado por Amazon mediante unha

AWS Research Grant.

Clusters e supercomputadores utilizados (detállanse só os recursos utilizados

de cada sistema):

• Clúster pluton (Grupo de Arquitectura de Computadores da Universidade

da Coruña), 8 nodos con 2 procesadores Intel Xeon E5520 de 4 núcleos

a 2.27 GHz con ata 8 GB de RAM e rede de interconexión InfiniBand; e

16 nodos con 2 procesadores Intel Xeon E5-2660 de 8 núcleos a 2.20 GHz

con 64 GB de RAM, GPUs NVIDIA K20m e coprocesadores Intel Xeon

Phi 5110P.

• Clúster DAS-4 (Advanced School for Computing and Imaging, ASCI,

Vrije University Amsterdam), formado por recursos de diversas institu-

cións holandesas. Para a Tese, utilizouse un nodo con procesador AMD

Magny-Cours de 48 núcleos e 128 GB de RAM, e ata 16 nodos con 2

procesadores Intel Xeon E5620 de 4 núcleos a 2.40 GHz con ata 24 GB

de RAM e rede de interconexión InfiniBand.

• Supercomputador Finis Terrae (Centro de Supercomputación de Gali-

cia): 144 nodos con procesador Itanium2 Montvale de 16 núcleos a 1.6

GHz con 128 GB de RAM e rede de interconexión InfiniBand, e 1 nodo

Superdome con procesador Itanium2 Montvale de 128 núcleos a 1.6 GHz

con 1 TB de RAM.

Estancia de tres meses na ETH Zürich no Scalable Parallel Computing Lab do

profesor Torsten Hoefler, que favoreceu a colaboración no desenvolvemento da

libreŕıa de colectivas non bloqueantes e o estudo de algoritmos de operacións

colectivas para memoria compartida, aśı como a profundización na arquitec-

tura do coprocesador Intel Xeon Phi. Esta estancia estivo financiada por unha

Collaboration Grant da rede HiPEAC-3 no 2012.
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Conclusións

Esta Tese de Doutoramento, “High Performance Java for Multi-core Systems”,

presenta unha análise da adecuación de Java para a programación de altas prestacións

en arquitecturas multi-núcleo, aśı como un estudo das principais arquitecturas de

memoria compartida dispoñibles, proporcionando a implementación dun middleware

de paso de mensaxes en Java para a programación paralela de sistemas multi-núcleo

e unha libreŕıa de operacións colectivas optimizadas, tanto bloqueantes coma non

bloqueantes. Ademais, realizouse unha análise detallada das posibilidades actuais

de programación orientada a sistemas heteroxéneos utilizando Java.

Como principal conclusión extráıda, Java permite obter un alto rendemento en

sistemas de memoria compartida mediante o uso da API de multithreading. Pero,

pese a elevada productividade que proporciona a linguaxe Java en xeral, a API de

multithreading é complicada e propensa a erros, e o manexo da sincronización pode

dar lugar a códigos ineficientes ou, o que é peor, inconsistentes. Por outra banda,

áında que existe a posibilidade de utilizar ferramentas de concorrencia de alto nivel

inclúıdas na linguaxe, estas están orientadas a obter un elevado largo de banda e non

baixa latencia, esixindo a restructuración de algoritmos en base a tarefas. A solución

proposta nesta Tese pasa por aproveitar o soporte para multithreading, que permite

explotar os sistemas multi-núcleo eficientemente, para desenvolver ferramentas e

libreŕıas de alto rendemento que proporcionen interfaces sinxelas manexando, de

forma transparente ao usuario, a API de threads.

Ademais, as optimizacións desenvolvidas, tanto no middleware de paso de men-

saxes coma na libreŕıa de operacións colectivas, mostran que á hora de intentar

maximizar o rendemento das aplicacións Java non podemos centrarnos únicamente

nas caracteŕısticas do hardware. Tamén é necesario ter en conta as peculiaridades

da JVM (Java Virtual Machine), xa que os costes de inicialización ou a falta de

compilación poden provocar un aumento da latencia que non compense a mellora

obtida mediante técnicas tradicionais de aproveitamento do hardware. Non obstante,

a JVM presenta avances neste aspecto que permiten certa optimización do rende-

mento tendo en conta o hardware, como por exemplo o mapeo de threads da JVM

a threads do sistema operativo, o que permite ter en conta a afinidade dos threads

a núcleos espećıficos nun código Java.
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Finalmente, áında que os fabricantes non proporcionan soporte espećıfico en Java

para arquitecturas many-core, existen libreŕıas que permiten programar en Java

baseándose en soportes nativos que combinan a alta eficiencia coa productividade.

Non obstante, existe unha diferencia de rendemento con respecto a solucións nativas

debido á falla de soporte directo destas arquitecturas en Java.

En canto ás liñas de traballo futuro, en primeiro lugar estaŕıa a análise dos ben-

eficios e principais problemas do soporte Java directo para arquitecturas many-core.

Xa que o soporte para GPUs depende principalmente dos fabricantes e dos respon-

sables do desenvolvemento das JVMs, é de esperar que, xa que o Intel Xeon Phi

presenta unha arquitectura x86, nun futuro cercano será posible executar máquinas

virtuais Java neste coprocesador. Ademais, tanto as operacións colectivas coma o

dispositivo de paso de mensaxes en Java para sistemas multi-núcleo podeŕıan opti-

mizarse incorporando unha maior caracterización hardware ou parametrización nos

algoritmos e implementando un sistema de selección de algoritmos en tempo de

execución para as operacións colectivas máis preciso e mediante o modelado das in-

teraccións de threads. Outra liña interesante seŕıa unha exploración da posibilidade

de implementar un dispositivo de comunicacións h́ıbrido de memoria compartida-

distribúıda. Aı́nda que esta posibilidade foi analizada en [109] a partir do soporte

para comunicacións en memoria compartida incluido na libreŕıa de paso de mensax-

es MPJ Express [118], esta análise estivo limitada polos problemas de eficiencia na

sincronización de MPJ Express e pola falta de códigos adaptados á explotación do

rendemento de arquitecturas clúster multi-núcleo (é dicir, minimizando as comuni-

cacións inter-nodo).

Principais Contribucións

As principais contribucións desta Tese de Doutoramento son:

Análise do estado da arte de Java para computación de altas prestacións [121].

Implementación dunha solución eficiente e escalable de comunicacións en memo-

ria compartida utilizando Java e proporcionando unha API de paso de men-

saxes [108, 109].
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Optimización de operacións colectivas bloqueantes para memoria compartida

e clusters de procesadores multi-núcleo [122].

Implementación de colectivas non bloqueantes en Java, e estudo do rendemento

en sistemas de memoria compartida [107].

Estudo do rendemento e productividade das solucións dispoñibles para pro-

gramación Java en contornos heteroxéneos utilizando arquitecturas many-

core [25, 106].
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Abstract

The interest in Java within the High Performance Computing (HPC) community

has been rising during the last years thanks to its noticeable performance improve-

ments and its productivity features. In a context where the trend to increase the

number of cores per processor is leading to the generalization of many-core proces-

sors and accelerators, multithreading as an inherent feature of the language makes

Java extremely interesting to exploit the performance provided by multi- and many-

core architectures. This PhD Thesis presents a thorough analysis of the current

state of the art regarding multi- and many-core programming in Java and provides

the design, implementation and evaluation of several solutions to enable Java for

the many-core era. To achieve this, a shared memory message-passing solution has

been implemented to provide shared memory programming with the scalability of

distributed memory paradigms, also with the benefits of a portable programming

model that allows the developed codes to be run on distributed memory systems.

Moreover, representative collective operations, involving computation and communi-

cation among different processes or threads, have been optimized, also introducing in

Java new features for scalability from the MPI 3.0 specification, namely nonblocking

collectives. Regarding the exploitation of many-core architectures, the lack of direct

Java support forces to resort to wrappers or higher-level solutions to translate Java

code into CUDA or OpenCL. The most relevant among these solutions have been

evaluated and thoroughly analyzed in terms of performance and productivity. Guide-

lines for taking advantage of shared memory environments have been derived during

the analysis and development of the proposed solutions, and the main conclusion

is that the use of Java for shared memory programming on multi- and many-core

systems is not only productive but also can provide high performance competitive

results. However, in order to effectively take advantage of the underlying multi- and

many-core architectures, the key is the availability of optimized middleware that

abstracts multithreading details from the user, like the one proposed in this Thesis,

and the optimization of common operations like collective communications.
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Preface

Introduction and Motivation

The Java language has become an interesting choice for High Performance Com-

puting (HPC) due to its significant performance improvements and the features that

make it a highly productive language. Among them, it is worth mentioning porta-

bility and platform independence, simplicity, robustness, security, object orientation

and having a large development community both in industry and academia. Besides

performance improvements, there are two crucial properties that favor the adoption

of Java for HPC: the network and the multithreading support in the core of the

language. These qualities make Java a perfect candidate for parallel programming.

Among current parallel environments, shared memory systems have become very

popular due to the physical limits that performance scaling reached in uni-core pro-

cessors, with dissipation issues and lack of energy efficiency. To overcome these

drawbacks, hardware manufacturers increased performance by including more cores

per processor, leading to the generalization of multi-core processors. In fact, proces-

sors with four or more cores are getting popular in commodity personal computers.

Furthermore, the increase in the number of cores is leading to the spread of

many-core processors for general purpose computation. In this area, again, en-

ergy consumption emerges as an important concern because the large number of

cores causes these processors to be inefficient when only a small amount of cores

is needed. To deal with this issue, specific purpose accelerators, such as Graphics

Processing Units (GPUs), appeared to offload specific parallel tasks while a host

processor tackles general purpose computation. In the case of GPUs, their features

and high compute capabilities made them also suitable for streaming programming,

1
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not necessarily related to graphics processing. However, programming difficulties

associated with the peculiarities of these accelerators favored the birth of x86-based

coprocessors, such as the Intel Xeon Phi, that can be programmed with traditional

paradigms and languages.

The success of multi- and many-core architectures points out the need for lan-

guages and tools to exploit shared memory performance, where Java, with its in-

trinsic multithreading support, has a tremendous advantage over other languages.

The main drawback is that the threading API is difficult to manage, making the

user responsible for dealing with the scheduling of threads, and race conditions and

inconsistencies may arise. As a potential solution, Java provides a high-level concur-

rency library to work with thread pools and oriented to task programming or to a

fork/join approach, with load balancing achieved by work-stealing techniques. These

paradigms are throughput oriented and parallel algorithms have to be rewritten or

programmed directly with the basic threading API.

This PhD Thesis presents a detailed analysis of the state of the art regarding the

use of Java in shared memory systems programming, focusing on suitable HPC so-

lutions. The main goals of this work are the analysis of the Java support for shared

memory HPC programming and the development of middleware to improve perfor-

mance and productivity. To achieve this, a thorough review of available libraries for

multi-core programming has been carried out. As a result, the Thesis presents the

design, implementation and evaluation of a Java message-passing communication de-

vice optimized for shared memory. This device provides a high-level message-passing

API avoiding the need for managing threads or using a task-based approach. This

API follows the Message Passing in Java (MPJ) specification, based on the MPI

standard widely used in HPC. Moreover, the Thesis includes an optimization of

communication operations among processes or threads (collective operations) for

multi-core environments, also providing nonblocking collectives support and a thor-

ough analysis regarding the feasibility of nonblocking collectives for shared memory

environments. In addition, this Thesis presents an evaluation of currently available

solutions to exploit many-core architectures using Java. The main conclusion is that

the use of Java in shared memory environments is highly productive and can provide

high performance results, but it is necessary to provide optimized middleware that

abstracts multithreading details from the user, like the one proposed in the Thesis,
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and the optimization of widely used operations like collective communications.

Main Contributions of the Thesis

The main original contributions derived from the Thesis are the following:

Analysis of the state of the art regarding Java for High Performance Computing

(HPC) [121].

Implementation of an efficient and scalable communication solution for shared

memory systems using Java and supporting a message-passing API [108, 109].

Optimization of blocking collective operations for shared memory and multi-

core clusters [122].

Implementation of nonblocking message-passing collectives in Java and per-

formance study on a shared memory system [107].

Performance and productivity evaluation of available solutions for Java pro-

gramming in heterogeneous environments with many-core architectures [25,

106].

Structure of the Thesis

The Thesis is organized in the following chapters:

Chapter 1, Java for High Performance Computing, summarizes the state of

the art regarding Java HPC programming for multi- and many-core systems.

Different parallel programming frameworks and tools are studied, focusing on

message passing, due to its scalability and extended use in HPC. Moreover,

it provides an overview of current heterogeneous programming solutions for

Java.
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Chapter 2, Shared Memory Architectures, analyzes some of the most popular

shared memory architectures. First, it provides some insight on architectural

aspects of two multi-core processors from the two main manufacturers, Intel

and AMD. Then, it goes through similar aspects regarding many-core systems,

analyzing the last NVIDIA GPU architecture and the recently released x86-

based Intel Xeon Phi.

Chapter 3, A Shared Memory Communication Device for Message Passing

in Java, presents the design, implementation and performance evaluation of

a shared memory communication device for message passing in Java. This

device provides efficient communications relying on shared memory transfers

among threads, instead of processes, using zero-copy protocols and minimizing

synchronizations.

Chapter 4, Efficient Support of Collective Communications in Java, includes a

collectives library with blocking and nonblocking operations support and opti-

mizations for multi-core systems. Blocking collectives are optimized not only

for shared memory systems, but also for multi-core clusters, exploring the com-

bination of process communication across the network and the use of threads

within each node. Moreover, the nonblocking support assesses the feasibility

of using nonblocking collectives in Java for shared memory programming.

Chapter 5, Java Heterogeneous Computing, studies the currently available

solutions to program many-core accelerators with Java. It provides a thorough

analysis of efficiency and productivity of current projects that allow us to take

advantage of these accelerators using Java.

Finally, the Thesis presents the main conclusions, guidelines and future work

derived from the research carried out.



Chapter 1

Java for High Performance

Computing

Java is the leading programming language both in academia and industry envi-

ronments. The success of Java is motivated by its appealing features such as built-in

networking and multithreading support, automatic memory management, platform

independence, portability, security, object orientation, an extensive API and a wide

community of developers. Moreover, it is increasingly being adopted by the High

Performance Computing (HPC) community [121] due to its improvements in perfor-

mance, which makes it competitive in comparison with natively compiled languages

like C/C++, enabling the use of Java in performance-bounded scenarios.

The physical limits in frequency scaling has favored the trend to increase the

number of available cores per processor and the use of specific accelerators and co-

processors to improve performance and energy efficiency. This leads to the need

for scalable parallel programming paradigms to exploit the characteristics of the

underlying hardware in order to reflect the performance improvements in real appli-

cations. Although this is not a new situation since clusters of processors are widely

used to build more powerful computers that meet the needs of the HPC community,

the particularities of multi-core processors have to be addressed not only in an iso-

lated manner, but also to increase performance on clusters of multi-core processors

(e.g., heterogeneity of performance for communications within cores on the same

processor and on different processors).
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This chapter presents an analysis of the state of the art of HPC programming in

Java focusing on solutions for shared memory multi- and many-core systems.

1.1. Parallel Programming in Java

Current trends in hardware evolution make it unavoidable to any HPC language

to provide parallel tools that allow programmers to exploit the underlying architec-

tures. Multithreading support in the core of the Java language makes it inherently

parallel which, combined with the built-in networking, turns Java into a more than

suitable choice for the development of projects that aim to take advantage of parallel

architectures [121].

This multithreading support allows Java to exploit shared memory architectures

without having to resort to external projects or libraries. Nevertheless, its thread-

ing API generally requires low-level programming skills. The concurrency frame-

work, included in the core of the language since Java 1.5, simplifies the management

of threads hiding part of the complexity and providing a task-oriented program-

ming paradigm based on thread pools. However, the task management targets the

scheduling of a high number of tasks instead of reducing the task start-up time

(the initialization overhead). Moreover, it is limited to the execution in parallel

of individual tasks, so the developer has to resort to threads for high performance

parallel codes, where threads cooperate to reduce the runtime of a workload. Java

1.7 extends the concurrency framework by including the fork/join utilities developed

by Doug Lea [70] to favor parallel programming oriented to the fragmentation of a

complex problem into recursive tasks following the divide-and-conquer strategy. The

fork/join structure is based on work-stealing techniques that automatically balance

the workload among the available threads.

However, codes developed using threads or tasks cannot run on distributed mem-

ory environments, as it happens for the traditional approach followed in compiled

languages, such as C/C++, with the use of shared memory models like POSIX

threads (Pthreads) or OpenMP directives. In order to overcome this limitation,

natively compiled languages resort to several tools that execute multithreaded ap-

plications on distributed memory architectures but, up to now, either their imple-
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mentation is based on software translations to message-passing models like MPI [11]

or it relies on Distributed Shared Memory (DSM) systems [84]. Another option

is the use of a hybrid shared/distributed memory programming model combining

MPI for inter-node communications and a shared memory model to take advan-

tage of intra-node parallelism [143]. Additionally, new programming paradigms

such as PGAS (Partitioned Global Address Space) arise for programming hybrid

shared/distributed memory systems, although generally their performance is lower

than MPI [78]. In Java, the use of Java DSM implementations generally involves

portability issues due to the need for modified Java Virtual Machines (JVMs). The

Parallel Java project [58] provides several abstractions over the concurrency utilities,

also implementing the message-passing paradigm for distributed memory but with

its own interface instead of a standard one like MPI. There are also OpenMP-like

Java implementations such as JOMP [16] and JaMP [63]. Both systems are “pure”

Java and thread-based, but the second one also takes advantage of concurrency util-

ities overcoming some efficiency problems of JOMP. JaMP is part of Jackal [141],

a software-based Java DSM implementation, and its main drawback is the lack of

portability since it cannot run on standard JVMs.

Java communication middleware, such as Java Message Service (JMS) and Re-

mote Method Invocation (RMI), always resort to JVM sockets, which currently have

two implementations: the standard I/O sockets (the counterpart of the widely avail-

able POSIX sockets), and the New I/O (NIO) sockets, an implementation focused

on the scalability of communications in servers introduced in Java 1.4. However,

programming with sockets requires a significant effort due to their low-level API.

Moreover, performance is generally limited as sockets rely on TCP/IP. In order

to overcome these limitations, parallel programmers generally develop their codes

using message-passing libraries, which provide a higher-level API, scalability and

relatively good performance.

Another project, recently released, that provides high performance capabilities

in Java is Disruptor [132], based on a cyclic queue (or ring buffer) and a consumer-

provider programming paradigm. Disruptor aims to provide a low-latency and high-

throughput solution for data interchange among threads, taking into account low-

level features such as cache sizes and lock-free strategies.
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1.1.1. High Performance Utilities in Java

There are also other tools that support HPC programming although they are

not intrinsically parallel. The best example are mathematical libraries, very useful

especially on scientific environments. Although it has been proven that Java is able

to compete with Fortran in high performance numerical computing [12, 54, 85],

the development of a competitive numerical Java library is still an ongoing effort.

In fact, in [7] the authors evaluate Java for numerical computing showing that

the performance of Java can be significantly enhanced by delegating numerically

intensive tasks to native libraries such as Intel MKL. There are some active projects

that tackle different numerical operations, such as the Universal Java Matrix Package

(UJMP) [5, 140], the Efficient Java Matrix Library (EJML) [27], the Matrix Toolkits

Java (MTJ) [81], the Java Algebra System (JAS) Project [64, 65] and jblas [74],

which are replacing more traditional frameworks like JAMA [52].

Another useful tool for HPC is the data management support in terms of col-

lections and optimizations of common operations like insertion, sort, deletion, etc.

In this field, there are several projects that attempt to provide with high perfor-

mance collections, such as the High Performance Primitive Collections for Java

(HPPC) [47] or TROVE [137]. However, some of them have programmability or

thread-safety limitations.

1.2. Message Passing in Java (MPJ)

Message passing is the most widely used parallel programming paradigm as it is

highly portable, scalable and usually provides good performance. It is the preferred

choice for parallel programming in distributed memory systems such as clusters, and

it is becoming popular also for shared memory architectures with a high number of

cores or threads, due to its scalability, flexibility and interesting cost/performance

ratio.

MPI is the standard message-passing interface for languages compiled to native

code (e.g., C and Fortran). Regarding Java, there have been several implementations

of message-passing libraries from its inception [121]. Although initially each project
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developed its own MPI-like binding for the Java language, current projects generally

adhere to one of the two main proposed APIs: (1) the mpiJava 1.2 API [20], which

supports an MPI C++–like interface for the MPI 1.1 subset, and (2) the JGF MPJ

API [8], which is the proposal of the Java Grande Forum (JGF) [53] to standardize

the MPI-like Java API. The collective communication primitives are essential part

of the different MPJ APIs, both in terms of number of methods and widespread use.

MPJ libraries can be implemented in two ways: (1) wrapping an underlying

native messaging library like MPI through the Java Native Interface (JNI); or (2)

using a “pure” Java (100% Java) approach, based on RMI or sockets. Each solution

fits with specific situations, but presents associated trade-offs. On the one hand,

the use of the pure Java approach ensures portability, but it might not be the most

efficient solution, especially in the presence of high-speed communication hardware

and when using RMI or JMS, as these technologies are oriented to distributed com-

puting on loosely coupled peers and show high start-up latencies. On the other

hand, the use of JNI has portability problems, although usually in exchange for

higher performance.

The mpiJava library [9] is a wrapper implementation which provides efficient

communication resorting to an underlying native MPI library, adding a reduced JNI

overhead. However, despite its usually high performance, mpiJava currently only

supports some native MPI implementations, as wrapping a wide number of functions

(especially the collectives) and heterogeneous runtime environments entails an im-

portant maintenance effort. Additionally, this implementation presents instability

problems, derived from the native code wrapping, and it is not thread-safe, being

unable to take advantage of multi-core systems through multithreading.

As a result of these drawbacks, the mpiJava project maintenance has been super-

seded by the development of MPJ Express [116], a “pure” Java message-passing im-

plementation of the mpiJava 1.2 API specification. MPJ Express is thread-safe and

presents a modular design which includes a pluggable architecture of communication

devices that allows to combine the portability of the “pure” Java NIO communica-

tions (niodev device) with a high performance Myrinet support (through the native

Myrinet eXpress –MX– communication library in the mxdev device), and a specific

device for shared memory. Furthermore, this project is the most active in terms

of adoption by the HPC community, presence in academia and production environ-
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ments, and available documentation. The project is also stable and publicly available

along with its source code at http://sourceforge.net/projects/mpjexpress/.

There are additional MPJ implementations, such as MPJ/Ibis [13], based on

the JGF API. This library supports “pure” Java and native communications on

Myrinet. In addition, they use two low-level communication devices based on Ibis:

TCPIbis, based on Java IO sockets (TCP/IP), and NIOIbis, which provides blocking

and nonblocking communications through Java NIO sockets. Nevertheless, it lacks

thread safety and provides limited performance.

The increasing interest in Java is also evidenced by the recent efforts of Open

MPI [128, 129], one of the main open source MPI projects, that has announced its

Java interface motivated by a request of the Hadoop community. While it is still

bounded to the MPI 1.2 API (using the mpiJava 1.2 API and the mpiJava library

bindings), they plan to extend it to the full MPI 3.0 specification. Although this

Java support could benefit from a large community of users and developers, and

from the highly optimized MPI support of Open MPI, it is still a wrapper to a

native implementation with no pure Java support, thus lacking portability and with

instability issues that has put off its release until these issues are solved.

The most recent “pure” Java MPJ project is our FastMPJ library [29, 123],

with a modular design that can be seen in Figure 1.1. It is similar to MPJ Ex-

press, which has a pluggable architecture of communication devices that allows to

combine the portability of the “pure” Java communication devices with high per-

formance network support wrapping native communication libraries through JNI.

Figure 1.1 shows the communication support implemented in FastMPJ, either on

JVM threads (smdev), sockets over the TCP/IP stack (niodev and iodev), or on

native communication layers such as Open-MX (mxdev), InfiniPath PSM (psmdev)

and InfiniBand Verbs (IBV) (ibvdev), which are accessed through JNI. The main

advantages over MPJ Express are the more stable runtime framework and higher

performance and scalability.
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Figure 1.1: FastMPJ communication devices on shared memory and cluster networks

1.3. Heterogeneous Programming in Java

Besides multi-core processors, another successful trend in hardware development

is the inclusion of coprocessors to increase the performance of specific regions of

parallel codes. Most of them are composed by a large number of small and specialized

cores, such as the Graphics Processing Units or GPUs. These accelerators provide

high performance and energy efficiency since they are external units only used when

necessary.

The most popular coprocessors are the GPUs, with a heavy and increasing pres-

ence in the Top 500 list of supercomputers [134]. The massively parallel architecture

of the GPU, together with its floating point capability, has motivated the growth of

GPGPU (General Purpose computing on GPU) [71], along with different program-

ming models, such as Compute Unified Device Architecture (CUDA) [91] or Open

Computing Language (OpenCL) [120], to enable the use of GPUs as many-core ac-

celerators for non-graphics workloads. Hence, the adoption of GPUs as accelerators

in HPC environments [34] is increasing, since many scientific applications present a

huge degree of parallelism that can take advantage of GPU’s features.

The recently released Intel Xeon Phi, from the Intel MIC family, aims to share

this popularity by providing many-core coprocessors with a x86 architecture to en-
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able the use of traditional programming languages and paradigms to exploit its

performance. As the Xeon Phi accelerator has just been released, there is no Java

support yet, although given its architecture it should be possible to have JVMs

running in this system in the short term. Moreover, it supports traditional shared

memory programming paradigms, including OpenCL, allowing it to be used as a

mere coprocessor with OpenCL accessed via JNI.

Unfortunately, this situation is not exclusive of the Xeon Phi accelerator. GPGPU

programming models are provided as libraries and intended to be used as C/C++

extensions, whereas languages like Java must resort to wrappers (via JNI) to be able

to take advantage of GPUs as accelerators. This has motivated the growth of sev-

eral projects that aim to ease Java GPGPU programming by providing frameworks

to deal with C/C++ extensions. Moreover, there is an ongoing effort within the

OpenJDK community, together with Oracle and AMD, to include GPGPU support

directly in the JVM [96].

Among the Java GPGPU projects, we can distinguish two approaches: the ones

that provide Java bindings to a lower-level language (CUDA or OpenCL), or those

with a user-friendly API that abstracts GPU programming along with a runtime

system which translates Java bytecode into CUDA or OpenCL in a transparent

manner. While Java bindings are meant to provide better performance, the second

approach makes it possible to find a trade-off between performance and productivity.

Table 1.1 summarizes the most relevant projects for GPGPU computing in Java

classified by the underlying native library used. Among the CUDA-related projects,

JCUDA [144] has its own interface to invoke certain CUDA functions and user

developed kernels. Nevertheless, it is not included in the “User-friendly projects”

group since it still requires low-level programming skills and certain knowledge of

CUDA functions.

jCuda [55] is the most active Java GPGPU project. It provides a direct wrap-

per over CUDA 4.2 runtime and driver API, allowing the direct interaction with

the device, including memory management, and providing support to launch CUDA

kernels from Java. The main strength of this project is that it provides support for

several optimized libraries from CUDA like CUBLAS (CUDA Basic Linear Algebra

Subprograms), CUFFT (Fast Fourier Transforms), CUDPP (Data Parallel Prim-
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Table 1.1: Available solutions for GPGPU computing in Java

Java bindings User-friendly projects

CUDA JCUDA [144] Java-GPU [18]

jCuda [55] Rootbeer [104]

OpenCL JOCL [56] Aparapi [4]

JogAmp JOCL [57]

itives), CURAND (Random Number Generation), CUSPARSE (Sparse Matrices)

and NPP (NVIDIA Performance Primitives). The jCuda API consists of a group

of static methods which are very similar to the native library functions since the

aim of jCuda is to keep the API as close to the original as possible, including also

functions in order to use user defined kernels in CUDA language, as well as pointer

handling functions.

Java-GPU [18] introduces directives to offload Java code into the GPU, whereas

Rootbeer [104], which has recently been published, provides a specific high-level API

for Java and translates the generated bytecode into CUDA.

Java OpenCL binding solutions include JOCL [56] and JogAmp JOCL [57]. The

main difference between them is that while the former provides support for OpenCL

1.2, the latter only handles OpenCL 1.1.

Finally, Aparapi [4] is the most up-to-date Java OpenCL project and provides

OpenCL 1.2 support. The Aparapi programmer is provided with a high-level API to

express data parallel workloads in Java, being released from all the GPU implemen-

tation details. Nevertheless, in order to obtain higher performance, the user must

be aware of some architectural details, although no OpenCL knowledge is needed.

The runtime system translates Java parallel workloads to OpenCL and offload them

on an OpenCL device (a GPU or a CPU) or on a pool of threads (in this case, no

translation is needed). Aparapi is supported by AMD and its source code has been

released with a GPL license.





Chapter 2

Shared Memory Architectures

The lack of frequency scaling has motivated the increase in the number of cores

per processor, and thus current shared memory architectures aim to provide higher

computational power by the aggregation of smaller processing units. In this chap-

ter, in order to analyze the shared memory architectures used in this Thesis, we

have classified them in multi- and many-core processors. Although it is not clear

the number of cores that determine the division, we considered as multi-core the

stand-alone processors, i.e., those providing parallel features by the combination of

general purpose cores. And, as many-core, accelerators or coprocessors with an ag-

gregation of specific purpose cores that are not expected to be efficient for sequential

computation.

2.1. Multi-core Architectures

Multi-core architectures appeared as a solution to the lack of power scaling and

dissipation issues that arose when trying to increase the clock frequency on uni-

core processors. Thus, multi-core systems provide more computational power by

combining several processing cores within the same chip. Some of them can also be

combined within a node using high-speed connectors such as the Intel QuickPath

Interconnect (QPI) or the AMD HyperTransport (HT) technology.

Usually, these cores are arranged as NUMA systems where the cores within the

15
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same chip get access to the memory regions through a shared bus. When there

are several processes connected by QPI or HT, cores from one processor have to go

through these links to access the NUMA regions of another processor, thus expe-

riencing a higher access overhead. Within each chip, cores are linked in different

manners, e.g., Intel Nehalem uses a crossbar system, which is highly efficient but

not scalable in terms of cost, and Intel Sandy Bridge uses a ring bus which is slower

but more scalable. Another feature of these multi-core architectures is that cache

coherency is kept in each node (using links among processors with this purpose).

Usually, cores have some private caches and a larger shared cache used to maintain

coherency within each processor.

The rest of this section focuses on describing two representative up-to-date multi-

core systems, based on the Intel Sandy Bridge (Xeon E5) and on the AMD Magny-

Cours. Both of them will also be used for the performance evaluation of the libraries

developed in this Thesis, along with others with similar characteristics, so their main

architectural features are detailed. On the one hand, the Xeon E5 processor presents

a quite recent micro-architecture (Intel Sandy Bridge) for high performance shared

memory systems, achieving up to 20.8 GFlops of peak performance per CPU core

in the model used (2.6 GHz), which represents one of the best peak performances

per core amongst the currently available systems. On the other hand, the 48-core

Magny-Cours-based system has one of the highest aggregated performance numbers

in a shared memory system (403.2 GFlops), although its performance per core is

quite reduced (8.4 GFlops). Hence, the Xeon E5 system has allowed us to analyze

a quite recent Intel micro-architecture, whereas the Magny-Cours system presents

the issues associated with the integration of multiple multi-core processors.

Figure 2.1a presents the layout of an 8-core Xeon E5 processor, based on the

Sandy Bridge-EP architecture, where up to 16 threads can run simultaneously

thanks to hyperthreading. The eight cores in this processor share the L3 cache

(called LLC or Last Level Cache), implemented as an Intel Smart Cache, where

each core can access the whole cache when the rest of the cores are idle. This cache

is divided in physical slices connected to an internal ring bus. Figure 2.1b shows

the interconnection layout in a dual-socket Intel Xeon E5-2670 system where the

processors and the memory are linked by a QuickPath Interconnect (QPI). This

NUMA system supports DDR3-1600 MHz memory.
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Figure 2.1: Architecture of an Intel Xeon E5-2670 Sandy Bridge-based system

The second system, a fat node from the DAS-4 cluster [24], has 48 cores in 4

AMD Opteron 6172 processors (Magny-Cours), each one with 12 cores [3, 77] and

128 GBytes of RAM. Figure 2.2a presents the layout of the 12-core Magny-Cours

processor, which is composed of two 6-core AMD Opteron Istanbul dies (the 6 cores

share the L3 cache) interconnected by HyperTransport (HT) links. Figure 2.2b

shows the HT interconnections between the different dies as well as the direct access

of each die to its memory region with DDR3-1333 MHz support. Thin arrows

represent half HT links (8 bits), whereas thick ones represent full HT links (16
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bits). As each 12-core processor is a NUMA system with 2 NUMA regions, this

quad-socket system has eight NUMA regions.
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Figure 2.2: Architecture of a Magny-Cours AMD Opteron 6172-based system



2.2 Many-core Architectures 19

2.1.1. Thread Affinity Control in Java

A consequence of the popularization of NUMA architectures for multi-core sys-

tems is that the control of the location of running threads within a node or a pro-

cessor can have significant effects on performance. For instance, if two threads are

communicating through shared memory transfers and they share the last level of

cache, transfers will go through this cache instead of across an interconnection link.

If the communication is performed between two JVMs (thus between two dif-

ferent processes), OS utilities can be used when launching the processes to state

the core in which each process is running (e.g., the numactl tool can be used in

UNIX). However, when using threads within a single JVM, these tools only support

to bound the JVM execution to a set of cores, but the thread mapping within this

set is managed internally by the JVM. Thus, if a more accurate mapping is needed,

such as a thread-to-core mapping, it would have to be controlled by the application.

Unfortunately, Java does not provide any affinity or pinning control over threads.

Nevertheless, JVM threads are directly mapped to native OS threads and, taking

advantage of this property, it was possible to develop an affinity tool in order to

enable a fine-grained thread mapping control within the JVM. This tool accesses

native OS primitives (in particular, pthread setaffinity np) through JNI, thus

supporting affinity management in a Java multithreaded application. In the ex-

perimental evaluations included in the following chapters, this tool will be used to

improve performance by defining optimal thread-to-core mappings. In fact, in the

next chapter, the effects of thread mapping will be evaluated and analyzed in detail.

2.2. Many-core Architectures

Multi-core processors provide high aggregated computational performance but,

when the number of cores is large, the probabilities of taking full advantage of all

cores at the same time are reduced, because parallel codes have also sequential

parts and many of them cannot exploit all the potential provided by a multi-core

processor more than in a small portion of the code. A more common situation is a

parallel code with unbalanced and heterogeneous parts that will not take advantage
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of having several similar cores. In this scenario, having a large number of cores is

highly inefficient in terms of energy consumption, and even in terms of cost because

it could be solved by having a cheaper set of smaller cores that provide a specific

functionality. This is the aim of many-core accelerators or coprocessors. They

provide massively parallel architectures with simple computing units or cores to

accelerate sections of an application that is run in a general purpose processor.

Among these many-core architectures, this section is focused on two of them that are

highly interesting: the Intel Xeon Phi, the main accelerator with a x86 architecture,

and the GPUs (specifically, the Kepler architecture), which are currently present in

the most powerful supercomputers [134].

2.2.1. Many-core x86 Architectures: Intel Xeon Phi

The Intel Xeon Phi is the latest and most scalable many-core x86 coprocessor.

It is the first commercial product of the MIC (Many Integrated Cores) architecture,

and reflects the efforts made by Intel to develop a many-core coprocessor. The main

goal was to provide an accelerator to be programmed with traditional paradigms

and languages, avoiding the need to resort to GPGPU computing and complex

programming models. This approach was also explored by the IBM Cell Broadband

Engine [49], which implemented a new architecture also used in popular video game

consoles such as Sony’s PlayStation3 and that even reached the 1st position in the

Top 500 list [134] in June 2008 with the IBM Roadrunner, but finished its production

in 2009.

The precursor of the Xeon Phi is the Larrabee architecture [115], a project that

started in 2006 (it was canceled in 2010) and aimed to provide, in a single chip,

a combination of GPU and vector accelerator (64-byte VPU unit with scatter and

gather loads/stores and mask registers) with a bidirectional ring bus (512 bits per

direction), private L1 and 256-KByte L2 sliced caches. Moreover, it implemented

the support for running 4 threads per core in some sort of Intel hyperthreading.

However, as the performance obtained was below the expected results, the chip was

never commercialized. Although the Xeon Phi has inherited most of its features,

the main changes are the lack of graphics processing support, the OS running on

the coprocessor instead of on the host and that main memory is GDDR5 (it was
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DRAM on Larrabee).

In the meantime (around 2009), Intel was also involved in the development of

the Single-chip Cloud Computer (SCC) processor [100], with multiple independent

cores (48) without cache coherency and interconnected with a 2D mesh network.

The cores (Pentium I P54C at 800 MHz) have 16-KByte L1 and 256-KByte L2

caches and access to off-chip private DDR3 memories (physically shared). The cores

are organized in tiles that contain two cores and a message-passing buffer (MPB,

8 KBytes), and each tile is connected to a router. The main goal of this architecture

was to achieve high scalability, but it turned out to be harder to program than a

cache coherent architecture.

Intel Xeon Phi is the brand name of all products based on the MIC archi-

tecture, which inherits many architectural features from Larrabee except for the

GPU-specific hardware. Although its development started in 2010, it was not until

November 2012 that Intel announced the first commercial Xeon Phi (named 5110P),

and it is expected that different models, varying the number of cores and small hard-

ware features, will shortly be available. Figure 2.3 shows an overview of the 5110P

Xeon Phi architecture. It has 60 simplified Intel CPU cores running at 1056 MHz

and supports 4 threads per core thanks to hyperthreading (thus, 240 threads in the

die). The cores, as the Larrabee ones, have a vector unit with 64-byte registers

featuring a new vector instruction set known as Intel Initial Many Core Instructions

(IMCI). Each core has a 32-KByte L1 data cache, a 32-KByte L1 instruction cache,

and a private 512-KByte L2 unified cache which is kept coherent by a Distributed

Tag Directory system. Cores, Tag Directories (TDs) and memory are connected to a

bidirectional ring that consists of three independent rings in each direction [22]: the

data block ring (64 bytes wide), the address ring (send/write commands and mem-

ory addresses) and the acknowledgment ring (flow control and coherency messages).

There are 64 TDs connected to the ring and the address mapping to the TDs is

based on hash functions over the memory addresses, leading to an even distribution

around the ring. Although this causes all cache transfers to go through the TDs,

increasing the minimum latency, it also provides homogeneity in the access time.

The memory controllers provide access to the GDDR5 memory (8 GB of global

memory). The coprocessor runs a simplified Linux-based OS in one of the cores.

The Xeon Phi can be used as a mere coprocessor in which the host offloads code
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to be accelerated, as an independent unit that runs a whole application, or as an

independent unit that communicates in a symmetric manner with the host [50].

Figure 2.3: Architecture of the Intel Xeon Phi coprocessor

2.2.2. Graphics Processing Units (GPUs)

Graphics Processing Units (GPUs) appeared as a means to leverage graphics

computing to special units that take advantage of their particularities to improve

performance. Generally, graphics computing presents massive parallelism that can

be exploited in terms of stream and vector operations. However, this high paral-

lelism, the floating point capabilities, and the generalization of GPU architectures,

made it an interesting choice for general purpose computation (GPGPU) [32, 71].

Modern GPUs use unified architectures of scalar cores that enable their use not

only for graphics purposes but for any other vector-based computation. They follow

the Single Instruction Multiple Thread (SIMT) model, providing multiple small

processing units to exploit data parallelism with threads managed by hardware. The

main GPU manufacturers are AMD and NVIDIA and, although they present some

differences in their architecture and their nomenclature differs, they both exploit

the idea of having several multi-processors composed by Single Instruction Multiple

Data (SIMD) processors. As a consequence, GPGPU is mainly based on stream
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computing and the codes are structured in small kernels that consist of operations

that are applied to many elements of a stream in parallel.

This section describes the Kepler architecture, the last GPU family released

by NVIDIA, which is the coprocessor vendor with the highest share in the Top

500 list [134], including the number one (Titan) in the November 2012 list (second

in the June 2013 list). In a NVIDIA architecture, the main processing unit is a

Streaming Multi-processor (“SM”, or “SMX” in Kepler architectures) composed

by SIMD Processors (“SP”) that can schedule the same instruction on a group of

threads (“warp”). Kepler GPUs are based on the GK110 architecture (15 SMXs

by default) [95]. Each SMX has 192 FP32 and 64 FP64 CUDA cores, 256 KBytes

of register file space, 64 KBytes of on-chip memory (one per SMX) and 48 KBytes

of uniform cache. The 64-KByte on-chip memory can be configured as 48 KBytes

of shared memory with 16 KBytes of L1 cache or vice versa (or in a 32/32 KBytes

manner). Moreover, the 48-KByte uniform cache supports full speed unaligned

memory access patterns automatically managed by the compiler. The L2 cache

(1.5 MBytes by default) serves as data unification point among the SMX units.

Among the Kepler series, we used the NVIDIA Tesla K20m in the experiments of

Chapter 5, with 2496 SPs (13 SMXs) at 706 MHz, 5 GB GDDR5 (5.2 GHz) and a

1.25-MByte L2 cache.

The SMX schedules threads in warps of 32, having 4 schedulers and 8 instruction

dispatch units, allowing 4 warps to be issued and executed concurrently, and 2

independent instructions per warp can be dispatched each cycle. Moreover, the

GK110 allows double precision instructions to be paired with other instructions.

Each GK110 SMX can have up to 2K threads at any time.

The GK110 incorporates the Hyper-Q technology, that expands the number of

hardware work queues from 1 (on previous architectures like the GF100) to 32,

allowing connections from multiple CUDA streams, multiple MPI processes, or mul-

tiple threads within a processor; and operations in one stream will not block other

streams, avoiding false dependencies. It also offers significant benefits to legacy

MPI-based algorithms optimized for multi-core CPU systems where a single MPI

process ends up with insufficient work to take full advantage of the GPU. Using only

one queue, MPI processes could also share a GPU but they were bottlenecked by

false dependencies that can now be removed.
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The Kepler architecture also implements dynamic parallelism, which consists of

the ability for kernels to be able to dispatch other kernels without CPU interaction,

implicitly relying on recursion. Since both CPU and GPU can launch new kernels,

Kepler includes a Grid Management Unit that controls and prioritizes them.

Figure 2.4 shows the architecture of a GK110 SMX including the internal memory

subsystem and the cores. Other elements shown are the Double Precision Units (DP

Unit), the Special Function Units (SFU) and the Load/Store Units (LD/ST). “Tex”

represents 16 Texture Units used for graphics processing.

Figure 2.4: Architecture of the Kepler GK110 SMX, basic block of the NVIDIA K20
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2.3. Java Support for Shared Memory Architec-

tures

The integration of several cores in a single processor has become a popular re-

source to address the physical limits of clock frequency scaling. However, the gen-

eralization of multi- and many-core processors has also led to the spread of a large

variety of shared memory architectures whose particularities have to be taken into

account when developing efficient codes. Moreover, not only the differences be-

tween x86 and GPU accelerators are remarkable, but also x86 multi- and many-core

systems present noticeable differences. The main concerns of many-core processor

designers are scalability and throughput: the goal is having a large number of pro-

cesses or threads carrying out many small tasks. However, multi-core processors

have to find a trade-off between throughput and latency since they are also meant

to provide reasonably good performance for sequential codes. Regarding multi-

core systems, the differences are mostly related to topologies and interconnection

strategies and technologies. Hence, having some insight into memory hierarchies,

interconnection between cores and management of shared resources, among other

architectural aspects, is crucial to provide efficient and optimized parallel codes.

Programming languages, like Java, have provided several approaches to take

advantage of multi-core architectures, usually through multithreading techniques.

Although Java multithreading support enables the efficient use of underlying multi-

core systems, it has to be managed carefully, especially when the number of threads

increases, given that synchronization and contention in the access to shared resources

can severely limit its scalability and increase complexity. A solution based on a

message-passing API over Java multithreading in order to increase scalability and

ease of use is proposed in Chapter 3, and an efficient library of collective operations

optimized for multi-core architectures is presented in Chapter 4. In addition, in

a scenario of multi-core processors with NUMA architectures, it is also necessary

to take into account the location of threads and use affinity techniques to exploit

locality. The message-passing middleware of these chapters benefits heavily from the

fine-grained affinity control described in Section 2.1.1 and the multi-core processors

described in Section 2.1 will serve as testbeds.

Other shared memory architectures like coprocessors or accelerators do not sup-
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port directly the use of traditional programming languages (e.g., the GPUs) or do

not provide JVM support (e.g., the Intel Xeon Phi). This lack of support prevents

the use of multithreading techniques to exploit this kind of architectures with the

Java language. As it has been mentioned in Section 1.3, several projects have tried

to address this issue by providing Java support for OpenCL or CUDA languages

through JNI access. In Chapter 5, two of these existing solutions were selected to

be analyzed and benchmarked in both a NVIDIA K20 GPU and an Intel Xeon Phi.



Chapter 3

A Shared Memory

Communication Device for

Message Passing in Java

Parallelism for shared memory systems is inherently supported in Java through

multithreading, which allows the simultaneous execution of multiple tasks in a JVM,

hence taking advantage of shared memory intra-process transfers. However, thread

programming increases the development complexity due to the need for thread con-

trol and management, task scheduling, synchronization, and access to and mainte-

nance of shared data structures, which is always accompanied by the presence of

thread-safety concerns. An alternative for overcoming these limitations is the use of

message passing on shared memory systems, whose support has been implemented

in a low-level communication device named smdev that is presented in this chapter.

This device includes the implementation of communications using shared memory

data transfers, and hence it is possible to program efficiently on shared memory

without dealing with threads, offering a high level of abstraction that supports han-

dling threads as message-passing processes. This ease of use has been demonstrated

in the straight integration of smdev in our Java message-passing implementation,

FastMPJ [29, 123] (see Figure 1.1 for a global overview).

27
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3.1. State of the Art of Message Passing for Shared

Memory

Message passing was selected as the programming model to support shared mem-

ory as it is the most widely used in parallel programming, especially for distributed

memory. The device developed, smdev, is based on threads while current message-

passing implementations, either MPI for natively compiled languages or Java mes-

sage passing, do not take full advantage of multithreading for intra-process transfers,

and they generally resort to inter-process communication protocols and, in some

cases, to network-based communication protocols for data transfers within the same

node. This is even more critical with the current increase in the number of cores

per processor, which demands scalable shared memory communication solutions.

MPI libraries, such as MPICH and Open MPI, are mostly optimized for dis-

tributed memory communications, although they are increasingly taking advantage

of multi-core shared memory systems. Thus, the MPICH project includes several

communication devices for shared memory such as ssm, shm or sshm [28]. It also

supports Nemesis [17], a communication middleware which selects the best-fit com-

munication device for the underlying architecture. Nemesis also contains its own

highly optimized shared memory communication subsystem. Open MPI includes

optimized communications among processes via shared memory (sm Byte Transfer

Layer) [130], providing a management subsystem which uses shared memory trans-

fers when possible. Other MPI libraries (mainly proprietary ones) are generally

capable of selecting the most appropriate fabric combination automatically, includ-

ing shared memory optimizations. However, current MPI libraries have to rely on

inter-process communications using shared memory resources (e.g., memory mapped

regions or SysV resources), which requires at least two data transfers: one from the

source process to the shared memory resource, and another one from this resource

to the destination process. Thus, optimizations in these communication subsystems

(like Large Message Transfers in Nemesis [28]) aim to optimize data transfers from

and to shared memory through fragmentation and rendez-vous protocols, but they

are not able to eliminate the intermediate copies. The only solution to avoid extra

copies is the use of kernel modules such as KNEM or XPMEM (only for SGI ma-

chines). Both MPICH and Open MPI provide support for direct memory transfers
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with KNEM, which has been used in [76] to develop hierarchical and topology aware

collectives. The main drawback is the lack of portability due to the need of external

kernel modules.

Although there are several message-passing projects in Java (see Section 1.2),

nowadays FastMPJ [29, 123] and MPJ Express [116] have the most active devel-

opment. MPJ Express has already implemented its shared memory support [118]

through its multi-core device, but it presents serious drawbacks in scalability due

to coarse-grained synchronization and buffering in the upper layers of the middle-

ware. This causes its performance not to be competitive compared to current MPI

shared memory devices. FastMPJ includes the communication device presented in

this chapter, smdev, whose buffer layer avoidance and reduced synchronization over-

head improve significantly the scalability of FastMPJ when communications involve

a large number of Message Passing in Java (MPJ) processes on shared memory.

3.2. Design and Implementation of the Shared

Memory Device smdev

The goal of smdev is to increase the scalability of Java applications by providing

an efficient communication middleware for multi-core shared memory architectures.

Messaging libraries usually require the use of several instances of the JVM per

shared memory system, thus incurring high communication overhead and memory

consumption (see left graph in Figure 3.1), whereas smdev runs several threads

within a single JVM instance (see right graph), thus taking advantage of thread-

based intra-process data transfers, as well as lower memory consumption.

Although the minimum memory required by a JVM is system- and JVM implemen-

tation-dependent, it is usually around a hundred MBytes. Hence, smdev saves this

memory for the second and consecutive cores communicating in a system. Addition-

ally, garbage collection represents a higher overhead when using several JVMs, as

they have a more limited amount of memory than using a single JVM; this is a con-

sequence of the fragmentation and high memory consumption when using multiple

JVMs in a shared memory system.
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Figure 3.1: Java communications on a dual-core dual processor using distributed
(left) and shared (right) memory-oriented middleware

3.2.1. Low-level Message-Passing API: xxdev

The smdev device provides a message-passing API that conforms with the xxdev

API [29, 123] (see Listing 3.1 and Figure 1.1), which avoids data buffering by sup-

porting direct communication of any serializable object.

Listing 3.1: API of the xxdev.Device class

public abstract class Device {

stat ic public Device newInstance ( S t r ing deviceImpl ) ;

public int [ ] i n i t ( S t r ing [ ] a rgs ) ;

public int id ( ) ;

public void f i n i s h ( ) ;

public void send ( Object buf , int dst , int tag ) ;

public Status recv ( Object buf , int src , int tag ) ;

public Request i s end ( Object buf , int dst , int tag ) ;

public Request i r e c v ( Object buf , int src , int tag , Status s t t s ) ;

public void ssend ( Object buf , int dst , int tag ) ;

public Request i s s end ( Object buf , int dst , int tag ) ;

public Status probe ( int src , int tag , int context ) ;

public Status iprobe ( int src , int tag , int context ) ;

public Request peek ( ) ;

}
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The API is composed of basic operations such as point-to-point communications,

both blocking (send and recv) and nonblocking (isend and irecv). It also includes

synchronous communications (ssend and issend), functions to check incoming mes-

sages without actually receiving them (probe and iprobe), and the peek operation,

that only receives a message that has already arrived.

The use of a simple message-passing API supports a direct migration to dis-

tributed memory systems, thus benefiting from higher portability and ease of use,

avoiding the issues associated with multithreading programming.

The implementation of smdev over shared memory required handling with JVM

class loaders to maintain shared structures (message queues) for communication, and

the optimization of the synchronization among threads in the access to these shared

structures. The details of these implementation issues, along with the presentation

of the communication protocols, are discussed next.

3.2.2. Class Loading in smdev

The use of threads in smdev as message-passing processes requires the isola-

tion of the namespace for each running thread, simulating the distributed memory

environment in which threads can exchange messages that are actually transferred

through shared memory references. This management relies on custom class loaders,

a mechanism similar to the one used in MPJ Express [118].

The purpose of the namespace isolation is, therefore, to implement the abstrac-

tion of MPJ processes over threads. While processes from different JVMs are com-

pletely independent entities, threads within a JVM are instances of the same appli-

cation class, sharing all static variables. Hence, the user classes and the high-level

smdev classes, as well as some related to the device management, have to be isolated

to behave like independent processes, having private static variables. Nevertheless,

the communication through shared memory transfers requires the access to several

shared classes within the device.

To achieve this dual behavior, let us start by analyzing the JVM load class

system. A JVM identifies each loaded class by its fully qualified name and its class

loader, so each loader defines its own namespace. Through creating each thread with
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its custom class loader, all the non-shared classes within a thread can be directly

isolated. The JVM uses a loader hierarchy in which the system class loader is first

invoked when trying to load a class. When the system loader does not find a class,

the next class loader in the hierarchy is used; in our case, the next loader is the

custom class loader. This mechanism implies that the system class loader is going

to load every reachable class that, in consequence, is shared by all threads. Its

classpath has therefore to be bounded in such a way that it only has access to

shared packages (runtime and smdev) that contain the implementation of shared

memory transfers among threads.

The class loading particularities of smdev also affect communications. If the data

type sent in a message is a user object, which must agree with the Serializable

interface, there is a serialization/de-serialization process involved. smdev could have

managed these communications using the Cloneable interface instead, but there

are more classes that conform with the Serializable interface, and it is also more

flexible and presents fewer conflicts with the class loader structure than Cloneable.

Moreover, Serializable is a well-established constraint by standard Java for in-

put/output operations. Thus, the object to be sent is serialized using the thread-

local class loader of the sender. However, if the de-serialization is done by the JDK

ObjectInputStream class, which relies on the system class loader by default, the

JVM will consider that the de-serialized object has a different class from the ex-

pected one and a ClassNotFoundException will be thrown. To deal with this issue,

a custom class which overrides the resolveClass method of ObjectInputStream

is used, making the local class loader of the invoking thread load the class in the

Class.forName method. This technique requires the serialization to be run by the

sender thread and the de-serialization by the receiver thread, a constraint that has

to be taken into account in the message transfer protocols when any of the commu-

nicating threads can eventually complete the communication.

3.2.3. Message Queues

As communications in smdev are implemented by shared memory transfers,

point-to-point communication operations delegate on a shared class that manages

shared message queues to handle pending communication requests for sends and re-
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ceives. Each thread has two queues assigned, one for the incoming messages posted

by senders (from now on, UnexpectedRecvQueue) and the other one for pending

receive requests posted by itself (from now on, PostedRecvQueue). The access to

each pair of queues is synchronized to avoid inconsistency. Nevertheless, having a

pair of queues per thread instead of a global one reduces the contention and makes

it possible to optimize a fine-grained synchronization.

Each message queue consists of a linked list, which is implemented over a com-

bination of a fixed-size array and a dynamic structure, where the first incoming

message is posted on the head of the list, the next one is enqueued after that and

so on. In a common working situation, senders and receivers operate in parallel

and communications complete quite soon. Thus, the expected number of pending

requests is not large and they usually fit in the static array. However, there might

be situations where pending requests exceed the size of the static array. To man-

age them, the device stores new messages in the dynamic structure. As the static

structure gets available room, new messages will be stored in it, so that the dynamic

structure only stores new requests when the array is full. One of the requirements

of messaging libraries is that, when two pending requests have the same identifica-

tion, messages should be dequeued in FIFO ordering. Since our pending requests

in the static array are not necessarily older than the requests in the dynamic struc-

ture, a sequence number is included in each request to identify which one should be

dequeued.

3.2.4. Message Transfer Protocols

Sends and receives rely on the shared message queues already described, using

as message identification the source identifier, a user tag and a context, which is

managed internally by the device. In order to cope with duplicity of message iden-

tification, the sequence number is also taken into account for retrieving pending

messages.

A thread sending a message to another thread first has to check if there is already

a matching receive request in the destination PostedRecvQueue. If there is a match,

the sender copies the message in the destination address and the request is marked

as completed. When there is no match, the sender inserts the message request in

the UnexpectedRecvQueue. Depending on the communication protocol, the sender
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Figure 3.2: Communication protocols in smdev

will store the data in the queue or it will leave a reference to it. This send request

will be queued until the destination posts a receive request for this message. The

reception operation works inversely. The receiver checks its UnexpectedRecvQueue

and, if there is a matching message request, the data is copied into the destination
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address and the communication is completed. If there is no match, it enqueues a

receive request in the PostedRecvQueue, where it will be queued until a matching

message request is received.

The communication protocol establishes the management of the request in the

shared queues. Figure 3.2 includes the protocol operation for the different communi-

cation situations. For primitive types, we can distinguish between the eager and the

rendez-vous protocol. With an eager protocol (Figure 3.2a), the sender copies the

message data in the request buffer and assumes the communication as completed.

Next, another copy is performed from the intermediate buffer to the receiver. When

the amount of data is large, the cost of this extra copy becomes a bottleneck and it

is more convenient to use a rendez-vous zero-copy protocol (Figure 3.2b), where the

sender leaves a reference to its own buffer. In this case, the data is copied directly

to the receiver buffer when it is available, avoiding the extra copy (zero-copy proto-

col). However, the sender cannot assume the communication as complete until the

receiver has copied the data. The data size boundary to choose between both pro-

tocols is established via a “Protocol Size Limit” parameter, which is 64 KBytes by

default. Nevertheless, when the receiver initiates the communication (Figure 3.2c),

it has to leave a reference to its own buffer in the request, allowing the sender to

make a direct copy in the receiver buffer and thus avoiding the extra copy. When

using a serializable message (Figure 3.2d), as discussed before, the serialization has

to be carried out by the sender thread and the de-serialization has to be run in the

receiver thread. In this case, the serialized data must be stored in the request buffer,

regardless of the message size.

Figure 3.3 shows two threads communicating on two scenarios, according to the

thread which initiates the communication. The numbers in each scenario indicate

the order in which the actions are taken. Message requests are represented by ovals

and the active one is in dark. The “id” tag represents the identification of the request

and the small rectangle represents the message data (if the border is continuous)

or a buffer (if the border is dotted). Requests that are posted by a receiver thread

have empty buffers, while requests which are created by sender threads contain the

message data.

Regarding the first scenario (Figure 3.3a), Thread 0 sends a message (step

1) before Thread 1 posts the corresponding receive request. After checking the
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(a) Send - Recv

(b) Recv - Send

Figure 3.3: Send/Recv operations in smdev
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PostedRecvQueue of the destination for a matching request without success (step

2), the sender enqueues the send request in the UnexpectedRecvQueue (step 3).

When Thread 1 initiates the reception process (step 4), it finds a matching request

in the UnexpectedRecvQueue (step 5) and copies the message into the destination

buffer (step 6).

Regarding the second scenario (Figure 3.3b), first Thread 1 initiates the commu-

nication with a receive operation (step 1) which does not have a matching request

in the UnexpectedRecvQueue (step 2), so it is posted in the PostedRecvQueue (step

3). Next, the sender (Thread 0) sends the message (step 4) and finds the matching

receive request in the PostedRecvQueue (step 5). The communication completes by

transferring the message data into the destination buffer (steps 6 and 7).

For further details, Listings 3.2 and 3.3 illustrate the pseudo-code of the non-

blocking receive and send methods (irecv and isend), respectively. Both methods

have to check if the message has to be serialized and also search for a matching

request in the corresponding queue. If no request is found, a new pending request is

Listing 3.2: Pseudo-code of the irecv method

Request i r e c v ( Object buf , int src , int tag , Status s t t s ){

/∗ l o c k both o f my queues ∗/
synchronized ( l o ck [me ] ) {

r eque s t = unexpectedRecvQueue [me ] . f i nd and ge t mes sage ( ) ;

found = ( reque s t != null ) ;

i f ( ! found ){ // the reque s t has to be i n s e r t e d

r eque s t = new Request ( . . . ) ;

postedRecvQueue [me ] . i n s e r t ( r eque s t ) ;

}
}
/∗ end o f the l o c k ∗/

i f ( found ){
i f ( ! r eque s t . s e r i a l i z e d ( ) && ! reque s t . completed ( ) )

buf = copy ( r eque s t . buf ) ;

else

buf = d e s e r i a l i z e ( r eque s t . buf ) ;

r eque s t . setCompleted ( true ) ;

}

return r eque s t ;

}
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inserted into the other queue, and otherwise the communication is performed, unless

the message is serialized, in which case, and as explained above, only the receiver can

perform the de-serialization. When the communication is not completed in either one

of these calls, the call to iwait() over the request finalizes the transfer. The iwait

method has to be called over a request to complete a nonblocking communication

(irecv or isend).

Listing 3.3: Pseudo-code of the isend method

Request i s end ( Object buf , int src , int tag ){

i f ( buf . i sOb j e c t ( ) )

s e r i a l i z e d = s e r i a l i z e d a t a ( buf ) ;

/∗ l o c k the r e c e i v e r ’ s queues ∗/
synchronized ( l o ck [ des t ] ) {

r eque s t = postedRecvQueue [ des t ] . f i nd and ge t mes sage ( ) ;

found = ( reque s t != null ) ;

i f ( ! found ){ // the reque s t has to be i n s e r t e d

r eque s t = new Request ( . . . ) ;

i f ( ! buf . i sOb j e c t ( ) ){
i f ( eager ( buf ) ){

r eque s t . buf = copy ( buf ) ;

r eque s t . setEager ( ) ;

}
else // zero−copy pro toco l

r eque s t . buf = buf ; // l eave a re f e r ence to the message

}
else

r eque s t . buf = s e r i a l i z e d ;

unexpectedRecvQueue [ des t ] . i n s e r t ( r eque s t ) ;

}
}
/∗ end o f the l o c k ∗/

i f ( found ){
i f ( ! buf . i sOb j e c t ( ) )

r eque s t . buf = copy ( buf ) ; // d i r e c t copy in the r e c e i v e r b u f f e r

else

r eque s t . buf = s e r i a l i z e d ;

}

i f ( r eque s t . eager ( ) | | found )

r eque s t . setCompleted ( true ) ;

return r eque s t ;

}
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3.2.5. Synchronization

Synchronization is one of the main performance bottlenecks in shared memory

communications. In smdev, synchronization among threads is needed to guaran-

tee thread safety, avoiding race conditions. There are two types of scenarios in

which synchronization is required. On the one hand, situations where the number

of threads that are going to perform a well-determined task is known. This is the

case of the initialization of the device, where every thread has to register itself, or

when a thread is waiting for a message request to be completed (it is known that

only one thread has to complete the operation). In these cases, the middleware

resorts to busy waits over atomic variables in order to minimize the communication

latency. The introduced overhead of the busy wait is acceptable because these are

small tasks that are expected to be complete in a short period of time. In this

case, smdev trades off latency for CPU consumption contributing to code scalabi-

lity. Moreover, a busy wait avoids context switch overheads and, as the number of

scheduled threads is expected to be lower or equal to the number of available cores

in a shared memory system, a blocking wait would not report any benefit since there

are no other threads waiting for CPU resources.

On the other hand, there are scenarios where the interactions among threads

are more complex or unpredictable. This is the case of the access to the message

queues. Each thread can read and insert requests in its own reception queues, but

every other thread can also search and insert requests in these queues when sending

a message. Thus, in this scenario, explicit synchronization with locks is needed to

avoid inconsistency in the shared queues. To reduce the overhead and contention, a

lock per each pair of queues is used. Therefore, a thread trying to send or receive

only blocks the queues needed to perform the operation. Both queues of each thread

are blocked simultaneously because a thread only makes insertions in a queue if it has

not found a matching request in the other paired up queue, creating a dependence

condition in the consistency of the queues.

The use of a pair of queues per processor enables smdev to include fine-grained

synchronizations, combining busy waits and locks, and thus reducing contention in

the access to the shared structures. As an example, MPJ Express shared memory

support uses a global pair of queues with class lock-based synchronization, which
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can result in a very inefficient approach in applications that involve more than a

pair of threads.

3.2.6. Integration of smdev in FastMPJ

The developed device has been integrated in the FastMPJ library providing Java

message-passing applications with efficient support for shared memory communica-

tions. The integration has been almost transparent to the rest of the FastMPJ layers

thanks to the modular structure of the device layer. The upper layers of FastMPJ

rely on the point-to-point xxdev API primitives from the communication devices,

and thus all the operations and algorithms from FastMPJ, such as the collective

operations library, can benefit from the use of smdev without further knowledge of

the communication system (see Figure 1.1). Besides the device module, only a spe-

cific multi-core boot class had to be added. This class, independent of the rest of

the runtime system, implements the scheduling of threads within the custom class

loaders (see Section 3.2.2).

3.3. Performance Evaluation

The performance evaluation of smdev consists of a micro-benchmarking of point-

to-point operations and an analysis of the impact of smdev on representative parallel

codes. An analysis of collective operations performance using smdev as underlying

device will also be shown in Chapter 4.

3.3.1. Experimental Configuration

The developed device has been evaluated on two representative multi-core sys-

tems described in Section 2.1, a 16-core Intel-based and a 48-core AMD-based ma-

chine. The first one (“Xeon E5”) has 2 Intel Xeon E5-2670 8-core processors at 2.6

GHz [51] and 64 GBytes of RAM (see Figure 2.1). The second one (“Magny-Cours”)

has 48 cores in 4 AMD Opteron 6172 processors, each one with 12 cores [3, 77] and

128 GBytes of RAM (see Figure 2.2). The OS is Linux CentOs with kernel v2.6.35,
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the GNU compilers are v4.4.4 and the JVM is OpenJDK Runtime Environment

v1.6.0 20 (IcedTea6 v1.9.8).

The performance of smdev has been evaluated comparatively against MPJ Ex-

press v0.38 and two representative MPI implementations which provide efficient

communication protocols for distributed and shared memory systems for natively

compiled languages (C/C++, Fortran). The implementations selected for this evalu-

ation are MPICH2 v1.4 and Open MPI v1.4.3 on the Xeon E5, and Open MPI v1.4.2

on the Magny-Cours. MPICH2 results have been omitted for clarity purposes since

Open MPI obtains better performance on the Magny-Cours. In order to present a

fair comparison with smdev, these implementations have been benchmarked using

their shared memory communication devices: sm BTL in Open MPI and Nemesis in

MPICH2. Both libraries have been carefully configured in order to obtain the best

performance.

3.3.2. Point-to-point Micro-benchmarking

The performance of point-to-point communications has been evaluated using a

representative micro-benchmarking suite, the Intel MPI Benchmarks [110], and our

internal implementation of its Java counterpart [124].

Figures 3.4 and 3.5 show point-to-point performance results obtained on the

Xeon E5 and Magny-Cours systems, respectively. The metric shown is the half of

the round-trip time of a pingpong test for small messages (up to 1 KByte), and the

bandwidth for messages larger than 1 KByte. The transferred data are byte arrays,

avoiding Java serialization overhead, in order to present a fair comparison with MPI.

Moreover, for point-to-point operations, FastMPJ point-to-point routines are direct

and thin wrappers over smdev primitives, showing quite similar performance.

To analyze the impact of the memory hierarchy on smdev performance, we have

implemented affinity support in Java allowing pinning a thread to a particular core.

This support is based on the pthread setaffinity np system call invoked by each

thread through JNI (see Section 2.1.1). MPI libraries also support pinning control.

The impact of thread allocation on performance is analyzed in this section for point-

to-point transfers.
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Figure 3.4 shows the performance of point-to-point communications between

two cores on the Xeon E5. The results have been obtained for transfer operations

within a processor (“intra-processor”) and between two cores from different proces-

sors (“inter-processor”). Since the 8 cores in each processor only share the L3 cache,

the specific core mapping within a processor has no impact on performance.
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Figure 3.4: smdev performance on the Xeon E5

Intra-processor transfers show lower small-message latency than inter-processor

ones. This is consistent with the benchmarking configuration, where no cache invali-

dation is performed and small messages fit in the L1 cache. Although smdev doubles

the latency obtained by MPI for very small messages, regarding bandwidth results,

smdev clearly outperforms MPI for messages ≥ 1 KByte, achieving the best perfor-
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mance for intra-processor communications, especially when messages are around the

L1 (32 KBytes) or L2 (256 KBytes) cache size. As the message size increases and

it does not fit in the L2 cache, the performance gap between intra-processor and

inter-processor smdev transfers reduces, which evidences the impact of the mem-

ory hierarchy on shared memory performance. It also shows that large-message

inter-processor transfers in smdev benefit more than intra-processor from the L3

cache, since the bandwidth of the former falls from 4 MBytes on and the latter from

2 MBytes on. Moreover, the zero-copy protocol implemented in smdev outperforms

the one-copy protocol of MPI (both MPICH2 and Open MPI), and even smdev

inter-processor transfers outperform MPI intra-processor ones.

Figure 3.5 presents pingpong results on the Magny-Cours, communicating either

two cores within a 6-core die (“intra-die” communication), two cores from the same

12-core processor but from different dies (“inter-die, intra-proc.”), cores from two

dies from different processors directly connected with half HT (“inter-proc, direct”),

or two cores from two dies not directly connected (“inter-proc, indirect”). As in the

Xeon E5 system, the specific core mapping within a processor has no impact on

performance. Two libraries have been evaluated on these four scenarios, smdev and

Open MPI.

As it can be observed, the lowest latency results are obtained for intra-die trans-

fers, although the start-up latencies are relatively high, at least compared to the la-

tencies measured on the Xeon E5. Thus, MPI results are around 1 µs and smdev val-

ues around 1.5-2 µs. However, this superior performance of MPI for small messages

contrasts with the higher performance of smdev for messages larger than 2 KBytes,

where smdev clearly outperforms MPI thanks to the use of a zero-copy protocol.

In fact, smdev achieves up to 42 Gbps bandwidth whereas MPI hardly reaches 10

Gbps. These results are significantly lower than the ones obtained on the Xeon E5.

Moreover, the peak of bandwidth is obtained at 256 KBytes, while it is at 32 KBytes

on the Xeon E5, taking advantage of the messages fitting in the L1 cache. This dif-

ference is due to the lower computational power of a Magny-Cours core, which is

approximately half of the performance of a Xeon E5 core. This fact severely impacts

the performance of the communication middleware, not only for small messages,

where the communication overhead is more strongly bound to computation than

any other factor, but also for large-message bandwidth, showing around half of the
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Figure 3.5: smdev performance on the Magny-Cours

Xeon E5 performance. Additionally, these results are influenced by the performance

of the memory, which has DDR3-1600 MHz support in Xeon E5 and DDR3-1333

MHz in Magny-Cours.

Although smdev performance is clearly comparable to traditional MPI libraries,

we have also evaluated it against the shared memory support implemented by MPJ

Express, which is the MPJ library with the highest number of users and recent

maintenance effort. Figures 3.6 and 3.7 show results for smdev and MPJ Express

on the Xeon E5 and the Magny-Cours, respectively, using the best configuration for

both scenarios (i.e., adjacent cores within the same die or processor). In both cases,

smdev clearly ouperforms MPJ Express in latency and bandwidth. This is due to
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Figure 3.6: Message Passing in Java performance on the Xeon E5
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Figure 3.7: Message Passing in Java performance on the Magny-Cours

the avoidance of double buffering and the optimization of the synchronizations in

smdev.

Since most Java communication middleware (e.g., JMS and RMI) is based on

sockets, smdev performance has also been evaluated comparatively against sockets

using the NetPIPE benchmark suite [90, 139] on the Xeon E5 (Figure 3.8) and the



46 Chapter 3. A Shared Memory Communication Device for MPJ

Message size (Bytes)

Point-to-point Sockets Communication Performance (Xeon E5)

 0

 5

 10

 15

 20

 25

 30

 35

 40

4 16 64 256 1K

L
a
te

n
c
y
 (

µ
s
)

1K 4K 16K 64K 256K 1M 4M 16M
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

B
a
n

d
w

id
th

 (
G

b
p

s
)

 smdev
 FastMPJ (niodev)

Native Sockets on TCP/IP
Java Sockets on TCP/IP

Figure 3.8: Sockets performance on the Xeon E5
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Figure 3.9: Sockets performance on the Magny-Cours

Magny-Cours (Figure 3.9). NetPIPE implementations in Java and C (native) sockets

perform a pingpong test similar to the one implemented for message-passing bench-

marking, so their results are directly comparable with those obtained with smdev

and the NIO-socket communication device from FastMPJ (niodev, see Figure 1.1).
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This benchmarking has been carried out with the default JVM/OS mapping policy,

scheduling threads in intra-processor and intra-die configurations. As shown in the

figures, sockets show significantly poorer shared memory performance than smdev

as they rely on the TCP/IP loopback interface, suffering from significant latency

overheads and bandwidth limitations due to the use of several communication lay-

ers. Finally, the Java NIO-socket device presents the poorest performance since it

is based on TCP/IP, and its nonblocking communication support imposes a high

overhead.

In order to compare the results obtained with the theoretical bandwidth limit,

Figures 3.10 and 3.11 show the results obtained with a benchmark based on the

COPY benchmark from the STREAM2 suite [131] (used to measure memory band-

width) using Java and a native language (C) both on Xeon E5 and Magny-Cours.

This benchmark measures the bandwidth of memory copies using arrays of different

sizes and it does not perform cache invalidation between iterations, thus performance

heavily relies on the size of the different cache levels (in this scenario, a 32-KByte

L1, 256-KByte L2 and 20-MByte L3 for Xeon E5; and a 64-KByte L1, 512-KByte

L2 and 6-MByte L3 for Magny-Cours).
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Figure 3.10: Memory performance on the Xeon E5
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Figure 3.11: Memory performance on the Magny-Cours

These figures show that Java suffers from a higher start-up latency than the C

implementation, especially on the Magny-Cours, which makes bandwidth decrease

for small messages, whereas large-message performance is similar for both languages.

When comparing these figures with the previous ones (Figures 3.8 and 3.9), it can be

observed that smdev achieves bandwidths which are comparable to the theoretical

limit exposed here by STREAM2.

3.3.3. Impact of smdev on the Scalability of Parallel Codes

The impact of smdev on the scalability of parallel codes has been analyzed with

the NAS Parallel Benchmarks (NPB) [6, 88], which have been selected for their

representativeness in the evaluation of languages, libraries and middleware for sci-

entific computing. The NPB implementations for MPI, OpenMP, Java threads and

MPJ (NPB-MPJ) [79] have been used for this evaluation. Regarding NPB-MPJ

(FastMPJ) codes, they have been executed both with smdev and the NIO-sockets

support (niodev) in order to analyze the actual impact of smdev compared to sock-

ets, the default communication solution in Java.
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Four NPB kernels have been selected due to their communication intensive-

ness: CG (Conjugate Gradient), FT (Fourier Transform), IS (Integer Sort) and MG

(Multi-Grid), measuring the performance with the class C data size. Furthermore,

these kernels have been executed using 1, 2, 4, 8 and 16 cores (also 32 for Magny-

Cours, not 48 as the kernels only work for a power-of-two number of cores).

Performance is shown in terms of speedup in Figures 3.12 and 3.13. With the

aim of providing a reference of absolute performance, Table 3.1 includes performance

in millions of operations per second (MOPS) for Java and native (C/Fortran) im-

plementations on a single core. These results show that CG and IS obtain similar

performance for both native and Java implementations, but there are important

differences in FT and MG due to the JVM start-up overhead combined with the

higher maturity of the native codes, which are more refined than the Java versions.

Table 3.1: MOPS of NPB codes on a single core

CG FT IS MG

Xeon E5 Native 381.8 1179.9 59.0 1741.2

Java 379.8 695.3 52.6 1219.3

Magny- Native 201.3 711.4 58.6 847.6

Cours Java 168.1 461.9 45.0 548.2

Regarding the reported speedups on Figures 3.12 and 3.13, smdev is the most

scalable solution on the Xeon E5, and one of the best performers, together with MPI,

on the Magny-Cours system. Java threads and FastMPJ over Java NIO sockets

generally obtain the poorest results.

The CG kernel relies on point-to-point primitives to perform the communica-

tions, and smdev takes huge advantage of the optimized point-to-point shared mem-

ory transfers. However, contention in the access to shared structures and resources

limits scalability for 32 cores on the Magny-Cours.

IS is the most communication-intensive code, making a frequent use of Alltoall

and Allreduce operations. On the Xeon E5 there is a significant loss of scalability

when the number of cores forces the use of the two processors (16 cores, i.e., 8 cores

per processor), thus increasing the cost of communications.
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Figure 3.12: NAS Parallel Benchmarks performance on the Xeon E5

Regarding FT and MG, which showed the greatest performance gap between Java

and native implementations using a single core, smdev generally obtains significant

scalability on both systems except for MG on the Magny-Cours. MG heavily relies

on Allreduce operations that may need further optimizations on FastMPJ to scale

beyond 16 threads. OpenMP obtains its worst results for MG, especially on the

Magny-Cours, where the messaging implementations (MPI and FastMPJ) exploit

the Allreduce operation present in this kernel. niodev obtains its best scalability

in FT because this is a computation-intensive code that, with large problem sizes

(like the C size used here), limits the impact of communications on the overall

performance.
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Figure 3.13: NAS Parallel Benchmaks performance on the Magny-Cours

3.4. Main Contributions of the smdev Device

This chapter has presented smdev, a shared memory Java communication device

which provides a simple messaging API that abstracts thread programming while

taking advantage of the inherent parallelism of multi-core processors and Java mul-

tithreading. This causes smdev to introduce performance improvements over the

current alternatives in MPI and MPJ. This device has been successfully integrated

in our Java message-passing implementation, FastMPJ. Hence, any MPJ application

running on distributed memory systems can also run efficiently on shared memory

systems thanks to relying on smdev. This shared memory communication middle-
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ware has also been reported to provide high performance results when used in cloud

HPC resources [30, 31], with similar or better efficiency than MPI libraries in shared

memory scenarios.

The performance evaluation carried out on two representative shared memory

systems, a 16-core Intel-based and a 48-core AMD-based, has shown:

(1) point-to-point start-up latencies as low as 0.76 µs, i.e. 13 times higher perfor-

mance than Java sockets latency on shared memory (10 µs);

(2) point-to-point bandwidths higher than 90 Gbps, around 6 times better perfor-

mance than Java sockets bandwidth on shared memory (around 15 Gbps);

(3) point-to-point performance results only around 1 µs worse than MPI for small

messages, but significantly better for medium and large messages (from 2 KBy-

tes on);

(4) the use of smdev in representative message-passing kernels (NPB) has generally

achieved the highest speedups, which definitely helps to bridge the performance

gap between Java HPC applications and natively compiled counterparts;

(5) smdev improves Java communications performance both on Intel- and AMD-

based systems, taking advantage of their particular characteristics such as

small and fast caches in the Intel-based testbed, and generally scaling perfor-

mance on the 48-core AMD-based system.

In conclusion, the smdev device has been shown to be key for high performance

Java applications on shared memory multi-core systems.



Chapter 4

Efficient Support of Collective

Communications in Java

The increasing number of cores per system demands efficient and scalable messa-

ge-passing communication middleware, not only for shared memory systems but also

for clusters of multi-core processors. However, Message Passing in Java (MPJ) im-

plementations have been focused on providing production-quality implementations

of the full MPJ specification, rather than concentrating on developing scalable com-

munications. The basic operations which benefit the most from these optimizations

are collective operations. MPJ application developers use collective primitives for

performing standard data movements (e.g., Broadcast, Scatter and Gather) and

basic computations among several processes (reductions). This greatly simplifies

code development, enhancing programmers’ productivity together with MPJ pro-

grammability. Moreover, it relieves developers from communication optimization

and reduces the risk of introducing bugs. Thus, collective algorithms must provide

scalable performance, usually through overlapping communications in order to max-

imize the number of operations carried out in parallel. An unscalable algorithm can

easily waste the performance provided by an efficient communication middleware.

This chapter presents the development of an MPJ collectives library which aims

to provide an efficient solution for collective communications not only on shared

memory multi-core systems (through specific collectives directly based on the smdev

device presented in Chapter 3), but also on clusters of multi-core nodes. This

53
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chapter also analyzes the feasibility and benefits of introducing the new nonblocking

collectives from the MPI 3.0 specification in MPJ, discussing its performance results

on a shared memory architecture. The developed MPJ collectives library has been

integrated in FastMPJ.

4.1. Blocking Collectives for Multi-core Systems

MPJ collectives are an important part of any MPJ library, not only in terms

of functionality but also in terms of development effort required. A wrapper MPJ

library (e.g., Open MPI Java bindings) consists of a collection of wrapper classes

that rely on an underlying MPI collectives library implementation, whereas a pure

Java MPJ library, such as FastMPJ or MPJ Express, requires a full collectives

implementation, usually on top of point-to-point communications. Generally each

MPJ library comes with its own collectives library implementation, although it is

possible to integrate third-party collectives, especially if they are based on MPJ

point-to-point operations. Although it could seem that the translation of success-

ful research in MPI collectives optimization into the MPJ arena would suffice, the

particularities of the Java execution environment pose several additional challenges

to the usually complex development of efficient collective operations. Thus, the

new collectives library has to cope with the latency jitter, the JVM runtime execu-

tion behavior, the poor Java high-speed network latency, and the restriction to the

use of point-to-point operations in the collectives implementation. These issues are

discussed next.

MPJ collective primitives might show an important variation for the minimum,

average and maximum latencies. This variability of their performance results over

time is known as jitter, or latency variation. One of the most important factors for

Java communications jitter is the JVM operation, especially the Just-In-Time (JIT)

compiler and the JVM runtime execution. The impact of the jitter on the overall

collectives performance is minimized by reducing the synchronization points in their

algorithms.

Moreover, the JVM presents several execution modes, such as interpreted byte-

code, and several levels of native code generation from the JIT compiler. The specific
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performance of an MPJ collective call depends significantly on the JVM operation,

which tends to further optimize commonly used methods with high overheads. Thus,

it is quite common to find a collective operation with theoretically higher overhead

outperforming a collective call with smaller message payload. This issue can be

addressed reusing communication methods, or exploding recursion in order to make

them eligible for further optimizations of the JIT compiler. Moreover, continuous

changes in the communication protocols and algorithms, quite common in native

MPI bindings, are also avoided for this reason.

Another challenge is that, except for FastMPJ, there is a lack of efficient high-

speed network support in Java, due to its inability to control the underlying special-

ized hardware. Thus, MPJ libraries generally present lower performance than MPI,

especially for small messages. In fact, when using TCP/IP over high-speed net-

works MPJ hardly obtains around 10% of MPI small-message performance, whereas

it can achieve up to 90-95% of MPI bandwidth. As a consequence of this, most

of the techniques used in MPI to speed up collectives performance, such as mes-

sage fragmentation and synchronous protocols (rendez-vous protocol), are useless.

Nevertheless, new optimization techniques arise, such as message aggregation and

asynchronous operations (eager protocol). The efficient high-speed network sup-

port implemented in FastMPJ has been able to overcome most of these limitations,

providing performance results quite close to those of MPI [29].

Finally, MPI implementations, looking for performance, can rely on collective

operations implemented natively in the communication hardware or in low-level

communication libraries, whereas MPJ libraries have been restricted to implement

collective algorithms on top of point-to-point Java communication primitives. Al-

though it is possible to rely on native collective methods through JNI, this option

presents several additional drawbacks associated to the use of native methods (e.g.,

lack of portability, JVM security and instability issues, and significant JNI copy

overhead). Nevertheless, since the smdev device has a pure Java implementation, it

is able to provide collective operations based on the direct use of its shared structures

(not relying on point-to-point communications) without causing any portability is-

sues.

The development of efficient collectives taking into account the characteristics of

the Java execution model constitutes the main research effort presented in this chap-
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ter. The main contributions of the developed MPJ collectives library are: (1) the

implementation of multi-core aware collectives through the minimization of inter-

node communications and favoring multithreading-based solutions; and (2) the se-

lection of the most efficient algorithm at runtime, based on the number of processes

and the message size.

4.1.1. State of the Art of MPJ Collectives

As far as we know, this is the first work devoted to the optimization of MPJ

collective communications, as up to now MPJ libraries have disregarded the de-

velopment of scalable and efficient collective primitives. Moreover, the design and

implementation of MPJ collectives libraries is usually discussed in the related lit-

erature together with their corresponding MPJ projects, as the collectives are an

essential part of their tightly coupled designs. Therefore, although a few papers con-

sider MPJ collective communications, their significance and impact on Java HPC

performance has been reduced.

Hence, the most relevant related literature in MPJ collective communications

comprises the papers that introduce the MPJ/Ibis [13], MPJava [105], and FastMPJ

[29, 123] projects. Moreover, the collectives of MPJ Express are evaluated in [122].

Regarding MPJ/Ibis, its collectives library only implements one algorithm per prim-

itive. Unfortunately, the selected algorithms are poorly scalable as they are usually

based on blocking point-to-point communications (except for Alltoall/Alltoallv).

Additionally, MPJava implements a subset of the MPJ collective operations, show-

ing also poor scalability. Their performance results highlighted, for the first time in

the MPJ community, the importance of choosing an appropriate collective commu-

nication algorithm according to the characteristics of the code being executed and

the hardware configuration employed. Regarding the scalability of MPJ Express

collectives library, several performance evaluations [116, 122] have pointed out that

their results are generally poor due to the use of algorithms that do not take advan-

tage of multi-core architectures and nonblocking communications, in order to exploit

data locality and overlap communications, respectively. Finally, our own MPJ im-

plementation, FastMPJ, includes the scalable collectives library implemented on top

of point-to-point calls to a low-level communication device (explained later in this
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section). Moreover, the FastMPJ collectives library implements several algorithms

per primitive, selected at runtime.

The collectives library that has been developed improves previous MPJ collective

implementations (combining different techniques) by: (1) providing multi-core aware

collective primitives; (2) implementing up to five algorithms per collective operation;

(3) selecting the most scalable algorithm at runtime depending on the specific multi-

core system architecture and the number of cores and message size involved in the

collective operation; and finally (4) allowing an easy integration with any MPJ

implementation as it is based on MPJ point-to-point standard operations.

Most of the contributions of the implemented library have been motivated by the

success of related works in native message-passing libraries, where far more research

has been done. Thus, our library has adapted the research in MPI to MPJ, taking

into account the particularities of Java, namely high variations in the communication

latencies (jitter), the JVM execution modes and the impact of the JIT compiler on

collective communications, and generally a high start-up time in communications.

Regarding the optimization of MPI collective operations, in [21] Chan et al.

discuss thoroughly the design and high performance implementation of collective

communications on distributed memory architectures, and [33] presents Tuned, a

highly optimized collectives library included in Open MPI. In [127] Thakur et al.

suggest the use of different algorithms in order to select the most scalable one for

a particular message size and number of processes involved in the communication.

Moreover, in [10] and [101] two model-based approaches for selecting the communi-

cation strategy that better adapts to a particular scenario are presented. As it is

highly desirable that this selection can be made automatically, the efficiency of this

process has been tackled in [102], obtaining less than a 5% performance penalty on

average.

With respect to the efficiency of collective communications on multi-core archi-

tectures, several research lines have been explored. Thus, the hierarchical approach

has provided significant performance increase for the Alltoall operation [113]. An ex-

tension of this strategy is a two-level intra-node and inter-node hierarchy [145], but

this discrimination between intra-node and inter-node hierarchies scarcely increased

performance because most of the overhead was in the inter-node communication.
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However, the increase in the number of cores per node highlights the interest in

these hierarchical approaches to take advantage of highly optimized shared memory

communications. In fact, both MPICH and Open MPI include hierarchical collec-

tives libraries. Recently, in [76], the use of kernel modules to improve intra-node

communications has also been analyzed, and in [72] the use of a hybrid shared/dis-

tributed memory MPI approach, using multithreading for intra-node communica-

tions, provides perfomance improvements in collective operations. Furthermore, the

optimization based on hierarchical virtual topologies presented in [138] has achieved

significant performance gains thanks to the use of cache aware intra-node com-

munications. Another approach is the maximization of the use of shared memory

and the reduction of network communications on hybrid shared/distributed memory

systems. This strategy usually provides significant performance advantages [133].

Finally, the effect on collective operations of the efficient placement of MPI processes

in a multi-core system (runtime process attachment to specific cores) is discussed

in [83].

Additional projects involving the optimization of Java collective communica-

tions for HPC are CCJ [89] and the Java Adlib collectives library [73]. CCJ is

an RMI-based Java collective communication library for HPC which implements a

simple low-level API. This library was intended to support collective operations in

higher-level libraries, and thus MPJ/Ibis included CCJ collective implementations.

However, CCJ is poorly scalable, mainly due to the use of RMI, and lacks widely

used collective primitives such as Alltoall and reduction operations. Regarding the

Java Adlib collectives library, it is a high-level collective communication library pri-

marily focused on HPJava [73], a data-parallel Java programming environment for

HPC, so its applicability to message-passing communications is quite limited.

4.1.2. Multi-core Aware Collectives

The main motivation of the work presented in this chapter is to implement a

scalable and efficient MPJ collective communication library, taking advantage of

communications overlapping, multi-core awareness, and runtime selection of the

most appropriate algorithm, which depends on the message size and the number of

processes involved in the communication. As MPJ performance heavily depends on
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the scalability of collective communications, the implemented library is of special

interest; thus, the design of the collectives library has considered especially the ease

of integration in different MPJ implementations and so, aiming at portability, all

collective algorithms are implemented using MPJ point-to-point operations. In fact,

the library has been integrated not only in FastMPJ but also in MPJ Express.

Collective Communication Algorithms

The collective algorithms implemented in our library can be classified in six types,

namely Flat Tree (FT), Four-ary Tree (FaT), Minimum-Spanning Tree (MST), Bi-

nomial Tree (BT), BiDirectional Exchange (BDE) or recursive doubling, and Bucket

(BKT) or cyclic. These algorithms are thoroughly described in [21]. Although more

complex algorithms (e.g. Fibonacci Tree for small-message Broadcast in specific

environments) have been proven to be optimal under certain models [61], the higher

start-up latency caused by the use of Java communications usually breaks down the

latency improvements obtained with them.

The simplest algorithm is the Flat Tree (FT), where all communications are

performed sequentially. For instance, in a Broadcast operation, the root process

sends the message sequentially to all processes. We will distinguish between bFT and

nbFT depending on whether the algorithm uses blocking communications or exploits

the use of nonblocking primitives in order to overlap communications, respectively.

As a general rule, valid for all collective algorithms, the use of nonblocking primitives

avoids unnecessary waits and thus increases the scalability of the collective primitive.

However, an intensive use of nonblocking operations could also collapse the network

mechanisms that manage them. For instance, the version of the Alltoall primitive

based on nonblocking operations has three variants: using both nonblocking sends

and receives, using nonblocking sends and blocking receives, and using blocking sends

and nonblocking receives. Although it might seem that the use of both nonblocking

sends and receives is the most scalable solution, this option has some drawbacks, such

as the contention and congestion that might appear in the underlying communication

layer (thus causing serious performance bottlenecks), as this algorithm involves an

important number of messages.

Four-ary Tree (FaT) algorithms configure a tree in which each node has four
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successors at most. Hence, the communication operation consists of traversing this

“four-ary” tree. This algorithm can be easily configured to use a different number

of descendants. Although it prevents the communications from being performed

serially, it does not minimize communications between processes that are located in

different sockets or processors.

Minimum-Spanning Tree (MST) algorithms present a binomial tree in which the

total number of processes involved in the operation is recursively halved and each

half has a process that acts as root and communicates with the other half. If the

operation is a Broadcast, after each division the root process sends its message to a

process of the other subset, that becomes the root for its subset. This task is recur-

sively repeated until all processes have performed their expected operations. MST

algorithms minimize the communications between distant processes, but recursion

causes implicit synchronizations that can reduce the performance gain. Although

this algorithm can be implemented avoiding recursion, since the JVM usually com-

piles functions that are called several times, the collective would benefit from having

recursive calls. Figures 4.1 and 4.2 show MST operations for a Broadcast and Gather

communication pattern, respectively. The system represented uses three levels of

core encapsulation (with different communication costs) represented by boxes, where

the smallest ones are the cores; for instance, two dual-core dual-socket processors,

or a dual-socket processor with two dual-core dies. Additionally, the thickness of

the arrow symbolizes the communication cost of a point-to-point communication,

i.e. the thicker the arrow the higher the communication cost. This representation

will also be used for the description of the communication operation of the following

algorithms.

Figure 4.1: Overview of the Broadcast MST algorithm
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Figure 4.2: Overview of the Gather MST algorithm

Regarding the BiDirectional Exchange (BDE) or recursive doubling algorithm, it

subdivides the set of processes just like MST, but communications are performed in

a bidirectional manner: each process selects a counterpart from the other subset in

order to perform a communication exchange, as shown in Figure 4.3 for an Allgather

communication pattern.

Figure 4.3: Overview of the Allgather BDE algorithm

The BDE algorithm can also be seen as a particular case of the Bucket algorithm

(BKT). In BKT all processes are organized like a ring, and they send at each step

data to the process on the right. Thus, data eventually arrives to all of them.

Figure 4.4 shows an example of the algorithm for the Allgather primitive. The

main difference between BDE and BKT for a given scenario lies on the number of

steps involved in the communication, showing logarithmic and linear complexity for

BDE and BKT, respectively. Moreover, the size of the message recursively increases

for BDE, while it remains constant for BKT. Regarding the suitability of these
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algorithms, a shared memory environment would benefit from the parallelism in

BKT communications, whereas the aggregation of small messages into a larger one

in BDE significantly improves performance on high-latency networks. Finally, these

algorithms are much more scalable than the Flat Tree ones.

Init ial State Final State

...

First Step Second Step

Figure 4.4: Overview of the Allgather BKT algorithm

Table 4.1: Algorithms implemented in the MPJ collectives library

Primitive Algorithms

Barrier Gather+Bcast, BT

Broadcast (Bcast) bFT, nbFT, FaT, MST, Scatter+Allgather

Scatter nbFT, MST

Scatterv nbFT, MST

Gather bFT, nbFT, MST

Gatherv bFT, nbFT, MST

Allgather nbFT, BT, BDE, BKT, Gather+Bcast

Allgatherv nbFT, BT, BDE, BKT, Gather+Bcast

Alltoall bFT, nbFT, nb1FT, nb2FT

Alltoallv bFT, nbFT, nb1FT, nb2FT

Reduce bFT, nbFT, MST

Allreduce nbFT, BT, BDE, Reduce+Bcast

Reduce-Scatter BDE, BKT, Reduce+Scatter

Scan nbFT, linear

Table 4.1 presents a list of the collective algorithms implemented in the collec-

tives library. The implementation variants are correlatively numbered (e.g., nb1FT
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and nb2FT are variants of nbFT, as it was previously explained for the Alltoall prim-

itive). As it can be seen, the high number of algorithms implemented allows a wide

selection, being feasible to take advantage of the underlying hardware. Besides FT

algorithms, it is assumed that nonblocking point-to-point primitives are used when

communication overlapping could benefit the overall performance. The Scan primi-

tive includes an algorithm, named linear, that has not been mentioned before. This

algorithm is similar to BKT, i.e., data is received from the left neighbor, combined

with the own data and sent to the right neighbor. However, there is no wrap-around

communication and thus the first process does not receive data from the last one.

Thread-based Collective Primitives

Current MPI libraries usually support hybrid shared/distributed memory com-

munications by the combination of communication devices, implementing intra-node

communications through inter-process mechanisms such as sockets and System V

IPC shared memory. However, the combination of two or more communication de-

vices (e.g., smdev and niodev) has not been implemented yet in any MPJ library.

Our previous work [109] explored this possibility using MPJ Express, but the syn-

chronization overhead required for recovering the network messages, combined with

the lack of efficiency and scalability of the shared memory support from MPJ Ex-

press, made it difficult to scale performance with hybrid communication devices in

Java. Unlike MPI, where processes only share memory through shared locations

explicitly defined, smdev implements several MPJ processes within a single JVM.

Thus, combining smdev with a network device implies an increase in contention and

in the need for synchronization, limiting the scalability of a hybrid MPJ device. In

order to overcome this limitation the best approach is to include shared memory

optimizations in network devices, such as for the InfiniBand support, using several

processes per node. Hence, to take full advantage of the underlying hardware, we ex-

plored the simultaneous use of the message-passing paradigm together with thread-

based solutions. This hybrid message-passing/multithreading approach requires a

thread-safe MPJ implementation, and FastMPJ supports the highest level of thread

safety, MPI_THREAD_MULTIPLE, like MPJ Express, which has already been used for

hybrid message-passing and multithreading programming such as Java threads or

Java OpenMP implementations (e.g., JOMP) [116].
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However, although this hybrid programming approach can provide good perfor-

mance, it requires the use of two programming paradigms, increasing the complexity

of parallel programming. In order to explore the feasibility of this option, the de-

veloped collectives library has been extended in order to support this approach.

This thread-based message-passing collectives library will serve as a proof of con-

cept of the performance benefits that can be obtained following the aforementioned

approach.

This library extension has been implemented by spawning multiple threads per

MPJ process, with only one process per cluster node. Additionally, one thread per

node is selected (rootThread) in order to be in charge of the inter-node message-

passing communications. Furthermore, this thread will also serve as root thread

for the intra-node execution of the collective operation. Thus, the thread-safety

requirement of the developed thread-based message-passing collectives is limited to

the support of the MPI_THREAD_FUNNELED level, which means that a process may

be multithreaded but MPJ calls are only invoked by the thread that initializes the

MPJ parallel environment (which internally sets up the communications among MPJ

processes). Finally, in order to exploit data locality and affinity, each thread defines

its storage space in its TLA (Thread Local Area).

Figure 4.5 presents the algorithm of the thread-based Broadcast, where x is the

message, rootProcess is the root process, rootThread is the root thread within

each process, myThreadRank is the rank of each thread within each process, and

NUM_THREADS is the number of threads per process.

The data access synchronization is controlled by ready and done, AtomicInteger

objects from the concurrency framework. An AtomicInteger is an int value (counter)

that is updated atomically through several methods, three of them used in our li-

brary: compareAndSet(int expect, int update), which atomically sets the coun-

ter to a given value if the current value equals the expected one; incrementAndGet(),

which atomically increments the counter by one; and get(), which gets the current

counter value.

This thread-based algorithm first broadcasts the data among the MPJ processes,

involving only the rootThread. After this process-level operation, a thread-level

intra-node Broadcast is performed. This operation consists of all the threads but the
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Method Threaded Bcast(x,rootProcess)
AtomicInteger ready = new AtomicInteger(0);
AtomicInteger done = new AtomicInteger(0);

if myThreadRank = rootThread then
Bcast (x,rootProcess);
while not ready.compareAndSet(NUM THREADS-1,0) do Wait ();
while not done.compareAndSet(NUM THREADS-1,0) do Wait ();

else
ready.incrementAndGet();
while ready.get()>0 do Wait ();
System.arraycopy(x,0,TLA[myThreadRank].x,0,x.size);
done.incrementAndGet();
while done.get()>0 do Wait ();

Figure 4.5: Threaded Broadcast

rootThread copying in parallel the Broadcast message into thread-local variables.

This local copy of the data is needed in order to exploit data locality, avoiding

bottlenecks in shared memory accesses, as well as cache invalidation, quite common

performance penalties in multi-core systems.

Portability and Selection of Algorithms

Our aim is to provide a portable library that can be easily integrated in any

MPJ implementation. In order to achieve this goal, the communication algorithms

have been implemented in the MPJ Intracomm class, which contains the collec-

tives implementation according to the main MPJ API proposals (mpiJava 1.2 and

JGF MPJ, see Section 1.2). In order to avoid dependencies that would break the

portability of the developed library, all collective algorithms were implemented using

MPJ point-to-point operations, which show almost no variation among the different

APIs. In fact, the library was initially implemented for MPJ Express and now it is

integrated in FastMPJ with the mpiJava 1.2 API. Moreover, in order to support the

JGF MPJ API, implemented by MPJ/Ibis, the only changes required are renaming

the MPJ package (e.g., for datatypes MPI.BYTE→MPJ.BYTE), as well as some

methods (e.g., Send→send and Recv→recv).

The objective of the easy integration has therefore been fulfilled, as the de-
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veloped library can be directly used from FastMPJ and MPJ Express, this latter

considered because of its popularity, active development and, especially, for being

distributed with a poorly scalable collective communications library. Moreover, the

new collectives library is fully transparent to the user.

The runtime selection of the collective algorithm that provides the highest per-

formance in a given multi-core system, among the several algorithms available, is

based on the message size and the number of processes, defining a threshold for

each of them. Moreover, these thresholds can be configured for a particular system

by means of a benchmarking process, in order to obtain an optimal selection of

algorithms, based on the performance results on a specific system and taking into

account the particularities of the Java execution model.

This selection is stored in a configuration file (collectives.properties) that is

loaded by a static initializer at MPJ initialization. This configuration file contains

information about which algorithm has to be selected depending on the message

size and the number of processes involved in the communication. The use of the

selected algorithms is fully transparent to the user: if the collectives.properties

file exists, the MPJ implementation will select the appropriate collective algorithm,

otherwise a default algorithm will be used.

The configuration process consists of the execution of our own MPJ collectives

micro-benchmark suite [124], the gathering of their performance results, and finally

the generation of the configuration file that contains the algorithms that maximize

performance. The results have been obtained on a power-of-two number of pro-

cesses, up to the total number of cores of the system, and for power-of-two message

sizes. The parameter thresholds, which are independently configured for each col-

lective, are those that maximize, in relative terms, the performance measured by

the micro-benchmark suite. Moreover, this tuning process is done once per system

configuration, previous to the execution of the applications. A dynamic runtime

system approach would present several drawbacks, such as a higher overhead of the

algorithm selection process, and probably the use of a wider range of algorithms,

something penalized by the JIT compiler, which in turn benefits commonly reused

methods.

Finally, the overhead of the communication algorithm selection is reduced since it
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is done through a light mapping method based on the number of processes and mes-

sage size of a particular data transfer. This mapping is backed by a Java HashMap

with approximately 60 keys and an access overhead of few microseconds (<10 µs),

as it handles the different algorithms and scenarios represented by integer codes.

Moreover, the access to the HashMap is not synchronized, as the algorithms do not

change dynamically and there are not write operations.

Collective Operations for Shared Memory Systems in smdev

As mentioned before, the collectives library runs on top of MPJ point-to-point

operations which actually run on the implementation of the point-to-point opera-

tions of the communication devices. In addition, smdev also provides, through an

extension of the xxdev API (Section 3.2.1), its own implementation of collectives

precluding to rely on point-to-point primitives. Having the collective operations

implemented at the communication device level requires only a single call to smdev

per collective and enables to optimize the use of the communication queues.

The design of these collectives starts from the thread-based implementation al-

ready explained, but using the smdev queues (see Section 3.2.3). The optimization

in the use of the shared queues relies on the use of less explicit synchronizations,

taking advantage of knowing in advance the communication pattern. As an exam-

ple, in a Flat Tree algorithm for the Broadcast operation, the root thread relies on

an atomic variable to indicate the state of an ongoing execution of a collective oper-

ation, and directly inserts a send request, which contains a reference to the message,

in each UnexpectedRecvQueue. The rest of the threads, meanwhile, are waiting

on another atomic variable to be notified that they can safely receive the message.

Once the notification is received, they lock their own queue to find the request, and

copy the message directly from the reference left by the root. In this case, the use

of busy waits as a notification system establishes the order of operation, avoiding

the need to check the queues for already arrived messages. Listing 4.1 presents the

pseudo-code of this Broadcast for a more detailed explanation. Similar algorithms

have been implemented for the remainder of collective operations.

These smdev collective operations do not rely on point-to-point primitives but

on specific structures from the device. Since smdev is already included in FastMPJ,
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it was possible to integrate these shared memory collectives into the mechanism for

selecting the most appropriate algorithm at runtime.

Listing 4.1: Pseudo-code of the Broadcast method of smdev

void bcast ( Object buf , int root , int tag ){
i f (me == root ){

// wait i f t he re i s any other c o l l e c t i v e running and s e t i t to busy

busy−wait ( o t h e r c o l l e c t i v e , busy ) ;

for ( i =0; i<nthreads ; i++){
i f (me != i ){

r eque s t s [ i ] = new Request ( . . . ) ;

i f ( buf . i sOb j e c t ( ) )

r eque s t s [ i ] . buf = c opy s e r i a l i z e d d a t a ( buf ) ;

else

r eque s t s [ i ] . buf = buf ; // l e t a r e f e r ence to the b u f f e r in the reque s t

synchronized ( l o ck [ i ] ) { // l o c k both queues o f thread i

unexpectedRecvQueue [ i ] . i n s e r t ( r eque s t s [ i ] ) ;

}
o the r th r ead s [ i ] . s e t ( wr i t t en ) ; //wake up the r e s t o f threads

}
}
wa i t a l l ( r eque s t s ) ;

c o l l e c t i v e . s e t ( f i n a l i z e d ) ; // no t i f y t ha t t h i s c o l l e c t i v e has f i n a l i z e d

}
else {

busy−wait ( wr i t t en ) ; //wait u n t i l the root has wr i t t en the message in the queue

synchronized ( l o ck [me ] ) { // l o c k my queues

r eque s t = unexpectedRecvQueue [me ] . f i nd and ge t mes sage ( ) ;

}
i f ( r eque s t . i s S e r i a l i z e d ( ) )

buf = de s e r i a l i z e and c opy ( req . buf ) ;

else

buf = copy ( req . buf ) ;

r eque s t . setCompleted ( true ) ;

}
}

4.1.3. Performance Evaluation

This section presents the performance evaluation of the multi-core aware collec-

tives library, first on a multi-core cluster with 128 cores organized in a hierarchy of

multiple levels, and second, on two representative shared memory systems. A micro-

benchmarking of collective primitives is presented for both scenarios. Moreover, for

the multi-core cluster, an analysis of the impact of the use of the collectives library

on the overall performance of two representative MPJ codes is also presented. The
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analysis of these codes using smdev was shown in Section 3.3.3.

Micro-benchmarking of MPJ Collectives on a Multi-core Cluster

The evaluation of the developed library has been carried out on the DAS-4 cluster

(ASCI, Vrije University Amsterdam) using up to 16 nodes, each of them with a dual-

socket Intel Xeon E5620 quad-core Nehalem Westmere processor at 2.4 GHz and 24

GBytes of RAM. Each core has a 32-KByte L1 data cache and a 256-KByte L2

unified cache, and each processor has a 12-MByte shared Intel Smart cache. The

interconnection network is InfiniBand (16 Gbps of maximum theoretical bandwidth)

with OFED driver v2.7.0. The OS is CentOS v6.3, the C compiler GNU v4.4.6, the

JVM Oracle v1.7.0, and the message-passing libraries are FastMPJ v1.0 (internal

release), Open MPI v1.6.4 and MVAPICH2 v1.6. The performance results on this

system have been obtained running up to 128 processes, distributing them evenly

among the different nodes (e.g., for 128 processes, 8 processes are run per node),

except for the thread-based collectives, which use one process per node and 8 threads

per process (hence 128 threads).

Figures 4.6 and 4.7 present the aggregated bandwidth results (using 128 cores)

obtained by four representative MPJ collective operations, Broadcast, Allgather,

Reduce (sum) and Allreduce (sum) for the different algorithms implemented in

the library (see Table 4.1) and the proposed thread-based collectives (labeled as

“Threaded”). In order to micro-benchmark collective operations our own MPJ

micro-benchmark suite [124], similar to the Intel MPI Benchmarks, has been used

due to the lack of suitable micro-benchmarks for MPJ evaluation. The aggregated

bandwidth metric has been selected as it takes into account the global amount of

data transferred. The data used are byte arrays, avoiding serialization (the process of

transforming an object into a byte array for communication) in order to present the

collectives performance without incurring in additional overheads that would distort

the analysis of the results. For clarity purposes, Table 4.2 presents a summary of the

configuration file that maximizes performance (i.e., the collectives.properties

file mentioned in Section 4.1.2). The thresholds that determine the number of pro-

cesses and message size vary depending on the primitive.

The presented results show that there are significant differences between the
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Table 4.2: Algorithms that maximize collectives performance on the DAS-4 multi-
core cluster

small message/ small message/ large message/ large message/

Primitive small number large number small number large number

of processes of processes of processes of processes

Broadcast MST MST MST MST

(Bcast)

Allgather BT BT BKT BKT

Reduce bFT MST bFT MST

Allreduce nbFT MSTReduce+ bFTReduce+ MSTReduce+

MSTBcast MSTBcast MSTBcast

implemented algorithms, especially between the thread-based and the rest of algo-

rithms. Data movement collectives (Broadcast and Allgather in Figure 4.6) take

advantage of thread-based collectives and the efficient exploitation of shared mem-

ory transfers. Among the rest of algorithms, these collectives benefit from the use

of multi-core awareness. For instance, MST implements communication patterns

that reduce the number of costly network communications while taking advantage

of the high bandwidth of high-speed intra-node and intra-processor transfers. Thus,

the MST Broadcast algorithm only requires, in the configuration used (a 16-node

cluster), a maximum of 15 inter-node communications, whereas the Four-ary Tree

(FaT) or the Flat Tree (FT) would need up to 120 inter-node transfers. Moreover,

in FT, all communications are performed by the root and thus they have to be se-

rialized. This number of inter-node transfers has been determined with the default

mapping provided by the FastMPJ runtime, which consists of an even distribution

of the processes among the cluster nodes, trying to maintain the adjacency of the

process ranks. It is possible to define alternative mappings that would increase the

FaT Broadcast performance, however, applications and algorithms usually exploit

the default mapping and network locality, hence, it is quite likely that alternative

mappings would negatively affect the overall performance.

Regarding reduction operations (Reduce and Allreduce in Figure 4.7), thread-

based collectives provide less benefit since communications within each node have

to be serialized due to the need for computation. As an example, in a thread-

based Broadcast all threads can copy the message from the root at the same time
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Figure 4.6: MPJ Broadcast and Allgather performance on the DAS-4 multi-core
cluster

(see Figure 4.5) and, in a Reduce operation, the computation defines a critical

region in which each thread uses its own data and the data from the root to carry

out the computation, storing the result in the root’s buffer. However, in MST

the computation is performed recursively between pairs of processes in each step.

This causes MST to reach and improve the aggregated bandwidth of the threaded
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Figure 4.7: MPJ Reduce and Allreduce performance on the DAS-4 multi-core cluster

collectives for the Reduce operation. The threaded Allreduce involves an additional

stage of communication, in which the result of the reduction has to be sent to all

processes and threads, and hence the overhead introduced in the threaded reduction

step has less impact on the overall performance.

The performance scalability of the selected collective primitives has also been
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Figure 4.8: Scalability of MPJ collectives for a 1-KByte message

evaluated. Figures 4.8, 4.9 and 4.10 present the aggregated bandwidth for represen-

tative small (1 KByte), medium (32 KBytes) and large (1 MByte) message sizes,

respectively. Smaller messages have not been considered as the relatively high start-

up latency of the JVM makes the latency for a 1-KByte collective operation quite

similar to the latency for a 1-Byte collective operation. These results confirm that

the developed library presents generally good scalability, especially the thread-based

implementation except for the Reduce operation, as explained before. The decrease

in performance for 16 processes using the thread-based collectives (especially notice-

able for the Broadcast operation) is caused by the need for communications between

two different nodes. When only one node is involved, thread-based collectives only

carry out one stage: the communications among threads; but when using more than

one node, an additional stage of communication between nodes is needed. For large
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Figure 4.9: Scalability of MPJ collectives for a 32-KByte message

messages (1 MByte in Figure 4.10), it is also remarkable that for 8 processes the use

of two different sockets with separate NUMA regions also influences perfomance in

the data movement collectives (Broadcast and Allgather).

As a global conclusion of the micro-benchmarking analysis, it can be said that the

multi-core awareness significantly improves MPJ collectives performance when com-

pared to generic algorithms such as FT. Moreover, the use of threads has shown huge

potential benefits in order to exploit the use of hybrid shared/distributed memory

support in forthcoming FastMPJ communication devices. A comparison between

the developed library and the collectives included in MPJ Express was presented in

[122], where our library significantly outperformed MPJ Express collectives perfor-

mance, due to the use of more efficient and scalable algorithms for multi-core archi-

tectures. However, most of the benefits of the implemented library come also from
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Figure 4.10: Scalability of MPJ collectives for a 1-MByte message

the automatic selection of the algorithm that maximizes the performance through

the best adaptation of the communication pattern to the underlying architecture.

As the library includes up to five algorithms per collective primitive, this feature

is of special interest in a scenario of increasing complexity in the architecture of

current systems.

Benchmarking of MPJ Kernels on a Multi-core cluster

The impact of the use of the developed library on representative MPJ kernels

(IS and FT, using the class C workload) from the NAS Parallel Benchmark Suite

(NPB-MPJ) [79] has been evaluated. These MPJ codes were selected as previous

analysis of their performance showed poor scalability due to the collective primitives
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overhead (Allreduce and Alltoall operations for IS, and Alltoall for FT) [79, 117]. In

fact, these are communication-intensive codes, where additional factors, other than

communications performance, are usually negligible (e.g., data locality exploitation).

Figures 4.11 and 4.12 present the performance of the selected codes in terms

of speedup and MOPS, respectively. The performance of the MPI (MVAPICH2

and Open MPI) implementations of NPB IS and FT are also presented. As MPI

collectives are highly optimized, the speedups obtained with them can serve as a ref-

erence for assessing the quality of the MPJ collectives library included in FastMPJ.

For comparison purposes, performance results of FastMPJ using the basic MPJ col-

lectives that were present on MPJ Express are also included (labeled as ”FastMPJ

(basic)”). FastMPJ does not support the use of hybrid shared/distributed memory

devices to take advantage of multi-core clusters. Consequently, the use of thread-

based collectives would require the implementation of the user codes with a hybrid

MPJ/threads paradigm. Therefore, the thread-based collectives are not considered

in the graphs as it would require the reimplementation of the NPB-MPJ kernels.

Regarding the measured speedups in Figure 4.11, as IS is a quite communication-

intensive code, with several Allreduce, Alltoall and point-to-point communication

operations, its scalability is low (in fact, the scalability using our MPJ collectives

drops from 64 cores). However, our MPJ collectives always outperform the basic

ones, especially from 32 cores. MPI libraries present better scalability than MPJ

because both MVAPICH2 and Open MPI have a highly optimized collectives library

and take advantage of hybrid shared/distributed memory transfers with hybrid com-

munication devices.

With respect to FT, this kernel presents better scalability. The communication

overhead of the FT kernel is heavily based on the Alltoall primitive, whose algo-

rithm is a Flat Tree with underlying nonblocking point-to-point primitives (nbFT,

see Table 4.1). Here the performance using our MPJ collectives is significantly bet-

ter than using the basic ones, and only slightly worse than MPI. This is derived

from the low performance of the Java sequential FT implementation (see Table 3.1),

thus the performance improvements introduced by our MPJ collectives heavily im-

pacts on scalability. This is evidenced in Figure 4.12, where there is a significant

performance gap between MPI and MPJ that cannot be appreciated in a speedup

graph (Figure 4.11). For IS, the difference between Java and C on a single core is
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reduced (see Table 3.1), and thus there is almost no difference between Figures 4.11

and 4.12 regarding the relative behavior of MPJ and MPI.
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Figure 4.11: Scalability of NPB kernels on the DAS-4 multi-core cluster
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Figure 4.12: Performance (in MOPS) of NPB kernels on the DAS-4 multi-core cluster

Micro-benchmarking of smdev Collective Primitives on Shared Memory

Systems

The smdev collectives have been benchmarked on the same representative shared

memory systems used for the evaluation of the smdev device (see Section 3.3.1): (1)

a 16-core Intel-based server, composed of two Intel Xeon E5-2670 8-core processors

at 2.6 GHz and 64 GBytes of RAM (see Figure 2.1), and (2) a 48-core AMD-based
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server, composed of four Magny-Cours AMD Opteron 6172 processors, each one with

12 cores and 128 GBytes of RAM (see Figure 2.2). The OS is Linux CentOs with

kernel v2.6.35, the GNU compilers are v4.4.4 and the JVM is OpenJDK Runtime

Environment v1.6.0 20 (IcedTea6 v1.9.8).

The performance of FastMPJ collectives, either implemented at MPJ level or

relying directly on the smdev device, has been evaluated comparatively against two

representative MPI implementations which provide efficient communication proto-

cols on shared memory systems for natively compiled languages (C/C++, Fortran).

The MPI libraries selected for this evaluation are MPICH2 v1.4 and Open MPI

v1.4.3 on the Xeon E5, and Open MPI v1.4.2 on the Magny-Cours. MPICH2 results

have been omitted for clarity purposes since Open MPI generally obtains better per-

formance on the Magny-Cours. In order to present a fair comparison with FastMPJ

when relying on smdev, these MPI implementations have been benchmarked using

their shared memory communication devices: sm and KNEM BTL in Open MPI

and Nemesis in MPICH2. Both libraries have been carefully configured in order to

achieve the best performance results.

The aggregated bandwidth for the Broadcast, as representative data movement

collective, has been measured on 8 and 16 cores on the Xeon E5 (Figure 4.13), and

communicating 8 and 48 cores on the Magny-Cours testbed (Figure 4.14). Two

algorithms have been used for FastMPJ: the specific smdev implementation, and the

Minimum-Spanning Tree (MST) from the developed collectives library which relies

on the point-to-point primitives from smdev.

The results from Figures 4.13 and 4.14 show that the FastMPJ smdev Broad-

cast generally obtains higher bandwidth than the MPI implementations thanks to

relying on a zero-copy communication protocol, as it happened in smdev point-to-

point transfers. In comparison with the MST Broadcast, it also shows the highest

bandwidth, except for 48 cores on Magny-Cours, in which the contention in the ac-

cess to the shared queues causes a performance decrease. In fact, the Broadcast of

messages up to 1 MByte obtains lower aggregated bandwidth on 48 cores than on 8

cores of the Magny-Cours, showing a decrease in the scalability of the smdev imple-

mentation. The MST algorithm balances the load among the cores involved in the

communication, which is a more scalable approach as it increases performance with

the number of cores. However, this algorithm relies on several synchronizations that
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Figure 4.13: Broadcast performance on 8 and 16 cores (Xeon E5)

introduce an important performance penalty. The specific smdev implementation

also shows poor performance for small messages on 16 cores of the Xeon E5 sys-

tem. However, the FastMPJ library supports the selection of collective algorithms

at runtime, thus the best algorithm is selected depending on message size and num-

ber of cores. As in point-to-point transfers, the performance of the specific smdev

implementation drops on the Xeon E5 when the message cannot be fully stored in

the L3 cache (from 2 MBytes). Finally, due to the lower computational power and
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Figure 4.14: Broadcast performance on 8 and 48 cores (Magny-Cours)

memory performance of the Magny-Cours, the achieved bandwidth is significantly

lower than on the Xeon E5.

In addition to the Broadcast, a collective operation whose performance is key in

parallel and distributed codes is the explicit synchronization among several cooper-

ating threads, generally known as Barrier. This operation is usually implemented

as a combination of sends and receives that guarantees that every thread that calls
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the barrier blocks until all the threads involved in the collective operation have

reached this routine. The developed collectives library implements two algorithms

for this operation. The first one, Binomial Tree (BT), organizes the threads into

a binomial tree performing several communications across this tree that guarantee

the synchronization among the threads. The second one, Duplex, uses a Broadcast

(sending a token from one thread to the rest of threads) followed by a Gather (one

thread receives an ACK message from each one of the rest of threads). The Java

threading API also provides an implementation of the synchronization operation,

the Cyclic Barrier, which implements the concept of Barrier using locks for synchro-

nizing a configurable number of threads. Regarding MPI libraries, both Open MPI

and MPICH2 use their own shared memory communication devices with the same

considerations than for the Broadcast micro-benchmarking.

The performance of this representative collective operation has been analyzed on

the Xeon E5 system (using 8 and 16 cores) and on the Magny-Cours system (using

8 and 48 cores). Table 4.3 shows the minimum and average latencies measured

for the Barrier algorithms described above. As a direct consequence of the typical

variability of the JVM measured results, some outliers increased significantly the

average latency. Thus, the Java micro-benchmarks execute the Barrier operation

inside a loop obtaining the minimum and the average latency, instead of using the

Intel MPI Benchmarks (IMB) [110] approach: obtaining the average by dividing

the total latency of the loop by the number of operations. The approach used

for benchmarking the Java Barrier does not reduce variability but allows to obtain

the actual minimum (in the IMB results, the minimum represents the “minimum

average” of a set of repetitions of the benchmark).

As it can be observed, the BT algorithm generally achieves the best performance

of the Java algorithms, both for the minimum and average latencies. The main

reason is that it needs fewer communications than the Duplex algorithm and the

cost of those communications is lower than the overhead of the explicit locks in the

Cyclic Barrier, which involve context switches. Moreover, the minimum latencies

of the BT and the MPI Barriers are very similar. Regarding MPI, both Open MPI

and MPICH2 generally present the lowest latencies, and although the usage of the

KNEM-based device shows significant variability, its minimum latency is the lowest

one.
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Table 4.3: Latency of Barrier algorithms (time in µseconds)

Fast- Fast- Fast- Open Open

MPJ MPJ MPJ MPI MPI MPICH2

(BT) (Dupl.) (Cycl.) (sm) (KNEM)

Xeon 8 cores Min. 4.40 3.84 6.55 4.44 3.46 3.73

E5 Avg. 9.28 13.21 203.06 4.56 10.62 4.07

16 cores Min. 5.87 6.87 6.50 6.98 4.20 5.81

Avg. 14.61 223.81 425.02 8.56 24.64 7.49

Magny- 8 cores Min. 7.16 8.64 12.74 6.14 – –

Cours Avg. 11.71 21.62 192.43 6.97 – –

48 cores Min. 14.41 23.27 16.96 28.49 – –

Avg. 752.51 127.72 1621.78 31.49 – –

4.2. Nonblocking Collectives in Java

As seen previously in this chapter, communications may become one of the ma-

jor bottlenecks in the scalability of parallel codes, especially as the number of cores

per processor keeps increasing. Message passing reduces this communication over-

head by overlapping communication and computation via nonblocking point-to-point

primitives. Nevertheless, regarding collective operations, only blocking primitives

have been traditionally supported by the MPI standard, forcing programmers to im-

plement their own collective communications involving nonblocking point-to-point

primitives when needed. This imposes higher costs of development, risks of bugs

and lack of efficiency as it is not possible to take advantage of the highly optimized

collective algorithms included in message-passing libraries, which usually exploit the

underlying hardware. Thus, nonblocking collectives were proposed to be part of the

MPI 2.2 standard but they were postponed until the recently published MPI 3.0

specification.

Blocking collectives impose an implicit synchronization that can be avoided by

the adoption of a nonblocking paradigm for these primitives. Thus, a nonblocking

collectives library, which is next described, has been developed and benchmarked to

show that both overlapping of communication and computation, and the avoidance

of extra synchronization improve performance of message-passing codes on shared
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memory systems [107].

4.2.1. State of the Art of Nonblocking Collectives

The optimization of message-passing libraries for exploiting multi-core shared

memory architectures has become a necessity due to the increase in the number

of cores per processor. In fact, as explained in Chapter 3, MPI libraries such as

Open MPI [130] and MPICH2 [17, 28], and MPJ implementations such as MPJ

Express [116] and FastMPJ [108], include custom communication devices which ex-

ploit shared memory transfers. The advantage of Java over traditional languages

in HPC (C, Fortran) is that it supports multithreading in the core of the language

and shared memory programming naturally emerges from it, whereas natively com-

piled languages have to rely on the shared resources management of the operating

systems.

Moreover, when the number of communicating processes is large, blocking com-

munications generally impose a high overhead that can be overcome by overlap-

ping communication and computation using nonblocking communications, and thus

message-passing libraries provide nonblocking point-to-point primitives. The bene-

fits of overlapping in message-passing libraries have been well studied. For instance,

in [15] the authors analyze the benefits for an MPI library which supports over-

lapping with offloading and independent progress. Another work [69] presents a

benchmark to assess the ability of hardware and software to overlap MPI communi-

cation and computation, whereas in [112] a theoretical analysis for scientific appli-

cations is shown, and in [103] the benefits of overlapping in an MPI-2 application

are evaluated.

Since its inception, MPI aimed to provide nonblocking communications. In fact,

in [26], while describing the MPI standard, the authors mention that not only non-

blocking point-to-point primitives but also collective ones might be useful and should

be included in subsequent versions. Nonblocking collectives were attempted to be

part of the MPI 2.2 standard but they were finally put off since it would suppose

a major change which would fit best with MPI 3.0 [86]. However, they have been

explored ever since, and different MPI implementations provided their own suite

of nonblocking collective operations. Some examples are Adaptive MPI [48], that
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extends MPI to use virtual processors; the optimization of MPI collectives for the

MPICH2-based library used in BlueGene/L [2] and BlueGene/P [66, 68]; or the

Component Collective Messaging Interface (CCMI) [67], which is not an MPI im-

plementation but provides a messaging interface with nonblocking collectives. The

potential benefits of nonblocking collectives in different applications are analyzed

in [14], and [36] studies how noise affects MPI performance, concluding that non-

blocking collectives can help, and demonstrating this statement empirically through

the evaluation of its own nonblocking allreduce implementation. 3D FFT (Fast

Fourier Transform) has been stated to be able to take advantage of nonblocking col-

lectives in [59] and [111]. Moreover, there is also a large number of projects which

intend to provide low-level nonblocking support. The work [60] presents the imple-

mentation of a nonblocking Broadcast taking advantage of the Mellanox ConnectX-2

InfiniBand adapters that offer a task-offload interface (CORE-Direct), being evalu-

ated with the High Performance Linpack (HPL) benchmark. The work [125] extends

PAMI, a low-level messaging interface, to support the implementation of nonblock-

ing collectives in Power7 IH supercomputers. KACC [93] is a new nonblocking

communication facility implemented in the OS kernel interrupt context to perform

nonblocking asynchronous collective operations without the help of an extra thread,

and it was moved to the user level in uKACC [94], which uses the Marcel thread

library and the PIOMan’s scheduler from Madeleine [135, 136] to implement non-

blocking collectives. In [114] the authors discuss a possible implementation of the

flexible Group Operation Assembly Language (GOAL) framework to support non-

blocking collectives. Additionally, PGAS languages like Unified Parallel C (UPC)

also support them [92].

One of the most relevant projects related to nonblocking collectives is the LibNBC

library [42, 45], which is being integrated in Open MPI. In its first version, each op-

eration needs user interaction to progress, but micro-benchmark results show that

overlapping computation and communication in collective operations could poten-

tially provide significant performance improvements. The authors state the benefits

that nonblocking collectives could add to MPI and show benchmarking results of

their implementation, based on avoiding implicit synchronization and taking advan-

tage of nonblocking features of modern network hardware. This implementation

aimed to support a strong case in favor of the inclusion of nonblocking collectives

in the MPI standard. The library has been optimized for InfiniBand in [44], and
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the benefits and drawbacks of including an extra thread to manage progress instead

of user interaction are evaluated in [43]. This work compares a polling strategy

(beneficial when there are free CPU resources) with an interruption system using

communications over InfiniBand. In [46] the authors present an analysis of the

methodology for benchmarking nonblocking collective operations using overlapping

in the latency measurements, which is estimated using both time and workload

measurements. More recently, the successful approach of overlapping communica-

tion with costly computation has also been applied to I/O operations, as shown

in [142].

4.2.2. Nonblocking MPJ Collectives

The benefits of nonblocking collectives have been extensively studied for dis-

tributed memory systems and communication across the network. However, al-

though shared memory architectures are becoming increasingly supported by message-

passing libraries, there is no previous assessment of the capabilities of the shared

memory communication support to take advantage of nonblocking collectives. With

this purpose, a Java message-passing nonblocking collectives library has been devel-

oped and integrated in FastMPJ [29, 107], and then it has been benchmarked in a

Sandy Bridge-based shared memory system.

Implementation of Nonblocking Collectives for FastMPJ

The blocking collective operations of FastMPJ described in Section 4.1.2 do not

allow the overlapping of computation and communication and, furthermore, they

impose implicit synchronizations. In an environment where threads and processes

are supposed to perform independent workloads, any synchronization can potentially

cause major overheads. An initial approach to the implementation of nonblocking

collectives could be based on a Flat Tree algorithm upon nonblocking point-to-point

primitives. Figure 4.15 compares this initial approach with its blocking counter-

part (using also nonblocking point-to-point primitives, see nbFT in Table 4.1) for a

Broadcast in an example scenario with four processes. Dotted lines indicate that the

process has to wait and it is not able to perform any other computation while the

operation is not complete, whereas continuous lines represent useful computation.
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Figure 4.15a represents the blocking version of the algorithm, where nonblocking

point-to-point primitives are used but the Wait operations are immediately invoked

after them, thus blocking the calling processes until the whole collective is com-

plete. In Figure 4.15b, when the nonblocking collective is invoked, the point-to-point

primitives are called, and the corresponding Wait operations can be invoked later.

Communications are therefore performed by an asynchronous progress mechanism

while the process is able to continue its computation. Nevertheless, this is a naive

approach with dubious benefits and hardly scalable that can collapse the progress

system of the communication devices with excessive requests when the number of

processes is large or when allowing concurrent nonblocking collectives.
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Figure 4.15: Flat Tree-based Blocking and Nonblocking Broadcast implementation

The approach followed relies on a queue of stages per process that calls a col-

lective operation. The queues hold two types of stages: “dependent” or “non-

dependent”. The former prevents the progress of the collective operation in the

process until the stage is complete. The latter only needs to be complete when re-

turning from the Wait operation. With this mechanism, it is possible to implement

the multi-core aware algorithms presented in Section 4.1.2 by splitting them in a

stage manner to take advantage of their optimized performance. The use of “non-

dependent” stages enables the scheduling of several stages that can issue nonblocking

point-to-point primitives simultaneously.

The issue that arises here is the progress of the operation. The decision to be
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made is if a specific mechanism is required for these operations or if it is possible to

rely on each device to make progress happen, which is only possible if the operations

are based on nonblocking point-to-point primitives. Since nonblocking collectives

are in a very early stage of adoption, the priority is to assess the feasibility of

these operations, which can be achieved relying on existing device mechanisms.

Nevertheless, if the library does not create any thread to be in charge of stage

progress, the user is responsible of being aware of it and making some calls to a

testing function (Test). This function will check the stage queue and, if there is

not any dependent stage pending, it will launch the subsequent stages. If there are

neither pending stages nor subsequent ones, it will complete the operation. The

Wait operation is equivalent to perform several tests until the operation is finished.

Figure 4.16 compares a blocking Minimum-Spanning Tree (MST) Broadcast with

a nonblocking counterpart implemented with stages for an example scenario using

eight processes. The figure assumes that the collective operation is issued at the same

time in every process and, in the nonblocking scenario, the calls to the Test/Wait

operations are also made simultaneously. This is not a realistic scenario, but the

aim of the figures is only to show the differences among both approaches. As in

Figure 4.15, dotted lines represent idle time spent waiting for the operation to be

complete and continuous lines represent computation. Figure 4.16a represents the

blocking implementation which uses blocking point-to-point primitives since it is a

recursive algorithm (see Section 4.1.2). This recursion causes the algorithm to be

executed in three implicit steps (marked by rectangles). In Figure 4.16b, the non-

blocking staged implementation of the MST algorithm is represented, using dark

rectangles for dependent stages and white ones for non-dependent stages. In this

scenario there are processes that schedule three or less stages, depending on how

many communications they have to perform. With the purpose of ease the repre-

sentation of the algorithm, it is assumed that a process that has already scheduled

every stage, calls Wait instead of Test. In addition, when Test is called and the

stage is already finished, this stage is never tested again. It can be seen that even

considering simultaneous calls, this algorithm yields less implicit synchronization

and requires less ordering than the blocking one. In fact, in the blocking version

every process will end almost at the same time whereas in the nonblocking one,

even when the calls are simultaneous, each process can finalize the collective when

its stages are complete.
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Figure 4.16: MST-based Blocking and Nonblocking Broadcast Implementation

Optimization of the Nonblocking Collectives Library for Shared Memory

The implementation being discussed, based on stages, is portable to every com-

munication device in FastMPJ, although the maximum potential could be reached

on shared memory where the stage-based design can be combined with the specific

shared memory algorithms implemented in smdev and described in Section 4.1.2.

The operation of the nonblocking algorithms proposed here is the same as described

before: instead of keeping the thread waiting when the condition to progress is not

yet fulfilled, the thread checks if it has to remain in the same stage or if it is able to

advance to the next one. These checks are performed in the Test or Wait function.



90 Chapter 4. Efficient Support of Collective Communications in Java

Flat Tree algorithms have shown significant performance improvements for shared

memory communications in [108], and the stage-based design can be implemented in

these algorithms by using a single stage per thread instead of a stage queue. More-

over, as for shared memory blocking collectives, shared structures will only contain

references to messages instead of real data, barely involving any memory overhead.

It is thus feasible to allow the scheduling of concurrent collective operations storing

references of multiple messages. This is possible through the replication on an array

of the shared structure that maintains the references along with the semaphores that

manage the stage progress. Hence, there is a limited number of concurrent opera-

tions bounded by the number of replications managed by a tag parameter. The tag

is a user parameter needed by point-to-point operations to identify each message.

Collective operations based on point-to-point primitives use this parameter inter-

nally and nonblocking collectives for shared memory can take advantage of it, since

it can be used as a sequence number. This tag modulo the number of concurrent

operations is an index in the array of references. If the slot of this index is free, the

operation can continue and the slot will be marked as busy with the operation tag

but, if not, the operation must remain in the previous stage. Nevertheless, since

this array is a shared structure, the index can be marked as busy by another thread

that has started the same operation that the new thread is trying to perform. This

situation does not incur any problem because the index is marked with the current

tag, so the new thread will realize that it is occupied by the same operation and will

be able to perform its stage.

To illustrate the implementation of the shared memory nonblocking collectives,

Listings 4.2 and 4.3 show the pseudo-code for the main methods used in the non-

blocking Broadcast: the ibcast and Test calls, and the internal function to advance

between stages.

Listing 4.2 shows the pseudo-code for the ibcast and Test operations, that can

be called from the user application. Nonblocking collectives, like nonblocking point-

to-point primitives, return a request over which the Test and Wait operations can

be invoked. Before returning the request, this collective operation issues an advance

call to make as much progress as possible. This advance call will not make the thread

wait if any of the conditions prevent it from progressing, but it will just return the

stage of the operation without advancing. The Test method also schedules the
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advance returning immediately even if it was not able to move forward. The Wait

function would perform the same operation but blocking until the collective has

been completed.

Listing 4.2: Pseudo-code of the ibcast and Test methods for the shared memory

nonblocking Broadcast

public stat ic Request i b c a s t ( Object buf , int root , int tag ){
int indexTag = tag % NUMBEROFCONCURRENTOPERATIONS;

int s tage = ibcastAdvance ( indexTag , buf , root , tag , INITIAL STAGE ) ;

return new IbcastRequest ( indexTag , buf , root , tag , s tage ) ;

}

public Status Test ( ) {
i f ( s tage == FINAL STAGE)

return COMPLETE;

else {
s tage = ibcastAdvance ( indexTag , buf , root , tag , s tage ) ;

return null ;

}
}

The pseudo-code of the advance method used for the Broadcast is shown in List-

ing 4.3. This is the main function that controls the progress throughout stages. It

uses two condition variables implemented as AtomicInteger type: collectives nbc

and ended collective nbc. To support a fixed number of concurrent collective op-

erations (NUMBER OF CONCURRENT OPERATIONS), these variables are replicated in two

arrays of AtomicInteger indexed by the modulo of the operation tag. Hence, each

operation will have an assigned slot which consists of the condition variables and a

shared buffer in which the root stores the reference to the data.

The collectives nbc variable controls the start and end of a collective and it

has three possible states: FREE, INIT and BUSY. In a Broadcast operation, when the

root finds the collectives nbc variable in the FREE state, it sets this variable to

INIT to mark it as occupied but not yet prepared for the rest of threads to per-

form the copy. Then, after copying the reference to the message data, the root sets

the condition variable to BUSY with the operation tag, to notify that the data is

ready to be copied. All threads but the root will not be able to start the commu-

nication operation until the variable is set to the operation tag by the root. The

ended collective nbc variable indicates how many threads have already performed

the copy and when the root would be able to reset and free the slot.



92 Chapter 4. Efficient Support of Collective Communications in Java

Listing 4.3: Pseudo-code of the ibcastAdvance method for the shared memory

nonblocking Broadcast

public stat ic int ibcastAdvance ( int indexTag , Object buf , int root , int tag ,

int s tage ){
boolean i sRoot = ( getRank()==root ) ;

i f ( i sRoot ){
i f ( s tage==INITIAL STAGE){

i f ( ! c o l l e c t i v e s n b c [ indexTag ] . compareAndSet (FREE, INIT){
return INITIAL STAGE ;

}
else {

end ed c o l l e c t i v e nb c [ indexTag ] . s e t ( INIT ) ;

s h a r e d bu f f e r s [ indexTag ] = buf ;

c o l l e c t i v e s n b c [ indexTag ] . s e t ( tag ) ;

s tage = FIRST ROOT STAGE;

}
}
i f ( s tage==FIRST ROOT STAGE){

i f ( ! e nd ed c o l l e c t i v e nb c [ indexTag ] . compareAndSet ( nthreads ,FREE)){
return FIRST ROOT STAGE;

}
else {

s h a r e d bu f f e r s [ indexTag ] = null ;

e nd ed c o l l e c t i v e nb c [ indexTag ] . s e t (FREE) ;

c o l l e c t i v e s n b c [ indexTag ] . s e t (FREE) ;

return FINAL STAGE;

}
}
i f ( s tage==FINAL STAGE)

return FINAL STAGE;

}
else {

i f ( s tage==INITIAL STAGE){
i f ( ! c o l l e c t i v e s n b c [ indexTag ] . compareAndSet ( tag , tag ){

return INITIAL STAGE ;

}
else {

copy ( s h a r e d bu f f e r s [ indexTag ] , buf ) ;

e nd ed c o l l e c t i v e nb c [ indexTag ] . increment ( ) ;

return FINAL STAGE;

}
}
i f ( s tage==FINAL STAGE)

return FINAL STAGE;

}
}
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4.2.3. Performance Evaluation

The performance evaluation of the shared memory nonblocking collectives has

been carried out on a representative 16-core shared memory testbed next described.

The benchmarking consists of a micro-benchmark which compares the blocking and

nonblocking versions of two collective operations (Broadcast and Scatter), and a

production application which combines I/O operations with nonblocking collectives.

Experimental Configuration

The nonblocking collectives library has been evaluated on the Sandy Bridge Intel

Xeon E5 system already described in Chapter 2 (see Figure 2.1) and used for the

evaluation of the blocking collectives on shared memory (Section 4.1.3). This shared

memory system consists of 2 Intel Xeon E5-2670 octa-core processors at 2.6 GHz (a

total of 16 cores in the system, 32 with hyperthreading) and 64 GBytes of RAM.

Each core has a 32-KByte L1 and a 256-KByte L2 cache and the eight cores in

each processor share a 20-MByte Intel Smart L3 Cache. Although the system had

the hyperthreading enabled, the results are shown for 16 cores since the use of the

32 available threads does not provide any benefit in terms of performance. The

OS is Linux CentOs with kernel v2.6.35, together with OpenJDK JVM v1.6.0 20

(IcedTea6 v1.9.8) and FastMPJ v1.0 internal release.

Micro-benchmarking of MPJ Nonblocking Collectives

Figures 4.17-4.21 show the performance results for Broadcast (Figures 4.17-4.19)

and Scatter (Figures 4.20 and 4.21) of a comparative benchmark among: (1) a

blocking algorithm (labeled as “block” in the figures), (2) a nonblocking algorithm

without overlapping computation, i.e. with an immediate call to Wait after calling

the collective (labeled as “nbc”), and (3) the nonblocking algorithm overlapping

the communication with a synthetic workload (“nbc+overlap”). The benchmark

is based on the test published for LibNBC [45] and the nbc version is used to

assess the overhead introduced by the nonblocking operation. For the workload

simulation, it is estimated how long it takes to perform the nonblocking operation

together with its corresponding Wait to approximate it with the synthetic workload.
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The latency is measured for the collective, Test and Wait calls, which make up

the effective communication. The performance evaluation methodology has been

carefully designed following the recommendations addressed in [37] to avoid bias

caused by side effects of the use of the JVM.

For the Broadcast, it is shown the comparison between the shared memory non-

blocking implementation and three blocking implementations: the blocking Broad-

cast for shared memory (Figure 4.17), the MST algorithm (Figure 4.18), and the

Flat Tree (nbFT) algorithm (Figure 4.19). Besides the specific shared memory al-

gorithm, on which the nonblocking implementation is based, the nbFT algorithm

has been selected as it is the point-to-point-based counterpart of the shared memory

algorithm. MST has also been included for comparison purposes.
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Figure 4.17: Shared memory Broadcast: Blocking vs. Nonblocking

Regarding Figure 4.17, as expected, there is almost no overhead imposed on

nonblocking collectives when compared to the shared memory blocking counterpart.

Moreover, it can be observed that the overlapping with a computational workload

reduces the time spent in the actual communication. This is because of the lack

of imposed synchronization, thus when a thread calls the Wait function, it is more

probable that other threads have already finished and they will not have to wait
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Figure 4.18: MST Broadcast vs. Shared memory Nonblocking Broadcast
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Figure 4.19: nbFT Broadcast vs. Shared memory Nonblocking Broadcast



96 Chapter 4. Efficient Support of Collective Communications in Java

to perform their own operations. The differences increase from 4 MBytes on, since

messages do not fit in the L3 cache (taking into account that there is a 20-MByte

L3 cache shared among 8 cores), thus taking more advantage of the overlapping.

The results of the comparison with the MST algorithm in Figure 4.18 show that

the nbc version overcomes MST, and thus the shared memory blocking implemen-

tation also overcomes MST in the same way according to the results of Figure 4.17.

The nbc+overlap version shows again its benefits. Finally, Figure 4.19 shows that,

although the nbFT algorithm has a higher start-up latency than the algorithms

based on shared memory transfers, it provides more scalability (in terms of mes-

sage size) since it avoids contention in the access to shared buffers. Nevertheless,

nbc+overlap achieves better performance than nbFT, mainly providing less start-up

latency for small messages.

Regarding the Scatter, the blocking versions selected were the shared memory

(Figure 4.20) and the nbFT (Figure 4.21) algorithms. MST was discarded due to

its poor performance. Results are quite similar to the ones observed for Broad-

cast. Again, the nonblocking collective barely imposes any overhead over the shared
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Figure 4.20: Shared memory Scatter: Blocking vs. Nonblocking
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Figure 4.21: nbFT Scatter vs. Shared memory Nonblocking Scatter

memory blocking implementation and, when compared to the nbFT algorithm, it

overcomes the scalability issues of the shared memory algorithm, also reducing the

latency obtained with nbFT, as it happened for the Broadcast operation.

Benchmarking of an MPJ Application

The application used to assess the performance of the implemented nonblocking

collectives has been selected as it overlaps collective communications with computa-

tion and I/O operations. MPI includes the MPI-I/O library to deal with input/out-

put operations. The feasibility of the use of I/O nonblocking collectives has been

studied in [142]. In MPJ there are no MPJ-I/O libraries available, so parallel codes

have to deal directly with the standard Java I/O libraries, generally imposing a large

overhead which makes them suitable for overlapping. Although it is possible to use

an extra thread to perform the I/O operations, this mechanism is far more compli-

cated to manage than the overlapping of nonblocking collectives and I/O operations

for MPJ.
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The original application reads a group of zip files which represent two years

of financial data from the Spanish Market of Financial Futures, including strings

of information for options and futures over the IBEX-35 (Spanish exchange index)

shares and the National Spanish Bond. The application has to extract and read

each file and process the lines. Each line is processed at the moment that it is read

and available (using the readLine method). For the processing of each line and to

evaluate the effect of the overlapping, a synthetic workload that is measured in terms

of the number of operations over each line has been created. The parallelization with

MPJ uses the readChar method to read groups of chars which make up a buffer

scattered among all threads. Only one thread extracts one zip file at a time and

reads groups of chars until the buffer is complete. After that, it performs a Scatter

and each thread runs the workload over each line received. Since a whole buffer of

chars is scattered, the application has also to deal with the possibility that a line

could be broken between two threads and it is solved by overlapping the scattered

fragments. This imposes a certain overhead compared to the sequential version, but

it is more efficient for the parallelization in that there is no need for serialization nor

conversion of strings to arrays of chars to build the sending buffer. Finally, every

thread (including the one in charge of the I/O operations) performs the operations

over the received lines. The application benchmark does not take into account the

return of the results to the thread in charge of I/O operations because the goal is

to measure the effect of using a nonblocking Scatter that allows the overlapping of

communications with read operations and computation.

Figure 4.22 shows the performance of the parallel application on the Xeon E5

testbed using 16 cores and different workloads. For the parallelization with blocking

collectives (“block”), the Flat Tree (nbFT) algorithm was chosen since, although

the shared memory algorithm shows better performance for small and medium size

messages, nbFT is better for large messages, which are extensively used in this

application. The nonblocking version (“nbc”) allows a defined number of concurrent

nonblocking Scatters for both the sender and the receivers (see 4, 8 and 16 in the

legend of the figure). The results are shown in terms of execution time varying

the workload according to the number of operations per line. A buffer size of 512

KBytes is received by each thread, thus having an 8-MByte scattered message. The

buffer size was selected to take advantage of memory locality and L3 cache size.
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It can be observed that, while the overhead when there is no computation (i.e.

0 operations per line) is negligible, the use of nonblocking collectives achieves per-

formance gains up to 30% when the number of operations (and thus the workload)

increases. This is due to the overhead imposed by the implicit synchronization of

the blocking collectives as opposed to the overlapping of communication and com-

putation in the nonblocking implementation, especially when increasing the number

of concurrent nonblocking collectives.

The results of this benchmark show that the use of nonblocking collectives in

shared memory architectures is beneficial for communication-intensive codes that

also involve large amounts of computation assigned to threads in an unbalanced way.

Hence, when having a costly I/O operation and significant workloads in each thread,

introducing nonblocking collectives can provide important performance benefits.
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4.3. Main Contributions of the MPJ Collectives

Support

This chapter has presented a scalable and efficient MPJ collectives library for par-

allel computing on multi-core architectures. This library efficiently exploits multi-

core systems with multiple levels of core hierarchies, taking advantage of a thread-

based MPJ collectives implementation. Additionally, the library transparently pro-

vides Java message-passing applications with several multi-core aware algorithms

per collective primitive that can be selected automatically at runtime, depending on

relevant parameters, in order to increase the communications performance.

The evaluation of the collectives library on representative shared memory systems

has shown that it is able to outperform significantly the MPI counterpart. This high

performance is also achieved when considering different levels of core hierarchies, for

instance in a multi-core cluster with InfiniBand interconnect. Furthermore, the

developed library increases the speedup of collective communication-intensive Java

HPC kernels, as shown on a representative 128-core system. In our work [122] it

was also experimentally assessed that the lower the scalability and performance pro-

vided by the communication hardware, the higher the relative performance benefits

achieved by the MPJ collectives library. Thus, this library can contribute signifi-

cantly to bridge the performance gap between Java and native languages in HPC.

Regarding nonblocking primitives, this chapter has presented an analysis of the

feasibility of the MPI 3.0 nonblocking collectives for message passing in Java focused

on shared memory architectures. The performance evaluation on a representative

multi-core shared memory system and the analysis of the micro-benchmarking per-

formance results have shown that: (1) no additional overhead is imposed by this

nonblocking implementation, and (2) performance improvements are obtained when

overlapping communication and computation. As representative results, with the

proposed nonblocking collectives there is a performance gain up to 50% for Broad-

cast and 66% for Scatter in comparison with shared memory blocking counterparts.

The impact on a real I/O-intensive MPJ application has also been analyzed using

a synthetic workload to assess the performance improvements regarding concurrent

collective operations and workload overlapping. Performance results confirmed that
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shared memory nonblocking collectives are able to exploit the avoidance of implicit

synchronization, as well as the overlapping of computation and communication. For

instance, it was obtained around a 30% reduction in execution time when using

16 concurrent collectives. These results demonstrate the benefits of nonblocking

collectives in shared memory environments, which is crucial when the trend is to in-

crease the number of cores per processor, showing that nonblocking collectives allow

communication-intensive MPJ applications to reduce significantly their overhead,

thus improving the scalability of the communications.





Chapter 5

Java Heterogeneous Computing

The use of specific coprocessors, such as Graphics Processing Units (GPUs),

composed by a large number of small and specialized cores in order to increase

the performance of specific regions of parallel codes, has gained popularity over

the last years. These accelerators provide high performance and energy efficiency,

having an increasing presence in the Top 500 supercomputer list [134]. The recently

released Intel Xeon Phi, from the Intel MIC family, aims at sharing this popularity

by providing many-core coprocessors with a x86 architecture to enable the use of

traditional programming languages and paradigms to exploit performance [106].

The efficient combination of multi-core processors and many-core coprocessors is a

timely and very important research topic that will next be discussed in the context

of high performance heterogeneous computing in Java.

This chapter presents a performance and productivity analysis of currently avail-

able solutions that enable Java programmers to exploit many-core accelerators.

These solutions have been evaluated using the NVIDIA K20m GPU and the In-

tel Xeon Phi coprocessor presented in Chapter 2.

5.1. General Purpose GPU Computing in Java

Nowadays Java generally supports General Purpose GPU (GPGPU) computing

relying on native solutions, such as CUDA or OpenCL, due to the lack of direct JVM

103
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support, which is still an ongoing effort [96]. Section 1.3 presented a detailed analysis

of current Java GPGPU solutions, among which two main approaches were iden-

tified: the performance-oriented or architectural-friendly approach, which consists

of JNI bindings to CUDA/OpenCL, and the productivity-oriented or user-friendly

approach, based on Java pre-processing. This section presents an evaluation of two

Java GPGPU projects that have been selected due to their representativeness and

active development: jCuda and Aparapi. The jCuda project [55] is a direct wrap-

per implementation over a native library, thus architectural-friendly and aiming

to obtain similar performance to native solutions, whereas Aparapi [4] translates

bytecode into OpenCL at runtime providing a user-friendly API. Moreover, jCuda

is based on CUDA whereas Aparapi relies on OpenCL, although this fact is not

especially relevant since our work [32], which evaluated comparatively CUDA and

OpenCL performance, has shown that they are able to provide roughly the same

performance, being the actual implementation of a given code the main reason for

performance differences.

5.1.1. Experimental Configuration

The evaluation has been done using our own Java implementation of represen-

tative GPGPU synthetic kernels [25]. They are code snippets that provide basic

building blocks widely extended in HPC applications (e.g., a matrix multiplica-

tion kernel), selected from the benchmark suite Scalable HeterOgeneous Computing

(SHOC) [23]. This suite includes several levels of benchmarks (with both CUDA and

OpenCL versions for some of them), being the level 0 the most simple one aiming to

obtain specific and architectural features like the memory bandwidth or the compu-

tation capacity. Level 1 benchmarks are typical computational kernels to measure

the performance of higher-level operations such as the Fast Fourier Transform (FFT)

or matrix multiplications. Finally, Level 2 benchmarks are real application kernels.

The selected codes came from the first two levels since they are general, well-known

and widely used benchmark codes. Table 5.1 presents the four synthetic kernels

selected.

The benchmarks were executed on the K20m GPU described in Chapter 2 (See

Section 2.2.2 and Figure 2.4), being the host machine a dual-socket 8-core Intel Xeon
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Table 5.1: Selected kernels for Java GPGPU performance analysis

Kernel Suite Description

MaxFlops SHOC Level 0 Peak GFLOPS

GEMM SHOC Level 1 Matrix multiplication

Stencil2D SHOC Level 1 A two-dimensional nine-point

Stencil calculation

FFT SHOC Level 1 Fast Fourier Transform

E5-2660 at 2.20 GHz. The software configuration is CentOS v6.4, JVM Oracle JDK

v1.7.0 and GCC v4.4.7; NVIDIA CUDA 5.0 with the v304.54 NVIDIA driver and

the NVIDIA OpenCL support, and SHOC v1.1.5.

5.1.2. Analysis of Experimental Results

Table 5.2 shows the MaxFlops kernel performance in GFLOPS for jCuda and

Aparapi compared to the CUDA version of SHOC MaxFlops (considered as the

baseline –100%– for the comparison). Results show that, when using the single

precision benchmark, jCuda achieves around 76% of the CUDA SHOC performance,

whereas Aparapi reaches almost 70%. It should be noticed that the CUDA version

is around 15% below the theoretical peak performance, which points out that the

benchmark does not take full advantage of the GPU features for single precision.

When using the double precision benchmark, jCuda gets 99% of CUDA SHOC

performance, whereas Aparapi only 62%. To sum up, on the one hand, in the single

precision scenario, jCuda and Aparapi present quite similar performance; on the

other hand, for double precision, jCuda obtains almost the same performance as

native CUDA SHOC, whereas Aparapi achieves almost 40% less performance.

Figures 5.1-5.3 show the results obtained for the selected SHOC Level 1 ker-

nels: matrix multiplication (GEMM), Stencil2D and FFT. Figure 5.1 presents the

performance results of the matrix multiplication kernel for CUDA SHOC, jCuda,

Aparapi and a serial Java implementation. A logarithmic scale has been used to

better appreciate the differences among the Java versions, where jCuda is the one

that achieves the highest performance. This is because it relies on the same matrix
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Table 5.2: MaxFlops performance on the NVIDIA K20 GPU (in GFLOPS)

Single precision Double precision

Theoretical 3520.00 1170.00

SHOC (CUDA) 3007.00 100% 1168.58 100%

jCuda 2281.06 75.86% 1162.26 99.46%

Aparapi 2101.15 69.87% 730.23 62.49%

multiplication routine of the CUBLAS library used by CUDA SHOC, being the per-

formance gap between jCuda and CUDA SHOC motivated by the overhead of the

data movements between Java and CUBLAS.

As currently GPUs do not directly support standard JVMs, serial Java perfor-

mance results have been obtained on the CPU, running a pure Java (without relying

on native methods) matrix multiplication code which yields around 1.5 GFLOPS

both for single and double precision. Although Java would be able to achieve higher

performance calling any BLAS library with Java bindings (e.g., the Intel MKL li-

brary), we opted for using a standard and fully portable Java code as baseline. The

introduction of Aparapi in the serial Java implementation increases performance up

to 39x for single precision (from 1.63 GFLOPS for serial Java to 64.43 GFLOPS for

Aparapi), and up to 23x for double precision (from 1.49 to 35 GFLOPS). In case

that Aparapi does not find a GPU in the system it would run the code using either

OpenCL or a pure Java Thread Pool on the CPU, depending on the availability of

OpenCL multi-core support, so portability is not compromised with this solution.

Figure 5.2 presents the results of the Stencil2D kernel. Once again CUDA SHOC

achieves the highest performance and the serial Java version (running on the CPU) is

around 25-60 times slower. However, jCuda and Aparapi are able to achieve around

50-80% of the CUDA SHOC performance, increasing the performance of serial Java

up to 45 times.

Note that jCuda does not rely on any CUDA library, so the performance gap

with CUDA is larger in comparison with the GEMM results. Moreover, as both the

jCuda and Aparapi versions of the Stencil2D kernel implement a similar algorithm,

they achieve similar performance results. In fact, Aparapi is able to outperform

jCuda. In terms of productivity, Aparapi is a better option as it has been much
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Figure 5.1: Matrix multiplication (GEMM) kernel performance on the NVIDIA K20
GPU

easier to develop the Aparapi code than the jCuda version. This lower time-to-

solution and the significant performance achieved suggest that Aparapi is the best

Java GPGPU choice when jCuda cannot rely on an optimized CUDA library such

as CUBLAS.
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Figure 5.2: Stencil2D kernel performance on the NVIDIA K20 GPU

The performance results of the FFT kernel are shown in Figure 5.3. In this

case, CUDA SHOC (and thus jCuda) relies on the CUFFT library and the compar-

ison between jCuda and Aparapi is similar to the matrix multiplication scenario.

As it can be observed, Aparapi FFT is around 13-15.5 times faster than the serial

Java implementation (CPU-only) but 2-6.5 times slower than jCuda and around

4-10 times slower than CUDA SHOC. Nevertheless, for Java programmers, Aparapi

could represent a portable and productive option for accelerating their standard
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Figure 5.3: FFT kernel performance on the NVIDIA K20 GPU

Java applications on GPUs. However, when performance is critical, jCuda, and

even writing CUDA native methods accessible through JNI, is the way to go, espe-

cially when there are highly optimized libraries available, like CUBLAS or CUFFT,

although at the cost of losing portability and productivity.
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5.2. Many-core x86-based Computing in Java

Currently, the best ratio between computational performance and power con-

sumption in x86 architectures is provided by the many-core Intel Xeon Phi copro-

cessor. As mentioned in Section 1.3, there is no direct Java support for taking

advantage of this coprocessor as an accelerator, although its x86-based architecture

should ease this support, so it is feasible that it will be seamless integrated in the

JVM with the generalization of this kind of coprocessor. However, the OpenCL

support of the Xeon Phi by Intel [97] makes it possible to exploit the architecture

through JOCL (Java binding to OpenCL) [56] and Aparapi.

5.2.1. Experimental Configuration

This section presents a performance analysis of the Xeon Phi using the SHOC

kernels (both the offloading and OpenCL versions) and their Aparapi implementa-

tions, thus allowing a comparison with the GPU performance results of the previous

section. The offloading SHOC implementation has been specifically developed to

take advantage of the Xeon Phi by offloading parallel sections of the benchmark

to be executed on the accelerator using OpenMP. Hence, this benchmark suite is

able to exploit the full performance provided by the Xeon Phi coprocessor by be-

ing adapted to its architectural features, also relying on the Intel MKL library for

mathematical operations. The main drawback of the OpenCL version is that, al-

though it is able to run on different devices, from mainstream multi-core processors

to GPUs and the Xeon Phi, this does not mean that the performance is portable,

and thus an OpenCL code can be efficient on a given device but perform poorly

on another. Moreover, another main issue that OpenCL codes face is the transfer

overhead, both to the accelerator and between its cores. Nevertheless, these codes

can take advantage of automatic vectorization and 512-bit vector instructions.

The evaluation has been carried out on an Intel Xeon Phi (see Section 2.2.1 and

Figure 2.3 for more details) using a dual-socket 8-core Intel Xeon E5-2660 at 2.20

GHz as host machine, with CentOS v6.4, JVM Oracle JDK v1.7.0, Intel C compiler

v13.1.1, Intel OpenCL SDK v.3.0.67279, SHOC v1.1.5 (OpenCL version) and SHOC

MIC alpha pre-release (offloading version).
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5.2.2. Analysis of Experimental Results

Table 5.3 shows the MaxFlops performance obtained with the two versions of

SHOC and Aparapi, as well as the theoretical peak performance. The table also

shows the percentage of Aparapi performance compared to OpenCL SHOC, which

is quite low (52.18%) for single precision, although it reaches 96.75% for double

precision. Regarding the SHOC versions, the offloading implementation is the best

performer, with results quite close to the theoretical peak performance, whereas the

OpenCL implementation is around 90% of the offloading version.

Table 5.3: MaxFlops performance on the Intel Xeon Phi (in GFLOPS)

Single precision Double precision

Theoretical 2016.00 1080.00

SHOC (Offloading) 1938.22 975.19

SHOC (OpenCL) 1765.04 100% 897.85 100%

Aparapi 921.05 52.18% 868.72 96.75%

Figures 5.4-5.6 present the serial Java, Aparapi and OpenCL SHOC performance

results, thus showing graphically the benefits of introducing Aparapi in the serial

Java code and also the performance of common OpenCL codes in this coprocessor.

For clarity purposes offloading SHOC results are not shown, as it is a custom native

implementation, specifically developed for the Intel Xeon Phi architecture, which is

able to rival CUDA SHOC performance on the K20 GPU, but whose performance

benefits are much more limited when invoked by Java through JNI.

Figure 5.4 presents the matrix multiplication (GEMM) results both for single

and double precision. The native OpenCL SHOC benchmark obtained the best per-

formance. The Aparapi implementation is around 5.5-8 times slower than OpenCL

SHOC, but it overcomes the serial Java approach by 5-8 times. These results are

significantly lower than those obtained on the K20 GPU. In fact, SHOC results for

single precision are up to 16 times slower, whereas Aparapi is around 3.3-4.5 times

slower.
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Figure 5.4: Matrix multiplication (GEMM) kernel performance on the Intel Xeon
Phi
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The results for the Stencil2D kernel are shown in Figure 5.5. The overall perfor-

mance is, once again, quite reduced compared to the results obtained on the K20

GPU. Aparapi is able to achieve similar results to OpenCL SHOC, both for single

and double precision, but it slightly outperforms the serial Java code. Here the main

bottleneck is the transfer time between the host and the accelerator card.
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Figure 5.5: Stencil2D kernel performance on the Intel Xeon Phi

Figure 5.6 shows the results for the FFT kernel. OpenCL SHOC is again the

best performer, generally around 1.2 times (and up to 5 times) faster than Aparapi,
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although it is around 3.6 times slower compared to CUDA SHOC on the K20 GPU

(see Figure 5.3). Finally, the performance of Aparapi drops when the problem

size increases, although introducing Aparapi in the serial Java code increases its

performance around 4-14 times.
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Figure 5.6: FFT kernel performance on the Intel Xeon Phi

As a general conclusion, although Aparapi outperforms the serial Java imple-

mentation of the selected kernels, it is far from taking full advantage of the Xeon

Phi capabilities, mainly because it relies on OpenCL codes that are not especially
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optimized for this coprocessor. This lack of efficiency of the OpenCL SHOC codes

is therefore derived from the generality of the benchmarks, used to measure the

performance of GPUs and accelerators, not taking into account the special features

of the Xeon Phi and the overhead imposed by data movements, not only from or

to the host, but also between cores within the coprocessor. These are the main

reasons that prevent Aparapi from obtaining competitive results on the Xeon Phi.

Achieving high performance is extremely complicated for an automatic framework

that transforms Java code into OpenCL, since it would require either knowledge of

the platform where the code is going to be run, or resorting to low-level program-

ming mechanisms. And, in this latter case, it would be more efficient to use a direct

wrapper over OpenCL, such as JOCL, or just to invoje native code from the JVM.

5.3. Analysis of Productivity of Java Heteroge-

neous Computing Codes

The measurement of the productivity of programming languages has always been

an important concern [82, 146]. The High Productivity Computer Systems (HPCS)

project [39], funded by the Defense Advanced Research Projects Agency (DARPA)

of the USA, had the goal of providing more productive systems, also developing

techniques to measure both complexity and programmability. One of the main

problems that the productivity analysis faces since some years ago is the inclusion of

parallel programming given its inherent complexity [75], and thus different metrics

have been proposed and analyzed with this purpose [38, 62, 119]. Some works

like [1, 40, 41, 80, 99, 126] propose to explore complexity by the comparison of codes

developed by students that have just learned different parallel languages, and [87]

proposes a similar technique but using experts. However, all these studies need to

be complemented with a static analysis of the features of the developed codes [35],

where the number of Lines Of Code (LOC) [98] is among the most popular metrics.

However, since the information of the LOC metric can be insufficient to provide

an accurate measurement of productivity, in [19] the authors combine the number of

LOC with other parameters like the number of characters per line and the structures

needed by the language (e.g., type declarations, function calls...), to provide a better
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insight into the productivity difference between MPI and UPC. The authors of this

work propose to group metrics in two main categories: manual programming effort

and conceptual programming effort. The former uses the number of LOC and the

Number Of Characters (NOC). NOC is added to clarify the results provided by

the number of LOC, because in case that the language uses long complex lines,

the number of LOC can be not significant enough in terms of effort needed to

write a program. To measure the conceptual programming effort, it is necessary

to take into account the effort to learn the language concepts and apply them. To

capture this effort, this work suggests the use of the number of parameters passed

to a function, function calls, keywords, types and constructions, and other relevant

features of the language, counted for some common parallel programming tasks like

work distribution and synchronization among others.

This section provides a productivity analysis of Aparapi and jCuda based on the

work presented in [19] and using the four SHOC kernels selected in the performance

comparison with the native solutions of the previous sections (see Table 5.1). These

kernels present different features that will allow to compare productivity in several

scenarios. Due to the lack of relevant differences in terms of productivity between

single and double precision codes, only the single precision version has been evalu-

ated. Regarding relevant characteristics of the codes, it is worth mentioning that

jCuda uses the CUBLAS and CUFFT libraries for matrix multiplication (GEMM)

and FFT, respectively, whereas Aparapi implements its own kernels. Moreover, in

order to increase performance, the Aparapi FFT kernel does explicit memory man-

agement, thus increasing code complexity. Another remarkable characteristic is that

jCuda supports loading PTX and CUBIN modules to execute CUDA C kernels from

a Java application. Hence, for the MaxFlops and Stencil2D kernels (which do not

access optimized CUDA libraries), jCuda has to create and manage the PTX file

and write a CUDA C kernel. Both the PTX creation and the CUDA kernel are

not included neither in the manual effort nor in the conceptual effort analysis. The

code needed to create the PTX file is the same for both benchmarks and it basically

consists in I/O operations to create the file, and thus it does not use library-specific

methods or types from jCuda. The CUDA C kernel is not analyzed because it is

written in other language different than Java. However, the fact that these bench-

marks need extra programming, even in a different language, has to be taken into

account, especially in the conceptual effort analysis.
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5.3.1. Characterization of the Manual Effort

The characterization of the manual effort, i.e. the cost of developing a code,

consists of measuring the number of LOC and the NOC. Parts of the code that are

irrelevant (e.g., the verification of the result by comparing it to the sequential one,

reads and writes from/to files or standard I/O, standard Java imports...) are not

considered. Moreover, the try-catch statement is considered as a single line of code

that manages the exception, to avoid bias related to different error managements.

The NOC does not include spaces or blank lines.

Table 5.4 shows the metrics and results for the selected kernels. Kernels marked

with (*) are the ones that need to create a PTX file and a CUDA C kernel. The

code needed to create the PTX file has 24 lines and 959 characters, and it is the

same for both benchmarks, but, as mentioned before, it is not included in the table.

jCuda needs fewer LOC for matrix multiplication (GEMM) and FFT since it relies

on external libraries (CUBLAS and CUFFT, respectively), otherwise Aparapi has

a more compact syntax, as it can be seen for MaxFlops and Stencil2D. However,

when Aparapi implements optimizations (e.g., the explicit memory management in

FFT) then its number of LOC largely increases.

Table 5.4: Manual effort for the development of the Aparapi and jCuda implemen-
tations of representative SHOC kernels

Aparapi jCuda

MaxFlops #LOC 86 181 (*)

NOC 2118 5562 (*)

GEMM #LOC 49 40

NOC 1050 1283

Stencil2D #LOC 55 99 (*)

NOC 1348 3780 (*)

FFT #LOC 167 27

NOC 3653 836

The NOC indicates that jCuda is more verbose than Aparapi, e.g., although

Aparapi has a higher number of lines in GEMM, jCuda presents more characters

and thus longer lines. Another example is FFT, where Aparapi has around 6 times



118 Chapter 5. Java Heterogeneous Computing

more LOC than jCuda, but the NOC is only 4 times higher.

5.3.2. Characterization of the Conceptual Effort

The characterization of the conceptual effort has been done in [19] considering

features of the language such as the number of keywords, number of functions and

types, and number of parameters of a function, among other factors. In our scenario,

the keywords used are reserved words from standard Java (new, public...) and thus

only parameters, method calls, and constructs (constructors) and types are consid-

ered. The number of classes and library-specific objects have been considered to

quantify the number of types. Each method call invoked through object.method()

or Class.method() is considered as a method call plus one type because an object

or a class is necessary to write the method call. Calls to constructors with the

form Class name = new Class() are considered to be one method call plus one

type (there is only one class involved), but if the creation of a new instance has the

form Class name = object.method(), it is considered to be a method call plus

two types (the class and the object used, which does not have to be an instance

of the same class). Another consideration is that the quantification is made taking

into account the written code, by counting how many times the items are written,

but not how many times they are executed/invoked (and thus loops and branches

are not considered in a different way).

In [19], the conceptual effort was also quantified for several common parallel

code structures like synchronization or data distribution. In our scenario, although

Aparapi and jCuda codes have the same purpose, they are completely different

paradigms that can present different structures depending on how the benchmark is

implemented (i.e., calling a library kernel, or whether explicit memory management

is used in Aparapi). Hence, every statement that is library-specific or uses classes

and objects related to Aparapi and jCuda has been selected and classified according

to the benchmark features. The Aparapi codes present a very similar structure

and the specific sentences are related to: (1) kernel instantiation or creation, (2)

configuration and execution (and device selection), (3) sentences used to release

resources, and (4) the proper kernel implementation (extension of Kernel class),

which usually implements the algorithm and presents barely one or two sentences
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using Aparapi types and methods. As explained before, a special case is the FFT

kernel, where Aparapi is configured to use explicit memory management in order to

increase performance, which also increases its complexity.

In jCuda, the sections of code identified differ depending on the benchmark

features. The access in jCuda to external libraries, such as CUBLAS or CUFFT,

means that jCuda has to manage the kernel calls, the library configuration, and some

memory allocation and release of resources if the library method does not manage it

(as it happens for the CUBLAS method for matrix multiplication). However, when

the kernel has to be written, the code will include handling low-level configurations

of the device and the context, memory management, kernel calls, synchronization or

event management, and release of resources. Moreover, in these scenarios (marked

with (*) in the tables), a PTX file has to be created and a C kernel has to be

implemented. These extra costs have not been included for clarity purposes, as

explained before, but they should be taken into account when analyzing the results.

Tables 5.5-5.8 present the results obtained from the conceptual effort charac-

terization of the Aparapi and jCuda codes. To ease the comparison of results, the

number of items has been summed and an overall score, as the sum of all the mea-

surements, is provided. Except for FFT, the overall score for jCuda is generally an

order of magnitude higher than for Aparapi, which indicates that it is noticeably

more difficult to develop codes using jCuda than Aparapi. Moreover, the gap in the

development effort would be even higher in case of considering the creation of the

PTX file and that a CUDA C kernel has to be implemented. The FFT kernel is a

special case as Aparapi implements an optimization (explicit memory management),

and the jCuda code is quite simple as it relies on an external library, CUFFT.

Besides the low number of specific constructions of the language, which makes

Aparapi easier to learn and develop with is that the codes always present a similar

structure, making it possible for the programmer to focus on the algorithmic part.

Even when explicit memory management is used, it only affects when reading/

copying data from/to the device, but the increase in the number of parameters and

method calls is due to the number of data structures that are moved, since there

are only two different methods involved (get and put).
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Table 5.5: Conceptual effort in MaxFlops

(a) Aparapi

kernel config. release kernel sum overall
creation & exec. score

# Parameters 3 2 0 0 5
# Method 1 2 1 1 5 16
calls
# Constructs 1 3 1 1 6
& types

(b) jCuda

config. mem. kernel events release sum overall
device & manag. call score
context

# Param. 13 6 17 10 1 47
# Funct. 11 4 5 9 1 30 119 (*)
calls
# Constr. 11 4 8 18 1 42
& types

Table 5.6: Conceptual effort in matrix multiplication (GEMM)

(a) Aparapi

kernel config. release kernel sum overall
creation & exec. score

# Parameters 3 2 0 0 5
# Method 1 2 1 2 6 17
calls
# Constructs 1 3 1 1 6
& types

(b) jCuda

library memory kernel release sum overall
config. manag. call score

# Parameters 1 36 14 4 55
# Method 2 16 1 4 23 110
calls
# Constructs 2 18 8 4 32
& types
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Table 5.7: Conceptual effort in Stencil2D

(a) Aparapi

kernel config. release kernel sum overall
creation & exec. score

# Parameters 3 3 0 0 6
# Method 1 2 1 3 7 19
calls
# Constructs 1 3 1 1 6
& types

(b) jCuda

config. memory kernel synch. release sum overall
device manag. call score

& context

# Param. 13 20 34 0 2 69
# Funct. 11 12 10 1 2 36 146 (*)
calls
# Constr. 11 12 16 0 2 41
& types

Table 5.8: Conceptual effort in FFT

(a) Aparapi

kernel config. release kernel memory sum overall
creation & exec. manag. score

# Param. 1 1 0 0 22 24
# Funct. 1 2 1 1 22 27 71
calls
# Constr. 1 3 1 1 14 20
& types

(b) jCuda

library kernel release sum overall
config. call score

# Parameters 4 8 1 13
# Method 2 2 1 5 30
calls
# Constructs 4 6 2 12
& types
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5.4. Lessons Learned from Java Heterogeneous

Computing

The lack of direct Java support for general purpose accelerators and coprocessors

is forcing Java developers to resort to wrappers or frameworks that access native

libraries via JNI. The choice between the use of direct wrappers or high-level frame-

works is usually a trade-off between efficiency of the codes and productivity. If

performance is key, when the device or accelerator has a common or well-known

architecture, the high-level framework can provide reasonably good performance, as

it happens for the K20 GPU with Aparapi, but to take advantage of specific features

it is necessary to use low-level programming tools, such as jCuda, which also comes

with the advantage of providing access to high performance libraries (e.g., CUBLAS

and CUFFT). However, looking for productivity, the use of high-level frameworks

can reduce significantly the development effort, as it does not require learning a

direct low-level wrapper or having specific knowledge of the underlying hardware

architecture.

The inclusion of the transparent support for GPUs and accelerators in the JVM,

expected for upcoming releases, will represent a qualitative improvement in order to

directly exploit the offloading of standard Java code to accelerators, something that

looks quite feasible, at least for the x86 coprocessors. However, in the meantime,

there are competitive solutions that allow us to leverage some computation-intensive

Java codes. Finally, in order to achieve extremely high performance results it is

necessary to rely on native libraries and an in-depth knowledge of the underlying

hardware.



Conclusions and Future Work

This Thesis has presented an analysis of the suitability of Java for High Perfor-

mance Computing (HPC) on multi- and many-core shared memory architectures,

as well as the design, implementation and optimization of Java communication so-

lutions for shared memory. Hence, one of the main outcomes of the Thesis is the

development and evaluation of a Java message-passing middleware for parallel pro-

gramming in shared memory systems and an optimized library of collective oper-

ations (both blocking and nonblocking) for Message Passing in Java (MPJ). The

Thesis also includes a thorough evaluation of current possibilities for heterogeneous

programming in Java, considering both the latest architectures in GPUs (NVIDIA

Kepler) and x86-based accelerators (Intel Xeon Phi).

One of the most important conclusions is that Java is able to achieve high per-

formance results, which are competitive when compared to natively compiled lan-

guages, also taking advantage of shared memory systems in a more productive and

portable manner. However, on the one hand, although the Java language usually

provides high productivity, the multithreading API, which enables the efficient ex-

ploitation of multi-core architectures, has a complex and error-prone interface where

the synchronization management can result in inefficient codes or, even worse, in

race conditions and thus inconsistencies. On the other hand, the higher-level Java

concurrency framework is oriented to high-throughput task programming, requir-

ing the rewriting of many parallel codes. Nevertheless, the multithreading support

allows to develop high performance tools and libraries with simple interfaces that

manage the Java threading API internally in a transparent manner. In fact, it was

possible to develop a message-passing middleware, which is the traditional solution

for distributed memory programming, relying on specific shared memory mecha-

nisms, and thus enabling the efficient exploitation of multi-core processors with this
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scalable and well-known paradigm.

Regarding the optimization of communications in Java, when trying to maximize

the performance of Java applications, it is necessary to focus not only on the hard-

ware but also on the JVM features since, for example, initialization costs or lack of

compilation of some parts of the code can cause latency increases that hide other

optimizations developed using traditional techniques. The JVM presents improve-

ments in this field to make it more hardware-friendly and allowing to take advantage

of hardware characteristics, e.g., JVM threads mapped to OS threads, which enables

the use of thread affinity to specific cores in Java codes.

A key contribution of this Thesis is the development of a highly efficient commu-

nication middleware for shared memory, the smdev device, which provides very low

latency and high bandwidth, very close to the peak limits of the hardware. In order

to achieve this high performance, smdev implements an efficient zero-copy protocol

and takes advantage of low-level hardware characteristics and fine-grained synchro-

nization. Moreover, smdev provides an MPJ API that allows the abstraction from

thread-level programming.

The MPJ collectives library developed, including both blocking and nonblock-

ing primitives, showed that the awareness of the underlying architecture, although

in a high-level manner, can help to optimize the communication algorithms. The

library includes several algorithms per collective allowing the selection of the most

suitable one at runtime, depending on the number of cores and the message size.

Moreover, the implementation of a nonblocking collectives library in Java proved

that shared memory message-passing applications can take advantage of computa-

tion and communication overlapping and lack of implicit synchronization, getting

rid of the restrictions of traditional blocking operations.

Finally, although manufacturers do not provide specific support in Java for many-

core architectures, there are a few libraries that enable the use of Java to program

these systems, like jCuda and Aparapi. These projects are based on native support,

generally accessed by JNI, and provide different interfaces, from direct Java bindings

(jCuda) to high-level APIs that internally deal with the native support (Aparapi),

thus combining efficiency and productivity.

In terms of future work, one of the most interesting topics would be the analysis
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of the benefits and drawbacks of the direct Java support for many-core architectures.

Since the GPU support, given its architecture, mainly depends on the manufacturers,

the Intel Xeon Phi, with a x86 architecture, is the main target where it should be

feasible to run JVMs. However, in order to support efficiently this coprocessor in

Java, the development of optimization techniques to handle the complexity of this

architecture and taking full advantage of the scalability of its hardware resources

would be required.

Moreover, the smdev device and the collectives library can be further optimized

by including hardware parametrization in the communication algorithms and im-

plementing a more accurate selection of the algorithm, which could be achieved by

developing performance models taking into account both JVM and hardware char-

acteristics. Another interesting topic related to smdev is to carry out a new analysis

about the feasibility of a hybrid communication device for shared/distributed mem-

ory environments. Although this possibility was already considered in [109], the

contention and need for synchronization in the access to shared network resources

limited this option. The lack of parallel codes adapted to exploit the performance

of hybrid architectures is also a barrier to demonstrate the benefits of this hybrid

support. Nevertheless, the development of a new approach based on thread-based

collectives, combining multithreading for intra-node transfers with communications

across the network, is the way to go as they showed high scalability.
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