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Abstract: Currently, there is great interest in reducing the consumption of fossil fuels (and other
non-renewable energy sources) in order to preserve the environment; smart buildings are commonly
proposed for this purpose as they are capable of producing their own energy and using it optimally.
However, at times, solar energy is not able to supply the energy demand fully; it is mandatory to
know the quantity of energy needed to optimize the system. This research focuses on the prediction
of output temperature from a solar thermal collector. The aim is to measure solar thermal energy and
optimize the energy system of a house (or building). The dataset used in this research has been taken
from a real installation in a bio-climate house located on the Sotavento Experimental Wind Farm,
in north-west Spain. A hybrid intelligent model has been developed by combining clustering and
regression methods such as neural networks, polynomial regression, and support vector machines.
The main findings show that, by dividing the dataset into small clusters on the basis of similarity
in behavior, it is possible to create more accurate models. Moreover, combining different regression
methods for each cluster provides better results than when a global model of the whole dataset is
used. In temperature prediction, mean absolute error was lower than 4 ◦C.

Keywords: clustering; prediction; regression; solar thermal collector; hybrid model

1. Introduction

In recent years, preserving the environment has become a great concern. One of the reasons for
this trend is environmental deterioration caused by human action. The governments of most countries
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became aware of the problem; many laws, directives, and treaties are made to try to lessen or even
eliminate the problem. Changing the trend is a big challenge for various reasons, such as the countries’
economic models, the current configuration of the cities, and people’s habits.

Many researchers have proposed solutions to the above-mentioned problems. An aspect that is
becoming increasingly important is changing cities. In fact, some authors pointed to the importance
of cities and their key role in fighting against climate change [1]. In this regard, within the smart city
concept there are some key building-related terms, such as smart buildings.

The definition of the term smart city is under constant review [2,3]. Taking this fact into account,
a smart city could be described as a city that uses the potential of technology and innovation, along with
other resources that help make effective the use of this potential, promotes sustainable development,
and ultimately, improves the quality of life of its citizens [4–6]. Smart cities are made up of a group of
many elements, tangible or intangible [7]. One of those elements are smart buildings; they follow the
same paradigm as smart cities, facilitating the achievement of their final objective [8].

Domotics or home automation, is an aspect of smart buildings. This term refers to the control
of the different systems that a building includes: the air conditioning system, the lighting systems,
the air purification system, the entertainment system, etc. [9]. In addition to home automation,
smart buildings have the following smart city related features: sustainability, efficiency, security, etc.
If possible, all these features should be part of a smart building from conception [10–12]. To accomplish
all these objectives, it will be essential to employ multiple technologies [13–17].

To optimize aspects such as efficiency and sustainability, in addition to preventing unwanted
loss, it is necessary to consume no more than the strictly required energy [16]. Given a house with the
capacity to generate energy, it is necessary to know, beforehand, the amount of energy that will be
generated and the amount of energy that will be consumed. This prediction would help ensure optimal
comfort conditions. If the generation capacity is not able to meet the energy needs, the house’s energy
system must be supplemented by an external source [17]. For optimal energy generation, consumption,
and purchase, it is essential to be able to predict all the variables satisfactorily [18].

In the state of the art, there are studies that address the topic of predicting the generation of
solar energy [19,20]. In [21], the authors propose a hybrid model that combines machine-learning
methods with a theta statistical method for a more accurate prediction of future solar power generation
from renewable energy plants. Reference [22] presented a solar power modeling method using
artificial neural networks (ANNs), specifically, a general regression neural network (GRNN) and a feed
forward back propagation (FFBP), using as inputs: maximum temperature, minimum temperature,
mean temperature, and radiance. The main objective of [23] was to determine time horizon, having
the highest representative for generated electricity prediction of small scale solar power system
applications; finally it addressed solar power prediction in a 5 min time horizon.

There are multiple prediction techniques which have been proven effective in prediction tasks.
The different methods range from the simplest to the most complex ones, which frequently coincide
with traditional and advanced methods, respectively. When systems are complex and contain, for
example, very strong non-linearities, the methodologies that offer the best results are often based
on intelligent techniques. Different studies in the medical field [24–29] show the use of intelligent
techniques to predict patient response variables. In research on energy systems, [30–34], hybrid
systems obtain better results than traditional techniques. In the field of anomaly detection, several
studies have used this type of hybrid intelligent system [35–39].

This research presents a case study that involves a bioclimatic house. Specifically, the study focuses
on the ability to accurately predict the amount of energy generated by a solar thermal installation.
This ability would make it possible to purchase only the amount of external energy required to meet
the energy demand, thereby achieving optimal comfort, but spending only what is necessary.

An intelligent hybrid topology has been used to create the model. First, clustering [40–42] has been
performed, with the objective of obtaining data groups with similar behavioral characteristics. Then,
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regression techniques [43–46] have been applied over each of the obtained groups. The performance of
the developed model is very good in terms of all the operational aspects.

The next section describes a case study where the facility under study is detailed. The model
approach is described in the next section, and the different stages of the process of model development
are described; i.e., data processing, clustering, and regression. All the results are presented, and finally
the conclusions are drawn and future lines of research are outlined.

2. Case Study

This research is based on the thermal installations from a bioclimatic house. The main aim of
the Sotavento Galicia Foundation is to study new ways of using renewable energies. For this reason,
Sotavento Experimental Wind Farm built this bioclimatic house and implemented different energy
systems in it.

Sotavento Bioclimatic House

This bioclimatic house (Figure 1) is located in Xermade council (Lugo), in Galicia (Spain).
There are different renewable energy extractors installed around/on such a house, such as solar,
wind or geothermal ones, and the main aim is to demonstrate that a house could be more
environmentally-friendly.

Figure 1. Sotavento bioclimatic house.

Only the thermal installation is taken into account in this research. In Figure 2 all the thermal
systems of the house are shown. They are divided into three different parts to isolate the generation, the
accumulation, and the consumption. The generation includes solar (1), biomass (2), and geothermal (3)
energies; the geothermal system is divided in the horizontal ground collector and the heat pump. The
accumulation has two isolate tanks, one for the storage of solar energy (4), and another for domestic
hot water (DHW) (5) and the heater system. This part of the installation also includes the preheating
of domestic hot water (8) that is made using the solar tank to heat the water before going inside the
DHW tank. Finally, the consumption element is divided into the heater system (6) and DHW (7).

The bioclimatic house also distributes the electrical energy generated from renewable energy
sources (wind and photovoltaic), but this feature is not considered in this paper as it is not part of
the research.

Figure 3 shows the layout of the described thermal solar installation. This energy is generated in
the solar panel collectors (2 strings of 4 panels each one), shown on the left side of the figure; 2.5 m2

each panel, with a total of 20 m2, model SchücoSol S.2. Solar energy accumulation is represent by the
tank on the right, with a capacity of 1000 L. The schematic includes all the valves and pumps that the
system needs to work.
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Figure 2. Thermal energy installation schematic.

Figure 3. Solar thermal energy layout.

This research focuses on thermal solar generation; thus, only the temperature sensors S1, S2,
S3, and S4 are used; they are RTD (PT1000) temperature sensors. However, the input and output
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temperatures are not the only variables taken into account; others include the flow-meter (marked
by the arrow in Figure 3), a Multical R© 403, and the solar radiation sensor (a PYR-P sensor), deployed
outside of the house

3. Model Approach

The basic model of the proposal is shown in Figure 4, where the output is set as the output
temperature of the lower panel (S4). For this research, the output of the upper panel is not used.
The inputs of the model are the input temperatures (lower and upper panels, S1 and S2), the flow of
the etilenglicol used in the collectors, and the solar radiation.

Figure 4. General schema of the functional model.

In this research, a hybrid intelligent model has been chosen to increase the accuracy of the
output prediction. This type of model divides the dataset into different subsets (or clusters), and then,
a regression technique is used to predict the output. Figure 5 represents the internal layout of the
hybrid model; each cluster model used an intelligent technique selected from artificial neural network,
polynomial regression support vector regression.

Figure 5. Internal schematic to achieve the hybrid model.
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The diagram in Figure 6 represents the process followed to train the hybrid intelligent model.
Firstly, different clusters were created, and then, a regression phase is made for each cluster. This
regression was trained using k-fold cross validation that divides each data cluster into k groups and
trains k models with k-1 groups and uses the other groups for testing. After all the k models were
tested, all the cluster data were used for testing, and the error of the specific regression technique is
calculated with all the data. The k-fold cross validation is shown in Figure 7.

Figure 6. Flowchart of the hybrid model creation phases.

In the third step of Figure 6, the best regression algorithm is selected for each cluster. As different
regression algorithms were used, it is necessary to choose the best one based on the error achieved in
the training phase (described below). Moreover, some of the regression techniques tested have several
tune parameters, and all of these configurations were considered as different algorithms.

Figure 7. K-fold training and test data selection.

The last step to creating the hybrid model was the selection of the best hybrid configuration.
For this purpose, a different dataset was used, isolated from the beginning of the regression phase in
order to test all the hybrid configurations. The best one was chosen on the basis of the error achieved
with this validation dataset.
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3.1. Data Processing

The dataset was collected from a monitoring system that takes samples every 2 s; however,
the mean value of all collected samples is stored every 10 min.

The entire dataset has been preprocessed before starting the training phase. Firstly, the incorrect
samples were removed, which correspond to error in the communication process between the data
acquisition system and sensors. Then, only the samples recorded when the panels were working have
been considered (the radiation sensor value and the flow meter used in this step to avoid the samples
when the system was not operating). The original dataset had 52,689 samples, but the number reduced
to 26,665 samples after preprocessing.

The data were normalized to obtain the new sample values in the range 0 to 1. The Max-Min
Scaler [47,48], Equation (1), is used to change all the samples (Dataj) to new values (Datajnew ).

Datajnew =
Dataj − min(Data)

max(Data)− min(Data)
. (1)

To select the best hybrid topology, 5% of the samples in each cluster have been isolated from
the dataset. The isolated data have been used at a later stage to verify the performance of all the
hybrid configurations and to select the best hybrid topology. Moreover, to validate the obtained model,
367 samples that represent 5 operation days were isolated. These samples were not used in the hybrid
model creation process. Instead, they were used only in the final step to have a realistic prediction
error measurement for the hybrid intelligent model.

3.2. K-Means Algorithm

K-means algorithm was chosen to perform clustering and create different groups in the dataset.
Different centroids were created to defined the clusters in the hyperspace; the samples are assigned to
each cluster depending on the distance to these centroids [40–42]; the most common distance used
is the Euclidean distance. The algorithm divides the data in the number of clusters (K) defined by
the user.

Once the final centroids have been defined, the computational cost needed by the k-means
algorithm to assign new samples to each cluster is very small. However, the training time depends on
the desired number of clusters and the number of training samples. The aim of the training is achieved
when the final centroids [49] do not change. The training procedure can be explained as follows:

• Randomly choose the first set of centroids from the whole dataset. Since the centroids are defined
as the center of the clusters, at the beginning there are no clusters.

• The cluster samples are defined with the samples that are nearest to each centroid.
• Once the clusters are defined, the centroids are swapped to the center of each cluster.

The procedure is repeated (the last two steps) until the centroids are in the same position at least to
times during the training procedure. It is necessary to store the centroids to use the k-means algorithm
with new samples.

3.3. Artificial Neural Networks

The artificial neural networks (ANN) algorithm is an artificial intelligent technique used for
regression or classification. This algorithm was developed using the biological neuron model to create
the basic unit component, the artificial neuron. The algorithm is called ANN because it has some
artificial neurons inside, connected similarly to the biological ones.

Each neuron’s input has a weight factor that allows for a different reaction to each input. Moreover,
the neuron has an activation function that calculates its output using the inputs. An ANN model is
able to generalize from the learning cases during the training phase [43,44]. The ANN can be used to
perform complex functions thanks to its different activation functions.
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The output of the activation function is called the excitation level [45], and it is normally in the
range 0 to 1, or −1 to 1. The configuration of the ANN includes the number of neurons, its activation
functions, and its organization. The neurons are organized in layers; all the neurons that have the same
inputs and outputs are in the same layer.

The multilayer perceptorn is a basic feed-forward topology; the signal goes in the same way
from the inputs to the outputs. The input and the output layers are directly connected to the inputs
and outputs of the model; the hidden layers are the other layers that are only connected internally.
In regression, the linear activation function is commonly used for the output neuron, while in the other
neurons the tan-sigmoid function could be used.

3.4. Polynomial Regression

The polynomial regression algorithm is defined as the summation of several linear functions.
Different degrees for the inputs defined the basis functions, and the maximum degree is called the
degree of the polynomial.

Equations (2) and (3) show two different degree polynomials for a two inputs model. Each basis
function has its own coefficient (c∗) that is adjusted in the training phase.

f (x) = c0 + c1 · x1 + c2 · x2. (2)

f (x) = c0 + c1 · x1 + c2 · x2 + c3 · x1 · x2 + c4 · x2
1 + c5 · x2

2. (3)

3.5. Support Vector Machines for Regression

The support vector machine is a machine learning algorithm used for classification problems.
When this algorithm is used regression purposes, it is called support vector regression (SVR). This
technique uses a nonlinear transformation to create a high-dimensional representation of the data;
then, in the case of SVR, the algorithm performs a linear regression with the new mapping data.

This paper uses a modification of the SVR algorithm that is called least square SVR (LS-SVR) [46].
The LS-SVR’s performance is similar to that the original SVR algorithm [50]; it is only necessary to
adjust two internal parameters: weight vector (γ) and kernel width (σ). Moreover, the LS-SVR includes
an optimization function that automatically tunes these parameters.

4. Results

This section is divided into three different parts with the aim of presenting all the results of this
research. Firstly, the clustering results show the selected hybrid topologies, with the clusters and
the samples in each one. Then, different regression results were represented. Since three differently
configured algorithms were used, only some of the results are shown. This part includes the best
regression technique, with its error measurement for each cluster. Finally, the validation of the model
is described, along with the best hybrid topology and the final model error values.

4.1. Clustering Results

As the best number of clusters was not known beforehand, the k-means clustering technique was
used to divide the dataset several times. In Table 1 it can be seen that nine different hybrid topologies
were created, dividing the dataset into 2, 3, 4, 5, 6, 7, 8, 9, and 10 clusters. It is also shown that the first
column corresponds to the global model (no clusters).
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Table 1. Number of samples in each created cluster.

Global
Hybrid Model (Local Models)

2 3 4 5 6 7 8 9 10

Cl-1 24983 6875 5701 653 652 619 616 615 613 611

Cl-2 18109 6988 5063 4287 2405 2316 1817 1463 1314

Cl-3 12295 7001 4928 2687 2349 2306 1899 1446

Cl-4 12267 6498 4251 2646 2333 2195 2088

Cl-5 8617 6499 2668 2633 2271 2244

Cl-6 8522 6361 4379 2643 2246

Cl-7 8029 4757 3636 2635

Cl-8 6144 4117 2708

Cl-9 6146 4171

Cl-10 5520

The training of the k-means algorithm was made with random initial centroids, and for all the
configurations the training was repeated 20 times to avoid local minimum. Moreover, the training
phase includes a final condition to avoid clusters with less than 15 samples; however, in this research,
the smallest cluster has 611 samples.

4.2. Modeling Results

As there are three different regression techniques, the modeling results are divided into three
parts, each showing the results of a different algorithm.

4.2.1. Artificial Neural Networks

All the tested ANNs have the same configuration; the input layer has four neurons (as many
as the model’s inputs), the internal layer has a varying number of neurons inside (this parameter is
configurable), and the output layer has one neuron (as the model has only one output). The output
layer neuron has a linear activation function, and the rest of the neurons in the ANN use a tan-sigmoid
as their activation function. As it was said, the internal neuron number was varied to achieve the
optimal one; 15 different models have been tested, each one with different neurons in the hidden layer.

Table 2 shows the error distribution through the clusters. In this case, it presents the mean absolute
error (MAE) calculated for ANN with seven neurons in the hidden layer. There are a total of 15 MAE
tables for artificial neural networks, as 15 different configurations have been tested. The error values
have been calculated using 10 k-fold cross validation; this implies 10 different models must be trained
before the error is calculated. Moreover, four different error measurements have been calculated: MAE,
MSE (mean squared error), MAPE (mean absolute percentage error), and NMSE (normalized mean
squared error).
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Table 2. Mean absolute error (MAE) using an artificial neural network (ANN) with seven neurons in
the hidden layer.

Global
Hybrid Model (Local Models)

2 3 4 5 6 7 8 9 10

Cl-1 0.0296 0.0079 0.0063 0.0196 0.0196 0.0189 0.0199 0.0199 0.0201 0.0189

Cl-2 0.0358 0.0194 0.0050 0.0170 0.0054 0.0204 0.0219 0.0246 0.0163

Cl-3 0.0413 0.0198 0.0043 0.0037 0.0051 0.0151 0.0206 0.0191

Cl-4 0.0413 0.0332 0.0160 0.0037 0.0052 0.0201 0.0195

Cl-5 0.0410 0.0343 0.1693 0.0034 0.0051 0.0239

Cl-6 0.0405 0.0358 0.0271 0.0035 0.0050

Cl-7 0.0405 0.0348 0.0304 0.0035

Cl-8 0.0462 0.0325 0.0248

Cl-9 0.0466 0.0398

Cl-10 0.0465

4.2.2. Polynomial Regression

Two different configurations have been trained with the Polynomial Regression algorithm; the
first and the second degree polynomials have been used. As an example of this training, Table 3 shows
the MAE obtained using second-order polynomial degree for each cluster. As explained, 10 k-fold
cross validation is used to achieve the error measurement.

Table 3. MAE for second-degree polynomial regression algorithm.

Global
Hybrid Model (Local Models)

2 3 4 5 6 7 8 9 10

Cl-1 0.0314 0.0091 0.0064 0.0253 0.0471 0.0204 0.0210 0.0208 0.0213 0.0206

Cl-2 0.0428 0.0210 0.0072 0.0172 0.0058 0.0283 0.0214 0.0181 0.0231

Cl-3 0.0513 0.0208 0.0045 0.0084 0.0056 0.0160 0.0211 0.0245

Cl-4 0.0467 0.0362 0.0181 0.0100 0.0056 0.0217 0.0228

Cl-5 0.0480 0.0370 0.0198 0.0038 0.0056 0.0255

Cl-6 0.0535 0.0396 0.0280 0.0040 0.0054

Cl-7 0.0608 0.0934 0.0746 0.0040

Cl-8 0.0514 0.0341 0.0449

Cl-9 0.0539 0.0442

Cl-10 0.0641

4.2.3. Support Vector Machines for Regression

An error measurement for least square support vector regression is shown in Table 4. In this
case, the algorithm has only one configuration because the least square modification uses an auto-tune
function to adjust the internal parameters. Following the same training process as in the other
algorithms, 10 k-fold cross validation was used.
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Table 4. MAE for the least square support vector regression (LS-SVR) regression algorithm.

Global
Hybrid Model (Local Models)

2 3 4 5 6 7 8 9 10

Cl-1 0.0283 0.0081 0.0062 0.0204 0.0206 0.0202 0.0205 0.0210 0.0212 0.0206

Cl-2 0.0358 0.0200 0.0046 0.0156 0.0057 0.0204 0.0192 0.0146 0.0143

Cl-3 0.0421 0.0198 0.0044 0.0040 0.0055 0.0150 0.0207 0.0188

Cl-4 0.0417 0.0341 0.0166 0.0041 0.0054 0.0194 0.0202

Cl-5 0.0407 0.0349 0.0154 0.0035 0.0054 0.0238

Cl-6 0.0403 0.0367 0.0273 0.0035 0.0052

Cl-7 0.0403 0.0336 0.0296 0.0035

Cl-8 0.0476 0.0329 0.0242

Cl-9 0.0474 0.0408

Cl-10 0.0477

4.2.4. Selection of Best Local Regression Models

The best regression model for each cluster has been selected considering the MSE obtained by all
the created models. There are 18 error values for each cluster (15 ANN, two polynomial regression, and
LS-SVR). Tables 5 and 6 show the lower MAE and MSE obtained for each cluster; it must be remarked
that the MSE is the usual error used to compare the predicted error for regression algorithms.

Table 7 shows the algorithm selected for each cluster. Once the regression technique was chosen,
new models were created for each cluster with the selected algorithm using all the available training
data; as k-fold was used, not all the data had been used previously. The validation data was applied to
the new models to select the best hybrid topology.

Table 5. Mean absolute error (MAE) for each individual hybrid model.

Global
Hybrid Model (Local Models)

2 3 4 5 6 7 8 9 10

Cl-1 0.0278 0.0080 0.0060 0.0186 0.0199 0.0182 0.0190 0.0197 0.0196 0.0186

Cl-2 0.0346 0.0193 0.0044 0.0157 0.0053 0.0204 0.0192 0.0146 0.0143

Cl-3 0.0403 0.0194 0.0043 0.0037 0.0050 0.0143 0.0200 0.0185

Cl-4 0.0399 0.0326 0.0170 0.0037 0.0051 0.0182 0.0194

Cl-5 0.0398 0.0338 0.0148 0.0034 0.0050 0.0238

Cl-6 0.0397 0.0354 0.0269 0.0034 0.0047

Cl-7 0.0394 0.0337 0.0296 0.0034

Cl-8 0.0448 0.0321 0.0242

Cl-9 0.0455 0.0392

Cl-10 0.0463
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Table 6. Mean squared error (MSE) for each individual hybrid model; all values ×10−4.

Global
Hybrid Model (Local Models)

2 3 4 5 6 7 8 9 10

Cl-1 16.8972 3.1161 1.0321 5.9668 6.2402 5.6794 6.3455 6.3268 6.1555 5.9393

Cl-2 21.8021 9.8955 0.4348 6.9023 0.6041 9.0305 8.0789 9.4405 12.1097

Cl-3 26.6203 9.7590 0.3851 0.3093 0.5586 7.6646 7.6268 8.0194

Cl-4 26.2704 19.9626 7.4397 0.2725 0.5744 10.5137 10.7156

Cl-5 26.4265 21.2670 7.0769 0.2332 0.5387 11.0445

Cl-6 26.1993 22.3688 14.7125 0.2308 0.4686

Cl-7 25.9529 19.6236 15.8058 0.2294

Cl-8 31.8514 18.4699 10.7052

Cl-9 32.7775 25.8231

Cl-10 33.1709

Table 7. Configuration for each individual hybrid model.

Global
Hybrid Model (Local Models)

2 3 4 5 6 7 8 9 10

Cl-1 ANN-14 ANN-5 ANN-14 ANN-9 ANN-4 ANN-10 ANN-12 ANN-6 ANN-9 ANN-9

Cl-2 ANN-13 ANN-14 ANN-14 ANN-5 ANN-6 LS-SVR LS-SVR LS-SVR LS-SVR

Cl-3 ANN-14 ANN-10 ANN-12 Poly-1 ANN-14 ANN-4 ANN-8 ANN-4

Cl-4 ANN-15 ANN-14 ANN-3 Poly-1 ANN-12 ANN-6 ANN-10

Cl-5 ANN-14 ANN-8 ANN-3 ANN-6 ANN-12 LS-SVR

Cl-6 ANN-15 ANN-9 ANN-8 ANN-6 ANN-10

Cl-7 ANN-14 ANN-10 LS-SVR ANN-6

Cl-8 ANN-13 ANN-11 LS-SVR

Cl-9 ANN-14 ANN-11

Cl-10 ANN-10

4.3. Validation Results

With the aim of selecting the best hybrid configuration (the optimal clusters number), a test has
been performed using the testing dataset. This data were created with the 5% of the data of each
cluster. This data were used as new input data for the nine different hybrid models, and also for the
global model. Inside the hybrid model, each new sample was assigned to its local model using the
euclidean distance to each cluster centroid, and the output is predicted to calculate the model error.
Table 8 shows different error values to compare the hybrid configurations.

Table 8. Error values for the different hybrid configurations.

Global
Hybrid Model (Local Models)

2 3 4 5 6 7 8 9 10

MSE 0.0016 0.0016 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0014 0.0014

MAE 0.0272 0.0270 0.0258 0.0257 0.0258 0.0259 0.0259 0.0255 0.0247 0.0250

NMSE 0.1116 0.1095 0.1038 0.1023 0.1036 0.1030 0.1047 0.1005 0.0977 0.1001

The best hybrid configuration is the one that divides the model internally into nine local models.
In Table 7, it is possible to see the different algorithms and their configurations used in the final hybrid



Appl. Sci. 2020, 10, 4644 13 of 17

model, including artificial neural networks with 6, 8, 9, 11, 12, and 14 neurons, and least squared
support vector regression.

Moreover, to test the final hybrid configuration, five different subsets were tested. Each subset
represents the data collected over the whole day, chosen randomly from the initial dataset, and isolated
from the whole process described before. Figure 8 shows the variation of the real lower solar panel
output temperature (blue continuous line) and the variation predicted by the model (green dashed
line). The following error values have been calculated for these validation days; these values are not
normalized to test the real operation of the model, but the normalized ones are included in italics.

• Mean squared error − MSE = 30.5010 (0.0014);
• Mean absolute error − MAE = 3.8027 (0.0255);
• Normalized mean squared error − NMSE = 0.1144;
• Mean absolute percentage error − MAPE = 14.3964 (11.3191).

In order to validate the innovative feature of the hybrid model, several ANN, polynomial, and
SVR models have best experimented on using the whole dataset (global model). The results of this
combination of models are presented in Table 9.

Figure 8. Validation days used to test the final hybrid model.
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Table 9. Hybrid intelligent approach vs. global models with different regression algorithms.

Hybrid Model
with 9 Clusters

Global Models

LS-SVR Poly-1 Poly-2 ANN-3 ANN-5 ANN-6 ANN-9 ANN-11 ANN-13

MSE 0.0014 0.0018 0.0024 0.0025 0.0022 0.0020 0.0020 0.0020 0.0018 0.0017

MAE 0.0247 0.0283 0.0324 0.0314 0.0320 0.0304 0.0298 0.0288 0.0282 0.0279

NMSE 0.0977 0.1161 0.1489 0.1571 0.1415 0.1279 0.1240 0.1277 0.1117 0.1073

5. Conclusions and Future Works

The hybrid intelligent model described in this research predicts the output temperature of a solar
panel, taking into account the input temperature, the flow through the panel, and the solar radiation.
This type of model could be used to measure, for example, the thermal energy absorbed by a solar
collector without using thermal energy measurement equipment.

The model has been created with a real dataset recorder over two years to ensure that all
climatology conditions are included in the dataset. Moreover, different subsets were separated from
the beginning of the modeling process to validate and test the final model. The testing was performed
with the 5% of the samples that had been isolated from each cluster; this test has made it possible
to select the best hybrid configuration that has nine local models with artificial neural networks and
support vector machines for regression.

The validation dataset has been isolated from the rest of the dataset, at the very begging of data
processing, and it therefore does not consider the clusters. The validation test has been performed with
new data and the model has been used in real time; each sample is used as input and internally assigned
to a local model to calculate the output. The performance values obtained in this test represent a
prediction with less than 4 ◦C in MAE or less than 14.5% in MAPE (0.0255 and 11.3191 with normalized
values). The obtained MSE was 30.5010, and the NMSE was 0.1144. These results demonstrate that the
approach predicts more accurate values in comparison to global models.

Regarding future lines of research, it would be interesting to consider increasing the predicted
horizon in order to predict the signal values in a future time. Moreover, it may be possible to create
new models for the rest of the systems; this research only focused on solar thermal energy, but the
bioclimatic house has many systems that could be studied.
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