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Abstract
In optical coherence tomography (OCT), there is a trade-off between the scanning time and image quality, leading to a
scarcity of high quality data. OCT platforms provide different scanning presets, producing visually distinct images, limiting
their compatibility. In this work, a fully automatic methodology for the unpaired visual conversion of the two most prevalent
scanning presets is proposed. Using contrastive unpaired translation generative adversarial architectures, low quality images
acquired with the faster Macular Cube preset can be converted to the visual style of high visibility Seven Lines scans and
vice-versa. This modifies the visual appearance of the OCT images generated by each preset while preserving natural tissue
structure. The quality of original and synthetic generated images was compared using BRISQUE. The synthetic generated
images achieved very similar scores to original images of their target preset. The generative models were validated in
automatic and expert separability tests. These models demonstrated they were able to replicate the genuine look of the
original images. This methodology has the potential to create multi-preset datasets with which to train robust computer-aided
diagnosis systems by exposing them to the visual features of different presets they may encounter in real clinical scenarios
without having to obtain additional data.

Keywords Optical coherence tomography · Generative adversarial network · Style transfer · Synthetic images

1 Introduction

Optical coherence tomography (OCT) is a non-invasive
medical imaging technique that can generate cross-
sectional, 3-dimensional images of ocular tissue at a
micrometre resolution [1]. Thanks to the advances in signal
processing, optics and electronics, the quality and resolution
of the images obtained through OCT have steadily improved
through the years, leading to its widespread use as a
diagnostic tool [2], with around 30 million OCT scanning
procedures being performed every year worldwide [3]. For
reference, OCT imaging has been used to study relevant
ocular pathologies such as diabetic macular edema, the most
common cause of blindness in patients of diabetes mellitus
[4–6]; glaucoma, the leading cause of irreversible blindness
worldwide [7–9] and age-related macular degeneration,
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the leading cause of blindness in people over 50 in the
developed world [10–12]; as well as to study the vascular
structure of the eye [13–16].

In an OCT scanning session, a low coherence optical
beam is swept through the retina of the patient, generating
two-dimensional images or B-scans. Due to the forward and
backward scattering of light waves, these B-scans present
speckle noise, the main quality affecting factor in the OCT
images [17]. OCT scanners can be configured to combine
and average several B-scans over the same location, leading
to a reduction in noise and an overall increase in tissue
visibility and quality of details. Nonetheless, this method
requires that the tissue does not move throughout the
scanning process, to be able to average readings taken at the
same point. This requirement limits the overall amount of
scans that can be performed in a session due to involuntary
eye movements. This translates into a constraint between the
total surface of tissue that can be analysed in a given time
and the quality of the obtained tomograms.

OCT scanner platforms typically provide a series of
configuration presets. This way, the specialists can choose
which type of scan to be performed according to whether
they need to sacrifice quality in order to be able to scan
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a broader surface of tissue, or whether they can afford
the extra time required to perform a higher quality scan.
While many presets exist, with different sweeping patterns
such as radial or annular scanning, the two most widely
used by expert clinicians in medical services are volume
scan patterns. The first one scans a square-shaped section
of the eye fundus, averaging a small amount of B-scans
per final tomogram or image slice. This results in a great
number of slices over a wide patch of the retina presenting
speckle noise. This scanning preset is known as Fast Scan
in Heidelberg SPECTRALIS� platforms or Macular Cube
in Carl Zeiss CIRRUS-HD� models, the two most common
OCT imaging platforms in clinical settings, and will be
referred to as Macular Cube in this manuscript. The second
one, known as Seven Lines in SPECTRALIS� platforms or
Five Line in CIRRUS-HD�, is a more intensive scan. In
this configuration, a thinner band of the retina is scanned
averaging many B-scans per slice. While this scan produces
only a few slices over a narrow strip of tissue, these provide
much higher visibility, texture detail and image resolution,
resulting in images that are much clearer and easier to
analyse than the aforementioned preset. We will henceforth
refer to this type of scanning preset as Seven Lines. An
example of the sweeping pattern and a resulting slice for
each of these two most representative scanning presets is
presented in Fig. 1.

While these presets are the two most prevalent in
medical services, this trade-off between scanning time and
image quality affects any other configuration, constituting
a common paradigm in OCT imaging. Consequently, this
leads to a forced choice between the quality of the produced
images and the amount of tissue that can be analysed,
which therefore results in a shortage of high quality OCT
images. Furthermore, the images that are produced by using
different presets present visual differences that complicate
the development of automatic computer-aided diagnosis
(CAD) systems.

Recent years have seen an advancement both in
medical imaging techniques as well as in computational
architectures and algorithms, leading to the development of
new and improved CAD systems based on deep learning
[18, 19]. These systems can aid in the detection of several
relevant pathologies while achieving equal or better results
than board-certified specialists [20–23]. Nonetheless, the
development of CAD systems based on machine learning
requires well-curated data for training. The images in the
training datasets should cover all the possible variabilities
in imaging platforms, acquisition conditions, presets and
configurations that are present in the clinical setting that
the system is intended to work in, so that it can perform its
diagnosis functions adequately under such conditions. The
labour and economical costs associated with the acquisition

Fig. 1 Representative examples of OCT images taken from the same
location using the two most common scanning presets. a OCT image
acquired with the Macular Cube preset showing considerable speckle

noise. b OCT image from the Seven Lines preset displaying lower
speckle noise and increased tissue visibility
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of these images, combined with their sensitive nature, lead
to an aggravation of the problem of data scarcity, which
affects all the domains of application of deep learning [24]
and is, therefore, especially prevalent in medical imaging
[20].

Given the relevance of this issue, some works have
addressed the problem of improving the quality of OCT
scans to facilitate the visual inspection of the images
and their clinical diagnosis. In 2004, Adler et al. [25]
first proposed the use of wavelet filters to reduce the
speckle noise in the OCT images. Similarly, other authors
continued to improve the image denoising by applying
different statistical models such as Bayesian inference
[26, 27], non-local means [28] or Huber total variation
regularisation [29]. Other approaches expanded upon the
wavelet filtering method by applying 3-D block matching
techniques [30] or dictionary learning [31]. More recently,
some works have approached this task by using deep
learning. Apostolopoulos et al. [32] presented a study where
they employ an artificial neural network to increase the
contrast and reduce the noise in OCT images. Similarly,
in the work of Xu et al. [33], a non-linear mapping
convolutional neural network is used to perceptually
enhance the images resulting in a reduction of the speckle
noise. In the work of Seeböck et al. [34], the authors
use a generative adversarial network (GAN) to reduce
the variability between OCT images acquired with two
devices, demonstrating performance gains when using the
transformed images for the segmentation of retinal fluid.
Lastly, the approach proposed by Huang et al. [35] uses
a GAN to both remove the speckle noise that is present
in the images and increase the image resolution. These
works offer promising results concerning the speckle
noise reduction, the perceptual quality enhancement or
the increase of resolution of the OCT images, concerning
visual inspection. Nevertheless, none of them has addressed
the visual differences that exist between images acquired
with different scanning presets and their relation to the
problem of data scarcity for machine learning-based OCT
CAD systems. This leaves the problem of training CAD
systems with different presets to be addressed, because
while speckle noise can be considered the main quality-
affecting factor for OCT images, it is not the only visual
difference between images acquired with multiple presets.

To mitigate this problem, this work presents a fully auto-
matic methodology for the mutual unpaired conversion of
OCT images that were acquired with different scanning
presets. To do this, contrastive unpaired translation archi-
tectures are employed for the target conversion. The first
approach presented in this work consists of training a model
to translate the more numerous images acquired with a low-
quality extensive scanning preset such as Macular Cube
into the style of the higher visibility Seven Lines preset to

help mitigate the issue of high quality data scarcity in OCT
datasets. A second, complementary approach was designed
with the intention of performing the opposite translation,
transferring the visual features of images obtained with the
Macular Cube preset to original Seven Lines images. The
images generated by these two approaches are assessed
based on their quality in a complete methodology aimed
at determining the optimal point at which the generative
models are able to confer the intended visual features of
the target preset. This methodology can not only increase
the total available number of images by means of over-
sampling, helping to mitigate the problem of data scarcity
that is so prevalent in medical imaging, but it also has the
potential to create multi-preset datasets that can be used
to train CAD systems in a robust, variability tolerant man-
ner. While this methodology is exemplified through the
use of these two most common scanning presets in this
work, it is also extensible to any other scanning preset or
OCT imaging device as they are all affected by this com-
promise between scanned area in a given time and image
quality. This way, deep learning models can be trained with
the visual features of the various presets and acquisition
conditions that it may encounter in its use in a clinical envi-
ronment without the need to procure the otherwise scarce
original images acquired with such presets. Preliminary
results of this strategy were obtained in [36], demonstrating
that this conversion approach can be suitable to address this
problem of data scarcity.

2Methods

In this section, the materials and resources that were
used for the implementation of this work are covered,
along with a description of the OCT image translation
methodology. Specifically, the reader can find information
on the dataset that was used (Section 2.1), the software and
hardware resources (Section 2.2), a description of the image
translation methodology (Section 2.3) and an explanation
of the experiments conducted to validate the synthetic
generated images (Section 2.4).

2.1 Dataset

Regarding the dataset, a total of 1034 OCT images, acquired
using a Heidelberg SPECTRALIS� platform, were used.
These images were obtained from 56 different patients
participating in a study of diabetic macular edema in
accordance with the Declaration of Helsinki, approved
by the local Ethics Committee of Investigation from A
Coruña/Ferrol (2014/437) the 24th of November, 2014.
OCT image resolutions ranged from 511×495 to 1535×495
pixels. In total, 517 of the images were obtained using the
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Fast, or Macular Cube preset. In this preset, the scanner
sweeps a 20◦ × 20◦ patch of the eye fundus, averaging 9
B-scans to form every tomogram, obtaining 25 slices per
scan. The remaining 517 slices were acquired with the Seven
Lines preset. This preset involves scanning a longer and
thinner, 30◦×5◦ eye fundus strip and using the average of 25
B-scans for each of the 7 produced tomograms per session.
A representative example of the OCT images produced by
these presets can be found in Fig. 1.

2.2 Software and hardware resources

In this work, the PyTorch [37] machine learning library
(version 1.7.1) under Python (version 3.7.7) for convolu-
tional neural network training and validation was employed.
OpenCV [38] (version 3.4.8) and NumPy (version 1.15.0)
were used for all image manipulation and processing
requirements. Regarding the hardware, the training and val-
idation process of the models was performed on a computer
consisting of an NVIDIA GeForce GTX TITAN X GPU, an
Intel Xeon E5-2640 CPU and 64 GB of RAM.

2.3 Methodology

To perform the conversion between OCT images, the
process was modeled as a “style transfer” approach, in
which a neural network attempts to confer the visual
features of a target class to an original image while
preserving the original structure. In particular, a contrastive
unpaired translation generative adversarial network (CUT-
GAN) [39] architecture was used for this purpose.

The typical GAN training method involves the use of
a generative network G and an additional discriminative
network D whose task is to determine if images belong
to the target class from the training set y ∈ Y or were
synthesised by the generative network ŷ = G(x), while the
generative network trains to maximise the probability that
D makes a mistake [40]. This way, the training procedure
pushes the generator G to synthesise images that resemble
the target class from the training set, by using an adversarial
loss:

LGAN(X, Y ) = Ey∼Y log D (y)+Ex∼X log (1 − D (G (x)))

(1)

A CUT-GAN architecture is intended for the unpaired
translation of images from one domain to another. As
such, the generative network G consists of an encoder
Genc and a decoder part Gdec, and its task is to transfer
the characterising features of the target domain to original
images x ∈ X without modifying that which is common
to both domains. This is achieved by adding a patchwise
noise contrastive estimation loss [41] that takes advantage

of the ability of the encoder part of the generative network to
capture domain-invariant features such as the location of the
inner limiting membrane and the choroid, as well as that of
the decoder part, which has the means to synthesise domain-
specific features like tissue texture as well as speckle noise,
or lack thereof.

To calculate this contrastive loss, a set of features is
extracted from the output from a series of layers l ∈
{1, 2, ..., L} of the generative encoder. These features are
obtained by applying the encoder to patches of both the
original {zl}L = {Hl

(
Gl

enc (x)
)}L and the synthesised

images {ẑl}L = {Hl

(
Gl

enc (G (x))
)}L, passing them

through a two-layer MLP network Hl . Specifically, a patch
is extracted from a location s in the original image, along
with the a patch extracted from the same location in the
synthesised image, and a series of patches from other
locations S \ s in the original image. This patchwise loss is
then calculated as a cross-entropy loss between the positive
and negative examples:
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, (2)

where τ = 0.07 serves as a temperature with which
the distances between the query and the other examples
are scaled, and {0, 4, 8, 12, 16} are the layers selected for
the contrastive loss. By penalising differences in the inner
representation of the same image patch in both images, as
well as similarities between patches extracted from different
regions, the network is trained to preserve the anatomical
structure of the eye while changing the visual appearance of
the OCT images according to the target preset, as illustrated
in Fig. 2.

In order to address the problem of the visual variability
between images acquired with different OCT scanning
processes, two complementary approaches were taken,
which are detailed below:

1. First approach: Macular Cube to Seven Lines
Conversion:
The first approach was designed to address the issue
of high quality data scarcity in OCT by perceptually
increasing the quality of the more numerous Macular
Cube preset scans. A CUT model was trained to
transfer the higher visibility style of Seven Lines images
to samples acquired with the Macular Cube preset,
effectively conferring them the reduction in noise of
the more intensive scanning preset, along with its more
precise visual features. Through this approach, high
quality data scarcity can be compensated by converting
the more readily available images into the higher quality
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Fig. 2 Generative model training procedure: patchwise contrastive
loss is calculated by comparing the inner representation of patches
that were extracted from both the original and synthetic images.

A discriminator is trained in parallel to discern between examples of
the original and the target class, which can be used to compute the
generator GAN loss

visual style of Seven Lines scans. An example of this
conversion is illustrated in Fig. 3.

2. Second approach: Seven Lines to Macular Cube
Conversion:
The second approach has the complementary purpose
of converting higher quality Seven Lines scans into the
style of the extensive Macular Cube preset. Therefore,
a second CUT model was trained on the same data
to perform the opposite translation. This results in an
overall increase in the amount of available images.
Moreover, these additional images can be used to
train machine learning-based CAD systems in a preset
variability-tolerant fashion by exposing them to the
different presets that the system may find in a real

clinical setting. An example of the visual features of this
conversion can be found in Fig. 4.

For both of these approaches, a residual network [42]
backbone with nine residual blocks was used as a base
architecture for the CUT generator. The original images
were resized to 286 × 286 pixels, with random crops of
256×256 being used as training inputs. During the training,
the models were optimised using Adam [43] with β1 =
0.5, β2 = 0.999 and a learning rate of 2e−4. The training
process lasted for a maximum of 400 epochs, linearly
decaying the learning rate for the last 200. Finally, both of
these models were used to generate the synthetic counterpart
for every original image, as illustrated in Fig. 5.

Fig. 3 First approach: Macular Cube to Seven Lines conversion. This conversion produces an overall reduction in the amount of speckle noise
over the background and the retina, as well as enhanced tissue texture details in the synthetic generated image
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Fig. 4 Second approach: Seven Lines to Macular Cube conversion. In this translation, speckle noise visibility is increased and overall contrast is
reduced while preserving the original tissue, producing synthetic generated images that visually resemble original Macular Cube scans

2.4 Evaluation

A series of experiments were conducted to evaluate the
images that were generated by both of the approaches
described above. This subsection describes how these
experiments were carried out.

In order to validate the perceptual quality of the
synthetic images, a qualitative experiment using the
Blind/Referenceless Image Spatial Quality Evaluator
(BRISQUE) [44] was performed. BRISQUE is an image
quality evaluator which, unlike other measures such as
Peak Signal to Noise Ratio or Structural Similarity Index

Measure [45, 46], does not require a reference image to com-
pare. Instead, it returns a score indicative of the perceptual
quality of the processed image, with lower BRISQUE scores
indicating a higher image quality. To do this, a series of
luminance coefficients are used to measure distortions and
their orientations in the image. These are used to compute a
series of features at multiple scales. Then, these features are
classified and quantified by support vector machines. This
way, the different distortions and their effect on image qual-
ity and perception can be measured. In this line, BRISQUE

has been previously used to assess the quality of medical
images with favourable results [47–49]. In this experiment,

Fig. 5 Summary of the two computational approaches presented in this work. The original OCT images are used to train both conversion models.
These models are then used to convert each original OCT image into a synthetic sample of the opposite class
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the BRISQUE score of each set of the original Macular
Cube and Seven Lines images was calculated and compared
to those corresponding to the synthetic images.

Complementarily, a set of experiments aimed at mea-
suring the perceptual quality of the synthetic generated
images was conducted. The equivalent number of looks
(ENL) and the contrast-to-noise ratio (CNR), calculated as

ENL = x̄2
BG

s2
BG

CNR = x̄ROI − x̄BG

sBG
, where x̄ denotes the

arithmetic mean and s denotes the standard deviation of the
intensity values in the images, were used as referenceless
image quality estimators. A random representative subset
of 100 images of each class was annotated with the loca-
tion of a homogeneous region of interest (ROI) and the
background (BG) containing no tissue. This subset was
employed to calculate these estimators. Furthermore, the
referenceless Blind Image Quality Index (BIQI) [50] and
the Natural Image Quality Evaluator (NIQE) [51] were mea-
sured for both the original and synthetic generated images.
Section 3.2 covers the results of these experiments.

Subsequently, the separability of the generated images
was assessed. While the training process of a GAN uses a
discriminator network D to enforce the similarity between
original and synthetic images of the target class, this
is an intentionally simple architecture in order to avoid
overpowering the generator, and it tends to be biased due
to the GAN training process. To validate whether the
images that were converted between the two presets display
the visual features of their target presets, an automatic

separability experiment was conducted. In this experiment,
an external classifier model was trained to classify between
images acquired with the Macular Cube preset and images
acquired with Seven Lines, using a subset of the original
images. This network was then tested separately with
the remaining original images and with the synthetic
generated images. Afterwards, the results produced by
the original images were compared with those of the
synthetic images. The aim of this experiment is to determine
whether the synthetic generated images are classified as
their original class or their target class. A densely connected
convolutional network [52] architecture was chosen to serve
as the external classifier model. This architecture has seen
extensive use in medical image classification and screening,
surpassing other convolutional neural network architectures
[53–56]. Figure 6 illustrates the structure of this model.

Since two separate generative models were trained, one
for each approach, each class was tested separately. The
Accuracy, calculated as Accuracy = TP+TN

TP+TN+FP+FN , was
used to evaluate this classification. When testing the two
classes separately, positives are considered to be those
images of the target class. Due to the absence of true
negatives and false positives, the specificity cannot be
computed for this test. The results of this experiment can be
found in Section 3.3.

Finally, with the purpose to further assess the perceptual
validity of these images, a test was conducted to ascertain
whether the specialist clinicians are able to discern between
the synthetic and original images of both classes. The

Fig. 6 DenseNet-121 model summary. First row shows the complete model. Second row illustrates a dense block structure with its corresponding
transition layer. Third row details the composition of every dense layer and the concatenation of inputs and results
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motivation behind this test was to assess whether these
models can preserve the natural tissue structure of the
eye, as well as to verify that artificial artefacts are not
introduced in the synthetic generated images. The clinicians
were asked to classify a random set of 200 images into
whether they were acquired with the Macular Cube or
the Seven Lines preset and if they were original images
obtained with an OCT platform or they were generated by
the network. The results of this experiment are discussed in
Section 3.4.

3 Results

In this section, the results produced by the aforementioned
synthetic image generation methodology are presented,
along with those of the tests that were previously described.

3.1 Generativemodel training

The curves for both of the GAN losses, along with
the contrastive losses for the training of the models are
displayed in Fig. 7. These show the loss pattern that is
often apparent in GAN training where both discriminator
and generator losses tend to converge to a relatively stable
value as the training progresses. This mutually dependent
stability, however, complicates the task of determining the
optimal stopping point of the training process. To work
around this problem, both generative models were trained
for up to 400 epochs, which was found to be a sufficient
length for them to produce satisfactory results. During the
training, a checkpoint copy of the generative network state
was saved every 20 epochs, for a total of 20 checkpoints
per model. At each of these checkpoints, the complete
set of images was generated. Inference time at this stage

Fig. 7 Training losses for both approaches. G GAN, generator GAN loss; D real, discriminator loss for real images; D fake, discriminator loss
for synthetic images; G, generator loss; NCE, patchwise loss for images of the original class; NCE Y, patchwise loss for images of the target class
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was measured at 250 milliseconds per generated image.
Then, the images that were generated by each checkpoint
were evaluated using BRISQUE to determine the training
checkpoint which produced the best results for each model
This process is explained in the next subsection.

3.2 Image quality assessment

A test was conducted using the BRISQUE score to validate
the perceptual quality distribution of the synthetic images.
The aim of this experiment was to determine whether the
quality distributions of the synthetic generated images are
similar to those of the original images. In this experiment,
every OCT image for each of the classes in the original
dataset was evaluated using BRISQUE. Then, the BRISQUE

score for each image generated by every checkpoint of
the generative models was calculated and compared to
the original images. Figure 8 shows the evolution of the
BRISQUE score for both computational approaches for
different epochs.

These graphs are indicative of the ability of the
generative models to approach the image quality of the
target classes. The highest BRISQUE score (corresponding
to the lowest perceptual quality) is achieved by the original
Macular Cube images, represented in red. These images
also show the highest variability, with their standard
deviation being indicated in red dashed lines. Original
Seven Lines images, represented in green, show an overall
lower BRISQUE score, also having a lower variability
than their Macular Cube counterparts. Overall, all the
synthetic images show a reduced variability in image
quality, with synthetic Seven Lines images displaying a
considerably higher quality than their original Macular
Cube counterparts and stabilising around the lower fringes
of the original Seven Lines distribution. In accordance
with these results, the lowest scoring of the Seven Lines-
generating model checkpoints and the highest of the
Macular Cube-generating model checkpoints were selected,
and the BRISQUE score distributions of their generated
images were studied. The histograms of the indicated
distributions of the original and the synthetic images can be
found in Fig. 9.

Complementarily, a representative subset of the original
Macular Cube images achieved an ENL and a CNR of
94.34 ± 44.41 and 143.35 ± 15.38 respectively, while the
synthetic generated macular cube images were measured
at 64.81 ± 27.73 and 144.26 ± 10.88. On the other hand,
the higher-quality original Seven Lines images achieved an
ENL and CNR of 152.56±81.08 and 146.88±25.59, while
their synthetic counterparts were rated at 188.28 ± 111.08
and 147.68 ± 23.32. In terms of automated image quality
scores BIQI and NIQE, the original Macular Cube images
achieved scores of 25.79±4.20 and 6.42±2.53 respectively,

while synthetic generated Macular Cube images were rated
at 35.62 ± 4.52 and 8.72 ± 1.11. Regarding the Seven Lines
images, the originals were rated at scores of 24.76 ± 1.84
and 6.05 ± 0.80, while their synthetic counterparts achieved
a very similar 24.71 ± 1.84 and 6.12 ± 1.90.

3.3 Separability test

As previously mentioned, a test was performed to validate
the separability of these synthetic images by training
a densely connected convolutional network to classify
original images between those obtained with the Macular
Cube preset and those acquired with Seven Lines. The
original dataset was randomly partitioned in balanced sets,
with 60% (622 images) forming a training set, 20% (206
images) making up a validation set to prevent overfitting and
the remaining 206 images being used to test the network.
Training and validation losses and accuracy values for this
model are presented in Fig. 10.

The synthetic images converted by both of the generative
models at the checkpoints that were selected in the previous
subsection based on their BRISQUE score were then tested
with this network. The accuracy obtained for the original
and synthetic dataset is represented in Table 1. It should be
clarified that, for the Macular Cube to Seven Lines model,
the positives are the images of the Seven Lines class, while
the opposite is true for the inverse model.

3.4 Validation by clinical specialists

Complementarily, a final test was conducted in order to
assess whether medical specialists are able to detect the
synthetic images. A random subset of 200 images which
are representative of the four classes was created, with
72 of them being original Macular Cube, 31 synthetic
Macular Cube, 64 original Seven Lines and 33 synthetic
Seven Lines. The synthetic images were generated by the
models that were selected as described in Section 3.2.
Two ophthalmologists from the Hospital Clı́nico San Carlos
in Madrid were asked to determine whether each of the
OCT images was of the Macular Cube or Seven Lines
type, and whether they were original or synthetic. One of
the clinicians is a medical resident, while the other is an
expert specialist with extensive medical experience. The
two confusion matrices representing the final results of the
test are displayed in Fig. 11.

4 Discussion

In this section, the results obtained from the generative method-
ology as well as those of the tests that were performed to
evaluate the synthetic generated images are discussed.
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Fig. 8 BRISQUE score evolution for each computational approach. a
1st approach: Macular Cube to Seven Lines conversion model. b 2nd
approach: Seven Lines to Macular Cube Conversion model. Red and
green solid lines indicate, respectively, the average BRISQUE score for

original Macular Cube and Seven Lines images. Dashed lines indi-
cate standard deviation of these sets. A red star indicates the chosen
checkpoint for each model



Medical & Biological Engineering & Computing

Fig. 9 BRISQUE score distribution for each of the data sets, including
those generated by the chosen checkpoints of the generative models.
Top left: Original Macular Cube images. Top right: Original Seven
Lines images. Bottom left: Seven Lines images converted to synthetic

Macular Cube. Bottom right: Macular Cube images converted to
synthetic Seven Lines. Dashed lines indicate the mean value of the
distribution

4.1 Image quality assessment

The image quality assessment results obtained from
evaluating the synthetic generated images using BRISQUE

(Fig. 9) show that all the sets are positively skewed,
with most images having a lower BRISQUE score than the

mean and a long tail of samples with increasingly higher
scores, formed by images with progressively lower quality.
This is especially apparent for the original Macular Cube
samples, which is to be expected of the set with the highest
variability in noise and tissue visibility, being the fastest
scanning preset considered. Conversely, while the synthetic

Fig. 10 Training and validation losses and accuracies for the DenseNet-121 classifier used to test synthetic image separability. A red star indicates
the epoch at which the model produced the lowest validation loss and that was chosen for testing
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Table 1 Accuracy obtained with the DenseNet-121 model for each
image class, both for original and synthetic images

Accuracy

N Macular Cube Seven Lines

Original images Training 622 100.00% 100.00%

Validation 206 100.00% 100.00%

Test 206 100.00% 100.00%

Synthetic images Test 1.034 99.42% 100.00%

images also present a similar positive skewness, there is
a significant reduction in the amount of unusually highly
scored images. These histograms also show the previously
mentioned decrease in variability for the synthetic generated
images. Overall, the generative models show a great
consistency and stability at generating the synthetic images,
producing images that show score distributions coherently
formed around their respective target quality.

The images were also visually inspected to ensure that
the measured changes in BRISQUE score correspond to
changes in actual perceptual quality. The synthetic Seven
Lines images show a significant reduction in speckle
noise and tissue visibility in the retina and choroid
(Fig. 12). Conversely, regarding synthetic Macular Cube, it
is apparent that generated images representing the original
tissue with an addition of speckle noise and visual features
bear resemblance to the original Macular Cube samples
(see Fig. 13). In both figures, the values of the BRISQUE

score correlate with perceptual changes in image visibility,
with noisier images being rated higher scores, and images
showing greater retinal and choroid visibility achieving
lower scores.

Aside from this, the results for the GAN evolution
(Fig. 8) show that, for some epochs, synthetic Macular
Cube images seem to be rated at a similar or higher quality
than their original Seven Lines counterparts. While this
behaviour is not necessarily unusual when training a GAN
due to the oscillatory nature of both the discriminator and
generative networks, these images were also inspected. A
sample of images from training epoch 260 of the Seven
Lines to Macular Cube translating model, in which the
network perceptually increased the quality of the Seven
Lines images, can be found in Fig. 14. This behaviour,
combined with the absence of an absolute indicator of GAN
training progression, is what motivates the use of an external
quality evaluator such as BRISQUE to assess image quality
and determine a satisfactory epoch to stop the training
process at a point where the generated images present the
desired visual features.

4.2 Separability test

The results obtained from the automatic separability test
(Table 1) show that the synthetic images are able to mimic
the visual features of their target class, with every original
Macular Cube converted to Seven Lines being correctly
recognised as a Seven Lines image and only 6 synthetic
Macular Cube images being confused as Seven Lines. The

Fig. 11 Confusion matrices for the classification results of both specialists
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Fig. 12 Sample of original Macular Cube images and their converted Seven Lines synthetic counterparts. Values represent BRISQUE score for
each image

synthetic test set contains the images which the network
recognises as their original class, but converted to the
opposite class. These synthetic generated images were

classified by the model as their target class instead of the
original one, indicating that they display the intended visual
features.

Fig. 13 Sample of original Seven Lines images and their converted Macular Cube synthetic counterparts. Values represent the BRISQUE score for
each image
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Fig. 14 Sample of images generated by a Seven Lines to Macular Cube model at a point in training in which it actually increases perceptual
quality. Values represent the BRISQUE score for each image

4.3 Validation by clinical specialists

Regarding the ability of the ophthalmology specialists
to discern the original and synthetic images of the two
presets, the test results (Fig. 11) highlight the difference in
experience level between both specialists and its relevance
for a complex problem such as this, with the resident
achieving an overall accuracy of 24% and the expert
correctly guessing more than half of the samples. This
complexity is even more evident when evaluating Macular
Cube and Seven Lines separability, with the resident
attaining an accuracy of 44% while the expert reached
93%. This indicates that while the OCT images are clearly
visually separable according to their acquisition preset,
this is by no means a trivial problem, and the ability to
do so is acquired with experience. Absence or presence
of speckle noise is not enough to differentiate between
the images, with other visual features being necessary to
distinguish them. When taking into account original and
synthetic separability, the results show that the synthetic
images are able to deceive even the expert specialist. The
expert was not able to determine whether images were
originally acquired with a scanner or converted by the
generative networks while correctly identifying the visual
features that characterise both Macular Cube and Seven
Lines images. Most of the synthetic Seven Lines samples,
presenting a clearer visibility, were incorrectly classified

as original images while, conversely, most of the original
Macular Cube images, which display more noise and a
perceptually worse appearance, were mistakenly identified
as synthetic. These results show that the synthetic generated
images are effectively indiscernible from the original ones
while at the same time preserving the distinctive visual
features of their target classes. The obtained results are
also indicative of the absence of visual artefacts that
could be introduced in the synthetic generated images.
Therefore, the tests that were conducted with the specialists
demonstrate the substantial performance of the generative
models, showing that they are able to generate images that
are interchangeable with the original ones even to the expert
eye. All of the results obtained indicate that these models are
suitable for the purpose of supplying datasets with images
converted to the style of different configurations that can
be used just as if they were acquired with their target
presets.

It should also be highlighted that while other approaches
exist in the literature for the denoising or resolution
enhancement of low quality images, this proposal is the first
to address the problem of data scarcity in OCT through
the mutual conversion of images between scanning presets.
Due to this focus shift from the enhancement of low quality
images to the mutual conversion between visual features
within a domain, no comparison with the currently existing
methods can be drawn.
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5 Conclusions

OCT is a relevant medical imaging technique that can be
used in conjunction with CAD systems to diagnose relevant
ocular pathologies and to study the eye tissue. The overall
quality and visibility of the OCT images is considerably
affected by light scattering. To overcome this, the OCT
scanning platforms typically sample each point multiple
times and average the signals to obtain a clearer image. Due
to involuntary eye movements, there is a limitation to the
amount of samples that can be taken in a scanning session.
OCT platforms provide a number of scanning presets that
determine the number of scans that are averaged per OCT
image, balancing the amount of tissue that is scanned
and the quality of the produced images. This compromise
between sampled area and image quality leads to a scarcity
of high quality data. Moreover, the visual differences that
exist between images obtained with different presets limits
the potential of datasets based on the scanning preset that
was used to acquire their images.

In this work, a complete methodology for the automatic
mutual conversion of OCT images has been presented.
These OCT images were acquired with the two scanning
presets most representative of those used by clinical
specialists in medical services: Macular Cube, a fast
scanning preset which produces 25 eye slices over a square
patch of the retina with considerable speckle noise, and
Seven Lines, an intensive preset that can create cleaner
images at the cost of only producing 7 B-scans over a
narrow band per session; representing a context of image
quality versus quantity compromise that is so widespread
in several medical imaging areas. This mutual conversion is
achieved by training a contrastive unpaired translation GAN
model to translate the more numerous Macular Cube images
into the higher-visibility style of the intensive Seven Lines
preset and a second model to perform the complementary
conversion. The quality of the synthetic images generated
by these models is assessed and compared to the originals in
order to determine the optimal training model checkpoint,
with an aim to validate the quality of these images and to
solve the problem of when to stop the GAN training process.

The experiments that were conducted to validate the
synthetic generated images show that these are able to
display the visual features of those acquired with their
target preset. Qualitatively, the BRISQUE score of original
and synthetic images of each preset are very similar,
with synthetic images presenting a consistent stability
around their target quality distributions. In a validation
experiment using a dense convolutional network trained
to classify the original images based on their acquisition
preset, the synthetic generated images demonstrated a clear
separability, being classified as if they were originals of
their target preset.

Complementarily, as a way to assess the visual and
perceptual qualities of the synthetic images, two ophthal-
mology specialists with different levels of experience were
tasked with classifying images according to whether they
are original or synthetic, and according to their acquisition
presets. In this experiment, the clinicians were unable to dis-
cern between the original and synthetic images, while the
expert was clearly able to correctly identify the presets of
the originals and the intended target ones of the synthetic
generated images. Overall, the generative models demon-
strated their ability to provide synthetic generated images
that are exceptionally similar to the original ones of their
target classes, even to the expert eye.

From the obtained experimental results, it can be
concluded that this methodology is able to replicate the
visual features of each of the presets in images acquired
with another. The synthetic images were validated in terms
of perceptual quality, automatic separability and expert
separability, with results showing that they resemble their
target presets in each of these terms. These generative
models can be used to supply OCT datasets limited by their
acquisition presets with quality synthetic generated images
that display the visual features of any other preset.

Plans for future work include assessing the possible
benefits that may be obtained from the paired translation
of images in terms of tissue preservation, as well as the
possible application of this methodology to produce multi-
preset datasets that can be used to train CAD systems
in a more robust manner, allowing them to train with all
the possible presets it may encounter in a real setting
without the need to procure these images. Furthermore, a
more elaborate analysis and evaluation of these models and
how they perform when trained with images belonging to
patients of different ages, sexes and affected by different
pathologies is considered for future work. Lastly, this
methodology should be considered for the exploration of
this context of data scarcity related to image quality and
acquisition conditions in other fields of medical imaging
where it is so widespread, constituting a paradigm in
itself.
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34. Seeböck P, Romo-Bucheli D, Waldstein S, Bogunovic H, Orlando
JI, Gerendas BS, Langs G, Schmidt-Erfurth U (2019) Using
Cyclegans for effectively reducing image variability across OCT
devices and improving retinal fluid segmentation. In: 2019 IEEE
16th international symposium on biomedical imaging (ISBI
2019), pp 605–609, https://doi.org/10.1109/ISBI.2019.8759158

35. Huang Y, Lu Z, Shao Z, Ran M, Zhou J, Fang L,
Zhang Y (2019) Simultaneous denoising and super-resolution
of optical coherence tomography images based on genera-
tive adversarial network. Opt Express 27(9):12,289–12,307.
https://doi.org/10.1364/OE.27.012289, http://www.opticsexpress.
org/abstract.cfm?URI=oe-27-9-12289

36. Gende M, de Moura J, Novo J, Ortega M (2022) High/low
quality style transfer for mutual conversion of OCT images using
contrastive unpaired translation generative. In: Image analysis
and processing – ICIAP 2022, Lecture notes in computer
science. Springer International Publishing, Cham, pp 210–
220

37. Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G,
Killeen T, Lin Z, Gimelshein N, Antiga L, Desmaison A, Kopf A,
Yang E, DeVito Z, Raison M, Tejani A, Chilamkurthy S, Steiner
B, Fang L, Bai J, Chintala S (2019) PyTorch: an imperative style,
high-performance deep learning library. In: Wallach H, Larochelle
H, Beygelzimer A, d’Alché-Buc F, Fox E, Garnett R (eds)
Advances in neural information processing systems, vol 32. Cur-
ran Associates, Inc, pp 8026–8037. https://proceedings.neurips.cc/
paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf

38. Bradski G (2000) The opencv library. Dr Dobb’s. J Softw Tools
25:120–125. https://ci.nii.ac.jp/naid/10028167478/en/

39. Park T, Efros AA, Zhang R, Zhu JY (2020) Contrastive learning
for unpaired image-to-image translation. In: Computer Vision –
ECCV 2020. Springer International Publishing, Cham, pp 319–
345, https://doi.org/10.1007/978-3-030-58545-7 19

40. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-
Farley D, Ozair S, Courville A, Bengio Y (2020) Gener-
ative adversarial networks. Commun ACM 63(11):139–144.
https://doi.org/10.1145/3422622

41. Chen T, Kornblith S, Norouzi M, Hinton G (2020) A simple
framework for contrastive learning of visual representations. In:
III HD, Singh A (eds) Proceedings of the 37th international
conference on machine learning, Proceedings of Machine
Learning Research, vol 119. PMLR, pp 1597–1607. https://
proceedings.mlr.press/v119/chen20j.html

42. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for
image recognition. In: Proceedings of the IEEE conference on
computer vision and pattern recognition (CVPR), pp 770–778.
https://doi.org/10.1109/CVPR.2016.90

43. Kingma DP, Ba J (2015) Adam: a method for stochastic
optimization. In: Bengio Y, LeCun Y (eds) 3rd international
conference on learning representations, ICLR 2015, San Diego,
CA, USA, May 7-9, 2015 Conference Track Proceedings.
arXiv:1412.6980

44. Mittal A, Moorthy AK, Bovik AC (2012) No-reference image
quality assessment in the spatial domain. IEEE Trans Image Pro-
cess 21(12):4695–4708. https://doi.org/10.1109/tip.2012.2214050
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