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Abstract

Integral methods —such as the Finite Element Method (FEM) and the
Boundary Element Method (BEM)— are frequently used in structural opti-
mization problems to solve systems of partial differential equations. There-
fore, one must take into account the large computational requirements of
these sophisticated techniques at the time of choosing a suitable Mathemat-
ical Programming (MP) algorithm for this kind of problems. Among the
currently available MP algorithms, Sequential Linear Programming (SLP)
seems to be one of the most adequate to structural optimization. Basically,
SLP consist in constructing succesive linear approximations to the original
non linear optimization problem within each step. However, the applica-
tion of SLP may involve important malfunctions. Thus, the solution to
the approximated linear problems can fail to exist, or may lead to a highly
unfeasible point of the original non linear problem; also, large oscillations
often occur near the optimum, precluding the algorithm to converge.

In this paper, we present an improved SLP algorithm with line-search,
specially designed for structural optimization problems. In each iteration,
an approximated linear problem with aditional side constraints is solved by
Linear Programming. The solution to this linear problem defines a search
direction. Then, the objective function and the non linear constraints are
quadratically approximated in the search direction, and a line-search is per-
formed. The algorithm includes strategies to avoid stalling in the boundary
of the feasible region, and to obtain alternate search directions in the case of
incompatible linearized constraints. Techniques developed by the authors
for efficient high-order shape sensitivity analysis are referenced.



1 Introduction

The general optimum design problem can be simbolically stated in terms of
a non linear constrained minimization problem [1] as:

oBTAIN Z = {;} t=1,...,m (primal variables)

THAT MINIMIZES F'(Z) objective function)

Hl(x):(), lZl,...
azgngb“ iil,

(
sussect o Gj(x) <0, j=1,...,ps (inequality constraints) (1)
,Pr (equality constraints)

,m. (side constraints)

The Kuhn-Tucker necessary conditions define the optimality require-
ments for the solution to this problem [2], but nevertheless one can seldom
find the optimum by means of analytical techniques, except in the most
simple academic cases.

A number of MP algorithms for the numerical solution to problem
(1) have been proposed during the last decades [2]. However, the situation
has not significantly changed since Sandgren & Ragsdell published their
comparative study [3] about twenty years ago. Thus, one still can say
that none of the currently available methods is capable of solving a wide
range of different problems. In fact, most of basic algorithms normally fail
to converge (even for unconstrained cases!). Hence, a successful strategy
(to solve any of a certain kind of problems) usually requires the selective
combination and subsequent application of different basic MP algorithms,
according to the characteristics of the problem being solved.

MP algorithms are iterative actualization procedures type

$k+1 _ xk + eksk’ (2)

in which the iterates &* are intented to move steadily towards the solution.
Thus, different basic algorithms correspond to different simple methods of
choosing the direction of search s* within each iteration. For a given s*,
(we assume |s*| = 1) the step 8% must be subsequently computed, normally
by performing a line-search (that is a one-dimensional minimization) in the
given direction.

Our goal is to develop an algorithm to solve structural shape optimiza-
tion problems that must be reliable, robust and efficient. In other words,
we expect the algorithm to find the real solution to any properly posed prob-
lem, with acceptable requeriments of memory storing and computing time.
It is clear that statement (1) is a simplified symbolic formulation, in which
a number of variables and dependence relations have been obviated.

Therefore, we must deepen into the specific characteristics of our prob-
lem, before choosing an adequate MP algorithm to solve it.



2 The Optimum Design Problem

The complete statement of a general optimum design problem [4,5] can be
expressed in the following terms:

GIVEN € = {¢;} t=1,...,m, (design constants)

oBTAIN & = {;} t=1,...,m (design variables)

~—

THAT MINIMIZES f (7 (objective function)

sussecT 1o gi(y) <0, j=1,...,ps (inequality constraints)
hi(y) =0, l=1,...,pn (equality constraints)
a; <z; <b;, i=1,...,m (side constraints) 3)

wHERE 7Y = (¢, B,w), (control variables)

p=p(cx), (fundamental props.)
B =08(cz), (environmental props.)
w={w;}, t=1,...,m, (state variables)
¥(a,w) =0, (state equation)
a=a(p,B), (input data)

where the critical point is solving the state equation (that describes the
underlying physical phenomena) to obtain the state variables w for known
values of the input data a.

In this kind of problems, the number of primal (design) variables is nor-
mally small, while the objective function is simple (quasi-linear) and easy
to handle. Thus, neither computing the objective function nor performing
its corresponding sensitivity analysis imply an important computing effort.
On the contrary, the number of constraints is frequently very large, and
many of them could be highly non linear and extremely difficult to handle.
On the other hand, the state equation in engineering practice is frequently
a linear or non linear discretized form of a certain boundary-value problem,
that must be solved by means of a wide purpose FEM or BEM code. Thus,
computing the constraints and their first order corresponding derivatives
will normally involve a high computing effort. Moreover, the viability of
performing a full second order (or higher) sensitivity analysis must be dis-
carded, since the computational cost of the process increases dramatically
with the order of differentiation.

Furthermore, problem (3) can be very difficult to handle. Namely:
it can exhibit an indefinite number of local minima; establishing the local
convexity or non convexity of the design space is normally unviable; try-
ing to predict a priori how many and which constraints will determine the
optimum is extremely difficult; and the initial design could be highly un-
dersized as much as oversized, or excessively safe as much as highly non
feasible, since it could lie quite far from the optimum in the design space.



3 Outline of a Potential Algorithm

Basically, two factors determine the applicability of a given MP algorithm
to solve a certain problem. First, we must consider the cost of repeatedly
sampling the objective function and the constraints. And second, we must
consider the cost of the sensitivity analysis (that is, repeteadly sampling the
derivatives of those functions), as much as the order of differentiation that
must be achieved. As a general fact, a higher order algorithm will normally
require less iterations to converge, in return for the need to compute higher
order derivatives. However, this may preclude the implementation of the
method or reduce the global efficiency, due to the associated computational
cost. Moreover, it is widely accepted that higher order algorithms are nor-
mally less robust, while no substantial improvements are obtained over a
certain order of convergence.

On the other hand, the currently available MP algorithms have been
derived with the aim of solving certain problems. Thus, we can find suit-
able optimization methods for a kind of important problems in economics
(i.e. Linear and Quadratic Programming). We can also find quite effective
—although not 100% robust— methods for inverse problems in engineering
(i.e. typically unconstrained problems with highly non linear objective func-
tions). But these techniques do not conform to the specific characteristics
of problem (3). It is also clear that computing higher order derivatives of
a quasi-linear objective function do not contribute valuable information on
how to proceed towards a new iterate. Therefore, higher order refinements
such as using SQP instead of SLP [6], or performing a BFGS [2,6] hessian ap-
proximation, will not normally improve the performance of the algorithms,
nor the final results. Furthermore, we must discard the so-called zero order
(no sensitivity analysis) algorithms, as much as those that require an exact
line-search, due to the computational cost of solving the state equation to
repeatedly sample the objective function and the constraints.

The authors have developed a highly efficient and accurate formulation
to perform high order sensitivity analysis computations [5,7,8] for arbitrary
directions in the design space. Conceptually, a high order sensitivity anal-
ysis does not involve a much higher level of complexity than the first order
one. However, the amount of memory storing and the computational work
raise exponentially with the order of differentiation, due to the increasing
number of derivatives that must be computed. This precludes the use of
MP algorithms that require full second (or higher) order information, such
as the Lagrange-Newton method [2]. Anyway, the above mentioned tech-
niques allow to perform a full first order sensitivity analysis, as well as a
second order sensitivity analysis for a given direction in the design space,
with relatively small computational requirements. It is the authors’ belief
that this refinement represents an extremely useful tool to improve MP al-
gorithms that initially require only first order sensitivity analysis. The MP
algorithm proposed below is based on the previously outlined concepts.



4 Proposed MP Algorithm

In the SLP [6] algorithm (which is also referred to as Kelley’s Cutting Plane
method) the original problem (1) is repeteadly linearized within each iter-
ation via a first order Taylor expansion. Move limits are added to ensure
that the truncation error of the approximation is kept under control. The
resulting sequence of linear problems:

e 2 = (2t A
o o = {31) it
dF
ruar miNivizes F(s8) = F(z) + {_ ] s
Az |p_pn

dG,;
sussecT 10 Gi(8) = G(2*) + {—j } <0, j=1,...,p
Az | g_gn
aigxf+si§bi, i=1,....,m
6;§si§6i+, i=1,...,m

can be easily solved using linear programming methods. The corresponding
step is obviously #* = 1, since no line-search is performed. Thus, the suc-
cessive iterates £F! can be easily computed by means of the actualization
formula (2). For the sake of notation simplicity, we assume that each equal-
ity constraint has been equivalently replaced by two opposite inequality
constraints.

SLP has been applied to many practical problems during the last
decades, habitually in association with a finite difference computation of
the required derivatives. In spite of this, the method has performed quite
well. Obviously, the overall performance of the algorithm can be improved
by using more sophisticated sensitivity analysis techniques [5,7,8], provided
that the associated computational cost is reduced and the accuracy of the
information being handled is raised.

However, the algorithm exhibits some major drawbacks. When the
number of active constraints at the optimum is large, SLP produces nor-
mally a sequence of improving but slightly unfeasible iterates that converge
rapidly to the solution. On the contrary, when the number of active con-
straints at the optimum is lower than the number of primal variables, large
oscillations occur near the optimum and the convergence is precluded. Fur-
thermore, the linear approximated problems can be unbounded as much as
inconsistent (the linearized constraints can prevent the existence of feasible
points), and the algorithm can get stalled.

One of the proposed convergence aids for the SLP algorithm is the im-
position of move limits. This ensures that the optimum will eventually be
reached within a certain tolerance, and may help to deal with unbounded
linear approximated problems. Unfortunately, move limits do not automat-
ically suppress oscillations near the optimum, unless the limits are reduced



during the optimization process as the algorithm proceedes. But this is not
obvious whatsoever in practical cases. On the other hand, move limits make
more difficult to deal with those cases in which no feasible points exist in
the vicinity of the actual iterate z*.

Figure 1 shows how the SLP algorithm with move limits performs when
it is applied to the underconstrained test problem

OBTAIN (Z,Y)
THAT MINIMIZES f(2,Y) =y (5)

suBsmcT 1O g(z,9) = 22 —y < 0.

Taking a glance at this figure throws some light on these facts. In partic-
ular, it is clear that large scale oscillations occur because of the repeated
linearization of the original problem.

This suggests that the convergence of the method could be achieved
by somehow introducing higher order information. With the aim of keeping
the computational requirements under acceptable levels, we propose an al-
gorithm that only requires higher order information in the search direction.

To get the search direction s*, we must previously perform a full first
order sensitivity analysis of the objective function and the constraints. This
requires to compute

dF dG;
—_— and — ,
dz |p gk Az |z gk

ji=1,...,p
what is straightforward in terms of the above mentioned sensitivity analysis
techniques [5,7,8].

Furthermore, we must classify the actual situation at the iterate z*
depending on the degree of satisfaction of the constraints. Thus, we will
say that the constraint number j is

DEACTIVATED it  G,(zF) < -GaeT,
ACTIVATED it  G,(zF) > -Gaer,
VIOLATED it Gy(z*) > GTor
sTroNGLY vioLaTep  if  Gy(&F) >  GA°T,

being 0 < GT°L < G4°T the parameters that control the performance of
the algorithm.

In the most frequent case we will adopt the tentative search direction
s® given by the SLP algorithm with move limits (4), that can be found by
means of any linear programming code.

However, it can happen that this procedure fails. Actually, this is quite
probable when there are strongly violated constraints at the actual iterate
z¥. Therefore, we must provide complementary techniques to choose a
tentative search direction in these cases. Since the prime objective should
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Fig. 1.— Application of the SLP algorithm with move limits to the
test problem. Performance of the algorithm (a). Lineariza-
tion and large scale oscillations near the optimum (b).

be moving towards the interior of the feasible region, we suggest the linear
combination of the strongly violated constraints
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On the other hand, if all the constraints are deactivated, any uncon-
strained minimization method could be used to obtain a tentative search
direction. Since this case will be accidental in practical problems, even
the steepest descent method can be considered valid for practical purposes,
giving

oF
sk:{s'lf}a Sl?:

i o , 1=1,...,m.

T=x*

In the last two cases, the tentative search direction has been obtained
without taking the side constraints into account. Anyhow, this is quite
simple to sort out, since we can just annihilate the inconvenient components
a posteriori. Thus,

s¥ = 0if [(zF < a;) and (sf < 0)] or [(zF > ;) and (s > 0)].

At this point we must check if the found tentative search direction is
null. If this happens, we must discern if the last iterate is the optimum, or



the algorithm is stalled (what can happen for inappropriate adjustments of
the algorithm parameters, or just because the problem is not well posed).
Otherwise, the search direction must be normalized before proceeding to
obtain the step 6*.

Finally, the original problem is substituted by an approximated uni-
variate optimization problem, via a second order Taylor expansion in the
search direction s®. Thus, we must perform a second order sensitivity
analysis of the objective function and the constraints in the search direc-
tion [5,7,8]. In general, this involves an acceptable cost, since we just need
to additionaly compute the directional derivatives

D(2Sk)2F($) - and D%sk)2Gj(x) ot ji=1,...,p.

Then, the solution to the resulting univariate quadratic problem
arven ¥ = {zF} anp 87 = {sF} i=1,...,m
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gives the step 6%, and the new iterate "1 can be computed by means of
the actualization formula (2). Different basic strategies are used to solve
this univariate problem. In particular, we must prevent the algorithm to get
stalled when the actual iterate is very close to the boundary of the feasible
region, or the above stated approximated problem is inconsistent and has
no solution.

Figure 2 shows the performance of the proposed algorithm when it is
applied to the test problem (5). A complete description of the algorithm,
and a comparative study of its performance, can be found in [9].

It must be clear that the directional second order sensitivity analysis
is essential to find the step 6%, since solving problem (6) in terms of the ex-
act expressions of the objective function and the constraints should involve
unacceptable computing requirements.
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Fig. 2.— Application of the proposed algorithm to the test problem.
Performance of the method when the inequality constraint
is strongly violated (a), activated (b and ¢), and deactivated
(d). Quadratic information precludes oscillations near the
optimum (e). Convergence in 11 iterations (f).




5 Conclusions

The use of high order MP algorithms to solve structural shape optimization
problems is precluded in practice, due to the exponential growth of the
sensitivity analysis computational cost. However, a high order sensitivity
analysis can be performed for a given direction in the design space with
relatively small computational requirements.

This provides an extremely useful tool for improving and correcting
malfunctions of existing first order MP algorithms, and gives new clues to
design new techniques.
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