
informatica.bib@udc.gal

Citation for published version:

Accepted Manuscript

Link to published version: https://doi.org/10.1177/10943420221077964

General rights:

© The Author(s) 2022.
Publisher: SAGE Publications

(CC BY-NC-ND) licenses https://creativecommons.org/licenses/by-nc-nd/4.0/

Biblioteca da Facultade de Informática

Dieguez AP, Amor M, Doallo R, Nukada A, Matsuoka S. Efficient high-
precision integer multiplication on the GPU. The International Journal of
High Performance Computing Applications. 2022;36(3):356-369.
https://doi.org/10.1177/10943420221077964

mailto:informatica.bib@udc.gal
https://doi.org/10.1016/j.eswa.2018.07.016
https://creativecommons.org/licenses/by-nc-nd/4.0/

Efficient High-Precision Integer
Multiplication on the GPU

Journal Title
XX(X):1–11
c©The Author(s) 2016

Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
www.sagepub.com/

SAGE

Abstract
The multiplication of large integers, which has many applications in computer science, is an operation that can be
expressed as a polynomial multiplication followed by a carry normalization. This work develops two approaches for
an efficient polynomial multiplication. One approach is based on tiling the classical convolution algorithm, but
taking advantage of new CUDA architectures, a novelty approach to compute the multiplication using integers
without lossless of accuracy. The other one is based on the Strassen’s algorithm, an algorithm that multiplies
large polynomials using the FFT operation, but adapting the fastest FFT libraries for current GPUs and working
on the complex field. Previous studies reported that the Strassen’s algorithm is an effective implementation for ”large
enough” integers on GPUs. Additionally, most of previous studies do not deepen in the implementation of the carry
normalization, but this work describes a parallel implementation for this operation. Our results show the efficiency of
our FFT approach for large polynomial sizes, whereas our tiling approach is very efficient for shorter sizes. Furthermore,
our FFT approach turns out to be up to 2.74x for a single batch with respect to others implementations that use the
CuFFT library.

Keywords
large integers, multiplication, FFT, GPU, CUDA

Introduction

Multiplying large integers is a common operation in many
applications. Especially, many cryptography algorithms
require operating on very large subsets of the integer
numbers, such as the public-key cryptography, which
employ arithmetic with hundreds of digits Rivest et al.
(1978). Additionally, it is also frequently used to render
fractal images at high magnification, such as those found in
Mandelbrot set Brooks and Matelski (1978).

The classical vector multiplication hasO(N2) complexity,
where N is the number of digits. By using the Strassen FFT
multiplication algorithm Schönhage and Strassen (1971),
which has O(NlogN(loglogN)) complexity, the time is
significantly reduced. This algorithm is derived from the
fact that any integer multiplication can be expressed as a
polynomial product, called vector convolution, followed by
a carry normalization.

Graphics processing units (GPUs) can accelerate this
computation using their massive parallelism capabilities.
The GPU architectures provide considerable arithmetic
processing performance, and they have become a
natural choice for low-cost vector processing, since their
development cost is amortized over a larger market compared
with other dedicated parallel scientific architectures.

The motivation of this work comes from the fact that
previous studies about high-precision integer multiplication
were designed for outdated GPU architectures, using GPU
libraries which are not the most efficient anymore. Also, they
are mostly focused on the Strassen FFT algorithm on the

finite field. However, it is crucial to know the polynomial
size where the Strassen FFT algorithm starts to run
faster than other algorithms, and this size threshold
varies from one architecture to others. Furthermore, it
is also interesting to find out alternatives for different
sizes as well as analyzing the numerical stability of
implementation based on float and double numbers.
Additionally, most of previous works do not deepen in the
parallel implementation of the carry normalization.

Specifically, this works presents two efficient approaches
for the polynomial multiplication of large integers on GPU.
On the one hand, one approach based on the Strassen FFT
algorithm on current GPUs. In order to provide an efficient
FFT operation, this proposal uses the approach presented in
Diéguez et al. (2018), an efficient FFT proposal for large-
size problems called the ID-FFT library, the fastest one to
the best of our knowledge. On the other hand, a divide-and-
conquer approach of the classical convolution operation on
a GPU, which is based on tiling, is also developed. This
new approach takes advantage of the recent improvements
in the GPU memory bandwidth and the performance of the
new atomic operations in order to provide a fast and safe
high precision integer multiplication with no numerical
issues. Finally, this work also provides a parallel approach
of the carry normalization applied after the polynomial
multiplication, which is based on a two-level hierarchical
adder.

Prepared using sagej.cls [Version: 2017/01/17 v1.20]

2 Journal Title XX(X)

Related Work

There are some serial libraries and frameworks which
perform large integer multiplications. For example,
Microsoft introduced the BigInteger type in .NET 4.0 to
compute large integers big (2010), which has no upper
or lower bounds. Additionally, IntX int (2015) is a large
precision integer library with fast multiplication based on
the Hartley Transform Boussakta and Holt (1988). The
GNU MP Library gnu (2016) also includes fast calculation
algorithms for arbitrary precision arithmetic. There are
also several software packages to compute symbolically
with polynomials and matrices, such as Linbox lin (2017),
MAGMA Bosma et al. (1997) and NTL ntl (2015), although
most of them are dedicated to serial implementation
in the case of polynomials. In Emerencia (2007), the FFT
multiplication is implemented and compared with the normal
multiplication. A mathematical review about computing
the product of two large integers is analyzed in Bernstein
(2001) and Zuras (1994); while a more detailed description
of integer and floating-point arithmetic is presented in Brent
and Zimmermann (2010). In (Toom 1963), the complexity of
a scheme of functional elements, which computes the binary
digits of the product of two N-digit integers, is studied.
Additionally, an implementation of Schönhage-Strassen’s
algorithm within the GMP library is introduced in Gaudry
et al. (2007) for old x86 architectures, which uses different
techniques such as fast arithmetic modulo and Mersenne
transforms. A more recent study is analyzed in Harvey
and der Hoeven (2016), in which authors achieved an
optimized variant of a FFT-based algorithm (Cooley-Tukey
method followed by Bluestein’s chirp transformation and
the Kronecker substitution).

In the case of GPUs, to which this paper is devoted,
there are several CUDA implementations of large integer
multiplication. All of them are only focused on the Strassen
FFT approach, ignoring any other approximation to work
around the problem. Additionally, both the architectures
and libraries employed in these works are completely
outdated. The work presented in Emmart and Weems (2010)
worked with the CUDA Fermi architecture, whereas the
implementation of Zhao (2010) is even previous to Fermi.
In these works, many decisions were taken based on the
latency and efficiency of some operations, which have been
completely improved in current architectures. Other GPU
implementations can be found in Kitano and Fujimoto
(2014) and Maza and Pan (2010), although they were
also tested on outdated CUDA SKDs and architectures. In
Bantikyan (2014), a fast integer multiplication based on the
cuFFT library CUF (2012) is implemented, surpassing any
other previous framework implementations.

The Strassen FFT Multiplication Algorithm

The Strassen FFT multiplication algorithm Schönhage and
Strassen (1971) is based on the polynomial multiplication.
Any number in base x can be decomposed into a polynomial
coefficient vector. A polynomial p is described by its
coefficient vector a = [a0, a1, · · · , aN−1] as follows:

p(x) =
N−1∑
i=0

aix
i (1)

where x is the base of the polynomial, p(x) is the
evaluation of the polynomial for base x and N the
number of digits of the number; i.e., the size of the
polynomial. For example, considering the integer 54321, its
polynomial form using x = 10 would be a = [1, 2, 3, 4, 5]
or p(x) = 1 + 2x+ 3x2 + 4x3 + 5x4. Multiplying two
polynomials results in a third polynomial of size 2 ·N , and
this process is called vector convolution.

According to the convolution theorem, if c is the
convolution of two input vectors a and b, c = a · b, then
the Discrete Fourier Transform (DFT) of c is equal to
the pairwise multiplication of the DFT transform of each
input vector, DFT (c) = DFT (a)DFT (b), where pairwise
multiplication means multiplying the vectors in pairs,
element by element. Thus, the c vector can be also obtained
as the Inverse Discrete Fourier Transform (IDFT) of this
pairwise multiplication:

c = IDFT (DFT (a)DFT (b))

Given two input values, a and b, each one with N
and M digits respectively, the Strassen FFT algorithm
performs as follows. Firstly, the integers are represented
as polynomials in their coefficient-form representation,
a = a0, a1, · · · , aN−1 and b = b0, b1, · · · , bM−1. If the
input vectors do not have the same length, M < N , the
shortest one is filled with zeros until M = N . Once the
integers are represented as polynomials, the convolution
theorem is applied. In order to easily compute the DFT of
each vector, the Fast Fourier Transform is performed for
each vector. After that, the pairwise multiplication is applied
as well as the inverse FFT. Finally, the coefficients have
to be normalized to the same base as the one in which the
integer is represented (looping to propagate the carry).

The ID-FFT library for GPUs
On the one hand, Graphics Processing Units (GPUs) are
massively parallel processors with thousands of parallel
active threads. Considering CUDA GPU architectures,
logical threadblocks are distributed by the hardware
among the available Streaming Multiprocessors (SM) and,
depending on the amount of required resources, each SM
may be able to simultaneously execute several threadblocks.
Each threadblock executes threads which are grouped into
SIMD units of width 32, called warps, and each warp
executes instructions in lockstep. The memory hierarchy
is organized into a large global memory accessible by
all threads, smaller and faster shared memories for each
threadblock, and local registers for each thread. The shuffle
instructions are a warp-wide exchange mechanism that
communicates threads within a warp across registers. If the
threads do not belong to the same warp, but they belong to the
shame threadblock, the fastest communication mechanism
is the shared memory; otherwise, the communication is

Prepared using sagej.cls

3

performed accross global memory.

The Pascal architecture improves previous architectures’
features in many aspects: more double precision units,
larger L2 cache, larger shared memory in each SM, HBM2
memory instead of GDDR5, native support for 32-bit
shared-memory atomics (already introduced in Maxwell)
and 64-bit global-memory atomics. The most recent CUDA
architecture is called Volta and delivers the highest GPU
performance so far. This architecture is focused on deep
learning, and improves Pascal with a larger L2 cache and
larger shared memory per SM, more NVLINK bandwidth
and introduces an independent thread scheduling, where
each thread has its own program counter, breaking the SIMD
warp philosophy of previous architectures.

On the other hand, the ID-FFT ∗ library Diéguez et al.
(2018) Lobeiras et al. (2016) is, to the best of our knowledge,
the fastest library that performs the FFT for large-problem
sizes on a GPU. This recent library has surpassed the
performance of any other GPU library when solving several
large-size FFT problems simultaneously.

The performance of this library comes from using a
coalescing-friendly global memory pattern, which efficiently
uses the memory bandwidth, and is built with a set of
parameterized kernels. A parameterized kernel is a template
skeleton that receives the optimal performance values for
each architecture as template arguments. These arguments
specify the optimal performance values which maximize the
SM parallelism for each data size and target architecture
(number of threads per block, amount of registers per thread,
shared memory per block and number of kernels employed).
Thus, each supported architecture has a static table in the
code, where each entry represents one problem size with the
corresponding parameter values that maximize performance
for the given size. As kernels were written as templates, all
instances of the table are generated at compile-time with the
specified parameter values, and then, during the execution,
the corresponding instance is loaded depending on the given
problem size.

The CUDA FFT-based Multiplication
Approach
In this approach, we have employed the ID-FFT library to
compute the FFT operation of the Strassen algorithm for
multiplying large integers, in a similar way as the authors of
Bantikyan (2014) did with the cuFFT library.

When using the Strassen algorithm, most of the existing
implementations use the finite field Z/pZ, with prime p,
instead of the complex field C, since the error analysis is
easier. In that case, it is desirable to use a p number which
minimizes the modulo operation latency, and Fermat prime
numbers are chosen in most cases. Nevertheless, there are
several important restrictions with the finite field. Being x
the base and n the size of the FFT in the finite field:

• The field Z/pZ requires a nth root of unity.

• The maximum value must fit in the field, i.e., n/2(x−
1)2 < p.

• Multiplying in Z/pZ must be modulo p, thus the
existence of a fast modulo p operator is desirable (like
Montgomery reduction algorithm).

Traditionally, the implementations on the finite field
have been less efficient than the implementation on
the complex field, as different modulo operations are
required. Taking previous restrictions into account, our FFT
approach has been designed to work with the complex field
C. Additionally, this work uses the ID-FFT implementation,
which only supports the C complex numbers in base x = 10,
but it may be extended to other base. Two different proposals
were developed following this approach: the Complex-ID
proposal and the Real-ID proposal.

The floating-point design forces taking care of the
numerical accuracy. In order to achieve accurate results,
the N -digit operands are transformed into polynomial
coefficient vectors with base x = 10, as explained before.
Specifically, each polynomial coefficient is a number in
[0, 9]; thus, before the convolution, each N -digit operand
is transformed into N subwords, each composed of 1 digit.
Decreasing the number of computing operations is possible
by increasing the number of digits per subword to k digits,
i.e., reducing the number of subwords (N/k). However, this
choice would also hinder the accuracy of the result owing
to the use of floating-point data in the FFT, as the result
section presents. Thanks to GPU computing, which allows
us achieving massive data parallelism, it is possible to work
with N subwords of 1-digit at high-performance; i.e., using
k = 1. After the multiplication, each subword must contain a
number from 0 to (N/k) · (xk − 1) · (xk − 1), with x = 10
and k = 1 in our work. However, as the FFT convolution is
employed for this purpose, this number is a floating-point
value with decimal digits, which is rounded to be an integer.
This number is later normalized to a 1-digit coefficient in the
carry propagation operation.

The Complex-ID Proposal
This proposal is tagged as Complex-ID in the result section.
The steps explained previously in ”The Strassen FFT
Multiplication Algorithm” section are performed here for the
vectors a and b of size N , using the ID-FFT implementation
for complex numbers (Complex-ID function). The resulting
polynomial of multiplying a and b, c, will have a degree two
times greater than the highest degree of a and b; thus the size
of c is 2 ·N . Before performing the forward FFT, a and b
are extended up to 2 ·N , padding with zeros. The imaginary
part of each element is set to zero, and the coefficients are
assigned to the real part. Once the FFT is applied for each
input vector, both signals are pairwise multiplied, where x
represents the real part of the number and y is its imaginary
part:

c.x = a.x ∗ b.x− a.y ∗ b.y; (2)
c.y = a.x ∗ b.y + a.y ∗ b.x; (3)

∗Available at http://bplg.des.udc.es

Prepared using sagej.cls

4 Journal Title XX(X)

At this point, the inverse FFT is performed for the
resulting vector from the pairwise multiplication. It should
be noted that a pairwise multiplication kernel has been
additionally developed to multiply the elements, which are
already in the GPU memory.

The Real-ID Proposal
The previous proposal wastes half of the memory bandwidth
carrying zeros in the imaginary part of each number. In
this proposal, tagged as Real-ID in the result section, the
FFT operation of the ID-FFT library is extended with
real-number support. There are many approaches to
perform the real FFT efficiently Sorensen (1987), but we
use the one that packs the signal in a vector with half of
the size, reading each two consecutive real values as a
single complex number, as CUF (2012) does.

Given a signal of real data x and its transform y the
following symmetry property is met:

yk = yN−k, 1 ≤ k ≤ N/2 (4)

Where yN−k is the complex conjugate, such that a+ bj =
a− bj. The values in [y1 · · · yN/2−1] have an imaginary
component but, when N is even, both y0 and yN/2 are
pure real numbers. Observe that, in consequence, half of the
information in y is redundant. Hence, x can be processed as
a complex signal of half the length where:

x′k = xk + x2k+1j (5)

Then [y0 · · · yN/2−1] is obtained as:

yk =
1

2
(zk + zN/2−k)−

j

2
e−2πk/N (zk − zN/2−k) (6)

with z as the complex transform of the signal x′k.
Furthermore, yN/2 = Re(z0) + jIm(z0). The remaining
values are easily obtained using the enunciated symmetry
property.

To achieve this end, two new functions are developed,
a Real-to-Complex (R2C) function for the Forward FFT,
and a Complex-to-Real (C2R) function for the Inverse FFT.
To do this, the real signal is packed in a vector with half
of the size (reading each two consecutive real values as a
single complex number), and then the Complex-ID function
performs the transform of this half-size signal. After this,
a post-processing stage is used to combine the output and
unpack the data, consuming half of the memory bandwidth
with respect to the previous proposal. This can be achieved
thanks to the complex conjugate property, where half of the
information in the transformed signal is redundant. It should
be observed that the computation of the post-processing
stage is performed in an additional kernel after (before) the
forward (inverse) FFT; thus, in addition to the kernels given
by the ID-FFT library, a kernel which computes the post-
processing stage has had to be developed.

1 for(k from 0 to 2*N-1)
2 c[k]=0
3 for (i from 0 to N-1)
4 for (j from 0 to N-1)
5 c[i+j]+= a[i]*b[j]

Figure 1. Pseudocode of the vector convolution operation

Figure 2. Classical multiplication operation in tiles of size T=2
on the input vectors a and b, where A,B,C and D represent the
data processed by each computing unit

Figure 3. GPU implementation of the tiled multiplication where
N = 4 and T = 2.

The CUDA Tiling Multiplication Approach

In this section, a new approach for computing an efficient
multiplication of two large integers on a GPU is proposed.
This new approach is based on the classical vector
convolution algorithm and avoids working with the Discrete
Fourier Transform.

Prepared using sagej.cls

5

The vector convolution algorithm
Although the classical algorithm of the polynomial
multiplication seems sequential, as Figure 1 shows, it is
possible to apply a divide-and-conquer strategy to compute
the multiplication in parallel. This approach, tagged as
Tiling-based in the result section, divides the computation
of the c reduction (line 5 in pseudo-code) through several
data blocks, where each data block works with tiles of
size T . Specifically, each data block computes 2× T − 1
elements of c, taking T elements from vector a and T
elements from vector b as inputs. Then, each data block has
to integrate its partial result with the others, in a sequential
reduction, in order to obtain the overall result; whereas
the number of data blocks is given by (N/T)× (N/T).
From a computer architecture perspective, each data block
is computed by one computing unit of the target architecture
and the optimal value of the tile size, T , also depends on the
given architecture.

Figure 2 depicts an example of this approach with N = 4
and T = 2. There are 2× 2 = 4 computing units, where
each computing unit computes 3 elements of the solution,
reading 2 elements from a, and 2 from b (see convolution of
each computing unit as A,B,C and D in figure).

CUDA implementation
When this approach is implemented on a GPU, each
computing unit corresponds with a threadblock. Each
threadblock works with T elements from a and T from
b. The whole computation is performed in a single kernel
invocation and the overall result is calculated by integrating
the partial results with atomic instructions in global memory.

Figure 3 depicts the work performed by each threadblock.
Each pair of T elements from input vectors is assigned
to one threadblock. Then, each threadblock divides the
computation of the multiplication among its threads. To do
this computation, this approach does not use shared memory,
since all exchanges are performed by shuffle instructions.
The partial result of each threadblock is stored in private
registers of its threads, and is carried to its positions in the
result array, performing the corresponding reduction with
other threadblocks in global memory.

Nevertheless, these operations may be a big bottleneck
for large-size inputs. It should be noted that each memory
location is atomically accessed as many times as the number
of tiles. Thus, large problem sizes will suffer memory
contention due to atomics, despite of the new improvements
on these operations in new architectures. Since higher
number of tiles implies higher contention, and the number of
tiles is equal to the number of threadblocks employed, each
block must be executed with the greatest number of threads
possible and each thread must be on charge of the maximum
number of elements possible in order to reduce the number
of threadblocks.

In order to find the suitable T value, an exhaustive search
is empirically computed for each supported architecture,

1 CarryPropagation(srcVector, dstVector)
2
3 carry:=0
4 for (i from 0 to srcVector.length)
5 sum:= carry+srcVector[i]
6 mod:= sum \% 10
7 dstVector.Add(mod)
8 carry:= sum/10
9 while(carry>0)

10 if(carry.lenght >1)
11 index:=carry.lenght-1
12 else
13 index:= 0
14 dstVector.Add(carry[index])
15 carry:= carry /10

Figure 4. Pseudocode of the carry-propagation operation for
large integer multiplication.

Figure 5. Carry propagation: Serial implementation

finding out its optimal value. The optimal T value is affected
by the GPU global memory bandwidth, its SM parallelism,
the performance of the global memory atomics in that
GPU and the size N of the input vectors. A similar tuning
methodology as the FFT-ID one has been employed for
the Tiling approach, see previous ”The ID-FFT library for
GPUs” section, where kernels are written as templates and
receive the optimal performance values which maximize the
SM parallelism at compile-time.

The Carry Normalization
After multiplying the vector inputs, each element in the
output vector is the result of the corresponding product,
and might be composed of several digits. In order to
obtain the final result, each element should perform the
modulo operation and propagate the carry to the next more
significant elements. This implies that each element receives
a carry-in from the less significant elements, performs
the modulo operation and propagates its carry-out to the
more significant elements. This process is called Carry
Normalization or Carry Propagation and its pseudo-code is
illustrated in Figure 4 for the base x = 10.

In contrast with traditional adders, where the carry flag
is a single digit used to indicate when a carry-out has been
generated and is propagated to the immediately adjacent
more significant position, the carry accumulator here (line
8) may be composed of several digits; i.e., the carry must
be propagated to several more-significant elements. This
fact limits the parallelization of the algorithm using a

Prepared using sagej.cls

6 Journal Title XX(X)

(a) First phase

(b) Second phase

Figure 6. Parallel carry propagation design

carry look-ahead scheme, since this scheme is designed to
propagate a single-digit carry, not a multiple-digit carry,
as Figure 5 shows for an example, which is the result of
multiplying two polynomials, and whose polynomial form
is a = [579, 23, 2, 0]. This hierarchical carry look-ahead
idea is implemented in different hardware adders
in VLSI designs. In Emmart and Weems (2010), the
authors transform this hardware behavior into a GPU
equivalent software operation, which is, to the best of
our knowledge, the only GPU implementation of this
operation. We have improved this GPU implementation
by introducing shuffle instructions and two different
phases (two kernel calls).

In the first phase, each element will be normalized to a
number of two digits in base 10. To do this, considering
integer type codification, each element may be composed of
up to 10 digits; keeping the first digit as the element’s value
and the remaining 9 digits are assigned as the element’s
carry-out. Therefore, each digit of the element’s carry-out
has to be propagated to the corresponding adjacent more-
significant elements, nine at most. In other words, each
element receives a single-digit carry-in (a number in [0, 9])
from 9 elements at most. After adding the single-digit
carry-in from its adjacent less-significant elements to itself,
each element will be composed of two digits at most:
considering the extreme scenario where the element’s value
is 9 and the nine carry-ins received are also 9, the total
addition would be 90, two digits. The implementation of
this idea is depicted in Figure 6 (a). Firstly, every element
performs the modulo operation at a time, obtaining each
element’s value, [9, 3, 2, 0] in the example. After this, the
generated carry-outs, [57, 2, 0, 0], have to be propagated
to the next elements. Thus, each element propagates
its generated carry-out to its adjacent elements, using

Pascal Platform Volta Platform
CPU Xeon E5-2630 Xeon E5-2698

Memory 256 GB 512 GB
GPU NVIDIA Pascal P100 NVIDIA Volta V100

Driver 375.51, SDK 8.0 384.81, SDK 9.0
Table 1. Description of the computing platforms employed

shared memory, where each digit of the carry-out is sent
to the corresponding adjacent element. In the example,
the first element sends 7 to the second element and 5
to the third element; whereas the second element sends 2
to the third one and the third element sends 0 to the forth one.

In the second phase, the vector is decomposed into two
vectors: the one with the result of applying the modulo
operation, and another one with the corresponding single-
digit carry-out generated. The final result is built with their
addition. As these two vectors are composed of single-digit
elements, a carry look-ahead scheme can be applied now
for their addition. Figure 6 (b) shows the second phase of
the implementation. Specifically, in order to compute the
carry look-ahead schema of the second phase, let us define
critical[i] as a boolean array where the ith bit is set if the
ith element is critical; i.e., sensitive to produce a carry-out if
and only if there is a carry-in (i.e., ith element is the digit 9).
Also, let us define c[i] as a boolean array where the ith bit is
set if the ith element generates a carry-out. Then, the carry
look-ahead function is as follows:

carry[i] = (c[i]) or (critical[i] and c[i− 1]) or

(critical[i] and critical[i− 1] and c[i− 2]) or · · ·

Although this expression seems very slow to evaluate, it can
be replaced by integers instead of boolean arrays, getting the
following expression that can be evaluated in a single step:

carry = ((c << 1) + carry − in + critical)

xor critical

where carry-in is a single carry bit from the previous block
of elements. Previous numerical expression can be evaluated
at different levels: thread registers, warp and threadblock
until reaching the final result, as explained in Emmart and
Weems (2010).

Experimental Results
In this section, an analysis of the results is presented. This
analysis is split in two studies: a numerical study for the FFT-
based approach, which uses floating point precision, and a
performance study for the two approaches.

Numerical analysis
While the classical algorithm and the finite-field FFT-based
approaches work with exact computations, the FFT-based
implementations on the Complex field can show some
numerical inaccuracy owing to the use of floating-point
operations. Most of this numerical inexactness can be solved

Prepared using sagej.cls

7

executing a round function after the calculation, as see
below. It should be observed that the Tiling-based approach
already works with integers, thus there is no numerical
inaccuracy in its execution.

If the FFT-based multiplication is employed for
multiplying large integers, then two N-digit integers are
multiplied in base x, and each operand is transformed into
N/k elements of k digits, defining the FFT input vectors for
a given k. The resulting vector after the FFT multiplication
is composed of 2 ·N/k elements, and each element (before
normalizing each resulting element to k digits) contains a
value in the range [0, (N/k) ∗ (xk − 1) ∗ (xk − 1)]. This
value is represented in either 32 or 64 bits (FP32 or FP64
precision). If the resulting value after the FFT multiplication
is large, or it has a large decimal part, certain accuracy can
be lost since this value is represented in only 32 or 64 bits.

Considering that each value after the inverse FFT must
be an integer, we take the nearest integer value, the
numerical error α on the inverse FFT process can be
proved to be

α ≤ 6N2x2log(N)ε (7)

where N is the digit size, x is the chosen base, and ε is
the machine epsilon, the upper bound due to rounding
in floating point, which is around exp−16 for double
precision (exp−8 when single floating point) as explained
at Gourdon and Sebah (2001). But this bounds the worst
case. In the practice, the numerical stability of the FFT
is good and the bound α = O(Nx2ε) is fulfilled. To
guarantee the numerical accuracy, α must be less than
0.5, thus choosing a base x with a small k value usually
suffices to have the desired accuracy. In this case x = 10
and k = 1, which allows to maximize the value of N for a
given α.

Therefore, as each resulting element is a float in the FFT
multiplication, we need that the absolute individual error on
each element to be less than 0.5, as coefficients (elements)
are rounded to the nearest integer before normalization.
Table 2 shows the MAE (Mean Absolute Error) error for
different operand sizes, as well as the number of elements for
whose absolute individual error is greater than 0.5 (counter
metric). The accuracy formula of the previous paragraph
bounds the worst case scenario, but this table represents
the results for a regular computation which sets to ’9’
all digits of the two input vectors. Many other random
generated inputs have been tested, with similar accuracy.
In practice and as table shows, FP32 approaches are not
accurate for extremely large integers only. In contrast,
FP64 approaches show really high precision, even at
extremely large sizes. However, it should be pointed out
that our Tiling-approach accurately computes the result
for such cases.

Another analysis is given in Table 3 for different k values
and N -size operands, with base x = 10, using FP64 and
also setting all input values to ’9’. While k = 1 has no
accuracy issues, the analysis is different for k = 2. The

N
FP32 Error FP64 Error

Err Counter MAE Err Counter MAE
4096 0 0.000173 0 0.000001
8192 0 0.000573 0 0.000001

16384 0 0.001279 0 0.000001
32768 0 0.002766 0 0.000001
65536 0 0.005246 0 0.000001
131072 0 0.009930 0 0.000001
262144 0 0.034507 0 0.000001
524288 0 0.058532 0 0.000001

1048576 0 0.143468 0 0.000001
2097152 12268 0.264665 0 0.000001
4194304 2377658 0.563110 0 0.000002
8388608 6157308 1.057919 0 0.000003

Table 2. MAE absolute error and individual error counter for our
FFT proposals when setting all operand digits to 9.

N MAE k=1 MAE k=2 MAE k=4
32768 0.000001 0.00013 1.32986
65536 0.000001 0.00013 1.33007

131072 0.000001 0.00013 1.33023
262144 0.000001 0.00013 1.3305

Table 3. MAE and individual error counter for different k values
in FP64.

MAE for k = 2 increases, although there is no element
with an individual error greater than 0.5 yet. The problem
starts with k = 4, since there are many elements with an
individual error > 0.5, invalidating this configuration as an
option to our FFT proposal. As our proposal should produce
the most accurate result, we use k = 1 for all problem sizes.

Performance analysis
The following results were taken in the computing
platforms shown in Table 1. All data elements were in
the GPU memory prior to the GPU execution, thus CPU-
GPU memory transfers are not included in the metrics.
Specifically, the MData/s metric gives the number of
digits (in millions) calculated by second for the resulting
polynomial.

For each kernel launched in each proposal and
architecture, the optimal performance parameters that
maximize the GPU parallelism have been found empirically
following the tuning methodology mentioned in previous
”The ID-FFT library for GPUs” section and explained
at Diéguez et al. (2018) in greater detail. It should be
noted that the most important performance factor is to get
the maximum memory bandwidth in the case of the FFT
proposals, and to minimize the number of atomic operations
in the case of the Tiling approach. In order to compare
our approaches with other implementation, we have also
implemented the FFT-based approach using the CuFFT
library to perform the FFTs, since authors of Bantikyan
(2014) claimed that it surpasses any other state-of-the-art
implementation.

The Pascal Platform Figure 7 (a) shows the performance
of our approaches in the Pascal Platform, using FP32 for
the FFT-based proposals, when executing a single-batch

Prepared using sagej.cls

8 Journal Title XX(X)

(a) Single-batch execution

(b) Multi-batch execution

Figure 7. Performance comparison for our FP32 approaches in
the Pascal Architecture

Figure 8. Performance comparison for the multi-batch
GPU-tiling proposal on the Pascal Architecture

problem. Our Real-ID proposal is up to 2.08x compared
with the real implementation of the Real-CuFFT proposal;
whereas the Complex-ID proposal is up to 2.74x faster than
the Complex-CuFFT proposal. The Tiling-based proposal
outperforms the Real-ID proposal while N ≤ 65536. In the
case of N = 8192, the Tiling-based is 4.34x faster than the
Real-ID proposal and 6.23x with respect to the Real-CuFFT
proposal.

However, the ID-FFT library has been designed to solve
several batch problems simultaneously. In order to perform
a multi-batch execution, 224 digits are allocated for the
resulting polynomials where the number of batches, G, is
equal to G = 224

2·N , being N the size of each input vector.
This multi-batch case is shown in Figure 7 (b), where the
Tiling-approach is not shown for the sake of appearance

(a) Single-batch execution

(b) Multi-batch execution

Figure 9. Performance comparison for our FP64 approaches in
the Pascal Architecture

due to the range of the axis and the magnitude of the
approach values. Our Real-ID proposal is up to 1.91x faster
compared with the real implementation of the Real-CuFFT
proposal; whereas the Complex-ID proposal is up to 1.21x
faster than the Complex-CuFFT proposal. The performance
of the multi-batch Tiling approach is shown in Figure
8 and compared against the single-precision FFT-based
approaches for this architecture. It outperforms the Real-ID
proposal when N ≤ 32768. In the case of N = 4096, the
Tiling-based is 3.92x faster than the Real-ID proposal and
7.49x faster with respect to the Real-CuFFT proposal.

Figure 9 performs the same comparative for the double
precision execution. As the FFT function is a memory-
bound operation, the achieved performance is the half of
the FP32-proposals performance. In the case of a single
batch, the FP64 Real-ID proposal is up to 1.51x faster than
the Real-CuFFT one; whereas up to 11x is obtained for the
complex case, depending on the data point. In a multi-batch
execution, the FP64 Real-ID proposal is up to 1.51x faster
than the Real-CuFFT one; whereas 1.50x is obtained for the
complex case.

The Volta Platform Figure 10 shows the performance
analysis of our proposals in the Volta Platform, where
the FFT-based proposals use FP32 datatypes. It should be
observed that the Volta execution is 1.5x faster, on average,
than the Pascal one for a single-batch execution. Again, this
is because the memory-bound nature of the problem. The
new generation of memory controllers in Volta provides

Prepared using sagej.cls

9

(a) Single-batch execution

(b) Multi-batch execution

Figure 10. Performance comparison for our FP32 approaches
in the Volta Architecture

Figure 11. Performance comparison for the multi-batch
GPU-tiling proposal on the Volta Architecture

1.5x delivered memory bandwidth with respect to the Pascal
GP100. In this platform, the ID-FFT proposals continue
surpassing the CuFFT-based ones, achieving, on average,
1.44x and 1.42x speedups for the case of real and complex
numbers, respectively. In general terms, this architecture
performance is the double than the Pascal one, as can
be observed. Regarding the Tiling approach, the atomic
operations still limit the performance for larger problem
sizes in this architecture, although this approach is up
to 5.2x faster than the Real-ID proposal and up to 6.33x
with respect to the Real-CuFFT proposal. In the case of
a multi-batch execution, the ID-FFT proposals continue
surpassing the CuFFT-based ones, achieving, on average,
1.21x and 1.12x speedups for the case of real and complex
numbers, respectively. Figure 11 shows the multi-batch
Tiling-based proposal in this platform, which is is up to
3.91x faster than the Real-ID proposal and up to 7.48x with

Figure 12. Performance comparison for the FP64 FFT-based
proposals and the Tiling approach executing a single-batch in
the Volta Architecture

respect to the Real-CuFFT proposal.

Figure 12 shows the results for double precision in this
architecture, when executing a single-batch. In this case,
the ID-FFT proposals are competitive when N > 1048576,
whereas the CuFFT-based proposals run faster for smaller
problem sizes. In the case of executing several batches, we
have obtained inconsistent results for all the versions when
compiling with compute capabilities 7.0 and CUDA 9.0.
Specifically, extremely low MData/s is achieved when
several bidimensional threadblocks write double values
in global memory. This issue has been reported, since the
performance increases, until reaching expected values,
when compiling with other compute capabilities for this
architecture.

Results Discussion
On the one hand, the FFT-based approaches have some
performance weaknesses, in addition to work with precision
inaccuracy. Firstly, each invocation of the FFT operation
launches several kernels, as well as the kernel invocation
for the pairwise multiplication, with the corresponding
performance lost. Additionally, the ID-FFT library consumes
a huge amount of shared memory and shuffle instruction
optimization is not possible Diéguez et al. (2018), affecting
performance massively when working on double precision.
Although new GPU architectures have higher theoretical
performance and higher memory bandwidth, these two
factors significantly limit the actual performance that can be
achieved. Despite of these aspects, they show to be the most
efficient implementation for the large problem sizes.

On the other hand, the Tiling approach performance
depends too much on the atomic implementation efficiency,
and although the atomic operations might be replaced by
a reduce-pattern, this would imply the use of additional
kernels and global memory. Specifically, the reduction of
each element in a reduce-pattern would need an additional
vector in memory with as many elements as the number
of threadblocks the Tiling-based kernel is invoked. This
amount of memory surpasses the memory availability of
a single-GPU when solving large problem sizes. From
CUDA 9 on, it is possible to perform this reduce operator
in a single kernel and with no additional memory, using

Prepared using sagej.cls

10 Journal Title XX(X)

the gridSynchronize global barrier. However, the number
of invoked threadblocks must be less or equal than the
number of resident active threadblocks, in the same manner
as persistent threads do, but the Tiling-based kernel uses
more than that number of threadblocks. Thus, the current
implementation of the Tiling approach is the most efficient
we have found.

Thus, analyzing the results obtained, we can conclude
that the Tiling approach shows high performance when
multiplying a small or medium number of digits, and
the FFT-based approaches are the most suitable ones
to compute large problem sizes. However, the Tiling
approach guarantees the numerical accuracy, whereas
the FFT can only guarantee this accuracy for certain
sizes. Specifically for the single-batch execution, the Tiling
approach should be used when N ≤ 65536 for both Pascal
and Volta architectures, whereas larger problem sizes should
be solved with the FFT-based approaches. In the case of a
multi-batch execution, the Tiling approach should be used
when N ≤ 32768. Although the FFT-based approaches
suffer from some numerical inaccuracy, this work shows
that it is very low and might be acceptable in most of the
applications which use the large-integer multiplication.
Also, this work demonstrates that the FFT-based approaches
that use the ID-FFT library to compute the Fast Fourier
Transform run faster than the ones which use the CuFFT
library.

Previous results do not include an analysis of the carry
performance in detail, since this operation is always
executed after the convolution, despite of the algorithm
used. Please, keep in mind that the parallel carry
workload has represented half of the total execution time
in all platforms, when executing the FFT approach. With
respect to the serial implementation, the performance
of the whole process for the GPU multiplication is one
order of magnitude higher if we use the GPU carry
approach rather than the CPU carry approach. Actually,
the performance of the whole operation (convolution and
carry) keeps constant for any input size when using
the CPU carry, since the CPU carry implementation is
clearly bounding the global performance. In summary,
as the same carry operation is always executed in
the last step, we have focused on the performance
analysis of the convolution, which varies depending on
the chosen algorithm; but it should be mentioned that
our GPU carry implementation outperforms the CPU-
implementation performance in one order of magnitude.

Conclusions
This work presents two approaches for computing an
efficient multiplication of large integers on different GPU
architectures: the FFT-based approach, which uses the
Strassen-FFT algorithm, and the Tiling approach, which
is based on the classical algorithm, partitioning the data
vectors in tiles. These approaches are derived from the
fact that any integer multiplication can be expressed as a
polynomial product followed by a carry propagation. The
FFT-based approach is focused on complex numbers, instead

of on a finite-field, and uses the ID-FFT to implement
the Strassen algorithm. This approach outperforms other
implementations which use the CuFFT library by 2.74x
in Pascal and 1.44x in Volta architectures. Additionally, a
numerical accuracy analysis is performed, since this FFT-
based approach works with complex numbers rather than
finite fields. The FFT-based approaches are very suitable
when dealing with extreme-large polynomials. Additionally,
the Tiling approach is much more efficient when working
with medium and large polynomials compared to FFT
approaches, but also guarantees the numerical stability
for any digit size. For each architecture and kind of
execution (simple-batch or multi-batch) this work also
provides the optimal algorithm which should be executed
for each data point. Finally, a parallel implementation for
the carry propagation is also given. This work fulfills
the demands of computing efficiently the multiplication of
large integers in current GPU architectures, providing two
different alternatives depending on the problem size and
the required accuracy.

Acknowledgements

This work is supported by the Ministry of Economy and
Competitiveness of Spain, TIN2016-75845-P (AEI/FEDER,
UE), by the Galician Government and FEDER funds
under the Consolidation Program of Competitive Reference
Groups (GRC2013-055) as well as under the Consolidation
Programme of Competitive Research Units [Ref. R2014/049
and Ref. R2016/037]; and by the FPU Program of the
Ministry of Education of Spain (FPU14/02801). It is also
partially supported by JST CREST [JPMJCR1303 and
JPMJCR1687] and NVIDIA GPU Center of Excellence; and
conducted as research activities of AIST-TokyoTech Real
World Big-Data Computation Open Innovation Laboratory
(RWBC-OIL).

References

(2010) .NET BigInteger Library. Microsoft. Available at
https://msdn.microsoft.com/en-us/library/

system.numerics.biginteger(v=vs.110).aspx.
(2012) CUDA CUFFT Library. NVIDIA. V5.0.
(2015) CodePlex IntX Library. CodePlex Open Source Project.

Available at https://intx.codeplex.com.
(2015) NTL: A Library for doing Number Theory. Victor Shoup.

Available at http://www.shoup.net/ntl/.
(2016) GNU Multiple Precision Arithmetic Library. GNU Open

Source Project. Available at https://gmplib.org.
Sorensen H and Jones D and Heideman M and Burrus C(1987)

Real-Valued Fast Fourier Transform Algorithms. IEEE
Transactions on Acoustics, Speech and Signal Processing,
35(6):849–863.

(2017) LinBox - C++ library for exact, high-performance linear
algebra. Bastien Vialla, Jean-Guillaume Dumas. Available at
https://linalg.org.

Bantikyan H (2014) Big Integer Multiplication with CUDA FFT
(cuFFT) Library. 11.

Bernstein D (2001) Multidigit multiplication for mathematicians.
URL https://cr.yp.to/papers/m3.pdf.

Prepared using sagej.cls

https://msdn.microsoft.com/en-us/library/system.numerics.biginteger(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.numerics.biginteger(v=vs.110).aspx
https://intx.codeplex.com
http://www.shoup.net/ntl/
https://gmplib.org
https://linalg.org
https://cr.yp.to/papers/m3.pdf

11

Bosma W, Cannon J and Playoust C (1997) The Magma algebra
system. I. The user language. J. Symbolic Comput. 24(3-4):
235–265.

Boussakta S and Holt AGJ (1988) Fast multidimensional discrete
Hartley transform using fermat number transform. IEEE
Proceedings of Electronic Circuits and Systems 135(6): 253–
257.

Brent R and Zimmermann P (2010) Modern Computer Arithmetic.
Cambridge University Press.

Brooks R and Matelski J (1978) The dynamics of 2-generator
subgroups of psl(2,c). pp. 65–71.

Diéguez AP, Amor M, Lobeiras J and Doallo R (2018) Solving
Large Problem Sizes of Index-Digit Algorithms on GPU:
FFT and Tridiagonal System Solvers. IEEE Transactions on
Computers 67(1): 86–101.

Emerencia A (2007) Multiplying Huge Integers Using Fourier
Transforms. ICS Project. University of Groningen. URL
http://www.cs.rug.nl/˜ando/pdfs/Ando_

Emerencia_multiplying_huge_integers_

using_fourier_transforms_paper.pdf.
Emmart N and Weems C (2010) High precision integer addition,

subtraction and multiplication with a graphics processing unit.
Parallel Processing Letters 20(04): 293–306.

Gaudry P, Kruppa A and Zimmermann P (2007) A gmp-based
implementation of Schönhage-Strassen’s large integer multi-
plication algorithm. In: Proceedings of the 2007 Interna-
tional Symposium on Symbolic and Algebraic Computation
(ISSAC’07). ACM, pp. 167–174.

Gourdon X and Sebah P (2001) FFT based multiplication of large
numbers. Numbers, constants and computation 2(17): 1–6.

Harvey L and der Hoeven V (2016) Even faster integer
multiplication. J. Complex. 36(C): 1–30.

Kitano K and Fujimoto N (2014) Multiple precision integer
multiplication on GPUs. Proceedings of the International
Conference on Parallel and Distributed Processing Techniques
and Applications (PDPTA) .

Lobeiras J, Amor M and Doallo R (2016) Designing Efficient
Index-Digit Algorithms for CUDA GPU Architectures. IEEE
Transactions on Parallel and Distributed Systems 27(5): 1331–
1343.

Maza MM and Pan W (2010) Fast polynomial multiplication on a
GPU. Journal of Physics: Conference Series 256(1): 009–012.
URL http://stacks.iop.org/1742-6596/256/i=

1/a=012009.
Rivest RL, Shamir A and Adleman L (1978) A method for obtaining

digital signatures and public-key cryptosystems. Commun.
ACM 21(2): 120–126.

Schönhage A and Strassen V (1971) Schnelle multiplikation großer
zahlen 7: 281–292.

Toom A (1963) The complexity of a scheme of functional elements
realizing the multiplication of integers. Soviet Mathematics
Doklady 3: 714–716.

Zhao K (2010) Implementation of Multiple-precision Modular
Multiplication on GPU. Tech. Report .

Zuras D (1994) More on squaring and multiplying large integers.
IEEE Transactions on Computers 43(8): 899–908.

Prepared using sagej.cls

http://www.cs.rug.nl/~ando/pdfs/Ando_Emerencia_multiplying_huge_integers_using_fourier_transforms_paper.pdf
http://www.cs.rug.nl/~ando/pdfs/Ando_Emerencia_multiplying_huge_integers_using_fourier_transforms_paper.pdf
http://www.cs.rug.nl/~ando/pdfs/Ando_Emerencia_multiplying_huge_integers_using_fourier_transforms_paper.pdf
http://stacks.iop.org/1742-6596/256/i=1/a=012009
http://stacks.iop.org/1742-6596/256/i=1/a=012009

	Declaracion_plantilla_pantallaprevia
	posprint_IJHPCA2022 (1)
	Introduction
	Related Work

	The Strassen FFT Multiplication Algorithm
	The ID-FFT library for GPUs

	The CUDA FFT-based Multiplication Approach
	The Complex-ID Proposal
	 The Real-ID Proposal

	The CUDA Tiling Multiplication Approach
	The vector convolution algorithm
	CUDA implementation

	The Carry Normalization
	Experimental Results
	Numerical analysis
	Performance analysis
	The Pascal Platform
	The Volta Platform

	Results Discussion

	Conclusions

