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Transmission of Spatio-Temporal Correlated
Sources over Fading Multiple Access Channels with

DQLC Mappings
Óscar Fresnedo Member, IEEE, Pedro Suárez-Casal, Luis Castedo, Senior Member, IEEE

Abstract—The design of zero-delay Joint Source-Channel Cod-
ing (JSCC) schemes for the transmission of correlated informa-
tion over fading Multiple Access Channels (MACs) is an inter-
esting problem for many communication scenarios like Wireless
Sensor Networks (WSNs). Among the different JSCC schemes
so far proposed for this scenario, Distributed Quantizer Linear
Coding (DQLC) represents an appealing solution since it is able
to outperform uncoded transmissions for any correlation level
at high Signal-to-Noise Ratios (SNRs) with a low computational
cost. In this work, we extend the design of DQLC-based schemes
for fading MACs considering sphere decoding to make the
optimal Minimum Mean Squared Error (MMSE) estimation
computationally affordable for an arbitrary number of transmit
users. The use of sphere decoding also allows to formulate a
practical algorithm for the optimization of DQLC-based systems.
Finally, non-linear Kalman Filtering for DQLC is considered to
jointly exploit the temporal and spatial correlation of the source
symbols. Results of computer experiments show that the proposed
DQLC scheme with the Kalman Filter decoding approach clearly
outperforms uncoded transmissions for medium and high SNRs.

Index Terms—Multiuser channels, Correlation, Mean square
error methods, Kalman Filter.

I. INTRODUCTION

IN this paper we address the design of zero-delay analog
Joint Source-Channel Coding (JSCC) schemes for the

distributed transmission of correlated analog information from
several devices to one central receiver over a common wireless
channel, i.e., a fading Multiple Access Channel (MAC). This
is an interesting problem useful to model a large number of
communication scenarios like, for example, several sensors
periodically sending their data to a central node in a Wireless
Sensor Network (WSN). Measurements from sensors are typ-
ically correlated both in time and space, and this information
must be taken into consideration in the design of WSNs.

Existing approaches for transmission over a fading MAC
mostly lie on source-channel coding separation. In this case,
some sort of distributed source encoding scheme is used to
exploit the source correlation [1], [2] and its output is next
encoded with a capacity-achieving channel encoder. Transmis-
sion schemes based on source-channel separation, however,
require large block sizes at both encoders, and hence they are
not particularly adequate for an intermittent transmission of
small amounts of data. In addition, source-channel separation
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is not always optimal for multiuser communications, especially
when the information among users is correlated [3]–[5].

As an alternative, several works in the literature advocate
the use of JSCC, replacing the two separated source and
channel encoders by a single joint encoder which maps the
correlated source information to the corresponding channel
symbols. In [6], a non-linear hybrid JSCC scheme is pro-
posed for the transmission of bivariate Gaussian sources. This
scheme, which combines vector quantization and uncoded
transmission, is able to outperform any system based on
source-channel separation and provides the minimum achiev-
able distortion in those Signal-to-Noise Ratio (SNR) ranges
where the uncoded scheme is no longer optimal. However, a
practical implementation of vector quantization also requires
large block sizes and a high computational cost to achieve a
performance close to the theoretical bounds. A practical JSCC
scheme based on vector quantization with arbitrary block
sizes is presented in [7] for multivariate Gaussian sources.
In [7], the authors also propose a zero-delay JSCC mapping,
named Distributed Quantizer Linear Coding (DQLC), helpful
for applications with strict delay constraints. This scheme is
based on quantizing the symbols of all users except those
of one user that are simply scaled and truncated prior to its
transmission. A formal derivation of the optimal zero-delay
JSCC mapping for the case of bivariate Gaussian sources
is carried out in [8], where a non-parametric version of the
DQLC was obtained. Other non-linear JSCC schemes have
been considered for different scenarios like mappings based
on lattice coding for the orthogonal transmission of correlated
information in Gaussian MACs [9] or channel-optimized vec-
tor quantization for Gaussian Multiple-Input Multiple-Output
(MIMO) Broadcast Channels (BCs) [10].

In this paper, we address the zero-delay distributed JSCC of
spatially and temporally correlated sources in the MAC consid-
ering an arbitrary number of users and fading channels. On one
side, spatial correlation is exploited by using a DQLC scheme
which is conveniently optimized depending on the channel
conditions. At the receiver, an estimate of the user symbols
is jointly computed with the Minimum Mean Squared Error
(MMSE) decoder. In addition, a sphere decoder is considered
to lower the computational cost of the decoding operation.
Sphere decoding is a general strategy to search for the closest
vectors in a lattice and it was originally proposed to detect
digital signals in MIMO transmissions [11]. This strategy
has already been applied to lower the computational cost
of the MMSE estimation when transmitting analog symbols
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Fig. 1. Block diagram of the considered MAC scenario.

using modulo mappings [12]. In this paper, we mathematically
derive the lattice corresponding to DQLC-based mappings and
apply the sphere decoder to the obtained lattice. On the other
side, a non-linear version of the Kalman Filter (KF) for DQLC
is proposed to leverage the temporal correlation in the source
vectors at two consecutive time instants. KF is a well known
algorithm based on linear equations to estimate parameters
observed along time [13]. It has been previously applied to
communication problems such as channel tracking [14] or
state estimation of WSNs with distributed source coding [15].
The use of non-linear KF techniques to exploit the temporal
correlation in the decoding of analog JSCC symbols has been
also applied to modulo-like mappings [16]. In this paper, we
follow a similar approach based on the idea of computing
a prediction with the statistical information corresponding to
the transition phase and using the received symbols to refine
such a prediction. As in the case of sphere decoding, the
integration of KF with DQLC mappings produces different
mathematical expressions which lead to a specific development
for the computation of the overall lattice.

A. Contributions
The main contributions of this work are the following:
• A feasible implementation of the optimal MMSE decoder

for the DQLC mapping in scenarios with an arbitrary
number of users and fading. The proposed decoder relies
on the use of a sphere decoder to lower the overall com-
plexity while computing the numerical integrals involved
in the MMSE decoding. Although the approach resembles
that in [12], the transformations over the original mapping
function and the mathematical derivation of the searching
lattice are different.

• A practical optimization of the DQLC mapping param-
eters which enables its utilization on scenarios with a
moderate number of transmit users.

• The integration of Kalman Filtering techniques into the
communication scheme based on DQLC to exploit the
temporal correlation of the source information.

II. SYSTEM MODEL

Let us consider the fading MAC model shown in Figure 1,
where K single-antenna users transmit their information to
a central node, also equipped with a single antenna, over
a wireless channel. The source information is assumed to
be correlated both spatially and temporally according to the
following autoregressive model

st = Fst−1 +wt, ∀t = 1, 2, . . . T (1)

where st ∈ CK×1 represents the vector of user symbols at
the t-th time instant, F ∈ CK×K is a diagonal matrix which
models the state transitions, and wt ∼ NC(0,Cw) is the
process noise component with covariance Cw. The vector of
K user symbols at each time instant is assumed to follow
a multivariate circularly symmetric complex-valued Gaussian
distribution with zero mean and covariance matrix Cs, i.e.,
st ∼ N (0,Cs). Without loss of generality, we assume that
[Cs]k,k = 1 ∀k, while [Cs]i,j = ρi,j , i 6= j, represents the
correlation between the source symbols corresponding to the
i-th and j-th users.

At each time instant t, the source symbols are individually
encoded at each user using a particular zero-delay analog
JSCC mapping f(·) : CK → CK , which maps the vector of
K source symbols into the corresponding K channel symbols.
In this work, we focus on DQLC since it has been shown to
provide good performance for the considered MAC scenario
with Additive White Gaussian Noise (AWGN) channels [7].
The resulting symbols are then transmitted over the MAC and
hence the received signal is

yt = hTt f(st) + nt, (2)

where ht = [ht,1, . . . , ht,K ]T represents the fading MAC
response, nt ∼ NC(0, σ2

n) is the AWGN component, and
the distributed mapping function can be represented in a
vector form as f(st) = [f1(st,1), . . . , fK(st,K)]T . Finally,
per-user individual power constraints are assumed in the form
of E

[
|fk(st,k)|2

]
≤ Tk. Note that Eq. (1) and (2) constitute

the transition and the observation steps, respectively, of a non-
linear KF setting.

The user channels are assumed to be perfectly known at
the receiver. This information is employed to determine the
optimal values for the parameters of the mapping function
f(·). Those optimal parameters are then sent to the corre-
sponding users over a noiseless feedback channel. At the
receiver, an estimate of the source symbols is also computed
from the received symbol yt, using the channel information.
Since we consider the transmission of continuous-amplitude
information, the objective of the communication system is
to minimize the distortion between the source and estimated
symbols according to the Mean Squared Error (MSE) criterion.
The distortion between the source and decoded symbols is
hence determined as

ξ =
1

KT

T∑
t=1

K∑
k=1

|st,k − ŝt,k|2, (3)

where ŝt,k is the estimate of the k-th source symbol at the
time instant t.

In such a case, the optimal decoding is the one that
minimizes the average MSE between both pair of vectors.
However, when the mapping functions are non-linear, MMSE
decoding usually requires to numerically solve the correspond-
ing integrals using Monte Carlo methods, which significantly
increases the overall computational cost, especially when the
number of dimensions grows. For this reason, a practical
implementation of those mappings requires the design of
decoding strategies with an affordable complexity.
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The system variables corresponding to the source symbols,
user channels, and noise components are complex-valued with
uncorrelated real and imaginary parts. Hence, the system
model presented in the previous section can be transformed
into an equivalent real-valued one to simplify the notation
[12]. This transformation just implies that the dimension of
the different variables and functions is doubled. Henceforth,
the subindex t is disregarded also for simplicity.

In the ensuing sections, we will describe the DQLC-based
mappings proposed to encode the user information and its
corresponding MMSE decoder.

III. DQLC SCHEME

As introduced in Section II, DQLC will be employed to
encode the source symbols into the corresponding channel
symbols. DQLC is a distributed JSCC mapping function
proposed to transmit multivariate Gaussian sources over a
Gaussian MAC [7]. Mathematically, this mapping function is
given by

fk(sk) =

{
αk

⌈
sk
∆k
− 1

2

⌋
+ 1

2 1 ≤ k ≤ 2Kq

αk lβ [sk] 2Kq < k ≤ 2K
, (4)

where d·c rounds the argument to the nearest integer, αk
is a gain factor which determines the power allocated to
each user, ∆k is the quantization step for the k-th user and
lβ [·] represents the truncation of the argument to ±β, with
β ∈ R. As observed, the first Kq users transmit a quantized
version of their symbols, whereas the K−Kq remaining users
simply send a scaled version of their symbols, which will
first be truncated if |sk| > β. Recall that in the equivalent
real-valued model, each user separately encodes the real and
imaginary parts of its source symbols. The gain factors must be
chosen to ensure that the user power constraints are fulfilled.
Assuming Gaussian sources and for a given ∆k, the power of
the quantized symbols for the k-th user is given by

Γ(∆k) = 2
∞∑
l=0

(l + 1/2)
2

(Q (∆k(l + 1))−Q (∆kl)) , (5)

where Q(·) is the error function. Hence, the factors αk should
satisfy that αk ≤

√
Tk

Γ(∆k) , 1 ≤ k ≤ 2Kq . For the uncoded

users, αk ≤
√
Tk, 2Kq < k ≤ 2K.

This mapping function turns out to be suitable for the
considered scenarios due to the particular segmentation of the
source space carried out by the quantization steps. At the first
user, the quantization operation splits its source space into
non-overlapping intervals in such a way that all the source
values which fall into a particular interval are mapped to
the same value. Thus, the transmitted symbol is the interval
central point multiplied by the corresponding gain factor α1.
According to (4), the distance between the points in the
channel space for that user will be α1 (see Figure 2). This
implies that if the sum of the channel symbols transmitted
by the next K − 1 users and the noise component is lower
than α1/2, the received point falls into the same interval and
it will be possible to decode the first user correctly. Then,
the symbols of the remaining quantized users can be decoded

−3 −2 −1 0 1 2 3

−2

0

2

∆k

αk

lk = −3 lk = −2 lk = −1 lk = 0 lk = 1 lk = 2

x

sk

sk

f
(s

k
)

Fig. 2. Example of quantized mapping in DQLC with ∆k = 1 and αk =
0.9. The source symbol sk = −1.7 is mapped to the interval corresponding
to lk = −2.

by applying the same idea iteratively. Conversely, when the
value resulting from the sum of the user interferences and the
noise is larger than α1/2, the received symbol will cross to an
adjacent interval and the decoding procedure breaks down.
Therefore, the key is to properly optimize the parameters
∆k and αk to minimize the distortion between the source
and decoded symbols, but lowering the probability of the
crossing effect. Note that the use of DQLC over a MAC can
be actually interpreted as a kind of superposition coding where
the information transmitted by the users is weighted by their
corresponding channel coefficients and superimposed into the
received symbol, whereas the decoding operation could be
seen as a kind of successive interference cancellation (SIC).
More details about the theoretical aspects of DQLC can be
found in [7].

An additional gain can be obtained by choosing an adequate
value for the clipping parameter β when the correlation be-
tween the user symbols is low. In general, the source symbols
are unbounded according to the Gaussian pdf. In a practical
setup, we would have to design the parameters of the DQLC
mapping assuming that the source symbols would fall into a
limited interval (for example [−3, 3]). When this assumption
breaks, the decoding fails and the resulting distortion is large
for all users. A way to mitigate this effect is to clip the
source symbols before transmission. However, this problem
becomes less important as the correlation increases because
users transmit more similar symbols, and it is more unlikely
that errors are induced on the quantized users. In this paper,
we prefer to disregard this step because of a trade-off between
the obtained gains and the increase of the complexity in the
parameter optimization. On the one hand, the gain provided
by the truncation operation is small for medium and high
correlation, which is the main focus of the paper. On the
other hand, it requires to add a new parameter to the system
which should be optimized, which significantly complicates
the decoding operation and the design of the optimization
algorithm.

As explained in Section II, the optimal decoding strategy
consists in computing the MMSE estimates of the source
symbols from the received symbol. However, this decoding
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is unfeasible even for small numbers of users due to the non-
linear nature of DQLC. It is hence necessary to resort to lower
complexity strategies. Following a similar approach to that
presented in [12] for modulo mappings, we rewrite the non-
linear function for the k-th quantized user using the following
auxiliary function

flk(sk) =

{
αk
(
lk + 1

2

)
, sk ∈ [∆klk,∆k(lk + 1)]

0 otherwise , (6)

where lk is an integer-valued variable which indexes the
quantizer interval where the source symbol sk falls into. Fig. 2
shows a mapping example for a quantized user with parameters
∆k = 1 and αk = 0.9. As observed, each quantizer interval
is indexed through its corresponding lk value such that the
above function is only defined for the lk value corresponding
to the interval where the user symbol falls into. From (6),
and also incorporating the uncoded users, we define f l(s) =
[fl1(s1), . . . , fl2Kq (s2Kq ), α2Kq+1s2Kq+1, . . . , α2Ks2K ]T ,
which can also be expressed as

f l(s) =

{
Aql, s ∈ [al, bl]

0 otherwise , (7)

with ql =
[
l1 + 1

2 , . . . , l2Kq + 1
2 , s2Kq+1, . . . , s2K

]T
, A =

diag {α1, . . . , α2K}, and l = [l1, . . . , l2Kq ]
T the vec-

tor that stacks the interval indexes for the Kq quan-
tized users. The interval limits are given by al =
[∆1l1, . . . ,∆Kq lKq ,−∞, . . . ,−∞]T and bl = [∆1(l1 +
1), . . . ,∆Kq (lKq + 1),∞, . . . ,∞]T .

Note that the above equation represents the DQLC mapping
function for a particular combination of quantization intervals
given by the indexes in l. Finally, the mapping function in (4)
can be expressed as the sum of all functions f l, i.e.

f(s) =
∑

l∈Z2Kq

f l(s). (8)

Using (8), the computation of the MMSE integrals over
the whole 2K-dimensional source space can be restricted
to the partition of the source space given by the intervals
of the quantized users corresponding to their current source
symbols. However, the number of feasible l vectors can be
arbitrarily large depending on the parameters ∆k, although it
could be delimited according to the source distribution. Since
the computational cost of the decoding operation will hence
depend on the number of l vectors to be considered when
computing the source estimates, it is essential to design a
strategy to lower this number. This can be done with the help
of a sphere decoder which selects the most likely l vectors
from the received symbol.

IV. KF-BASED DECODING USING THE SPHERE DECODER

This section describes the proposed KF-based decoder for
DQLC mappings which exploits the spatial and the temporal
correlation of the source symbols. In a KF setup, the decoding
operation consists of a prediction step and an observation step.
At the time instant t − 1, the prediction step generates prior
information from the estimates obtained in the corresponding
observation step. At the time instant t, the observation step

computes the estimates of the source symbols using the
posterior probability for the received signal and the prior
information obtained in the prediction. This iterative procedure
is repeated to compute the source estimates at the next instants.

The a priori information can be computed from (1) using
the following linear operations

s̄t|t−1 = F ŝt−1 (9)

Σt|t−1 = FΣt−1F
T +Cw, (10)

where s̄t|t−1 and Σt|t−1 are the mean and the covariance
matrix of the a priori information obtained in the prediction
step, while ŝt−1 and Σt−1 are the estimate and the error
covariance at t− 1. The observation step is however affected
by the non-linearities of the DQLC function.

For a given prediction s̄ = s̄t|t−1 and the corresponding
covariance matrix Σs = Σt|t−1, the optimal MMSE estimates
can be computed as

ŝMMME = E [s|y] =

∫
sp(y|s)p(s)ds∫
p(y|s)p(s)ds

, (11)

where the probability density function (pdf) of the source is
given by

p(s) =
1√

(2π)2K det{Σs}
exp

(
−1

2
(s− s̄)TΣ−1

s (s− s̄)
)
,

(12)

and the conditional probability is

p(y|s) =
1√

(2πσ2
n)

exp

(
− 1

2σ2
n

‖y −Hf(s)‖2
)
. (13)

Note that in the real-valued equivalent model, the complex-
valued received symbol is represented by a two-element vector
y, and the channel vector is transformed into the associated
matrix H .

Using the alternative definition of the DQLC mappings in
(8), the term corresponding to the conditional probability can
be expressed as

p(y|s) =
∑

l∈Z2Kq

T
(
y,HAql, σ

2
nI,al, bl

)
, (14)

where T (s,µ,C,a, b) represents a truncated Gaussian distri-
bution with mean µ and covariance matrix C, in the interval
[a, b]. The vectors al and bl are, respectively, the lower and
upper limits for the combination of intervals given by l. The
above identity allows to rewrite (11) as

ŝMMME =

∑
l

∫ bl
al

s exp

(
− 1

2σ2n
‖y −HAql‖2

)
exp

(
− 1

2 (s− s̄)TΣ−1
s (s− s̄)

)
ds

∑
l

∫ bl
al

exp

(
− 1

2σ2n
‖y −HAql‖2

)
exp

(
− 1

2 (s− s̄)TΣ−1
s (s− s̄)

)
ds

.

(15)
On the one hand, the exponent of the conditional probabil-

ities can be rewritten in terms of the variable s by splitting
the contributions corresponding to the quantized users and to
the uncoded users, i.e.,

− 1

2σ2
n

‖y −HAql‖2 = − 1

2σ2
n

‖y − (HGqql +HGus)‖2

(16)

= − 1

2σ2
n

‖yl −HGus‖2 (17)
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where Gq = diag
{
α1, . . . , αKq , 0, . . . , 0

}
, Gu =

diag
{

0, . . . , 0, αKq+1, . . . , αK
}

, and yl = y−HGqql repre-
sents the remainder after subtracting the symbols transmitted
by the quantized users. Therefore, the two exponents in the
integrals of (15) can be combined into a single exponent as a
quadratic form in terms of s as

Ω(l, s) = φl exp

(
−1

2
(s− µl)

TC−1
e (s− µl)

)
(18)

where

µl = Ce

(
Σ−1

s s̄+
1

σ2
n

GT
uH

Tyl

)
(19)

= s̄+
1

σ2
n

CeG
T
uH

T (yl −HGus̄) (20)

Ce =

(
1

σ2
n

GT
uH

THGu + Σ−1
s

)−1

(21)

φl = exp

(
−1

2

(
1

σ2
n

yTl yl − µTl C−1
e µl

))
. (22)

The weights φl do not depend on the vector s, and hence the
estimates can be computed as

ŝMMME =

∑
l

∫ bl
al
s Ω(l, s) ds∑

l

∫ bl
al

Ω(l, s) ds
(23)

=

∑
l φl

∫ bl
al
s exp

(
− 1

2 (s− µl)
TC−1

e (s− µl)
)

ds∑
l φl

∫ bl
al

exp
(
− 1

2 (s− µl)
TC−1

e (s− µl)
)

ds
,

(24)

where the original integrals in (11) are replaced by a set of in-
tegrals over the resulting truncated Gaussian functions in their
corresponding intervals. The above expression also provides
the optimal MMSE estimates for the considered scenario, but
it requires to numerically compute as many integrals as the
number of l vectors we consider. It is hence important to find
a set of feasible vectors as small as possible in order to make
the decoding operation affordable. The original problem of
estimating the source symbols is hence transformed into the
search of the most likely discrete vectors l used during the
transmission.

Unlike in the case of modulo functions [12], large values
of the weights φl do not necessarily imply that the vector l
corresponds to a likely set of quantizer intervals for the current
source vector. For this reason, the search of the most likely l
vectors must be carried out over the whole expression in (18)
which depends on l and s. An ideal approach to determine the
relevant l vectors would be to have a closed-form expression
for the maximum of Ω(l, s) only as a function of l. Although
this is not possible, we can circumvent this limitation by
evaluating the truncated Gaussian functions in a representative
point which is expected to provide large values for likely
vectors l. In particular, for a given vector l, the evaluation
point is chosen as the vector consisting of the middle point
of the corresponding intervals for the quantized users and the
linear MMSE estimates for the uncoded users. Thus, we define
the 2K-dimensional point

s̃l =

[
D

(
l+

1

2
1

)
, [µl]2Kq+1:2K

]T
, (25)

with D = diag
{

∆1, . . . ,∆2Kq

}
, and the problem changes

into finding the l vectors that satisfy

Ω(l, s̃l) > R′, (26)

where R′ is a given threshold. Hence, we define the set of
feasible l vectors as

LR = {l ∈ Z2K | Ω(l, s̃l) > R′}. (27)

Since the last components of s̃l are equal to the linear
MMSE estimates in (20), the term s̃l − µl is zero in the last
2K − 2Kq components corresponding to the uncoded users.
This allows to express the exponent of each truncated Gaussian
only as a function of l. Following an approach similar to [12],
the expression for Ω(l, s̃l) can be rewritten in a lattice form,
thus enabling the use of a sphere decoder to search the set of
l vectors that satisfies the condition in (26).

Lemma 1: The term Ω(l, s̃l) can be rewritten in a lattice
form as

Ω(l) = exp

(
−1

2
(l− lo)T Λ (l− lo)

)
, (28)

where

Λ = BT C̃
−1

e B +AT
qH

T
q ZHqAq (29)

is the matrix that represents the lattice that models the search
space and lo = Λ−1

(
BT C̃

−1

e v +m
)

represents the centre
of the sphere where candidates for l will be searched. The
auxiliary vectors and matrices required in the expressions
above are given by

B = D +
1

σ2
n

CcA
T
uH

T
uHqAq, (30)

Z =
(
σ2
nI +HGuΣsG

T
uH

T
)−1

, (31)

v =
1

σ2
n

CcA
T
uH

T
u

(
y −HqAq

1

2
1−HuAus̄

(q)

)
− 1

2
D1 + s̄(q),

(32)

m = AT
qH

T
q

(
1

σ2
n

HGuCeΣ
−1
s s̄+Z

(
y − 1

2
HqAq1

))
,

(33)

with H = [Hq,Hu], Aq = diag
{
α1, . . . , αKq

}
and Au =

diag
{
αKq+1, . . . , αK

}
. All the steps required to obtain the

expression above can be found in the appendix.
Using this lattice, the search of the relevant vectors l

satisfying (26) is equivalent to finding those vectors whose
corresponding exponent is below a given threshold, i.e,

1

2

(
(l− lo)T Λ (l− lo)

)
< R, (34)

where R represents the radius of the sphere that contains the
relevant l vectors. Now, a sphere decoder can be used to
efficiently determine the l points in the lattice that fall into
a sphere of radius R centered in lo [11]. The application of
the sphere decoder to carry out this search is similar to that
described in [12]. Starting with the Cholesky decomposition
of the lattice, Λ = LLT , where L is a lower triangular matrix,
we can pose an iterative algorithm that, at each iteration,
selects the range of integer values for each component of l
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that satisfies the considered radius taking into account the
previous components. After 2K iterations, the algorithm will
only provide the l vectors whose corresponding exponent in
(28) is lower than R.

Algorithm 1 Algorithm to compute the source estimates from
the KF-based decoder.
s̄1|0 ← 0,Σ1|0 ← Cs

A1 ← diag(α1, . . . , α2K),D1 ← diag(∆1, . . . ,∆2Kq ) for
Σ1|0
for all t ∈ [1, T ] do
Ce ←

(
1
σ2
n
GT
uH

THGu + Σ−1
t|t−1

)−1

µl ← s̄t|t−1 + 1
σ2
n
CeG

T
uH

T
(
yl −HGus̄t|t−1

)
Build the set LR using the sphere decoder
for all l ∈ LR do
φl ← exp

(
− 1

2

(
1
σ2
n
yTl yl − µTl C−1

e µl

))
ml ← E[s], s ∼ T (s,µl,Ce, al, bl)
τl ←

∫
T (s,µl,Ce, al, bl) ds

Σl ← Cov[s], s ∼ T (s,µl,Ce, al, bl)
end for
ŝt ←

∑
l∈LR φlml /

∑
l∈LR φlτl

Σt ←
∑

l∈LR φlΣl /
∑

l∈LR φlτl
s̄t+1|t ← F ŝt
Σt+1|t ← FΣtF

T +Cw

Update At+1,Dt+1 solving (50) with Σt+1|t
end for

Next, a MMSE estimate of the source symbols is obtained
by applying (24) with the set of vectors provided by the
sphere decoder. Finally, the covariance matrix Σ is updated
using the estimates obtained in the observation step, and the
DQLC parameters are optimized for the ensuing time instant
as described in Section V. Algorithm 1 summarizes the set
of steps performed by the proposed algorithm to compute the
estimates of the source symbols at each time instant using the
proposed KF-based decoder and the sphere decoder.

Note that if the radius R of the sphere decoder is adequately
chosen, the number of candidate vectors will be small and
the computational complexity of the decoding operation will
be reduced significantly with respect to solving the original
integrals in (11). In a similar way, the value of the radius
should be selected to ensure that those l vectors with a
significant weight in the computation of the MMSE estimates
fall into the corresponding sphere. In the next section, we
explain how to design the radius of the sphere decoder and its
impact on the computational cost.

A. Radius of the Sphere Decoder

In this section, we estimate the minimum radius required to
detect the optimal vector l∗, i.e., the vector that includes the
actual combination of quantized intervals used in transmission.
Assuming we know the vector l∗, we can determine the
distribution of the corresponding points in the lattice given
by (28) as a function of the potential source vectors and the
noise. Considering the exponents of φl in (22), and replacing

yl and µl by the received signal for l∗, we obtain

1

σ2
n

yTl∗yl∗ − µTl∗C−1
e µl∗ =

1

σ2
n

(HGus+ n)T (HGus+ n) −(
s̄+

1

σ2
n

CeG
T
uH

T (HGu(s− s̄) + n)

)T
C−1
e ×(

s̄+
1

σ2
n

CeG
T
uH

T (HGu(s− s̄) + n)

)

=
1

σ2
n

(HGu(s− s̄) + n+HGus̄)
T (HGu(s− s̄) + n+HGus̄) −(

C−1
e s̄+

1

σ2
n

GT
uH

T (HGu(s− s̄) + n)

)T
Ce ×(

C−1
e s̄+

1

σ2
n

GT
uH

T (HGu(s− s̄) + n)

)

= (HGu(s− s̄) + n)T Z (HGu(s− s̄) + n)− s̄TΣ−1
s s̄,

Given that Gu is a matrix with zeros except on its last
2Kq diagonal elements, this exponent follows a chi-squared
distribution with 2Kq degrees of freedom.

On the other hand, the other exponent in the lattice comes
from the expression (sl − µl)

TC−1
e (sl − µl) which is chi-

squared distributed with 2K degrees of freedom, and it can
be rewritten as

(s− µl)
TC−1

e (s− µl) =(
s− s̄− 1

σ2
n

CeG
T
uH

T (HGu(s− s̄)− n)

)T
C−1
e ×(

s− s̄− 1

σ2
n

CeG
T
uH

T (HGu(s− s̄)− n)

)

=

(
Σ−1
s (s− s̄)− 1

σ2
n

GT
uH

Tn

)T
Ce

(
Σ−1
s (s− s̄)− 1

σ2
n

GT
uH

Tn

)
.

Also, the Gaussian vectors are uncorrelated with each other

E

[
(HGu(s− s̄) + n)

(
Σ−1
s (s− s̄)− 1

σ2
n

GT
uH

Tn

)T]
=

= HGu −HGu = 0. (35)

Hence, the sum of the exponents corresponds to a chi-
squared distribution of 2K + 2Kq degrees of freedom. This
implies that, assuming the index vector l∗ was employed at
transmission, the values for the exponent of Ω(l∗) in (28) will
follow a chi-squared distribution with 2K + 2Kq degrees of
freedom, i.e,

(l∗ − lo)T Λ (l∗ − lo) ∼ χ2
2K+2Kq . (36)

According to (34), we must choose the radius R to guaran-
tee that the potential values for the above exponent are lower
than 2R with a high probability, i.e,

g2K+2Kq (2R) ≥ 1− τ, (37)

where gn(x) = P (χ2
n < x) is the cumulative density function

of a chi-squared variable with n degrees of freedom and τ
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represents an arbitrarily small probability. Hence, a useful
criterion to select the sphere radius is given by

R ≥ g−1
2K+2Kq

(1− τ)/2, (38)

where g−1
k (·) is the inverse function of the cumulative density

function for a chi-squared distribution. The term, 1 − τ
determines the probability of the vector l∗ to fall into a sphere
of radius R and centre lo. It is hence important to reach a trade-
off for this parameter to avoid failing at the decoding operation
without increasing unnecessarily the radius. We have checked
experimentally that τ ≈ 10−4 provides a good behaviour,
although if no candidates are found for a given τ , decoding
could be repeated with a larger parameter until solutions are
found.

B. Analysis of the Computational Cost
The computational cost of the proposed DQLC-based

scheme mainly depends on the decoding operation because
the cost of applying the encoding function is negligible. Using
the proposed decoder in Algorithm 1, the computation of the
MMSE estimates at the receiver involves to solve as many
integrals of truncated Gaussian distributions as the number
of vectors l in the set LR built with the sphere decoder.
Solving the integrals corresponding to a truncated Gaussian
has some advantages respect to computing the original MMSE
integrals in (11). Firstly, efficient techniques can be applied
to numerically solve these integrals [17]. Also, the number
of samples required to apply Monte Carlo techniques is much
lower than in the case of the original integrals since the size of
the integration intervals is delimited by the quantization steps
∆k which are in general small. However, these computational
benefits vanish as the size of the set LR increases.

A general analysis of the sphere decoder algorithm is
provided in [18], and it relies on estimating the number of
lattice points enclosed by a sphere of a given radius. In our
case, the number of vectors which fall into the sphere will
be larger as the number of users increases and when the
source correlation tends to zero since, in those cases, the
uncertainty in the decoding operation is also larger. However,
if the radius R is properly chosen and the encoding parameters
are optimized to minimize the ambiguities in the decoding
operation (see Section V), the size of LR should remain small
enough to guarantee an acceptable overall complexity.

V. PARAMETER OPTIMIZATION

An important issue to improve the performance of the pro-
posed DQLC-based scheme is the optimization of the mapping
parameters αk and ∆k for each MAC user. Since an exhaustive
search over the parameter space becomes prohibitive as the
number of users increases, we propose to optimize αk and ∆k

according to the following constrained optimization problem

arg min
D,A

E
[
|s− ŝMMSE|2

]
(39)

s.t. 0 ≤ αk ≤
√

Tk
Γ(∆k)

, ∀k, 1 ≤ k ≤ 2Kq

0 ≤ αk ≤
√
Tk, ∀k, 2Kq < k ≤ 2K,

where D and A are diagonal matrices that contain the param-
eters ∆k and αk for the K users. As commented in Section III,
the key point in the design of the DQLC parameters is to
guarantee the quantized symbols do not go across the adjacent
intervals due to the information transmitted by near users.
Thus, the DQLC parameters must be chosen to minimize the
average distortion while ensuring that the quantized users are
correctly decoded. This can be accomplished by adding two
additional constraints to the above problem. First, a necessary
condition that the quantized users must satisfy is that the
diagonal elements of the matrix resulting from the Cholesky
decomposition of Λ is larger than a certain value. As shown
in [12], this constraint ensures that the points on the lattice
space are sufficiently far away from one another which, in
practice, implies that the probability of crossing to a wrong
interval will be lower.

Another important issue is the fact that allocating more
power to a user in DQLC implies, in general, to increase the
∆k parameters for previous users and, consequently, the αk
parameters to avoid ambiguities in the received channel sym-
bols. However, the maximum value for αk is upper bounded by
the available power. Hence, if this bound is reached by some
users, allocating more power to others will cause ambiguities
in the decoding process. In order to avoid this situation, we
introduce a constraint over the maximum achievable values for
the αk of the quantized users. From (5), it is straightforward
to see that

lim
∆k→∞

Γ(∆k) ≈ 1

2
(40)

and hence, given that αk ≤
√

Tk
Γ(∆k) , it is required to

ensure that the αk values corresponding to the quantized
users remain below

√
2Tk, ∀k = 1, . . . , 2Kq . If this threshold

were reached for some quantized user, that would imply the
need of allocating more power to the previous users to avoid
ambiguities in the decoding operation, but this is not possible
without violating their power constraint.

Considering these two constraints, the initial optimization
problem in (39) is approximated as

arg min
D,A

e(D,A) (41)

s.t. 0 ≤ αk ≤
√

Tk
Γ(∆k)

, ∀k, 1 ≤ k ≤ 2Kq

0 ≤ αk ≤
√
Tk, ∀k, 2Kq < k ≤ 2K

0 ≤ αk ≤
√

2Tk − µ, ∀k, 1 ≤ k ≤ 2Kq (42)
[L]k,k ≥ S, (43)

where e(D,A) is the error assuming that the intervals of the
quantized symbols are correctly guessed at the receiver, µ
avoids that the αk values of the quantized users achieve their
maximum value for a large ∆k, and [L]k,k represents the k-th
diagonal element of the matrix resulting from the Cholesky
decomposition of the lattice. The parameter S is a constant to
ensure those diagonal elements are above some threshold and
it is of the same order of magnitude as the radius R.

The cost function of the above problem, e(D,A), consists
of two different contributions to the overall distortion: the
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quantization errors and the distortion observed in the uncoded
symbols. We first obtain an upper bound for the error of the
quantized users as

eq,k(∆k) =
∞∑
i=1

∫ ∆k(i+1)

∆ki

(s− δi)2p(s)ds, (44)

where δi is the decoded value for the user transmitted in the
i-th interval and is given by

δi =

∫ bi

ai

sp(s)ds =

√
2σ2

s

π

exp(−a2
i )− exp(−b2i )

Q(bi)−Q(ai)
(45)

with ai = ∆ki and bi = ∆k(i + 1). Hence, the above bound
can be expressed as

eq,k(∆k) =1 +
1

2

∞∑
i=1

δ2
i (Q(bi)−Q(ai))

−
√

2σ2
s

π

∞∑
i=1

δi(exp(−a2
i )− exp(−b2i )). (46)

Note that this is an upper bound since it does not consider the
source correlation. Then, an upper bound for the error of the
uncoded users is computed as eu,k(Au) = [Ce]k,k. Finally,
an upper bound on the overall MMSE assuming the quantized
users are correctly decoded is given by

e(D,Au) =

2Kq∑
k=1

eq,k(∆k) +
2K∑

k=2Kq+1

eu,k. (47)

We now address the rewriting of the constraint (43). At the
k-th user and for a given ∆k, the parameter αk is given by
αk = pk√

Γ(∆k)
, where pk is the power allocated to that user and

it must satisfy |pk|2 ≤ Tk. In addition, ∆k ≈
√

1
Γ(∆k) for low

∆k values and hence the parameter αk can be approximated
as αk ≈ pk∆k. Considering this alternative definition of the
αk parameters, we decompose the diagonal matrix Aq as
Aq = P qD, with P q = diag

{
p1, . . . , p2Kq

}
. Replacing

this approximation in the lattice expression given by (29), we
obtain

Λ ≈D
(
B̄
T
C̃
−1

e B̄ + P T
qH

T
q ZHqP q

)
D (48)

with

B̄ =

(
I +

1

σ2
n

CcA
T
uhuh

T
q P q

)
.

We now define the lattice

Λ̄ = D−1ΛD−1 = D−1LTLD−1,

that only depends on P q and Au. On the other hand,
the parameter αk is simply a factor scale for uncoded
users, and therefore we can define P u = Au =
diag{α2Kq+1, . . . , α2K}. Hence, for given power allocations
P q and P u, we can determine the minimum ∆k that ensures
the diagonal elements of L are above some threshold S.
This can be computed with the help of the decomposition
Λ̄ = L̄

T
L̄ and making

∆k =
S[
L̄
]
k,k

, ∀k, 1 ≤ k ≤ 2Kq. (49)

Replacing the constraint (43) by this expression, and taking
into account that αk = pk

√
1

Γ(∆k) , ∀k, 1 ≤ k ≤ 2Kq , the
problem (39) is transformed into

arg min
P q,Pu

Kq∑
k=1

eq(∆k) +
2K∑

k=Kq+1

eu,k (50)

s.t. 0 ≤ pk ≤
√
Tk, ∀k

pk√
Γ(∆k)

≤
√

2Tk − µ, ∀k, 1 ≤ k ≤ 2Kq,

∆k =
S

[L̄]k,k
, ∀k, 1 ≤ k ≤ 2Kq,

which searches the optimal power allocations for the K users
considering that the ∆k values are directly determined from
such power allocations. This is a non-linear optimization prob-
lem that must be solved numerically, but the computation of
the cost function and the constraints have a lower complexity
than the exact computation of the expected distortion [7].
Finally, the search space is reduced since the quantization steps
∆k are estimated from the user power allocations.

As shown in Algorithm 1, the covariance matrix Σ is up-
dated after the observation step by using the obtained estimates
and the a priori information. The mapping parameters are then
optimized at the receiver by using the new covariance matrix
and the resulting values are fed back to the users which will
encode the next source symbol with the optimized DQLC
scheme.

VI. RESULTS

In this section, the results of several computer experiments
are presented to illustrate the performance of the proposed
DQLC-based scheme for different fading MAC scenarios. At
each time instant, a vector of K source symbols is generated
from the autoregressive model described by (1). In partic-
ular, we assume a correlation model where F = ϕI and
Cw =

(
1− ρ2

)
Cs, with 0 < ϕ < 1 and 0 < ρ < 1

scalar terms that determine the level of temporal and spatial
correlation, respectively. According to this model, the vectors
of source symbols follow a multivariate circularly symmetric
complex-valued Gaussian distribution with zero mean and
covariance matrix Cs. Unless explicitly mentioned, we fo-
cus on a spatial correlation model where [Cs]i,i = 1 and
[Cs]i,j = ρ, ∀i, j, i 6= j.

The K source symbols are then encoded using DQLC with
the parameters provided by the receiver through the feedback
channel. After the encoding operation, the resulting symbols
are sent over a block fading MAC. The channel response is
assumed to remain static during the transmission of a block
of T consecutive symbol vectors, but it varies from one block
to the other. The different channel realizations are assumed
to follow a Rayleigh distribution. Without loss of generality,
we assume that the channels are real, because if a channel
has an imaginary part, the optimal precoding strategy consists
in multiplying the user symbols by a complex-valued gain
which cancels out the channel phase [19]. Also, we consider
|h1| > |h2| > . . . > |hK | since, as commented, the user
channel responses are assumed to be known at the receiver
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and it could use that information to reorder the channel gains
appropriately. The received signal is employed to compute an
estimate of the current source symbols with the proposed KF-
based decoder and with the help of the sphere decoder. Finally,
the receiver updates the a priori information, determines the
optimal values for the DQLC parameters and feeds back this
information to the users.

At each computer experiment, we consider the transmission
of blocks of T = 100 source vectors over L = 2000 different
channel realizations. Results are averaged over all channel
realizations. The value T = 100 is chosen to show that
the decoder does not diverge after the successive decoding
of the received samples. However, blocks of a smaller size
(10 < T < 100) provide similar results due to the fast
convergence of the decoding procedure. The performance of
the transmission scheme is measured according to the average
MSE between the source and estimated symbols, which in this
case is empirically calculated as

ξ =
1

LTK

L∑
l=1

T∑
t=1

K∑
k=1

|s(l)
t,k − ŝ

(l)
t,k|2, (51)

where s(l)
t,k represents the source symbol of the k-th user at

the time instant t in the l-th block, and ŝ(l)
t,k, its corresponding

estimate. In this section, the figures with the obtained re-
sults will show the Signal-to-Distortion Ratio (SDR) obtained
for a given range of SNRs, where the SDR is defined as
SDR = 10 log10 (1/ξ), and the SNR for the k-th user is
defined as ηk = 10 log10(Tk). Thus, we assume that noise
variance is equal to 1 and the SNRs are given directly by
the power constraints. For simplicity, we focus on a scenario
where ηk = η ∀k.

In the first experiment, we consider a MAC scenario with
K = 3 users whose source symbols are uncorrelated in the
time domain, i.e., ϕ = 0. Thus, the decoder does not have
a priori information to improve the estimation of the source
symbols. Figure 3 shows the performance of the DQLC-based
scheme for a correlation factor ρ = 0.95 and considering two
different configurations depending on the number of quantized
users: Kq = 2 and Kq = 1. We also include the performance
of a DQLC scheme which use the same set of parameters
regardless of the channel realization or the SNR value. In
particular, we choose ∆1 = ∆2 = 1 and α = [1; 0.2; 0.025] to
ensure a correct decoding avoiding to break down the DQLC
system. The performance of the different DQLC systems are
compared to that of a linear scheme where the users send
a scaled version of their data. In this case, the complex-
valued scale factors are adjusted to allocate the optimal power
to each user [19]. Finally, a performance upper bound is
also included in both figures as benchmark. This bound is
computed following a similar argument to [6, Proposition
IV.1], such that the rate distortion function for multivariate
Gaussian sources is equated to the sum-capacity of the channel
under the assumption of user collaboration and a power boost
provided by the source correlation in the MAC. Figure 4 shows
the same results for a correlation factor ρ = 0 (uncorrelated
symbols).

As observed, the DQLC system with Kq = 2 outperforms
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Fig. 3. Performance of the DQLC-based and uncoded schemes for K = 3
users, with ϕ = 0 and a spatial correlation ρ = 0.95.
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Fig. 4. Performance of the different DQLC-based systems and the uncoded
scheme for K = 3 users and considering uncorrelated symbols in both the
spatial domain and the temporal domain, i.e. ϕ = ρ = 0.

the linear scheme from a given SNR value that depends on the
spatial correlation. For a correlation factor ρ = 0.95, linear
and DQLC systems provide similar SDR values for η ≤ 25
dB. However, the gain of DQLC is more perceptible for high
SNRs where it becomes about 5 dB for η = 50 dB. For low
correlation factors, the performance of the linear system utterly
degrades for all the range of SNRs and the gain provided by
the DQLC scheme is even larger. The intuition behind this
behaviour is related to the fact that MMSE estimation for
uncoded transmissions results in a weighted average of the
transmitted symbols. Hence, the distortion at the receiver is
influenced both by the noise variance and by the difference
of the source symbols with respect to their average, which in
turn depends on the source correlation. This implies that noise
is the limiting factor for low SNR values, but below some
noise level, the main contribution to the symbol distortion
comes from the approximation in this average operation. The
error caused by this strategy is constant for a given source
correlation, causing the system to saturate above some SNR
threshold.

Note that the obtained results also agree with the behaviour
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observed for DQLC mappings over AWGN channels and show
that the proposed optimization algorithm provides adequate
values for the mapping parameters. They also show that
the MMSE decoder based on the idea of searching feasible
combinations of quantizer intervals with the sphere decoder
works correctly for the considered scenario.

Another interesting result can be observed in Figure 3. The
DQLC with a single quantized user and two uncoded ones is
able to provide a slightly better performance than that of the
full uncoded scheme and the 2-quantized DQLC for a specific
range of SNRs (between 20 dB and 35 dB). As expected,
the quantized transmission of one user allows to move the
saturation point to a higher SNR. On the other hand, the
optimization algorithm provides a similar quantization step
∆1 for the two DQLC schemes. Hence, the gain of the one-
quantized scheme is due to the fact that just in that SNR re-
gion, the linear transmission of two highly correlated symbols
provides lower distortion than combining quantization and one
linear transmission. In any case, the performance gain is rather
small and it vanishes as the symbol correlation is lower (see
Figure 4). In addition, note that as the number of users grows,
it also increases the number of possible configurations for
the DQLC. For these reasons, and for simplicity, we prefer
to focus on DQLC schemes with Kq = K − 1 for the
following experiments. Finally, the performance loss caused
by the use of a fixed set of parameters is remarkable for
both correlation factors and in all the range of SNRs. These
results highlight the importance of optimizing the mapping
parameters appropriately to obtain an optimal performance of
the DQLC system.

In the next experiment, we address the case of transmitting
spatial and temporally correlated sources using the DQLC
scheme. A similar scenario to the previous one is considered
with K = 3 users, but now ϕ = ρ. In this situation, the pro-
posed KF-based decoder is able to exploit both the temporal
and the spatial correlation of the sources. Figure 5 shows the
SDR curves for four different transmission schemes: 1) DQLC
with the KF-based decoder using the prediction step a priori
information; 2) DQLC with the KF-based decoder disregarding
the a priori information; 3) the linear system using the standard
linear KF to decode the information; and 4) the linear system
disregarding the information corresponding to the temporal
correlation. In the figure, it is also included a bound based on
source-channel separation, where a lower bound on the sum
rate-distortion of the multi-terminal encoding of a Gaussian
variable [20] is equated to the sum-capacity of the MAC
channel [21]. The temporal correlation is modeled by assuming
a virtual system with TK users and an appropriate covariance
matrix to jointly represent the temporal and spatial correlation.
In this case, T is set to 10 for practical reasons and because
DQLC+KF systems already converge for this block size.

As observed, we consider two different correlation factors,
ρ = ϕ = 0.99 (top) and ρ = ϕ = 0.90 (bottom), since
the benefits of the temporal correlation are more visible. On
the one hand, the improvement of using the linear KF limits
to the low SNR regime since it does not provide any gain
for medium and high SNRs. On the other hand, the use of
the non-linear KF proposed for DQLC provides a significant
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Fig. 5. Performance of the different transmission schemes for K = 3 users
and two different spatio-temporal correlation factors: ϕ = ρ = 0.99 (top)
and ϕ = ρ = 0.90 (bottom).

performance gain, especially for high SNRs. In particular, this
gain is about 9 dB for ϕ = 0.99 and about 3.5 dB for ϕ = 0.90
when the SNR is η = 50 dB. Thus, the KF-based decoder for
DQLC mappings is able to raise the system performance by
exploiting the temporal correlation. As expected, these gains
become smaller as the temporal correlation is lower. Regarding
the gap of the DQLC schemes to the upper bound, it is worth
remarking that the plotted upper bound is quite optimistic for
this scenario since it is computed by equating only the sum-
distortion rate to the channel sum-capacity, disregarding the
individual constraints on the rates. Thus, this bound will be
more optimistic as the number of users increases (virtual users
in this case).

We now explore the impact of varying the correlation model
on the performance of the DQLC schemes. For this reason,
we consider an exponential model where the elements of the
covariance matrix are given by [Cs]i,j = ρ|i−j| ∀i ≥ j.
Figure 6 shows the obtained results for a MAC scenario with
K = 4 users and an exponential correlation model considering
two different correlation factors, ρ = 0.99 and ρ = 0.90. The
corresponding upper bounds have been omitted in this case
for clarity. As observed, we can draw similar conclusions to
the previous experiment. First, the gain provided by the KF-
based decoding is more remarkable as the symbol correlation
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Fig. 6. Performance of the different encoding schemes for K = 4 users
considering an exponential correlation model with ρ = ϕ = 0.99 and ρ =
ϕ = 0.90.
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for ρ = ϕ = 0.95 and different number of users.

increases. In addition, the gain of the simple DQLC scheme
(without KF) respect to the uncoded schemes is larger as the
spatial correlation decreases and the cut point moves to lower
SNRs.

The impact of increasing the number of MAC users on the
performance of the DQLC system with the proposed KF-based
decoder is illustrated in Figure 7. The SDR obtained with
this scheme is compared to that of the linear system with the
standard linear KF for ρ = ϕ = 0.95 and different number of
users. The upper bounds assuming spatio-temporal correlation
for each configuration are also included in the figure. As
observed, the DQLC system clearly outperforms the linear
scheme in the high SNR regime, although the performance
gain is lower as the number of users increases: it goes from
almost 10 dB for 3 users to over 4 dB for 6 users when the
SNR is η = 50 dB. However, this behaviour matches to that
of the standard DQLC for the AWGN channel [7]. Note that
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Fig. 8. Number of feasible l vectors provided by the sphere decoder as a
function of the source correlation for η = 30 dB.

when the number of users is larger, it is essential to increase
the parameters ∆k to prevent the transmitted symbols cross to
other intervals due to the interferences of the next users, and
hence the quantization error will be larger. Finally, the gap of
the DQLC+KF schemes to the corresponding upper bounds
remains stable regardless of the number of users.

Finally, Figure 8 shows the average size of the set of feasible
l vectors, LR, provided by the sphere decoder for different
levels of source correlation and number of users, and when
the SNR is η = 30 dB. The radius of the sphere decoder was
set according to the criterion explained in Section IV-A. As
mentioned, the computational cost of the decoding operation is
directly related to the size of this set because it determines the
number of delimited integrals that must be solved numerically
to compute the estimates for each source vector. Thus, it
is important to verify if the number of elements of the set
LR is small for the different scenarios in order to make
the decoding operation affordable. As observed, when we
consider 3 transmitters, the sphere decoder mostly selects a
single candidate vector regardless of the correlation level.
However, the size of the set LR grows as the number of
users increases and, especially, for low correlation factors.
In such situations, the uncertainty in the decoding operation
is larger for two reasons. On the one hand, a higher source
correlation implies that the decoder will have available more
a priori information that can be utilized to disregard most
combinations of intervals. On the other hand, a larger number
of users implies to lower the power allocated to the last users to
avoid crossing effects. Hence, for a given SNR, the uncertainty
due to the noise will be larger in those users.

VII. CONCLUSION

We have studied the design of practical zero-delay JSCC
schemes for fading MACs where the source symbols are
correlated both in the time and spatial dimensions. At the
transmitters, the source information is encoded using a dis-
tributed scheme based on DQLC, while a decoding approach
which combines the idea of sphere decoding and non-linear



IEEE TRANSACTIONS ON COMMUNICATIONS 12

KF techniques have been proposed to exploit both types
of source correlation with a reasonable computational cost
for an arbitrary number of users. In addition, the proposed
DQLC-based schemes can be adapted to the potential channel
variations through the optimization of its parameters using an
algorithm which replaces an exhaustive search on the whole
parameter space, therefore with a prohibitive complexity even
for a few users, by a search of the optimal power allocations
for the group of users. Computer simulation results show that
the proposed JSCC scheme provides a significant performance
gain with respect to uncoded transmissions for medium and
high SNRs.
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APPENDIX

DERIVATION OF THE LATTICE EXPRESSION FOR DQLC
MAPPINGS

First, we partition the covariance matrices Σs and Ce as

Σs =

(
Σq Σc

ΣT
c Σu

)
Ce =

(
Cq Cc

CT
c Cu

)
, (52)

where the subindices q and u refer to the part of the covariance
matrices corresponding to the quantized and uncoded users,
respectively, and the subindex c corresponds to the part for the
cross correlation. Next, evaluating (18) in the chosen point s̃l,
we start from

Ω(l, s̃l) = φl exp

(
−1

2
(s̃l − µl)

TC−1
e (s̃l − µl)

)
, (53)

and now we can replace s̃l by its expression in (25), obtaining

Ω(l) =

φl exp

(
−1

2

(
D

(
l+

1

2
1

)
− µ(q)

l

)T

C̃
−1
e

(
D

(
l+

1

2
1

)
− µ(q)

l

))
(54)

with C̃e = Σq − ΣT
c Σ−1

u Σc, and µ
(q)
l = [µl]1:2Kq , the

first 2Kq components of the linear MMSE estimates in (20)
corresponding to the quantized users. Note that the remaining
2K − 2Kq components in the exponent of Ω(l, s̃l) are not
relevant since they become zero.

We next develop the left part of the exponent in (54) as

D

(
l+

1

2
1

)
− µ(q)

l = Dl+
1

2
D1− s̄(q) −

1

σ2
n

CcA
T
uH

T
u

(
yl −HuAus̄

(q)
)
,

(55)

where the channel matrix was decomposed as H =
[Hq,Hu], s̄(q) represents the first 2Kq components of the

predicted mean, Aq = diag
{
α1, . . . , αKq

}
and Au =

diag
{
αKq+1, . . . , αK

}
.

Replacing yl by its expression and reordering the resulting
terms, we finally obtain

D

(
l+

1

2

)
− µ(q)

l = Dl+
1

2
D1− s̄(q) −

1

σ2
n

CcA
T
uH

T
u

(
y −HqAq

(
l+

1

2

)
−HuAus̄

(q)

)
= Bl− v, (56)

with

B = D +
1

σ2
n

CcA
T
uH

T
uHqAq (57)

v =
1

σ2
n

CcA
T
uH

T
u

(
y −HqAq

1

2
1−HuAus̄

(q)

)
− 1

2
D1 + s̄(q).

(58)

Therefore, (54) can be rewritten as

φl exp

(
−1

2
(Bl− v)

T
C̃
−1

e (Bl− v)

)
(59)

Note that the last term in (59) can be disregarded because it
does not depend on l.

On the other hand, developing the expression for the weights
φl, we obtain

φl = exp

(
−1

2

(
1

σ2
n

yTl yl −
1

σ4
n

yTl HGuCeG
T
uH

Tyl−

2

σ2
n

s̄TΣ−1
s CeG

T
uH

Tyl

))
(60)

= exp

(
−1

2

(
yTl Zyl + 2uTyl

))
(61)

with

Z =
1

σ2
n

(
I − 1

σ2
n

HGuCeG
T
uH

T

)
=
(
σ2
nI +HGuΣsG

T
uH

T
)−1

(62)

u =
1

σ2
n

HGuCeΣ
−1
s s̄. (63)

Now, replacing yl by its expression, the exponent of φl is
given by

− 1

2

(
yTl Zyl + 2uTyl

)
=

− 1

2

[(
y −HqAq

(
l+

1

2
1

))T
Z

(
y −HqAq

(
l+

1

2
1

))
+

+ 2uT
(
y −HqAq

(
l+

1

2
1

))]
Reordering the resulting terms, the above expression is rewrit-
ten as

− 1

2

(
lTAT

qH
T
q ZHqAql− 2yTZHqAql +

1TAT
qH

T
q ZHqAql− 2uTHqAql

)
= (64)

− 1

2

(
lTAT

qH
T
q ZHqAql− 2mT l

)
, (65)
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with

m = AT
qH

T
q

(
1

σ2
n

HGuCeΣ
−1
s s̄+Z

(
y − 1

2
HqAq1

))
.

(66)

Combining the exponents in (59) and (65) into a single
exponent, we finally obtain

Ω(l) = exp

(
−1

2

[
lT
(
BT C̃

−1

e B +AT
qH

T
q ZHqAq

)
l −

2
(
vT C̃

−1

e B +mT
)
l
])
. (67)

The last step consists in expressing the above exponent in
a lattice form such as

Ω(l) = exp

(
−1

2
(l− lo)T Λ (l− lo)

)
, (68)

where

Λ = BT C̃
−1

e B +AT
qH

T
q ZHqAq, (69)

lo = Λ−1
(
BT C̃

−1

e v +m
)
. (70)
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