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On the Galerkin formulation of the smoothed particle
hydrodynamics method

L. Cueto-Felgueroso, 1. Colominas*’T, G. Mosqueira, F. Navarrina and M. Casteleiro

Group of Numerical Methods in Engineering, GMNI, Department of Applied Mathematics,
Civil Engineering School, Universidad de La Coruiia, Campus de Elviiia, La Coruiia 15192, Spain

SUMMARY

In this paper, we propose a Galerkin-based smoothed particle hydrodynamics (SPH) formulation with
moving least-squares meshless approximation, applied to free surface flows. The Galerkin scheme
provides a clear framework to analyse several procedures widely used in the classical SPH literature,
suggesting that some of them should be reformulated in order to develop consistent algorithms. The
performance of the methodology proposed is tested through various dynamic simulations, demonstrating
the attractive ability of particle methods to handle severe distortions and complex phenomena. Copyright
© 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Meshless methods have experimented an intense development in the last decade. Their poten-
tial seems to be such that many researchers feel to be living a period of pre-revolutionary
activity in computational mechanics (if Kuhn’s conception is applicable), even though it is not
clear where the definitive fracture may come from.

Particle methods are (too) frequently regarded as numerical models rather than numerical
methods, well suited to give physically reasonable gualitative solutions in complex problems,
but not quantitatively accurate solutions, even in simple situations. Much work has been devoted
in recent years to banish such a prejudice.
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1476 L. CUETO-FELGUEROSO ET AL.

In the basis of meshless formulations, we find specific interpolation techniques, such as
kernel estimates [1] or moving least-squares approximations [2]. However, meshless methods
in computational mechanics are not simply different interpolation schemes but constitute, indeed,
a powerful and ambitious attempt to solve the equations of continuum mechanics without the
computational workload associated to the explicit partition of the domain into certain non-
overlapping cells. This essentially distinctive nature of meshless methods is, in turn, the origin
of many well-known shortcomings. Unlike finite elements, the absence of a spatial framework
complicates the application of certain numerical methodologies such as the weighted residuals
(Galerkin) method. Nevertheless, we must note that these techniques, nowadays the strongest
basis to develop practical implementations of meshless methods, may be not as adequate for
particle methods as they are for finite element methods. Certainly, the development of the
mathematical knowledge would provide better techniques to obtain the discrete equations in
computational mechanics, taking out the whole power of the particle approach.

The smoothed particle hydrodynamics (SPH) method was developed in the late 1970s to
simulate fluid dynamics in astrophysics [3, 4]. The extension to solid mechanics was introduced
by Libersky et al. [5] and Randles [6]. Johnson and Beissel proposed a normalized smoothing
function (NSF) algorithm [7] and other corrected SPH methods have been developed by Bonet
et al. [8,9] and Chen et al. [10]. More recently, Dilts has introduced moving least-squares
(MLS) shape functions into SPH computations [11].

Early SPH formulations included both a new approximation scheme and certain characteristic
discrete equations (the so-called SPH equations), which may look quite ‘esoteric’ for those
researchers with some experience in methods with a higher degree of formalism such as finite
elements. The formulation described in this paper follows a different approach, and the discrete
equations are obtained using a Galerkin weighted residuals scheme. This derivation may result
somewhat disconcerting for those accustomed to the classical SPH equations. However, we
believe that Galerkin formulations provide a strong framework to develop consistent algorithms.
Note that we use moving least-squares shape functions and a Galerkin formulation: is this SPH
or EFG? It is not our purpose to carry out a ‘taxonomic’ study of meshless methods. Perhaps
the correct question is: how many (really different) meshless methods there exist? Whatever
the answer, we feel that our endeavour follows the spirit of Lucy, Gingold and Monaghan’s
smoothed particle hydrodynamics.

The outline of the paper is as follows. We begin with a brief review of standard SPH
and moving least-squares approximations. After introducing the model equations, their discrete
counterpart is obtained using a Galerkin formulation, and various important computational
issues, with special emphasis on numerical integration, are addressed. Finally, the methodology
is applied to the simulation of fluid dynamics and free surface flows.

2. MESHLESS APPROXIMANTS

2.1. Standard SPH shape functions

The simplest way to construct meshless test and trial functions corresponds to the standard
SPH approximants, given by

Nj(x)=ViWj(x) = V;W(x —x;, h) ey
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GALERKIN FORMULATION 1477

In the above expression, W(x — x;, h) is a kernel (smoothing) function with compact support
centred at particle j and V; is the tributary or statistical ‘volume’ associated to particle j.
The parameter h, usually called smoothing length in the SPH literature or dilation parameter
in the RKPM literature [12], is a certain characteristic measure of the size of the support of
W; (e.g. the radius in circular supports). Exponential and spline functions are most frequent
kernels. The SPH approximation #(x) of a given function u(x) can be posed in terms of the
shape functions (1) and certain particle or nodal parameters {u;} as

A0 = X N 0w =

Vi Wi (X)u; ()
Jj =1

J

Using standard kernels, the approximation given by (2) is poor near boundaries, and lacks
even zeroth-order completeness, i.e.

n
S Nix) # 1 3)
j=1

Thus, the set {N;(x), j =1, ..., n}, where n is the total number of particles, does not constitute

a signed partition of unity in the sense of Duarte [13]. The gradient of ii(x) is evaluated as

VA = 3 VaN;@uj = 3, V;Vx W@ “
Jj= Jj=

Alternative expressions are frequent in the SPH literature (see, for example, References [14, 15])
to enforce conservation properties in the discrete equations, which are not assured by the
approximation scheme.

2.2. Moving least-squares-based shape functions

Other meshless interpolation schemes have been proposed. Although different in their formu-
lation, kernel-based approximants (Moving least squares, reproducing kernel particle method)
can be seen as corrected SPH methods, and in practice they are very similar.

Within this approach both standard moving least squares (MLS) [2] and moving least-squares
reproducing kernel (MLSRKPM) [12] shape functions are analysed. Let us consider a function
u(x) defined in a bounded, or unbounded, domain €. The basic idea of the MLS approach is
to approximate u(x), at a given point X, through a polynomial least-squares fitting of u(x) in
a neighbourhood of x as

w(X) A A(X) = Y. pi(X)% (2)|z=x = P (X)UZ)|z=x &)

i=1

where pT(x) is an m-dimensional polynomial basis and a(z)|,=x is a set of parameters to be
determined, such that they minimize the following error functional:

J((2)|z=x) = W(z =y, ) |i=x[u(y) — p" (V)o(2)|z=x]" dQx (6)

yeQy

being W(z —y, h)|,=x a symmetric kernel with compact support (denoted by ), frequently
chosen among the kernels used in standard SPH. As mentioned before, 4 is the smoothing
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length, which measures the size of €. The stationary conditions of J with respect to o lead
to

/ o pPYW(z -y, h)lz=xu(y) dQx = M(X)o(z)]z=x @)
yeil
where the moment matrix M(x) is
M(x) = f POy Wl () 4 ®)
yeix

In numerical computations, the global domain Q is discretized by a set of n particles. We
can then evaluate the integrals in (7) and (8) using those particles inside €y as quadrature
points (nodal integration) to obtain, after rearranging,

(z)|z=x = M~ (X)Po, Wy (X)ug, ®)

where the vector ug_ contains certain nodal parameters of those particles in ), the discrete
version of M is M(x) = PQXWV(X)PE2 , and matrices Po_and Wy (x) can be obtained as
X

Po, =(px1) p(x2) - p(Xny)) (10)

Wy (x) =diag{W;(x —x))V;}, i=1,...,nx 1D

Complete details can be found in Reference [12]. In the above equations, nyx denotes the total
number of particles within the neighbourhood of point x and V; and x; are, respectively, the
tributary volume (used as quadrature weight) and co-ordinates associated to particle i. Note that
the tributary volumes of neighbouring particles are included in matrix Wy, obtaining an MLS

version of the reproducing kernel particle method (the so-called MLSRKPM) [16]. Otherwise,
we can use W instead of Wy,

W(x) =diag{W;(x —x;)}, i=1,...,nx (12)

which corresponds to the classical MLS approximation (in the nodal integration of the functional
(6), the same quadrature weight is associated to all particles). Introducing (9) in (5) the
interpolation structure can be identified as

i(x) = p' M (®)Po Wy (x)ug, = N'(x)uq, (13)
And, therefore, the MLS shape functions can be written as
N'(x) = p" )M~ (x)Po, Wy (x) (14)

It is most frequent to use a scaled and locally defined polynomial basis, instead of the globally
defined p(y). Thus, if a function is to be evaluated at point X, the basis would be of the form
p((y —x)/h). The shape functions are, therefore, of the form

NT(x) = pT(OM ' (x)Po Wy (x) (15)

In the 2D examples shown in this work, a linear polynomial basis p((y —x)/h) = (1, (y1 —x1)/
h, (y2—x2)/h) was used, where (x1, x2) and (y, y2) are, respectively, the Cartesian co-ordinates
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of x and y. This basis provides linear completeness, i.e.

YNX=1, Y ViNix)=0 (16)
Jj=1 j=1
i X;N;j(x) =X, i X; ® VxN;(x) =1 (17)
j=1 j=1

2.3. The choice of kernel

A wide variety of kernel functions appear in the literature, most of them being spline or expo-
nential functions. We have not found a general criterion for an optimal choice. The following
cubic spline has been extensively used [14]:

1—%s2+%s3, s<1

o
Wi = Wix—x;, h) =5 12-97 1<s<2 (18)

0, s> 2
where s = ||x — Xxj||/h, v is the number of dimensions and o takes the value 2/3,10/7x

or 1/m in one, two or three dimensions, respectively. The coefficient o/ k" is a scale factor
necessary only if non-corrected SPH interpolation is being used, to assure the normality property
f WdV = 1. We do not use it in our MLS computations.

This approach corresponds to radial weights (i.e. the support of the kernel in two/three
dimensions is a circle/sphere with radius 24). However, 2D an 3D kernels can be constructed
as tensor-product weights, where the weighting function in higher dimensions is computed as
the product of one-dimensional kernels as

Wjx = xj. b = T] W)™ =, ) (19)
n=

where x” is the nth co-ordinate of particle x. In the above expression, we let W and A" (the
one-dimensional kernel function and its characteristic smoothing length) be different for each
dimension. If the same weighting scheme is employed in all dimensions, then the support is a
square/cube in 2D/3D.

3. CONTINUUM EQUATIONS

In finite deformation analysis two possible co-ordinate systems can be chosen to describe the
continuum under consideration [17, 18]:

e a certain reference configuration (usually an ‘initial configuration’). This is called a
Lagrangian or material description, and all relevant quantities are referred to a initial
problem domain, Q0

e the current continuum configuration. This is called a Eulerian or spatial description;
relevant quantities are referred to the current problem domain, Q.
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The former is most frequent in solid mechanics, whereas the latter is typical in fluid mechan-
ics. These two descriptions will lead, in general, to non-equivalent discretizations in particle
methods [19].

Let us assume that the behaviour of a continuum could be analysed as if it was governed
by the following equations:

(a) Continuity equation: Conservation of mass can be written in a material form as an
algebraic equation:

pJ = p’ (20)

where p® and p are, respectively, the initial and current densities and J is the de-
terminant of the deformation gradient, J = det(F), F = dx/dX. In the following, X,
x = x(X), Vx and Vy denote co-ordinates and gradient operators in the reference and
current configurations, respectively. Most SPH codes use a Eulerian rate form for mass
conservation

dp

— = —pdiv(v 21

ar pdiv(v) 1)
where d- /dt¢ denotes the material time derivative and div(v) is computed in the current
configuration in terms of the velocity gradient tensor 1 as [17]

_ov(x, 1)
= =

(b) Momentum equation: In a Lagrangian description, conservation of linear momentum can
be written as

div(v) =tr(l), 1 Vv (22)

dv
— =Vx-P+b 23
i x-P+ (23)
where b is the body force per unit volume and P is the first Piola—Kirchhoff stress
tensor. Its Eulerian counterpart is

& v etb (24)

—_ = -0

P ¥

where stresses are now related to the Cauchy stress tensor ¢, and p is the current
density. Note that, in fluid dynamics, the governing equations include a momentum
equation which can be written in an arbitrary Lagrangian—Eulerian (ALE) form as [20]

0

p(g +v*va) —Vi-64b (25)
where v* is the convective velocity. In finite element analysis, v* is defined as the
difference between the fluid velocity and the mesh velocity. Further details can be
found in the excellent book by Donea and Huerta [21] on finite element methods for
flow problems. SPH-like particle methods follow the movement of a set of particles,
so v* = 0 and the convective term in (25) vanishes. This is considered a Lagrangian
description of the movement. When we say that (24) is posed in Eulerian form we mean
that relevant quantities are referred to the current configuration, although the description
is Lagrangian in the aforementioned sense.
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(c) Angular momentum conservation: We consider neither mass distributions of polar mo-
menta nor magnetizable media.

(d) Energy equation: Conservation of energy may also be considered in processes involving
heat transfer or other related phenomena:

dUu .
PE=GZd—le((I)+PQ (26)

where U is the internal energy per unit mass, q the energy flux, Q the thermal source
(energy per unit time and mass) and d the deformation gradient tensor, defined as

d=1(Vyv+ Vv (27)

We confine our study to problems governed by Equations (20)—(24). The extension of
the methodology is straightforward.

4. DISCRETE EQUATIONS

4.1. Weighted residuals. Test and trial functions

The meshless discrete equations can be derived using a weighted residuals formulation. The
discrete counterpart of the Galerkin weak form is almost equivalent to that obtained from kernel
estimates [22] such as classical SPH formulations. Furthermore, such an equivalence indicates
that SPH can be studied in the context of Galerkin methods. The global weak (integral) form
of the spatial momentum equation can be written as

d
/p—v~5VdQ:—/G:5ldQ+/b~5de+/cn-5VdF (28)
o df Q Q r

being Q the problem domain, I' its boundary and n the outward unit normal to the boundary.
If ov and v are approximated by certain test and trial functions 6V and V,

s . ) o
/p—v-aedgz—/a:51d9+/b-5vd9+/cn-5vdr (29)
q dt Q Q r

The spatially discretized equations are obtained after introducing meshless test and trial functions
and their gradients in (29) as

ov(x) = i OViNF(x), Vov(x) = i ov; ® Vx N/ (x) (30)
i=1 i=1
Y=Y VN®, VIR =3V @ VN® 31)
j=1 j=1

to yield

n n d .
Sovi- 1Y / PNF XN (X)L dO + f GV N (x) dQ
i=1 j=1Ja dr Q

- / N*(x)bdQ — / Ni*(x)&ndl"} =0 (32)
Q I
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1482 L. CUETO-FELGUEROSO ET AL.

Thus, for each particle i the following identity must hold:
3 ,oNl.*(x)J\(,-(x)L dQ = — / 6V N (x) dQ + / N (x)bdQ + / NF(x)éndl  (33)
=1Ja dr Q Q r

In this paper we follow a Bubnov Galerkin approach and, therefore, NJ* = N;. The Lagrangian

counterpart of (33) (i.e. with quantities referred to the initial configuration Q" and Lagrangian
shape functions) can be written as

n dv: .
Y [ ONFON X)L 400 = — / PVXN*(X)dQ"
j=1Ja° dr Q°

+ / S NFXb do® + / ) N¥(X)PndI® (34)
Q r
where X denote particle co-ordinates in the reference configuration. For convenience, we can
write (33) in a compact form
Ma — Fint + FCXt (35)

where the mass matrix M = {m;;}, internal forces FI"' = {f"} and external forces F*' = {f*X!}
are respectively defined by

mij = / PN (X)N; (x) dQ (36)
Q
fin — / GV} (x) dQ (37)
Q
£ = /Q N (x)bdQ + /r NF(x)éndll (38)

A completely analogous expression could be derived for the Lagrangian version (34). The
internal forces will be related to the field variables through the nominal stress tensor, ¢ or P,
and the corresponding constitutive equations.

The MLS shape functions do not vanish on essential boundaries and, therefore, the boundary
integral in (38) can be decomposed as

/ N*(x)éndl = / N*(x)éndl, + / N (x)éndl, (39)
r r, r,

where I', and I, are, respectively, the parts of the boundary where essential and natural
boundary conditions are prescribed and I' = I',, U T,. This feature will be revisited later in
Section 5.3.2.

If expression (21) is used for mass conservation, its Galerkin weak form is equivalent to a
point collocation scheme and, thus, the continuity equation must be enforced at each particle i,

dp;

n
o= AV = —p; 1 v - V() (40)

j=1

where expression (31) for VV; has been used.
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4.2. Numerical integration

4.2.1. Introduction. The final step to obtain a set of discrete equations corresponds to the
numerical integration of the weak form. This is a most important issue in meshless methods
and is the source of well-known inaccuracies and instabilities [9,22-24]. Some aspects must
be considered when choosing (or designing) a numerical quadrature for particle methods.

e The method should provide reasonable accuracy.

e In Lagrangian hydrodynamics applications (at least), the numerical quadrature should retain
the meshless character of the method.

e It should be computationally efficient.

The matter of numerical integration concerns the nature itself of meshless methods, and
has received much attention in Galerkin-based meshless formulations such as the element-free
Galerkin (EFG) method [2]. However, numerical integration has not been explicitly studied in
SPH, probably because nodal integration lies in the basis of its early formulations and the
method was considered a collocation method. In the context of SPH, the use of alternative
numerical quadratures appeared implicitly within the concept of ‘stress-points’. More recently,
Belytschko et al. [22] have reinterpreted SPH as a nodally integrated Galerkin method. Fol-
lowing a similar approach, we believe that, in the context of Galerkin methods, the question
about SPH and numerical integration gains full sense, providing a clear framework to analyse
the use of the aforementioned ‘stress-points’.

4.2.2. Particle methods and continuum equations. There are important differences between
meshless methods and mesh-based methods such as the finite element method, concerning
numerical integration, when a global Galerkin weak form is defined over the entire problem
domain in a continuum mechanics problem:

e The complexity of the shape functions.
e The absence of a spatial framework to define the integration points and their corresponding
weights.

Moving least-squares shape functions and their derivatives are complex functions that, in
general, cannot be integrated exactly using numerical quadratures [24]. Moreover, the actual
integration domains in the globally defined Galerkin weak form correspond to the intersec-
tion between nodal supports. Given an arbitrary set of particles, the definition of quadrature
subdomains on the basis of support intersections may constitute a formidable task in dynamic
problems, requiring the generation of a complex integration mesh each time step.

However, the second difference is much more important and recalls the question about
the ‘nature’ of meshless methods. Mesh-based methods perform a partition of the domain
into certain non-overlapping ‘elements’, which are explicitly representative of a piece of the
domain. In domains undergoing very high deformations, these individual elements may suffer
from severe distortions, with a dramatic loss of accuracy in the computations. In turn, the mesh
of elements provides a natural spatial framework to integrate the globally defined Galerkin weak
form, which is split into assembled ‘elemental contributions’ (calculated element-by-element).
Moreover, the discrete equations are established in terms of equilibrium between ‘regions’
(elements) of the domain, which is consistent with the derivation of the continuum mechanics
model.
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1484 L. CUETO-FELGUEROSO ET AL.

Unlike elements, particles bear certain masses and volumes of which they are implicitly
representative (the volumes are concentrated at particles regardless of their actual shape). This
is a very powerful computational advantage of particle methods, but the spatial framework is
no longer preserved. The resulting discrete equations can be seen as force equilibrium between
interacting particles, which does not correspond to the fundamentals of continuum mechanics: in
this sense, the particle philosophy is not conceptually consistent with the continuum mechanics
model. This contradiction is partially eliminated by considering the particles as representative
of a certain region; note that, however, Cauchy’s fundamental axiom of continuum mechanics
establishes that the interactions between regions occur in the form of boundary force densities,
but not forces between centroids. Nevertheless, the spatial ‘uncertainty’ introduced by particles
suffices to turn the simple integration of the Galerkin weak form into a challenging numerical
problem.

In the following, we present a brief review of various integration techniques widely used by
researchers and some comments about our own experience in their practical implementation.
We must note that this question is far from being closed and is likely to produce fundamental
modifications in particle formulations.

4.2.3. Nodal integration. Nodal integration has been used, at least implicitly, in all SPH for-
mulations, and lies, indeed, in the basis of its early formulation. Obviously, this is the cheapest
option and the resulting scheme is truly meshless (no background mesh is needed). The particles
are used as quadrature points and the corresponding integration weights are their tributary vol-
umes. Recalling the weak form derived in the previous section, the discrete Eulerian momentum
equation can be written as

Ma = F'™ + F (1)
where
n
mij =Y PN (X)) Nj (Xk) Vi (42)
k=1
. n
£ =— " 61 VN (x¢) Vi (43)
k=1
n n R
£ =3 NF(xp)bi Vi + Y N (xk)6xnAg (44)
k=1 k=1

In the above, Vi represents the tributary volume associated to particle k. Usual techniques to
determine such volumes vary from simple domain partitions to Voronoi diagrams. In the most
frequent approach in SPH simulations, the particles are set up with certain initial densities,
volumes and, therefore, masses. These physical masses {My} remain constant during the sim-
ulation and densities are field variables updated using the continuity equation. Thus, particle
volumes are obtained each time step as Vi = My /p,. Note that, in our formulation, the real
or physical particle masses M) are different, in general, from the numerical masses m;; given
by (42), and derived in the Galerkin scheme.
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Figure 1. Background integration mesh.

To enforce natural boundary conditions, according to (44), we must first locate the boundary,
in fact an approximated boundary formed by certain particles, and then determine the boundary
weights Ay, associated to each boundary particle and necessary to compute (44).

Nodal integration is the origin of well-known instabilities in meshless methods. Beissel
and Belytschko [23], and Bonet and Kulasegaram [9], have analysed the performance of this
quadrature in the context of EFG and corrected SPH (CSPH) methods, and proposed modified
variational principles based on least-squares stabilizations, requiring second derivatives of the
shape functions. Chen and coworkers developed a stabilized conforming nodal integration [25],
based on a strain smoothing, which requires the Voronoi diagram of the cloud of particles, at
a high computational cost.

4.2.4. Background integration mesh. The most frequent approach in EFG and RKPM is the
definition of a background integration mesh, composed by non-overlapping cells covering the
whole domain, where high-order Gauss quadratures are defined (Figure 1) [26]. In general,
these cells do not match integration domains; however, the spatial framework required by the
Galerkin method is recovered (at the cost of the generation of an integration mesh). The mass
matrix and force vectors are obtained as

ninte

mij = k; PN (X)) Nj (Xp) Wk (45)
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Figure 2. Particles and stress points (double grid).
. ninte .
£ =— 3 V<N X)Wk (46)
k=1
ninte ninte® . B
fth = Z Ni*(Xk)kak + Z Nl-*(Xk)o‘kan ()]
k=1 k=1

where ninte is the number of integration points (in actual computations only a few points
would be considered, according to nodal supports), and #7 is the quadrature weight of point
k. The number of boundary integration points is ninte?, and % ,f is the boundary weight of
boundary particle k. This technique, which has been successfully applied to a wide variety of
problems in computational mechanics [26], is not appropriate for Lagrangian SPH simulations,
where the domain is continuously changing. Instead, a similar but somewhat relaxed scheme
has been used in the SPH literature: the so-called ‘stress-point’ approach.

4.2.5. Stress points. The concept of ‘stress points’ was introduced by Dyka e al. [27], as an
attempt to eliminate tensile instabilities [28] in SPH. The basic idea, which still remains in
the stress-point SPH literature, is to ‘calculate stresses away from the centroids (particles)’.
This is equivalent to ‘use a quadrature other than nodal integration’ in the Galerkin weak
form. Therefore, the discrete equations are completely analogous to (45)—(47), but now the
integration points are called stress points, which are moving integration points spread among
the cloud of particles, with no reference to any background mesh (Figure 2). Stress points
are set up in certain positions and their movement is completely determined by the movement
of the particles, as

n
Vi=Y viN(x), —=V; (48)
j=1
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where the superscript s was used in reference to the stress points. In this context, some authors
[22] refer to stress points and particles as ‘slave’ nodes and ‘master’ nodes, respectively.

In our implementation, and for consistency with the definition of the test functions, densi-
ties are computed at particles through the continuity equation and then interpolated at stress
points, as

pi= 2 ppNy) (49)
j=1

Note that in the above we assume p; = Iy j> that is, we use as density nodal parameters p; the
real nodal values p j» obtained from the continuity equation. We expect the errors introduced
by this assumption to be negligible, particularly in the case of nearly incompressible fluids.
Vignjevic et al. [29] have proposed a different implementation, where the continuity equation is
enforced at stress points. Considering the resulting discrete equations we can readily understand
that displacement, velocity and acceleration are tracked at particles, whereas other field variables
such as stress are required only at quadrature (stress) points [6,29].

With this technique, quadrature points move continuously in time: this allows the integration
‘mesh’ to adapt the moving domain, avoiding the rigid background mesh. We have the positions
of quadrature points but, which are their weights? The answer is that the two sets of points are
uncoupled. Initially, both represent the total computational domain and particles and integration
points are set up with masses, densities and volumes such that

n ns
Y V=V, X V=V (50)
ip=1 is=1

n ns

> Mipp=M, Y Mi=M (51)

ip=1 is=1

where M, V, n, ns are the initial mass and volume of the body under study, number of
particles and number of quadrature (stress) points, respectively. With time, both sets result in
two different computational domains and volumes: particles represent positions and movements
of the body, whereas the set of quadrature points constitutes the actual computational domain.
Obviously, this domain duplicity must be kept under control to preserve the accuracy of the
method.

Belytschko et al. [22] have proposed an alternative implementation, where both particles and
stress points are used as quadrature points (the stress points are, therefore, additional quadrature
points) (Figure 3). The internal forces, without boundary tractions, result

. n ns
£ = — 3 6ipVxN (Xip) Vi) — 3 61 VN (xis) Vi (52)
ip=1 is=1
The weights V}; and V} (different from ‘real’” volumes) are such that
n ns
> Vb Y Vi=V 53
ip=1 is=1

The determination of such weights is the most important drawback of this scheme for Eulerian
kernels. The Voronoi diagram of the cloud of particles and stress points must be computed
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PARTICLES

Ole

Figure 3. Particles, stress points and Voronoi cells.

at each time step, with an important computational cost. However, if Lagrangian kernels are
employed the diagram is computed only in the initial configuration, and the method results
quite efficient.

Finally, we would like to propose another implementation of stress points, which is in
some sense a 2D extension of the 1D algorithm by Dyka et al. [27], where an ‘element’ was
associated to each SPH particle and stresses computed using two integration (stress) points
inside each ‘element’. In a 2D version of this approach, certain region is associated to each
particle and several representative points within that region are used as quadrature points.
Unlike the ‘double grid approach’, stress points are now associated to particles and represent
certain portion of the nodal volume. We would also like to avoid the explicit determination of
such nodal associated volumes (computing the Voronoi diagram), so an assumed nodal region
is used instead. Stress points are defined in such regions (Figure 4), and given quadrature
weights V3, such that

=}

Si
Vi=V (54)

k=1

where ns; is the number of stress points associated to particle i, V;} is the weight of stress point
k associated to particle i and V; is the volume of particle i. We assume that the relation V5 /V;
remains constant throughout the simulation. Particles are usually set up in regular lattices, so
the set-up of stress points (the determination of initial assumed nodal associated regions) should
be easy. If stress points are moved with the same velocity as their associated particle, the shape
of the assumed nodal regions remains constant. This approach may not be adequate under high
distortions, so it is better to move the stress points using (48). With this implementation, the
movement of stress points provides certain measure of the distortion of the regions associated
to particles.
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Figure 4. Particles and associated stress points.

4.3. Mass lumping

As it is known in FEM analysis, it is not efficient to use the complete mass matrix in practical
applications, and lumped (diagonal) mass matrices are most frequently used. A simple lumping
technique corresponds to a row-sum mass matrix. Thus, the lumped mass .#; associated to
particle i is

M=y mij= | pNX)Nj(x)dQ= / pNix) [ X Ni(x) | dQ= / pN(x)dQ  (55)
j=1 j=1JQ Q j=1 o)

provided that trial functions are, at least, zeroth-order complete. The discrete counterpart of
(55), regardless the particular integration method
ninte
Mi =Y N X)Wk (56)
k=1

where ¥} is the weight of quadrature point k. Note that, if test functions are also zeroth-order
complete, this lumping verifies

n n ninte ninte n ninte
Son= 55 oo =L o (ENw0)wi= T pmi=m o)
i=1 i=1 k=1 k=1 i=1 k=1

where M is the total mass of the body. Note the importance of a correct choice of quadrature
weights and densities for the integration points in this scheme.
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However, (56) is not a common expression in the SPH literature. The most extended practice
corresponds to using the real particle masses as numerical lumped masses, as

Mi = M; (58)
verifying, obviously,

1

n
Mi=M (59)
=1

5. APPLICATIONS. FLUID DYNAMICS

5.1. Stress tensor

We assume a compressible Newtonian fluid and Eulerian kernels (derivatives and quantities
referred to the current configuration). Thus, the internal forces are related to the Cauchy stress
tensor, given by

6 =—pl+2ud (60)

where p is the pressure, u the viscosity and d’ the deviatoric part of the rate of deformation
tensor d, given by

d=d-fuo@l d=1(Vv+Vv) (61)

The discrete velocity gradient Vv(x) and rate of deformation tensor d are obtained as
n ~
Vv(x) = Zl Vi®VNj(x), d= %(Vf' +vih) (62)
]:

Thus, the velocity gradient at a given point x (in actual computations a particle or quadrature
point) is computed in terms of particle velocity parameters {v;}. The velocity divergence is
given by

V. 9(x) = tr(V(x)) = i vj- VN;(x) (63)

j=1

We use an equation of state of the form [30]

r=+{(2)
0

where typically y =7 and « is chosen such that the fluid is nearly incompressible.
In gravity flows the initial particle densities are adjusted to obtain the correct hydrostatic
pressure computed as (64) [30]:

_ L/y
pog (H z)) 65)

= 1
p Po<+ .

where H is the total depth and g = 9.81 m/s.
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5.2. Discrete equations

We can now write the complete spatially discretized set of equations. We assume a Bubnov—
Galerkin scheme, where both test and trial functions are chosen from the same space.

e Momentum equation:

dv; -
M d—t’ =" + £ (66)
where .#; is the lumped mass of particle i and fl.irlt and fl.eXt are, respectively, the internal

and external forces, given by
ninte

it = — 3" 6 VN () Wk 67)
k=1
. ninte ninte® R B
£ = 3 Ny xob Wi+ S Ni(x)omwE (68)
k=1 k=1

We prefer this general approach, where ninte is the total number of quadrature points,
regardless the particular integration technique chosen. Note that appropriate weights, %%
and ¥ kB , must be defined for interior and boundary quadrature points. The stress tensor
must be computed at each quadrature point

& = —pel + 2p.d; (69)

and (Al; is related to the velocity gradient tensor as expressed in (62).
o Continuity equation:

d,

G = PV =g X v VN ) (70)

j=

5.3. Consequences of the lack of interpolation property

5.3.1. Moving the particles. Recall the meshless approximation i(x) of a function u(x), com-
puted in terms of the shape functions as

a(x) = luij(X) (71)
]:

where n is the total number of particles and {u;} is a set of nodal parameters. In this context,
the interpolated velocity at a given point X can be obtained from neighbour particles as

¥ = VN 72)
j:

Note that, unlike finite element interpolants, standard SPH and moving least-squares shape
functions do not verify the interpolation property, i.e.

Nj(x;) # 0ij (73)
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Thus, in general,

Vi =V(x;) = _Zl ViN;j(x;) # Vi (74)
j=

and nodal parameters do not necessarily coincide with interpolated values. We suspect this
property has introduced some confusion in many SPH formulations where the fact is disregarded.
In order to derive a consistent algorithm, the discrete equations must be treated carefully, as they
are not as directly meaningful as those obtained with shape functions that bear the interpolation
property. The discrete momentum and continuity equations are written in terms of velocities,
velocity gradients and accelerations, which are computed using the nodal velocity parameters
{v;}, not the ‘real’ (interpolated) nodal velocities {V;}. However, before moving the particles,
we must compute such interpolated velocities

Q’(X,‘) = Z] Vij(Xi) (75)
j=

and use {V;} to move the particles according to

dx

i v (76)
We must note that moving the particles with {V;} is not a correction, but the correct scheme,

consistent with the meshless approximation method used. Many SPH practitioners have been

using a somewhat modified version of this approach. We refer to the so-called XSPH correction,

proposed by Monaghan [30]. To illustrate this point, let us consider MLS shape functions

{N;j(x)}. After computing the nodal parameters {v;}, we move particle i with the velocity

Vi= > V;Nj(xi) = ViN;(x;) + > V;Nj(x;) (77)
j=1 J#L

Even MLS shape functions with constant basis form a partition of unity and, therefore, the
above expression can be written as

Vi =vV; (1— ZNj(Xi))'f‘ZVij(Xi) (78)
J# JF
which can be rearranged, to yield
Vi=vi+ ) (v;i = V)N (x) =vi + > (v; — Vi) Nj(x;) (79)
J#i j=1

Now consider standard SPH shape functions, given by N;(x) = (m; /P )W (x). The above
derivation is not correct for such functions, since they do not form a partition of unity,

n

Y Howix) £ 1 (80)

j=1Pj
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Let us write N;(x) as
mi m;j
Nix) = —Wi(x) =1—-a ) — W(x) 81
Pi j#i Pj
where o is a certain parameter which may depend on the nodal arrangement, kernel function,
etc. Introducing this expression in (77) and rearranging

n

. m;j m;j
Vi= Vit o Y 5 (v = VW) + (L= o) Y =5 v W (xi) (82)
j=1Pj j#i Pj
Using a simplified version of (82) we can write
A tom;
Bi=vicbe X ) = oW (6) (83)
j=1Fj

where ¢ is another (unknown) parameter. This expression is completely analogous to the XSPH
correction, defined as [30]

N tomj
Vi=vite) — (v; —v)W(x) (84)
j=1Pij
where p;; = 0.5(p; +p;). We believe this ‘correction’ is indeed a heuristic version of the con-
sistent form (75). In the XSPH correction, the continuity equation is solved using the corrected
velocities given by (84). Note that this procedure is not consistent with our formulation, since
the continuity equation is posed in terms of {v;}.

In practice, nodal velocity parameters are used to solve the discrete equations and interpolated
nodal velocities are used to move the particles. We would like to emphasize that this approach
is neither a smoothing nor a correction of the velocities, but the procedure consistent with an
approximation scheme which does not bear the interpolation property. Note that the continuity
equation is posed in terms of ‘real’ densities and, therefore, the so obtained densities can be
introduced directly in the equation of state to compute pressures.

5.3.2. Enforcement of the essential boundary conditions. The imposition of boundary conditions
is a most important and problematic issue in SPH, since they cannot be enforced as directly
as in finite elements. Natural boundary conditions are included in the weak form through the
boundary traction term. The most important difficulty at this point ‘reduces’ to the determination
of the boundary particles and their weights. In this study, boundary tractions correspond to free
surface boundaries and thus, the natural boundary integrals vanish (surface tension is neglected).
Unfortunately, the test functions do not vanish on essential boundaries, and a term including
tractions on essential boundaries remains in the problem weak form. The external forces in the
momentum equation of a fluid particle i are, thus:

£t = / N (x)bdQ + / N (x)éndl, (85)
Q T,

The discrete external forces, in the case of nodal integration, result
n
fieXt = Z Nl-*(Xj)ijj + Z Nl-*(xj)&jnAj (86)
j:l je@
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where # is the set of particles from the fluid located on the essential boundaries (located
‘sufficiently’ close to the boundary). Note that the second sum in (86) involves those neighbours
of particle i belonging to 4.

In addition, given that the MLS shape functions do not bear the interpolation property,
velocities cannot be imposed directly. In the SPH literature, essential boundary conditions have
been rather treated as fluid—structure contact and specific techniques such as mirror particles
and boundary forces have been extensively used [14]. In the classical boundary force approach,
certain forces are applied to those particles that approach the boundary (those particles in £).
The contact with solid boundaries is detected by checking the distance between fluid particles
and certain boundary particles, which are fixed at the solid boundary and are not included
in the general computations. Consider, for instance, a fluid particle i € 4. The external force
vector for particle i:

n .
fX = 3 NF(x;)b;V; + Y Nf(x;)énA; + Y F! (87)
j=I1 JER jes

where & is the set of solid boundary particles and & l] is the boundary force exerted by
boundary particle j on i (which may depend on the distance between i and j, their relative
velocity, etc.). In most SPH formulations the second term on the right-hand side of (87)
(tractions on essential boundaries) is simply dropped, to yield

n .
£ =3 N'(xpb;Vi+ > 7] (88)
j=l1 jes

whereas for interior particles (i ¢ %),
n
fieXt = Zl N,‘*(Xj)ijj (89)
J=

This technique is reformulated here by means of a penalization technique similar to that
used in implicit meshless formulations [9]. Thus, the essential boundary conditions are enforced
using a penalty boundary potential I1°p given by

mr — g ¥ — vB)2dr, (90)

Ly
where 7 is a high penalty value and v® is the prescribed velocity at boundary I',. The first
variation of (90) is
SIIPP =5 | ov- (v —vB)dl, 91)
FM

and this expression should be added to the Galerkin weak form (28). Using nodal integration,

the following expression is obtained for the force f? P over particle i due to the boundary
potential (90):

(7 =0 Y 3 — VNI (x)A; 92)
JEB

Copyright © 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 60:1475-1512



GALERKIN FORMULATION 1495

The expression
Fi=n(¥; —vHA; (93)

can be interpreted as a force due to the fact that j is close to the boundary (i.e. that j € ),
and (92) rewritten as

®— Y FNFx)) (94)
JjEA

The above expression suggests a new implementation of the boundary force approach for solid
boundaries. Thus, the ‘forces’ #; are computed in a fashion similar to that exposed above for
the classical boundary force scheme, as

Fi=Y F} (95)

= T (AVji, Axjp) (96)
being Avj, = V; — V,]? and Axj; = X; — X¢, where Vf is the velocity prescribed at boundary

particle k. The particular expression for Z* used in this study will be presented in Section 6.
Using (94) and (95), the external force vector, for a given particle i, is

£ = Z N (xj)b;V; + > N (x;)6;nA; + > N (x;)F;

j=1 JEB JEB
Z xj)b;Vi + > (F; +6;nA;)N{(x)) o7
: jeﬁ

Note that, following this approach, boundary forces are not only ‘felt’ by those particles located
immediately close to the boundary, but also by their neighbours. Furthermore, note that the term
corresponding to the integral over essential boundaries has been incorporated in the formulation.
Given that the penalty forces & ; are much greater than the terms 6,nA; we can assume that

£ = Z Ni(xjpb;Vi+ Y F;Nj(x;)) (98)
JERB

5.3.3. Initialization of the field variables. Finally, special attention must be paid to the initial-
ization of the field variables, in particular the initial velocity field, known in terms of nodal

velocities {0?}. Once more, in our computations we need the nodal velocity parameters {V?},
such that

i i Nj(xi) (99)

and a linear system of equations should be solved for {v®}. Fortunately, the linear completeness
of the MLS shape functions chosen simplifies certain initial conditions. Consider, for instance,
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a constant initial velocity field, VO(X) = vY. Then, we can choose V? =v v j=1,...,n
because
n n
Vo (x) = 'Zl VIN;(xi) =v° -21 N;(x) = v’ (100)
j= j=

Similarly, given a linear field v (x) = Cx, where C is a constant 2 x 2 matrix,

Cx;Nj(x;)) =C)_ x;Nj(x) =Cx (101)
1 j=l1

V) =

n
J:
Therefore, v? =Cx;, Vj=1,...,n. The above is true provided that linearly complete shape
functions are used. However, even with standard SPH shape functions (which lack zeroth-order
completeness), it is a common practice to take V? = \73. We suspect that, indeed, most SPH
formulations assume that v; = ¥; throughout the computations. This practice, as we would like
to demonstrate in this paper, is not correct and causes important errors in the computations.

5.4. Alternative discrete equations

It is frequent in the SPH literature to calculate the velocity gradient as

n

Vv, = Z (v;j —vi) ® VN;(x;) (102)

Jj=1
With linearly complete MLS trial functions

n

SV -V @ VN = SV @ VN) —vi ® 3 VN (x) = 3 v, ® VA (x;)  (103)
j=1

Jj=1 Jj=1 Jj=1

and (102) is equivalent to (31) (except for round-off errors). Even though in the case of
constant velocity fields (102) may eliminate such round-off errors [11], we have not found
significant advantages in general problems. If standard SPH interpolation is used, (103) is not
true, and both formulations are not equivalent. This symmetrization has been widely used to
assure correct velocity gradients for constant velocity fields. However, according to our analysis,
this corresponds to a different election of the trial functions, which should be considered, for
consistency, wherever trial functions may appear in the formulation.

A similar reasoning could be applied to the case of the internal forces. An expression widely
used in the SPH literature is (in the case of nodal integration):

int __
" =—

(6% £ 6;)V N/ (xi) Vi (104)

n
k=1

most frequently
. n
£ = — > (@1 +6:) VN (x0) Vi (105)
k=1

Standard SPH test functions verify VN (xx) Vi = —VN/(x;)V; and, therefore, the use of (105)
assures local conservation of linear momentum. Angular momentum will be also preserved in
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the absence of shear stresses [8]. Note that, in general, using MLS approximation

=

VN (xi) # 0 (106)
k=1

and
VN (xx)Vk # —VN;(x)V; (107)

Therefore, (105) is neither skew-symmetric nor consistent with our definition of the test func-
tions (30) and, consequently, we do not use this expression for internal forces.

5.5. Time integration

We use explicit time integration to update the field variables. One of the most widely used
algorithms is the leap-frog scheme, involving the following sequence of updates:

e Compute velocities at step k + %:

vit2 = V2 L 0.s(Ark + Akt al (108)

1

e Update densities and positions:

X = xk AR (110)

1
In the above expressions, aff = dvf‘< /dt is the acceleration nodal parameter of particle i (com-

puted using the momentum equation with variables at step k) and D;(vKt1/2) is the density
2 With 9; we

rate dp;/dr computed with positions at step k and intermediate velocities v;
denote the interpolated nodal velocities, computed as (72).
We have also used the following second-order predictor—corrector scheme, as exposed in

Reference [14]. The sequence of updates to obtain the field variables at step k + 1 is

e Predictions: At
v}’:vf.‘+7a,.k (111)
At
pi =i+ D&V (112)
At
x}’:xf.wr?oik (113)
o Corrections: c « A b p o p
Vi :Vi+73i (va 1X) (114)
At
oS =pk+ 5 DY) (115)
At ,
X?:xf‘—}-?vic (116)
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e Finally, the variables at step k + 1 result

Vit = oyE vk (117)
pit =2pF — pf (118)
xF1=0oxC — xk (119)

where the superscripts P and C have been used in reference to the prediction and correction
phase, respectively. In practice, we take a* ~ a?*—1 with a lower cost without changing the
order of the method [14]. In both schemes the time step is limited by the Courant—Friedrichs—
Lewy (CFL) stability condition. Following Bonet and Lok [8],

hmin
At = Cp ——— 20 (120)
max(c; + [|vill)

where Cgp is the Courant number (0 < Cpp < 1) and ¢; is the wave celerity at point i,

ci = /7/p; (121)

being y and x the same material properties as in (64).

6. IMPLEMENTATION

In this section, we present a schematic flow chart and several remarks about the practical
implementation of the methodology exposed above.

Searching for particle neighbours is a key issue in SPH and it is very important to choose
an appropriately efficient algorithm. In this work we use a classical cell-partition algorithm,
similar to that exposed in Reference [14].

In the examples shown below constant smoothing length is used throughout the computations;
a value of h = 1.5d, where d is the typical initial distance between particles, seems to be
adequate, although we have not found a rigorous criterion for the choice of h. Future versions
of the code should allow variable smoothing lengths, but much care must be taken to the
consequences of such modification, in order to retain the consistency of the formulation.

The construction of MLS shape functions with linear basis requires the inversion of the
moment matrix in (13). This matrix will be singular if there is not enough neighbours or they
are aligned (in 2D). So, eventually, the computation of linear MLS shape functions at certain
particles may be impossible. In such cases, we use MLS shape functions with constant basis
(Shepard functions), which can always be constructed. A similar variable-rank procedure is
used in Reference [11]. Note that, even with enough neigbours available, the moment matrix
can become highly ill-conditioned and, in that case, the algorithm may become unstable. This
latter effect can be alleviated by using adaptable time stepping. In practice, we compute for
each particle the determinant or the condition number of the moment matrix and, if it is lower
than a certain tolerance, we use constant basis. We have not explored the errors introduced by
this implementation, but, given that the number of particles involved (if any) is very small, the
effects are expected to be negligible.
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6.1. Main algorithm

Let us consider the leap-frog time-integration scheme. The outline of the main steps is as
follows:

e Initialize geometry, cell connectivity and field variables: u, k,v, V, p, M, p, c, etc.
e At each time step:

I. Find neighbours.
II. Compute shape functions and their derivatives at quadrature points, according
to (14).
III. Compute stresses at quadrature points, according to (69) and (62).
IV. Compute internal and external forces, according to (67) and (68). Compute nodal
acceleration parameters, a.
V. Update nodal velocity parameters, as v* = v~1/2 + aAr.
VI. Compute boundary forces, fP.
VII. Update nodal velocity parameters, as v'/> = v* 4 fPAr.
VIII. Compute density rates, according to (70).
IX. Compute the interpolated nodal velocities v, used to move the particles, as (72).
X. Update positions and other field variables.

e End loop.

6.2. Boundary conditions

Throughout the examples shown in this paper, the essential boundary conditions were enforced
using the boundary force approach exposed above. Solid boundaries are formed by particles
fixed at the boundary, separated one-third of the initial distance between domain particles. At
each time step the boundary forces are computed as follows:

e Initialize boundary forces fl.b =0, Vi=1,...,n.

e Determine the set 4 of particles located ‘sufficiently close’ to the boundary. In practice,
particle j belongs to 4 if, and only if, there exists a boundary particle k such that the
distance between j and k is less than a certain specified value rp; in this paper the value
ro = 0.7h was used. The set of boundary particles k associated in the aforementioned
sense to particle j is denoted by &;.

e For each particle j € 4:

e For each particle k € &;:

e Compute the boundary force 37;‘ exerted by boundary particle kK on j. In the
examples shown below, zero normal velocities were imposed. The expression used
for boundary forces:

T = filAvi) fr(Axp) (122)

where Avj; and Axj; are defined as in (96) and

I, Avjr-m <0

fi(Avjp) = (123)
0, Avjr-m =0
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fdx =" ((’—0)4 - (’r—o)z) n (124)

r

where r = [|AX i || = [IX; — x|, ng is the unit normal to the boundary associated
to boundary particle k and A is a certain constant. Note that (124) is a modified
version of the Lennard-Jones forces [30] (modified in the sense that we consider
normal and not radial forces).
e Add & }‘N ¥(x;) to the boundary force f}’ applied to each neighbour i of particle j.
e End loop.
e End loop.

Although the proposed implementation fairly outperforms our previous work with classical
boundary force approaches in the case of simple non-penetrating boundaries [16,31-33], we
must note that the correct enforcement of more general boundary conditions is still an open
problem in SPH.

7. EXAMPLES

In this section several fluid flow simulations are presented. In all the examples shown, nodal
integration and the leap-frog time integration have been used, in order to demonstrate that good
results can be obtained even with the simplest implementation. The proposed methodology to
enforce non-penetrating boundaries was employed with A = 10 in all cases except example
7.5, where a lower value of A =4 was used.

7.1. Breaking dam problems

The first example corresponds to a classical breaking dam simulation, with fluid (initially
confined between two walls) descending a ramp of slope 0.5 (Figure 5). The total number of
particles involved in the simulation is 2500, representing a square water column of side 0.1 m.
Particles are set up with densities computed according to (65) and p, = 1000 kg/m?. The fluid

01 m
=
£
!
0.1m 1
0.5
E
=

Figure 5. Breaking dam flow: scheme of the initial configuration.
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viscosity is u = 0.5kg/m/s. This a slow flow and, therefore, the use of the ‘real’ water bulk
modulus would lead to very long computations, due to the CFL stability condition. Instead, an
artificial bulk modulus is usually employed, computed as [8, 14, 30]:

100p(2gH)
K= ————
v
where H is the height of the dam. Unfortunately, in long simulations this artificial (artificially
low) bulk modulus results in an excessively compressible flow, demonstrating the convenience

of the development of a fully incompressible algorithm. The evolution of the simulation is
shown in Figure 6 and the particle distribution at + = 0.152 s is detailed in Figure 7.

(125)

7.2. Solitary waves

The propagation of long gravity waves has been widely studied in the last years, given its
great interest in hydraulic and coastal engineering. Tsunamis are examples of such waves and
shallow water models are often used to perform numerical simulations. No consideration of the
vertical dimension is a simplification that reduces the complexity of the problem under study,
but that is no longer valid in certain situations [34]. A scheme of the initial configuration of the
example presented in this section is shown in Figure 8. The tank contains water at rest in two
different levels, and the bore evolves rapidly after the beginning of the simulation (Figure 9).
The density of water is py = 1000 kg/m? and the viscosity employed is again u = 0.5kg/m/s.
The fluid was modelled using 3980 particles.

7.3. Gravity currents

A gravity current is the flow of a fluid into another fluid of different density [35]. In this
example (Figures 10 and 11), we consider a tank with fluid of density p(l) = 1000 kg/m>
(left) separated by a lock gate from another fluid of density p(z) = 1500 kg/m> (right). The
lock is rapidly (‘instantaneously’) removed and fluid 2 flows under fluid 1. An experimental
measurement of the velocity of the head of the current was proposed by Rottman and Simpson
(1983, cited by Monaghan et al. [35]):

Ap 1/2
vy ~ 0.4 (gD —) (126)
Po
where D is the depth of the tank. In this example, D = 0.06m, g = 9.81 m/s?, Po =
1000kg/m> and Ap = 500kg/m3. Thus, (126) predicts a head velocity of v, = 0.217m/s. In
our numerical experiments we have obtained v, ~ 0.2m/s, which is in good agreement with
the experimental value. The simulation involved 5100 particles.

7.4. Impacts

In the first example, a circular drop of water falls vertically at 2 m/s on a mass of water
initially at rest (Figures 12 and 13). This example demonstrates the exceptional performance of
the method in the absence of boundary distortions (Figure 14). The fluid density and viscosity
are py = 1000 kg/m3 and u = 0.5kg/m/s, respectively. The total number of particles is 5539.

An example of fluid—structure interaction is shown in Figures 15-17. The total number of
fluid particles is 4470.

Copyright © 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 60:1475-1512
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Figure 6. Breaking dam flow: simulation at various stages.

7.5. Mould filling

If previous examples showed the good performance away from the boundaries, the following
demonstrates that the formulation proposed is particularly sensitive to the correct (better, to the
incorrect) enforcement of boundary conditions, which is still a challenging and open problem.

The simulation corresponds to the filling of a circular mould with core (Figure 18). The
velocity of the jet at the gate is 18m/s and the viscosity is u = 0.01kg/m/s. The bulk modulus
x was chosen such that the wave celerity is 1000m/s and the total number of particles is 14 314.
Several instants of the simulation are shown in Figure 19, with times referred to the impact
between the jet and the core. The overall shape of the two jets passing the core looks quite

Copyright © 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 60:1475-1512



GALERKIN FORMULATION 1503

002

Figure 7. Breaking dam flow: simulation at ¢ = 0.152s with g = 0.5.

0.06

0.03 m

0.0

0.06rm ' 0.18m

Figure 8. Bore: scheme of the initial configuration.

satisfactory and agree with previous results [36]. In spite of using the consistent formulation of
boundary forces, we have found excessive distortion near the boundaries, compared with the
flow away from their influence (see Figure 20). This effect could be caused by the ‘particle
based’ boundary approach. We expect to develop better algorithms in the future. Figure 21 shows
a comparison between the solution computed and the experiments carried out by Schmid and
Klein [37].

8. CONCLUSION AND FUTURE DEVELOPMENTS

In this paper, we explored the application of a Galerkin based SPH formulation to the simulation
of viscous free surface flows. This approach provides a clear framework to interpret various
techniques traditionally used by SPH practitioners such as ‘stress-points’, boundary forces,
special gradient computations, etc.

The start point of our research included an overwhelming amount of questions about the
nature and application of meshless methods. And now we feel immensely happy to leave them
perfectly unresolved. Much work is still to be done until a complete knowledge of meshless
methods could take out their whole power. The set of unresolved questions include: development

Copyright © 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 60:1475-1512
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Figure 9. Bore: simulation at various stages.
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Figure 10. Horizontal gravity current: scheme of the initial configuration.
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Figure 11. Horizontal gravity current: simulation at various stages.
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Figure 13. Fluid—fluid impact:
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Figure 16. Fluid—structure impact: simulation at r = 0.051 s.
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Figure 17. Fluid—structure impact: simulation at various stages (detail).

of an efficient fully incompressible algorithm, adequate enforcement of boundary conditions,
error estimations, efficient algorithms with variable smoothing length, numerical integration of
the weak form, development of efficient local formulations, etc.

The results obtained so far are not less encouraging in view of all these ‘questions’ for we
keep a ‘logical’ hope as, if Wittgenstein was right, if a question can at least be formulated,
then it can be answered.
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Figure 18. Mould filling: dimensions of the mould.
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Figure 19. Mould filling: simulation at various stages.
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