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Abstract: We propose Fast Forest of Flexible Features (F4), a novel approach for classifying multi-
variate time series, which is aimed to discriminate between underlying generating processes. This
goal has barely been addressed in the literature. F4 consists of two steps. First, a set of features
based on the quantile cross-spectral density and the maximum overlap discrete wavelet transform
are extracted from each series. Second, a random forest is fed with the extracted features. An
extensive simulation study shows that F4 outperforms some powerful classifiers in a wide variety of
situations, including stationary and nonstationary series. The proposed method is also capable of
successfully discriminating between electrocardiogram (ECG) signals of healthy subjects and those
with myocardial infarction condition. Additionally, despite lacking shape-based information, F4
attains state-of-the-art results in some datasets of the University of East Anglia (UEA) multivariate
time series classification archive.

Keywords: multivariate time series; classification; quantile analysis; wavelet analysis; random forest;
ECG signals; UEA archive

1. Introduction

Time series classification (TSC) is a hot topic with applications in many fields, includ-
ing economics, finance, environmental sciences, medicine, physics, speech recognition and
multimedia, among many others. Given a set of univariate (UTS) or multivariate (MTS)
time series with class labels, the target is to train an algorithm to predict the class of unla-
belled time series. Unlike UTS, MTS involve a number of variables or dimensions which
should be jointly considered to extract information about its right class label. Although
many algorithms have been developed in the last few years for univariate time series
classification (UTSC), multivariate time series classification (MTSC) has received much
less attention (a review on the topic of feature-based MTSC can be seen in [1]). However,
the increasing amount of data that are generated every day by sensors and Internet of
Things (IoT) devices makes totally pivotal the development of fast and accurate MTSC
algorithms. For instance, it is common for doctors to decide whether or not a patient is
likely to suffer a myocardial infarction based on multivariate ECG data. The availability of
MTSC approaches capable of tackling this task in an automated manner could free health-
care professionals from individually examining each ECG, resulting in increased efficiency.
Similar examples can be extracted from different application fields. In [2], a comprehensive
overview on MTSC, including current advances, future prospects, important references
and several application areas, is provided.

One of the first approaches for MTSC was introduced in the early work [3]. Each
MTS is characterised by means of a set of spectral matrices and then a classifier based
on measures of divergence between the corresponding sets is proposed. By nature, this
approach is aimed at classifying MTS according to the underlying multivariate process.
However, in [3], the procedure is only assessed with a real dataset of MTS coming either
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from earthquakes or explosions without reporting the results of its behaviour for different
generating models.

Some approaches for MTSC based on dimensionality reduction techniques were in-
troduced in the last decade [4–6]. In [4,5], two different procedures of feature selection for
MTS using the singular value decomposition (SVD) were proposed. The first approach con-
siders the first singular vector, whereas the second one considers the first two dominating
singular vectors weighted by their associated singular values. The correlations between
dimensions are taken into account in both cases, but the class labels are ignored when
the feature extraction is performed. To address this issue, Weng and Xen [6] proposed to
classify MTS by using locality preserving projections (LPP). The method consists of two
steps. First, feature extraction is carried out by using one of the approaches in [4] or [5].
Second, the feature vectors are projected in a lower dimensional space in a way that MTS
sharing the same class label are close to each other. In the reported simulation study, Weng
and Xen [6] also considered the two-dimensional singular value decomposition (2dSVD)
for MTSC, which was introduced in [7] as an extension of the classical SVD to sets of 2D
objects, as matrices.

A classical technique to perform TSC is based on the dynamic time warping (DTW)
distance along with the one nearest neighbour (1NN) classifier (see, e.g., [8,9]). Two
main extensions of this distance are frequently used in MTSC tasks [10]. Furthermore,
multivariate DTW has been used along with other distances to develop some sophisticated
MTSC procedures. In this regard, Mei et al. [11] proposed an approach considering DTW
and the Mahalanobis distance. Bankó and Abonyi [12] presented a novel algorithm called
correlation based dynamic time warping where DTW and PCA-based similarity measures
are combined so that the correlation between dimensions is taken into consideration
in the classification procedure. Górecki and Luczak [13] introduced a method called
derivative dynamic time warping where the distance between two MTS is defined as a
convex combination of the multivariate DTW distances between them and between their
derivatives. A hyperparameter α chosen in the learning phase (by leave-one-out cross-
validation) determines the weight of each individual distance and the 1NN rule is used
to classify new observations. The procedure is shown to improve the results achieved by
DTW in some datasets. Due to their generally great performance on classifying MTS, the
multivariate extensions of DTW distance with the 1NN classifier are usually considered as
a benchmark when a new MTS classification approach is introduced [11,14–16]. Indeed,
in [14], where an extensive analysis of some of the most promising approaches for MTSC is
performed, the authors conclude that: The standard TSC benchmark, DTW, is still hard to beat
and competitive with more recently proposed alternatives.

Approaches based on word extraction and symbolic representations have also been
constructed for MTSC. Schäfer and Leser [16] proposed WEASEL+MUSE, which builds
a multivariate feature vector, first using a sliding window approach applied to each UTS
constituting the MTS and then extracting the discrete features by window and dimension.
Next, the feature vector is utilised in a traditional classifier. WEASEL+MUSE is based
on the WEASEL classifier that the same authors proposed for UTS relying on a similar
idea [17]. Baydogan and Runger [18] introduced a classifier based on a new symbolic
representation, called SMTS, where all the dimensions are simultaneously considered. The
procedure builds on the application of two random forests, one for variable selection and
the other for the classification task.

The well-known idea of ensemble learning has also played a central role in MTSC in
recent years. The most successful method considering this approach is the Hierarchical Vote
Collective of Transformation-based Ensembles, so-called HIVE-COTE, which combines
classifiers based on five types of discriminatory features. Although it was originally
designed for UTSC [19], a multivariate extension can easily be developed by building each
component as an independent ensemble [14]. Multivariate HIVE-COTE is, on average,
one of the best performing algorithms when dealing with the datasets contained in the
University of East Anglia (UEA) multivariate time series classification archive [20].
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Deep learning algorithms have also been applied to MTSC during the last few years.
Karim et al. [15] proposed a long short-term memory fully convolutional network (LSTM-
FCN) to perform the classification task. This work is an extension of a previous work where
a fully convolutional with long short-term memory recurrent neural network is introduced
to perform UTSC [21]. The results given in [15] indicate that the LSTM-FCN beats the state
of the art in many of the considered datasets. However, it is worth mentioning that these
results differ from the ones reported in [14], where LSTM-FCN was tested in some of the
same datasets. As it is stated there: The deep learning algorithms have been disappointing in
these experiments. They have a tendency to occasionally completely fail. No doubt these will be
improved over time, but, as yet, they are not consistently state-of-the-art. This casts doubt on
the ability of the current deep learning techniques to solve MTSC problems. Liu, Hsaio
and Tu [22] designed a methodology for MTSC relying on convolutional neural networks
(CNN). The approach is based on a tensor scheme along with an innovative deep learning
architecture considering multivariate and lag-feature characteristics. Fan, Shrestha and
Qiu [23] presented a technique to classify spatial temporal patterns which employs spiking
neural networks (SNN). The method is evaluated in some MTS datasets, achieving a
performance comparable to deep neural networks.

There also exists some methods based solely on statistical feature extraction and then
on feeding a traditional classifier with the extracted features. For example, Zagorecki [24]
developed a generic method which extracts many statistical quantities from a given MTS.
The majority of those are derived from each UTS individually, but the approach also
considers the cross-correlation between each pair of UTS, thus accounting for the rela-
tionship between dimensions. This method was the runner-up in the 2015 AAIA Data
Mining Competition [25], in which 80 participant teams took part, thus proving itself as a
powerful approach.

The above-mentioned MTSC methods are fairly general in the sense that they are
presented to be applied to an arbitrary MTS dataset. A few other proposed approaches
are domain-specific. In [26], an approach particularly designed to classify multivariate
ECG data is provided. The method performs feature extraction via the maximum overlap
discrete wavelet transform (MODWT), and the features are then used to feed a linear or
quadratic discriminant analysis classifier. The approach is shown to compare favourably
with other techniques for classifying ECG signals. Formisano, De Martino and Valente [27]
designed a straightforward approach to classify multivariate functional magnetic reso-
nance imaging (fMRI) signals involving two steps: feature selection based on raw fMRI
data through recursive feature elimination, and application of a support vector machine
considering the selected features. Seto, Zhang and Zhou [28] presented a technique for
classifying MTS from human activity recognition. It first builds a paragon for each class by
using cluster analysis in the training data. Then, feature extraction is performed via DTW
and a classifier, such as the support vector machine, is applied.

Aside from [3,26], all the mentioned approaches address the MTSC task from a shape-
based point of view, in the sense that they assume that MTS in different classes are mainly
characterised by different geometric profiles. It seems surprising that, in the last 20 years, al-
most nobody has proposed a procedure for classifying MTS in a setting where the different
categories are associated with distinct underlying generating processes. Furthermore, al-
though the approaches in [3,26] should be able to distinguish between generating processes,
their performance is only illustrated with real datasets in those works. Thus, their effective-
ness under different dependence structures between classes has not been examined. To the
best of our knowledge, none of the existing MTSC approaches have been evaluated in a
scenario with different multivariate generating processes. However, such a situation is not
uncommon. For instance, it is well known that the MTS of daily returns of different pairs
of sector indexes can be modelled by means of multivariate generalized autoregressive
conditional heteroscedasticity (MGARCH) models with different coefficients [29]. Further-
more, multivariate electroencephalogram (EEG) signals collected from a group of subjects
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have been shown to follow vector autoregressive moving average (VARMA) models whose
coefficients depend on the specific mental task that the subject is performing [30].

In addition, due to the lack of methods addressing the MTSC task from the previously
stated point of view, it remains uncertain if a classifier of this nature would do a good job
when dealing with the real datasets most commonly considered in MTSC, for example,
the ones included in the UEA multivariate time series classification archive. The archive
consists of 30 MTS datasets covering a wide range of cases, dimensions and series lengths.
Some approaches such as multivariate DTW, WEASEL + MUSE and HIVE-COTE have
been tested with these datasets, showing a great performance. However, it remains totally
unanswered if the different classes in these datasets, or at least in some of them, can be
described by means of the underlying dependence structures in addition to the shapes. If
so, the implications of this fact would be profound, as it would encourage researchers to
take into account dependence measures when coping with a MTSC task.

The first contribution of this paper is to introduce a novel approach for classifying
MTS aimed at discriminating between underlying generating processes. The proposed
classifier is based on the quantile cross-spectral density (QCD) and the maximum overlap
discrete wavelet transform (MODWT). Both spectral tools are utilised to extract suitable
features, which are then used to feed a random forest classifier. Consideration of QCD
and MODWT is motivated by our previous work [31], where they separately proved
their usefulness in MTS clustering, exhibiting a high discriminatory power. Unlike other
conventional spectral features, quantile cross-spectral densities examine the dependence
between the components in quantiles, thus allowing us to simultaneously characterise
cross-sectional and serial dependence, exhibiting robustness to outliers and heavy tails
and capturing changes in the conditional shape (skewness, kurtosis). On the other hand,
the wavelet features are useful to distinguish between signals with spectra changing over
time and hence particularly suitable to deal with nonstationary processes. Therefore,
both feature types provide a valuable picture of the underlying dynamic structures and
report complementary information so that their combined use is expected to increase the
classification accuracy. Our approach avoids the need to analyse and model each single
MTS, which is computationally expensive and far from being the actual goal. The second
contribution of this work is to show how the proposed methodology can be successfully
applied to discriminate between ECG signals of healthy subjects and those with myocardial
infarction condition, which is an active and important research topic. Finally, the third
contribution is to show the excellent results reached by the proposed approach in some
classical MTS datasets despite lacking shape-based information.

The remainder of this paper is organised as follows. In Section 2, we present the
proposed classifier along with some related theoretical background and a toy example
illustrating its usefulness. Section 3 shows an extensive assessment of the proposed
approach via a simulation study covering a broad variety of scenarios. The corresponding
classes are represented by means of different stationary processes. The proposed classifier
is compared with some competitive alternatives reported in the literature. In Section 4, the
classifier is evaluated in nonstationary settings. The effectiveness of the method and its
competitors when varying the amount of training data and the series length is reported
in Section 5. The computation times of the analysed procedures are discussed through
Section 6. Section 7 illustrates the application of the proposed methodology to a classical
dataset containing ECG data. In Section 8, the classification method is applied to some
datasets in the UEA archive. Some concluding remarks and future work are provided in
Section 9.

2. A Combined Feature-Based Approach for Multivariate Time Series Classification

In this section, we present Fast Forest of Flexible Features (F4), the proposed approach
for classifying MTS. After some brief comments on the considered features and some
theoretical background, the classifier F4 is introduced and a motivating example is used to
highlight the advantages of combining the selected features.
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2.1. Combining Two Types of Features

F4 is based on a combination of two types of features. In [31], we proposed a dis-
similarity measure based on QCD to perform clustering of MTS, so-called dQCD. In an
extensive simulation study where a range of state-of-the-art dissimilarities were compared,
dQCD turned out to be the average best-performing measure, showing robustness against
the generating mechanism and exhibiting low computation times. On the other hand, a
dissimilarity based on multiple-scale wavelet variances and wavelet correlations, so-called
dW [32] also worked very well in the majority of scenarios simulated in [31], besides being
the most efficient. Both dQCD and dW are simply Euclidean distances between extracted
features and their high capability to discern between generating processes in an unsuper-
vised learning context suggests great performance when facing supervised classification
tasks. Furthermore, given their different nature, it is expected that a classifier considering
both types of features significantly improves the behaviour of classifiers based on only one
of these features. Whereas dQCD focuses on capturing the dependence structure at different
pairs of quantile levels, dW relies on decomposing a signal into a set of mutually orthogonal
wavelet basis functions. Both features complement each other, with dQCD well suited to
detect different dependence structures in parts of the joint distribution (which remain
hidden for standard spectral measures), and dW relying on a time-frequency analysis which
allows us to capture differences in times where the changes occur, and hence particularly
useful to deal with series exhibiting long-range dependence and nonstationarity.

2.2. Background

Some background knowledge of QCD and MODWT is provided below.

2.2.1. The Quantile Cross-Spectral Density

Following [31], let {Xt, t ∈ Z} = {(Xt,1, . . . , Xt,d), t ∈ Z} be a d-variate real-valued
strictly stationary stochastic process. Denote by Fj the marginal distribution function of
Xt,j, j = 1, . . . , d, and by qj(τ) = F−1

j (τ), τ ∈ [0, 1], the corresponding quantile function.

Fixed l ∈ Z and an arbitrary couple of quantile levels (τ, τ′) ∈ [0, 1]2, consider the cross-
covariance of the indicator functions I{Xt,j1 ≤ qj1(τ)} and I{Xt+l,j2 ≤ qj2(τ

′)} given by

γj1,j2(l, τ, τ′) = Cov
(

I{Xt,j1 ≤ qj1(τ)}, I{Xt+l,j2 ≤ qj2(τ
′)}
)

, (1)

for 1 ≤ j1, j2 ≤ d. Taking j1 = j2 = j, the function γj,j(l, τ, τ′), with (τ, τ′) ∈ [0, 1]2, so-
called quantile autocovariance function of lag l, generalises the traditional autocovariance
function.

In the case of the multivariate process {Xt, t ∈ Z}, we can consider the d× d matrix

Γ(l, τ, τ′) =
(
γj1,j2(l, τ, τ′)

)
1≤j1,j2≤d, (2)

which jointly provides information about both the cross-dependence (when j1 6= j2) and
the serial dependence (because the lag l is considered). To obtain a much richer picture of
the underlying dependence structure, Γ(l, τ, τ′) can be computed over a range of prefixed
values of L lags, L = {l1, . . . , lL}, and r quantile levels, T = {τ1, . . . , τr}, thus having
available the set of matrices

ΓXt(L, T ) =
{

Γ(l, τ, τ′), l ∈ L, τ, τ′ ∈ T
}

. (3)

In the same way as the spectral density is the representation in the frequency domain of
the autocovariance function, the spectral counterpart for the cross-covariances γj1,j2(l, τ, τ′)
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can be introduced. Under suitable summability conditions (mixing conditions), the Fourier
transform of the cross-covariances is well defined and QCD is given by

fj1,j2(ω, τ, τ′) = (1/2π)
∞

∑
l=−∞

γj1,j2(l, τ, τ′)e−ilω, (4)

for 1 ≤ j1, j2 ≤ d, ω ∈ R and τ, τ′ ∈ [0, 1]. Note that fj1,j2(ω, τ, τ′) is complex-valued so
that it can be represented in terms of its real and imaginary parts, which will be denoted
by <(fj1,j2(ω, τ, τ′)) and =(fj1,j2(ω, τ, τ′)), respectively. The quantity <(fj1,j2(ω, τ, τ′)) is
known as quantile cospectrum of (Xt,j1)t∈Z and (Xt,j2)t∈Z, whereas the quantity
−=(fj1,j2(ω, τ, τ′)) is called quantile quadrature spectrum of (Xt,j1)t∈Z and (Xt,j2)t∈Z.

Proceeding as in (3), QCD can be evaluated on a range of frequencies Ω and of quantile
levels T for every couple of components in order to obtain a complete representation of
the process, i.e., consider the set of matrices

fXt(Ω, T ) =
{
f(ω, τ, τ′), ω ∈ Ω, τ, τ′ ∈ T

}
, (5)

where f(ω, τ, τ′) denotes the d× d matrix in C

f(ω, τ, τ′) =
(
fj1,j2(ω, τ, τ′)

)
1≤j1,j2≤d. (6)

Representing Xt through fXt , a complete information on the general dependence
structure of the process is available. As the true QCD is unknown, estimates of this
quantity must be obtained. A consistent estimator of fj1,j2(ω, τ, τ′) is given by the so-called

smoothed CCR-periodogram, Ĝj1,j2
T,R (ω, τ, τ′) (see Equation (10) in [31]). Consistency and

asymptotic performance of this estimator are established in Theorem S4.1 of [33].
This way, the set of complex-valued matrices fXt(Ω, T ) in (5) characterising the

underlying process can be estimated by

f̂Xt(Ω, T ) =
{
f̂(ω, τ, τ′), ω ∈ Ω, τ, τ′ ∈ T

}
, (7)

where f̂(ω, τ, τ′) is the matrix

f̂(ω, τ, τ′) =
(

Ĝj1,j2
T,R (ω, τ, τ′)

)
1≤j1,j2≤d

. (8)

2.2.2. The Maximum Overlap Discrete Wavelet Transform

Following [32], we give some background of MODWT. The discrete wavelet transform
(DWT) is a orthonormal transform which re-expresses a univariate time series of length T
in terms of coefficients that are associated with a particular time and dyadic scale as well as
one or more scaling coefficients. A dyadic scale is of the form 2j−1, where j = 1, . . . , J, and
J is the maximum allowable number of scales. Provided T = 2J , the number of coefficients
at the j-th scale is T/2j. Generally, the wavelet coefficients at scale 2j−1 are associated with
frequencies in the interval [1/2j+1, 1/2j]. Thus, large time scales give more low-frequency
information, while small time scales give more high-frequency information. A UTS xt can
be recovered from its DWT by a multiresolution analysis (MRA), which is expressed as:

xt =
J

∑
j=1

dj + sJ , j = 1, . . . , J, (9)

where dj is the series of inverse of the series of wavelet coefficients at scale j, called wavelet
detail, and sJ is the smooth series, which is the inverse of the series of scaling coefficients.

The MODWT is a variation of the DWT. Under the MODWT, the number of resulting
wavelet coefficients is the same as the length of the original series. The MODWT decom-
position retains all of the possible times at each time scale, thus overcoming the lack of
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time invariance of the DWT. The MODWT can also be used to define a multiresolution
analysis of a given time series. In contrast to the DWT, the MODWT details and smooths
are associated with zero phase filters making it easy to line up features in a MRA with the
original time series more meaningfully.

Let hjl , l = 0, . . . , Lj, be a j-level wavelet filter of length Lj associated with scale

νj = 2j−1. Let Xt be a discrete parameter stochastic process. Let WX,jt = ∑
Lj
l=0 hjlXt−l be

the stochastic process by filtering Xt with the MODWT wavelet filter hjl . If it exists and is
finite, the time independent variance at scale νj is defined as v2

X(νj) = Var(WX,jt) and the
equality ∑∞

j=1 v2
X(νj) = Var(Xt) holds. For more details, we refer the reader to [34].

Given a time series xt, which is a realisation of the stochastic process Xt, an unbiased
estimator of v2

X(νj) can be obtained by means of

v̂2
X(νj) =

1
Mj

T−1

∑
t=Lj

Ŵ2
X,jt, (10)

where Ŵ2
X,jt are MODWT coefficients associated with the time series xt and Mj = T− Lj + 1

are the number of wavelet coefficients excluding the boundary coefficients that are affected
by the circular assumption of the wavelet filter. Let Xt and Yt be two appropriate stochastic
processes with MODWT coefficients WX,jt and WYjt, respectively, the wavelet covariance
can be defined as vXY(νj) = Cov(WX,jt, WY,jt) which gives a scale-based decomposition of
the covariance between Xt and Yt, i.e., ∑∞

j=1 vXY(νj) = Cov(Xt, Yt). Similarly, the wavelet
correlation at scale νj is defined as

ρXY(νj) =
vXY(νj)

v2
X(νj)v2

Y(νj)
, (11)

where v2
X(νj) and v2

Y(νj) are the wavelet variances of Xt and Yt, respectively. For two time
series xt and yt, which are realisations of Xt and Yt, respectively, the estimator of ρXY(νj) is
obtained by replacing vXY(νj), v2

X(νj) and v2
Y(νj) by their estimators. Thus, by considering

unbiased estimators v̂XY(νj), v̂2
X(νj) and v̂2

Y(νj) we obtain:

ρ̂XY(νj) =
v̂XY(νj)

v̂2
X(νj)v̂2

Y(νj)
. (12)

2.3. The Proposed Classifier

F4 consists of two main steps, namely (i) a feature extraction step and (ii) a classification
step based on the extracted features. In the first step, each MTS in the original labelled
sample is characterised by a vector of specific features as described below.

• QCD-based features. Estimates of QCD are obtained via the smoothed CCR-periodogram

Ĝj1,j2
T,R (ω, τ, τ′) for each pair of UTS by considering the set of quantile levels T =
{0.1, 0.5, 0.9} and the Fourier frequencies Ω = {ωk = 2πk/T, 0 ≤ k ≤ T/2}. Then,
each series is characterised by a vector consisting of the concatenation of the real
and imaginary parts of all the elements in the set {Ĝj1,j2

T,R (ω, τ, τ′), ω ∈ Ω, τ, τ′ ∈
T , 1 ≤ j1, j2 ≤ d}, such as described in Section 2.3 of our previous work [31]. The
classical principal component analysis (PCA) transformation is applied to the new
dataset and the first b0.12pc principal components are retained, p being the number of
principal components and b·c denoting the floor function. Our analyses have shown
that the discriminatory power of the QCD-based features significantly improves when
PCA is performed. In addition, the rate 0.12 has shown to give good results in a
wide variety of situations. Apart from improving the classification performance, this
dimensionality reduction step significantly reduces the runtime of F4.
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• MODWT-based features. Estimates of wavelet variances for each UTS and of wavelet
correlations between each pair of UTS are extracted in a number of scales via the
MODWT by considering (10) and (12), respectively. This requires choosing a wavelet
filter of a given length and the number of scales. In [31], we concluded that the wavelet
filter of length 4 of the Daubechies family, DB4, along with the maximum allowable
number of scales were the choices that led to the best average results in terms of
clustering quality indexes. Thus, we decided to use these hyperparameters in F4 to
perform supervised classification.

After the feature extraction stage, each MTS is replaced by a vector obtained by
stacking the two individual vectors associated with each type of features. The new dataset
is used as input to the random forest [35], thus concluding the classification process. Indeed,
a different classifier can be selected. In fact, our extensive numerical study also analysed
the performance of the gradient boosting machine [36] and different types of support vector
machines. The support vector machines showed significantly worse performance than the
tree-based classifiers in the majority of situations. The gradient boosting machine and the
random forest obtained similar results, but the hyperparameter tuning stage is easier to
carry out in the latter. In addition, the computation times were substantially lower for the
random forest than for the gradient boosting machine. According with these arguments,
the random forest was the classifier selected for F4.

It is worth remarking that F4 does not consider the fine-tuning of the hyperparameters
involved in the feature extraction stage, namely the quantile levels, the number of selected
principal components, the wavelet filter and the number of scales. Of course one could look
for an optimal set of hyperparameters, for instance, via cross-validation and grid search,
but this would substantially increase the computation time of F4.

Figure 1 shows a flowchart of F4 classifier.

MTS dataset

Features
QCD

Reduced features
PCA

Features

New dataset

F4 classifier

MODWT

Random Forest

Figure 1. Flowchart of F4 classifier.

2.4. Effectiveness of Combining Both Feature Types: An Illustrative Example

Consider a supervised classification problem consisting of three classes, each one
of them defined by a linear, nonlinear and conditional heteroskedastic bivariate process,
which are given below.
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• Class 1 (
Xt,1
Xt,2

)
=

(
0.6 0.4
−0.4 0.5

)(
Xt−1,1
Xt−1,2

)
+

(
εt,1
εt,2

)
.

• Class 2

(
Xt,1
Xt,2

)
=

(
0.9Xt−1,2 I{|Xt−1,1|≤1} − 3Xt−1,1 I{|Xt−1,1|>1}
0.9Xt−1,1 I{|Xt−1,2|≤1} − 3Xt−1,2 I{|Xt−1,2|>1}

)
+

(
εt,1
εt,2

)
.

• Class 3. Let (Xt,1, Xt,2)
ᵀ = (at,1, at,2)

ᵀ = (σt,1εt,1, σt,2εt,2)
ᵀ, denoting ᵀ the transpose

operator. The data-generating process consists of two Gaussian GARCH models

σ2
t,1 = 0.01 + 0.05a2

t−1,1 + 0.94σ2
t−1,1,

σ2
t,2 = 0.5 + 0.2a2

t−1,2 + 0.5σ2
t−1,2.

In the three cases, the vector (εt,1, εt,2)
ᵀ is an i.i.d. vector error process following

a bivariate normal distribution with zero mean. The variance of εt,1 and εt,2 is 1. The
covariance between εt,1 and εt,2 is 0 in Classes 1 and 2 and 0.5 in Class 3.

We simulated 50 realisations of length T = 10 from each class, which were randomly
divided into equal sized training and testing sets to assess the performance of classifier F4.
The classification was also carried out considering each kind of features separately. The
average accuracies based on 400 trials of the simulation mechanism are given in Table 1.

Table 1. Average accuracy of F4 and the individual classifiers.

Features for Classification QCD MODWT F4

Accuracy 0.651 0.649 0.718

Even though the series length is substantially small, the classifiers based only on a
feature type (QCD or MODWT) performed significantly better than a naive classifier (which
here has an expected accuracy of 0.33). However, the combined classifier F4 led to a higher
average score than the individual approaches. With the aim of rigorously confirming the
superiority of F4, we performed Wilcoxon–Mann–Whitney tests. The 400 accuracy values
obtained by F4 were compared either with the values attained by the QCD-based classifier
or the MODWT-based classifier. In both cases, the alternative hypothesis stated that F4
achieves higher accuracy than the single classifier with a probability greater than 0.5. Both
p-values were less than 2.2× 10−16, thus indicating rejection of the null hypothesis.

Table 2 shows the average confusion matrices based on the 400 trials for QCD,
MODWT and F4, respectively. Therefore, the quantities at each matrix add up to 75,
the size of the test set. The diagonal elements are related to correct classifications, whereas
the off-diagonal elements correspond to the different types of errors. All diagonal elements
in the matrix obtained with F4 are greater than the corresponding ones in the other two
matrices, thus indicating that F4 performed better than the individual classifiers with
regards to the three classes. The greatest improvement occurred in Class 2, associated with
the nonlinear MTS. An interesting aspect is that both individual classifiers are prone to
different kinds of errors. For example, the QCD-based classifier is more likely to predict
Class 3 from a series coming from Class 2, or to predict Class 2 for a series pertaining to
Class 3. On the other hand, the MODWT-based classifier is more likely to anticipate Class 1
for an MTS coming from Class 2, or to predict Class 3 for an MTS belonging to Class 1.
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Table 2. Average confusion matrices for the individual (QCD and MODWT) and combined (F4)
classifiers.

QCD MODWT F4

Predicted Predicted Predicted
Class 1 Class 2 Class 3 Class 1 Class 2 Class 3 Class 1 Class 2 Class 3

A
ct

ua
l Class 1 16.73 3.51 3.76 14.28 5.02 4.70 16.97 3.47 3.56

Class 2 3.92 15.89 4.19 5.75 15.63 2.62 3.98 17.36 2.66
Class 3 5.82 5.01 16.18 5.03 3.20 18.77 4.38 3.08 19.54

It can be deduced from the previous remarks that, in this example, both single classi-
fiers are able to extract from the data complementary information. Thus, the joint use of
features extracted via QCD and via MODWT seems a reasonable choice in order to obtain
improved performance in an MTSC problem.

3. Experimental Evaluation under Stationary Processes

In this section, we carry out a set of simulations with the aim of assessing the perfor-
mance of F4 in different scenarios of MTSC. All the generating processes here are stationary.
The simulation mechanism and the assessment procedure are properly detailed and the
obtained results are presented and discussed.

3.1. Experimental Design

Three supervised classification setups were considered in order to cover a wide variety
of stationary generating processes. Specifically, we consider the classification of (1) VARMA
(vector autoregressive moving average) processes, (2) nonlinear processes and (3) dynamic
conditional correlation processes. This selection is aimed at achieving a fair and general
assessment, including indeed pivotal scenarios in many application domains. The specific
generating models are given below.

Scenario 1. VARMA processes classification.
(a) VAR(1) Xt,1

Xt,2
Xt,3

 =

 0.6 0.5 0
−0.4 0.5 0.3

0 −0.5 0.7

Xt−1,1
Xt−1,2
Xt−1,3

+

εt,1
εt,2
εt,3

,

(b) VAR(1) Xt,1
Xt,2
Xt,3

 =

 0.2 0.2 0.1
−0.2 0.2 0.6
0.1 −0.3 0.2

Xt−1,1
Xt−1,2
Xt−1,3

+

εt,1
εt,2
εt,3

,

(c) VMA(1) Xt,1
Xt,2
Xt,3

 =

 0.6 0.5 0
−0.4 0.5 0.3

0 −0.5 0.7

εt−1,1
εt−1,2
εt−1,3

+

εt,1
εt,2
εt,3

,

(d) VMA(1) Xt,1
Xt,2
Xt,3

 =

 0.3 0.1 0.3
−0.2 0.1 0.4
0.1 −0.5 0.4

εt−1,1
εt−1,2
εt−1,3

+

εt,1
εt,2
εt,3

,

(e) VARMA(1,1) Xt,1
Xt,2
Xt,3

 =

 0.6 0.5 0
−0.4 0.5 0.3

0 −0.5 0.7

Xt−1,1
Xt−1,2
Xt−1,3

+

 0.6 0.5 0
−0.4 0.5 0.3

0 −0.5 0.7

εt−1,1
εt−1,2
εt−1,3

+

εt,1
εt,2
εt,3

.
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In all of the cases, (εt,1, εt,2, εt,3)
ᵀ is an i.i.d. vector error process following the trivariate

normal distribution with zero mean and covariance matrix equals the identity matrix.

Scenario 2. Nonlinear processes classification.
(a) NAR (nonlinear autoregressive process)(

Xt,1
Xt,2

)
=

(
0.7|Xt−1,1|/(|Xt−1,2|+ 1)
0.7|Xt−1,2|/(|Xt−1,1|+ 1)

)
+

(
εt,1
εt,2

)
,

(b) TAR (threshold autoregressive process)(
Xt,1
Xt,2

)
=

(
0.9Xt−1,2 I{|Xt−1,1|≤1} − 0.3Xt−1,1 I{|Xt−1,1|>1}
0.9Xt−1,1 I{|Xt−1,2|≤1} − 0.3Xt−1,2 I{|Xt−1,2|>1}

)
+

(
εt,1
εt,2

)
,

(c) BL (bilinear process) (
Xt,1
Xt,2

)
=

(
0.7Xt−1,1εt−2,2
0.7Xt−1,2εt−2,1

)
+

(
εt,1
εt,2

)
,

(d) EXPAR (exponential autoregressive process)(
Xt,1
Xt,2

)
=

(
0.3− 10 exp(−X2

t−1,1 − X2
t−1,2)Xt−1,2

0.3− 10 exp(−X2
t−1,1 − X2

t−1,2)Xt−1,1

)
+

(
εt,1
εt,2

)
.

In all of the cases, (εt,1, εt,2)
ᵀ is an i.i.d. vector error process following the bivariate

normal distribution with zero mean and covariance matrix equals the identity matrix.

Scenario 3. Dynamic conditional correlation processes classification. Consider (Xt,1, Xt,2)
ᵀ =

(at,1, at,2)
ᵀ = (σt,1εt,1, σt,2εt,2)

ᵀ. The data generating process consists of two GARCH models.
Specifically,

σ2
t,1 = 0.01 + c1a2

t−1,1 + c2σ2
t−1,1,

σ2
t,2 = 0.5 + c3a2

t−1,2 + c4σ2
t−1,2,(

εt,1
εt,2

)
∼ N

[(
0
0

)
,
(

1 ρt
ρt 1

)]
.

The coefficients in the GARCH models and the correlation between the standardised
shocks, ρt, are given by the following expressions:
(a) Piecewise constant correlation

ρt = 0.9I{t≤(T/2)} − 0.7I{t>(T/2)}, c1 = 0.05, c2 = 0.94, c3 = 0.2, c4 = 0.5,

(b) Constant correlation

ρt = 0.5, c1 = 0.075, c2 = 0.93, c3 = 0.25, c4 = 0.5,

(c) Piecewise constant correlation

ρt = 0.9I{t≤(T/2)} − 0.2I{t>(T/2)}, c1 = 0.10, c2 = 0.92, c3 = 0.3, c4 = 0.5,

(d) Piecewise varying correlation

ρt =
0.99

log(t + 100)
I{t odd} −

0.99
log(t + 100)

I{t even},

c1 = 0.125, c2 = 0.91, c3 = 0.35, c4 = 0.5.

Scenario 1 constitutes a slight modification of the first scenario in [31] and focuses
on the classification of VARMA models. VARMA models are broadly used in many fields
but the determination of the models order is quite complex since fixing orders too small
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leads to inconsistent estimators, whereas too large orders produce less accurate predictions.
Our classifier does not require prior modelling and the goal is to assess its capability to
learn the underlying model and its accuracy to classify new unlabelled realisations. In
particular, Scenario 1 involves up to five classes of different three-dimensional VARMA
structures, thus generating a not simple classification framework. Scenario 2 consists of
multivariate extensions of univariate NAR, TAR and BL processes presented in [37] and
EXPAR process given in [38]. Nonlinear UTS arise in several application fields [39–41].
Although nonlinear MTS have received much less attention, there exist some fields, such as
neurophysiology [42] and economics [43], in which nonlinear analysis of MTS has proven to
be critical. Thus, a good classifier should be able to discriminate between different nonlinear
generating processes. Scenario 3 is based on Scenario 2 in [31], which is in turn motivated
by a simulation study in the landmark work [44], where dynamic conditional correlation
models are introduced. In [31], the GARCH coefficients remained constant between the
different classes, being the distinctive features the correlations between the error terms.
However, this time, in order to cover a broader picture, each class is characterised by both
the correlation between the error terms and the GARCH coefficients. Multivariate GARCH
models have been extensively investigated over the last decades (an extensive survey is
offered in [45]). Specifically, the estimation of dynamic conditional correlation models
has been widely applied to financial series of different nature [46–48]. Furthermore, we
have decided to include in Scenario 3 both positive and negative correlations, since it has
been shown that some financial quantities are either positively or negatively correlated
depending on the period [49].

The simulation procedure was carried out as follows. For each process, 50 time series
of length T = 50 (Scenario 1), T = 40 (Scenario 2) and T = 250 (Scenario 3) were generated.
The whole set of MTS was randomly split into training and test sets, each one of them
containing half of the observations. The simulation mechanism was repeated 100 times.

3.2. Alternative Approaches and Assessment Criteria

To shed light on the performance of F4, it was compared with some classical ap-
proaches for MTSC. They are summarised below.

• DTW-based classifiers (DTW). The two multivariate extensions of the dynamic time
warping distance described in [10] are usually considered as a benchmark in MTS clas-
sification (see, e.g., [14–16,18]). The “independent” warping version (DTWI) computes
DTW between each pair of UTS, whereas the “dependent” version (DTWD) forces
all of the dimensions to warp identically, in a single warping matrix. Classification
is generally carried out with a nearest neighbour classifier based on these distances.
Since both distances produced very similar results, only the outcomes with DTWD
are reported, which gave rise to slightly greater average scores.

• Nonparametric approach in the frequency domain (KST). The work of [3] proposed to de-
scribe each MTS Xt by means of a set of spectral matrices SX , and then measuring the
dissimilarity between a pair of series in terms of the so-called J-divergence, dJ , a mea-
sure of disparity between the corresponding sets of spectral matrices. In a supervised
classification setup with K classes, sets of average spectral density matrices S1, . . . , SK
are obtained for each class by considering the training set, and a test observation Yt
is assigned to the class k∗ = arg min1≤k≤K dJ(Sk, SY). In [31], dJ was tested in cluster
analysis, achieving outstanding results when grouping linear processes. Hence, this
classifier provides a good benchmark in our Scenario 1.

• Two-dimensional singular value decomposition (2dSVD). The work of [7] introduced
2dSVD, which is an extension of the standard SVD. Two-dimensional singular value
decomposition explicitly captures the 2D nature of 2D objects, such as 2D images.
MTS row–row and column–column covariance matrices are directly constructed for
each MTS and the eigenvectors are computed. The first r and s eigenvectors are
retained and each MTS is replaced by the matrix obtained via 2dSVD, which is a
function of r and s. Finally, a nearest neighbour classifier considering the Euclidean
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distances between columns of the resulting matrices is executed. In [6], a comparison
between some MTS classifiers is carried out by using three real MTS datasets. The
authors considered 2dSVD along with four other approaches [4–6], being the results
obtained by 2dSVD very close to the best ones. All of the methods are based on
dimensionality reduction and SVD. Thus, we have considered that choosing only one
of these approaches (2dSVD) is enough to reach satisfactory conclusions about the
performance of this type of method in the designed scenarios. The 2dSVD classifier
requires the selection of r and s. Our numerical experiments have shown that, in most
cases, the higher the number of retained eigenvectors, the better the performance
of the classifier. Thus, we have decided to retain all of the eigenvectors from both
covariance matrices.

• A versatile approach based on features of different nature (ZK). The work of [24] proposed
a generic method to perform MTSC over an arbitrary set of MTS data. Each MTS is
described by means of a set of features derived from each UTS (mean, maximal value,
skewness, kurtosis, etc.). The cross-correlations between each pair of UTS are also
included. The resulting features are then used to feed a random forest. This method
produced the second-highest score of nearly 80 participant teams who took part in the
2015 AAIA Data Mining Competition concerned with classifying firefighter activities.
Note that this method relies on statistical features as the sample moments, thus being
suitable for MTSC based on generating processes.

The random forest algorithm was implemented throughout the paper by means of
the function ranger() of the R package ranger, with the default options. Specifically, we
considered 500 trees, unlimited depth for each tree and a splitting criterion based on the
Gini Index. Concerning the number of variables to possibly split at in each node of the
trees, the value b

√
Pc was taken into account, P being the number of predictors. Several

combinations of hyperparameters were tested in the different scenarios, but usually no
improvements were obtained over the default settings. It is worth remarking that this
result is in accordance with the fact that the random forest algorithm does not require
hyperparameter tuning in most cases [50].

The KST classifier does not need hyperparameter tuning, while DTW and 2dSVD only
require to set the number k of neighbours. We considered k = 1 in both cases since this
is the most common choice in the literature. In fact, DTW is usually applied along with
the 1NN classifier [1,14,20] and the comparative study carried out in [6] also considered
2dSVD with the 1NN classifier.

The behaviour of the different classifiers was assessed by means of four common
performance measures computed with regards to the test set, namely accuracy (ACC),
precision (PR), recall (RE) and F1-score (F1). To compute PR and RE, we considered the
so-called macro average, which gives the same weight to every class regardless of the
number of instances involved. All of the considered metrics take values between 0 and 1 in
such a way that the closer to 1 the measure, the better the predictive ability of the classifier.

3.3. Results and Discussion

The averages and standard deviations of the performance measures over the 100 trials
are given in Table 3. According to these results, F4 was the best performing classifier in
Scenarios 2 and 3, and the runner-up in Scenario 1. In this latter scenario, the KST classifier
achieved the best results, only slightly above those obtained by F4. Zagorecki's approach
achieved acceptable results, but quite far from those of the top performers. The remaining
competitors, DTW and 2dSVD, attained very poor scores, only slightly improving the
expected accuracy of a naive classifier (0.20).

As for Scenario 2, F4 and KST continued to be the approaches receiving the highest
scores, the former slightly outperforming the latter. Here, ZK obtained results close to the
top classifiers. Finally, KST significantly worsened its performance in Scenario 3, where
only F4 (with scores close to one for all of the metrics) and ZK obtained satisfactory results.
Classifier DTW obtained its highest average scores in this scenario.
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Table 3. Averages and standard deviations (in brackets) of the performance metrics for the five
classifiers in Scenarios 1, 2 and 3. For each scenario and metric, the best average result is shown
in bold.

Metric F4 KST ZK 2dSVD DTW

Scenario 1 Accuracy 0.933 0.954 0.806 0.291 0.324
(0.024) (0.020) (0.041) (0.050) (0.048)

Precision 0.937 0.958 0.813 0.528 0.564
(0.022) (0.018) (0.037) (0.083) (0.089)

Recall 0.936 0.954 0.811 0.296 0.327
(0.022) (0.020) (0.039) (0.042) (0.041)

F1-score 0.934 0.954 0.806 0.210 0.244
(0.023) (0.020) (0.040) (0.106) (0.113)

Scenario 2 Accuracy 0.882 0.854 0.805 0.403 0.380
(0.041) (0.036) (0.044) (0.049) (0.056)

Precision 0.886 0.862 0.808 0.610 0.647
(0.040) (0.038) (0.043) (0.059) (0.050)

Recall 0.886 0.855 0.808 0.404 0.382
(0.036) (0.035) (0.042) (0.042) (0.045)

F1-score 0.878 0.845 0.799 0.321 0.300
(0.042) (0.038) (0.047) (0.074) (0.077)

Scenario 3 Accuracy 0.952 0.635 0.867 0.329 0.600
(0.025) (0.058) (0.032) (0.041) (0.064)

Precision 0.953 0.675 0.869 0.376 0.648
(0.024) (0.050) (0.032) (0.047) (0.069)

Recall 0.953 0.633 0.869 0.328 0.601
(0.024) (0.056) (0.031) (0.026) (0.060)

F1-score 0.951 0.616 0.865 0.080 0.577
(0.025) (0.064) (0.033) (0.125) (0.070)

Table 3 allows us to conclude that F4 was, on average, the most effective classifier in
the considered settings. The combined use of QCD- and MODWT-based features gives
F4 enough versatility to achieve excellent scores when facing either linear, nonlinear or
conditionally heteroskedastic processes.

To gain more insights into the previous remarks, the top panels in Figures 2–4 display
the boxplots based on the performance measures of the 100 simulation trials for Scenarios 1,
2 and 3, respectively. The graphs clearly show that the weak spot of KST is Scenario 3,
where its performance substantially worsened. F4 and ZK showed a more stable behaviour,
maintaining similar scores along the three considered scenarios. DTW and 2dSVD always
received, on average, higher scores for PR than for RE. Therefore, these classifiers did a
worse job finding the observations of a given class than getting the right decision over the
test observations assigned to a particular class. Interestingly enough, the dynamic time
warping-based approach obtained acceptable results in Scenario 3, receiving an average
accuracy of 0.6.

The average accuracy over all of the 300 trials for F4, the QCD- and the MODWT-based
classifiers was 0.922, 0.861 and 0.849, respectively. Therefore, as in the motivating example
of Section 2.4, F4 produced significantly greater scores than its solo counterparts, thus
illustrating the importance of considering simultaneously both types of features.

We also checked the behaviour of the classifiers under some amount of fat-tailedness
in the error distribution. Note that this characteristic is frequently exhibited by either UTS
and MTS arising in several application domains [51–54], which motivated us to analyse its
effect in our experiments. The whole simulation was replicated with errors generated from
a multivariate t distribution with 3 degrees of freedom and the results are given in Table 4.

In this new situation, F4 achieved the best average scores in the three considered
scenarios, followed by KST in Scenario 1 and by ZK in Scenarios 2 and 3. Whereas F4
and ZK slightly decreased their average effectiveness when heavy tails were introduced,
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KST suffered a substantial decline for all of the performance metrics. The distance-based
approaches, 2dSVD and DTW, obtained poor results in Scenarios 1 and 2, and higher scores
in Scenario 3. Surprisingly, 2dSVD improved its behaviour under heavy tails in Scenario 3.
The corresponding boxplots are depicted in the bottom panels of Figures 2–4. All of the
plots clearly show that F4 outperformed the remaining competitors by a large margin.
Whereas Zagorecki's approach ZK showed again a stable behaviour, the decline suffered
by KST due to the distributional form of the errors was so substantial that it was beaten by
2dSVD and DTW in Scenario 3 regardless of the considered performance measure.

Figure 2. Boxplots of accuracy, precision, recall and F1-score based on the 100 trials of the simulation
procedure for Scenario 1 (top panel) and for Scenario 1 with heavy tails (bottom panel).

Figure 3. Boxplots of accuracy, precision, recall and F1-score based on 100 trials of the simulation
procedure for Scenario 2 (top panel) and for Scenario 2 with heavy tails (bottom panel).
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Figure 4. Boxplots of accuracy, precision, recall and F1-score based on 100 trials of the simulation
procedure for Scenario 3 (top panel) and for Scenario 3 with heavy tails (bottom panel).

Table 4. Averages and standard deviations (in brackets) of the performance metrics for the five
classifiers in Scenarios 1, 2 and 3 with heavy tails. For each scenario and metric, the best average
result is shown in bold.

Metric F4 KST ZK 2dSVD DTW

Scenario 1 Accuracy 0.918 0.734 0.714 0.296 0.315
(0.029) (0.087) (0.046) (0.043) (0.065)

Precision 0.921 0.773 0.722 0.469 0.588
(0.028) (0.069) (0.045) (0.079) (0.085)

Recall 0.921 0.736 0.720 0.300 0.320
(0.028) (0.087) (0.042) (0.039) (0.057)

F1-score 0.918 0.720 0.709 0.232 0.220
(0.029) (0.100) (0.046) (0.106) (0.121)

Scenario 2 Accuracy 0.832 0.647 0.753 0.403 0.390
(0.045) (0.063) (0.053) (0.049) (0.070)

Precision 0.840 0.722 0.763 0.610 0.672
(0.040) (0.057) (0.05) (0.059) (0.099)

Recall 0.837 0.643 0.758 0.404 0.387
(0.041) (0.065) (0.049) (0.042) (0.057)

F1-score 0.830 0.625 0.751 0.321 0.273
(0.045) (0.075) (0.053) (0.074) (0.116)

Scenario 3 Accuracy 0.903 0.442 0.804 0.577 0.589
(0.034) (0.075) (0.042) (0.051) (0.055)

Precision 0.906 0.521 0.809 0.576 0.589
(0.033) (0.070) (0.038) (0.053) (0.060)

Recall 0.906 0.439 0.807 0.578 0.592
(0.034) (0.070) (0.040) (0.048) (0.054)

F1-score 0.902 0.390 0.802 0.561 0.576
(0.035) (0.086) (0.04) (0.053) (0.057)
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4. Experimental Evaluation under Nonstationary Processes

In this section, the simulation study is extended to examine the performance of F4
when coping with some types of nonstationary processes.

4.1. Experimental Design

Two new classification scenarios involving exploding VAR (vector autoregressive)
processes and VAR processes with time-varying coefficients (tVAR) were considered. The
specific generating models concerning each class of processes are given below.

Scenario 4. Explosive VAR processes classification.
(a) VAR(1) Xt,1

Xt,2
Xt,3

 =

 1.01 0.9 0
−0.8 0.9 0.8

0 −0.9 0.9

Xt−1,1
Xt−1,2
Xt−1,3

+

εt,1
εt,2
εt,3

,

(b) VAR(1) Xt,1
Xt,2
Xt,3

 =

 1.03 0.95 0
−0.85 0.6 0.8

0 −0.95 0.9

Xt−1,1
Xt−1,2
Xt−1,3

+

εt,1
εt,2
εt,3

.

Scenario 5. Time-varying VAR processes classification.
(a) tVAR(1) (

Xt,1
Xt,2

)
=

(
0.49 cos(tπ/2T) 0.49 cos(tπ/2T)
0.49 cos(tπ/2T) 0.49

)(
Xt−1,1
Xt−1,2

)
+

(
εt,1
εt,2

)
,

(b) tVAR(1) (
Xt,1
Xt,2

)
=

(
0.01 cos(tπ/2T) 0.01 cos(tπ/2T)
0.01 cos(tπ/2T) −0.3

)(
Xt−1,1
Xt−1,2

)
+

(
εt,1
εt,2

)
.

In all of the cases, the error is an i.i.d. process following a multivariate standard
Gaussian distribution. The generating models in Scenario 4 correspond to nonstationary
processes since their coefficient matrices have eigenvalues with a modulus greater than
one (see, e.g., Chapter 2 in [55]). These kinds of VAR processes are usually referred to as
explosive. Explosive VAR processes have been shown to naturally arise in some disciplines,
such as macroeconomics [56]. The matrices of coefficients in Scenario 5 vary with t, thus
making the processes nonstationary despite verifying the stationarity conditions for each
t. This scenario is a multivariate extension of the scenario of Simulation 2 in [57]. Time-
varying VAR models have empirical applications in monetary policy [58] or in estimating
fiscal and monetary interactions, among others [59]. Thus, Scenarios 4 and 5 are two
examples of nonstationary processes commonly encountered in practice.

It is worth pointing out that the classifier F4 is based on quantile cross-spectral densi-
ties, which are not defined for nonstationary processes. However, the sample quantities
Ĝj1,j2

T,R (ω, τ, τ′) always exist and can be computed as descriptive features, even if they do
not have a direct interpretation in a nonstationary setting. Since the target is not modelling
the underlying processes but properly learning an algorithm to classify unlabelled MTS
accurately, the relevant issue is whether or not the sample features provide distinct spectral
characterisations of different nonstationarity structures. To illustrate the usefulness of
QCD in Scenario 4, we have depicted in Figure 5 estimates of the quantile cospectrum
and quantile quadrature spectrum between Xt,1 and Xt,3 for large sample size simulations
(T = 2000) of the two models involved in this scenario. The probability levels τ1 = 0.1 and
τ2 = 0.5 were considered. The left panels refer to particular realisations of the processes,
whereas the right panels refer to different ones. Each line has been plotted with a distinct
intensity level of red and blue according to the underlying class. It can be deduced from
the plots that both estimates tend to the same quantities within a given class as the series
length approaches infinity, and these limits are different between the two classes. Similar
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situations occur when a different pair of variables and quantile levels are taken into ac-
count. Thus, it is expected that F4 can appropriately discriminate between both classes in
Scenario 4. Analogous conclusions can be obtained for Scenario 5.

Figure 5. Estimates of the hypothetical quantile cospectrum and quantile quadrature spectrum
between Xt,1 and Xt,3 for large sample size (T = 2000) simulations of processes (a) and (b) in
Scenario 4. The left hand panels correspond to particular realisations of both processes, whereas the
right hand panels to other realisations.

4.2. Results and Discussion

The simulation procedure was carried out along the same lines as for the stationary
scenarios in Section 3.1 except for the series lengths, which were T = 60 in Scenario 4 and
T = 100 in Scenario 5. The averages and standard deviations of the performance metrics are
provided in Table 5. The classifiers KST and F4 achieved perfect results in both scenarios,
followed by ZK, which performed pretty well, especially in Scenario 5. The classifiers
2dSVD and DTW received worse scores, Scenario 5 being particularly challenging for
these methods.
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Table 5. Averages and standard deviations (in brackets) of the performance metrics for the five
classifiers in Scenarios 4 and 5. For each scenario and metric, the best average result is shown in bold.

Metric F4 KST ZK 2dSVD DTW

Scenario 4 Accuracy 1 1 0.952 0.902 0.894
(0) (0) (0.033) (0.054) (0.049)

Precision 1 1 0.955 0.905 0.903
(0) (0) (0.031) (0.053) (0.042)

Recall 1 1 0.953 0.903 0.895
(0) (0) (0.033) (0.052) (0.048)

F1-score 1 1 0.952 0.901 0.892
(0) (0) (0.033) (0.054) (0.050)

Scenario 5 Accuracy 1 1 0.980 0.776 0.788
(0) (0) (0.024) (0.072) (0.079)

Precision 1 1 0.980 0.814 0.853
(0) (0) (0.023) (0.060) (0.853)

Recall 1 1 0.980 0.780 0.791
(0) (0) (0.025) (0.068) (0.791)

F1-score 1 1 0.979 0.769 0.775
(0) (0) (0.025) (0.076) (0.775)

5. Effect of the Size of the Training Set and the Series Length

This section is devoted to analysing how the effectiveness of the five considered
classifiers behaves according to the series length T and the amount of training data M. To
do so, 100 simulation trials of Scenario 2 were performed for different values of T and M,
namely T ∈ {10, 20, 40, 60, 80, 100} and M ∈ {40, 80, 200, 400, 600, 800}. When varying the
value of T, the value of M remained constant, M = 200, whereas when varying the value
of M, the value of T remained constant, T = 40. Note that these values of M and T were
the ones utilised in the simulations of Scenario 2 in Section 3.

The curves of average accuracies as a function of T and M are shown in the top and
bottom panels of Figure 6, respectively. F4, ZK and KST increased their accuracy with the
series length, which was expected because these classifiers are feature-based and the true
features are more accurately estimated with larger realisations. For values of T beyond 60,
the rate of increase was greater for F4 than for ZK and KST. As for 2dSVD and DTW, they
obtained worse results as T got larger, eventually approaching the accuracy associated with
a naive classifier (0.20). This seems counterintuitive at first, but it has a logical explanation.
These approaches are based on separating geometric profiles, and when the series length
is small, they are able to discriminate between classes to some degree. However, as the
series get longer, the classification task depends more and more on removing the noise,
which is complex for these classifiers, and they are no longer able to distinguish between
generating processes. With regards to the effect of adding more training data, classifiers F4,
ZK and 2dSVD seem to benefit from this fact, the increase in accuracy being considerably
slight for M > 400. On the other hand, the effectiveness of KST and DTW does not seem
to significantly vary across the different values of M. It is worth mentioning that F4 and
ZK are the only approaches benefiting from both an increase of the series length and the
amount of training data.
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Figure 6. Average accuracies of the five classifiers as a function of the series length (top panel) and the
amount of training data (bottom panel). One hundred simulation trials of Scenario 2 were considered
for each value of T and M.

6. Time Consumption Comparison

To assess the computational efficiency of the five classifiers analysed throughout the
paper, we have recorded the runtime spent by the corresponding programs in finishing
the classification task regarding Scenario 2. Note that, for some approaches, as F4 and ZK,
the classification process consists of feature extraction followed by the construction of a
random forest. In contrast, for other approaches, such as DTW, the classification procedure
consists directly of the computation of a distance between each element in the test set and
all of the elements in the training set. We consider that the classification task is over when
all of the performance measures regarding the test set have been computed. We recorded
the running times for (M, T) ∈ {(200, 40), (200, 80), (400, 40)}, with M and T denoting the
amount of training data and the MTS length, respectively. With the aim of mitigating the
uncertainty caused by uncontrollable factors, we have taken the running time over the
100 simulation trials. The computer used to run the programs was a MacBook Pro with
processor Quad-Core Intel Core i7, a speed of 2.9 GHz and a RAM memory of 16 GB. The
programs were coded and executed in RStudio. The R version was 3.6.1.

The CPU runtime for the five methods is given in Table 6. The most efficient classifier
was ZK, closely followed by F4, while the less efficient ones were KST and DTW. The
classifier 2dSVD lies somewhere in the middle. The linear increase in time suffered by the
distance-based classifier DTW when adding more training data was expected due to the
approach employed by these classifier. Unlike the rest of the methods, DTW was affected
to a large extent when the series length increased. With regards to F4 and ZK, their running
times grew less than linearly with M and T. In summary, besides getting the best average
results in our experiments, F4 has shown to be one of the most efficient classifiers.
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Table 6. The CPU runtime (minutes) for the five classifiers regarding the 100 simulation trials in
Scenario 2. Different values for the amount of training data (M) and the length of the series (T)
were considered.

Classifier M = 200, T = 40 M = 200, T = 80 M = 400, T = 40

F4 4.239 5.125 7.017
KST 86.524 102.177 197.480
ZK 3.510 3.573 4.927
2dSVD 26.279 26.304 67.686
DTW 37.154 186.986 80.018

7. Application to ECG Data

In this section, F4 is applied to a common MTSC problem: discriminating between
ECG signals coming from subjects suffering from myocardial infarction (MI) and ECG
signals from healthy subjects. This problem has been extensively studied in the medical
literature [26,60–62]. It is worth remarking that ECG signals are known to be nonstationary.

The considered data come from the PTB Diagnostic ECG Database [63]. Specifically,
we have downloaded the database from the Kaggle repository (https://www.kaggle.com/
openmark/ptb-diagnostic-ecg-database (accessed on 2 October 2021)), containing 448
15-lead ECG signals from 148 MI patients (368 instances) and 52 healthy volunteers (80
instances). The minimum series length in this MTS dataset is T = 32,000. This database has
been broadly used for ECG classification [26,64–67]. Before performing the classification
task, we have decided to make the following preprocessing steps.

• The first 80 ECG records from MI patients and all of the records from healthy controls
were considered to have a balanced classification problem. This way, the results are
more easily interpretable, as a naive classifier is expected to achieve an accuracy of 0.5
in the new dataset.

• For the sake of simplicity and reasonable computation times, the first 6 leads and
500 time observations of each ECG signal were selected. The choice of certain subsets
of dimensions and time observations is common in ECG classification [26,62].

In summary, the considered dataset consists of 160 6-lead ECG signals of length
T = 500, 80 pertaining to MI patients and 80 coming from healthy controls. Figure 7
displays a signal of each class. The top panel shows the ECG of a subject suffering from MI,
whereas the bottom panel displays a signal of a healthy volunteer.

F4 and the competitors regarded throughout this work were used to perform the
classification task. As this dataset does not contain a training–testing default split, we took
the following steps in order to properly evaluate the classifiers.

1. Randomly splitting the original dataset into training and testing datasets, each one of
them containing 80 ECG signals.

2. Fitting each classifier in the training set and evaluating its effectiveness in the test set.

Hyperparameter selection for classifiers F4 and ZK was made in the same way as in
the simulations. Methods 2dSVD and DTW were used again along with the 1NN classifier.
Steps 1 and 2 before were repeated 10 times and the average accuracies are given in Table 7.
F4 obtained the best average score, 0.860, and ZK also performed pretty well. On the
contrary, the approaches 2dSVD and DTW achieved poor results. They were virtually
unable to discriminate between the two classes of ECG signals. The classifier KST lay in
the middle. These results illustrate the usefulness of the F4 classifier in an important and
active field of research as it is ECG classification.

https://www.kaggle.com/
openmark/ptb-diagnostic-ecg-database
openmark/ptb-diagnostic-ecg-database
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Figure 7. ECG of a patient suffering from MI (top panel) and of a healthy volunteer (bottom panel).

Table 7. Average accuracies of the five classifiers in the ECG database. The best result is shown
in bold.

Classifier F4 ZK KST 2dSVD DTW

Accuracy 0.860 0.800 0.693 0.554 0.568

8. Application to Some UEA Datasets

We now apply F4 to some datasets in the UEA multivariate time series classification
archive. Training and testing sets are given in the archive for each dataset, thus allowing
to perform a rigorous assessment of new MTSC algorithms. Notice that our goal here is
not running F4 in each and every dataset and comparing the results with those that are
state of the art. This would be unfair for F4, as it does not contain any shape or level-based
information, such as the mean or the maximal or minimal values of each UTS constituting
the given MTS, which are known to be proper discriminative features for the datasets in
the archive (a simple graphical analysis of some MTS confirms this fact). Instead, we want
to show how F4, which is mainly aimed at discriminating between generating processes,
can also obtain good results when dealing with some real-life classification problems in
which each class is characterised by a different geometric profile.

The considered datasets are summarised in Table 8. They cover a broad variety of
dimensions, series lengths and numbers of classes, thus constituting a heterogeneous subset
of the UEA archive. Each dataset in Table 8 pertains to a different problem. For instance, the
data in RacketSports were created from university students playing badminton or squash
while wearing a smart watch, the problem being to identify the sport and the stroke of each
player. A summary of the corresponding problems can be seen in [20].
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Table 8. Summary of the six datasets from the UEA multivariate time series classification archive.

Dataset Train Cases Test Cases Dimensions Length Classes

Cricket 108 72 6 1197 12
Libras 180 180 2 45 15
Epilepsy 137 138 3 206 4
RacketSports 151 152 6 30 4
Handwriting 150 850 3 152 26
BasicMotions 40 40 6 100 4

The F4 algorithm, along with its competitors, was used to perform MTSC in the six
considered datasets. We maintained the same setting considered throughout the work.
Accuracies obtained in the test set are given in Table 9. F4 got the best average results in
these challenging scenarios, showing its huge versatility. It clearly beat KST and 2dSVD,
and reaped better results than ZK and DTW in four out of the six datasets.

As a matter of fact, F4 attained perfect results with the datasets containing series of
large length (Cricket, Epilepsy and Basic Motions), and worse results with the datasets
containing series of short length (Libras and RacketSports). The exception to this fact was
the dataset Handwriting. F4 achieved the worst results in this dataset. However, this could
be due to the large number of existing classes (26), which makes the classification task in
Handwriting particularly challenging. The previous insights are not surprising, since a
larger value of the series length implies a more accurate estimate of QCD and the wavelet
quantities. This suggests that F4 could be particularly useful when dealing with datasets
containing long MTS.

Table 9. Accuracies of the five classifiers in the six datasets from the UEA multivariate time series
classification archive.

Dataset F4 KST ZK 2dSVD DTW

Cricket 1 0.986 0.986 0.931 1
Libras 0.861 0.422 0.894 0.811 0.872
Epilepsy 1 0.877 0.978 0.587 0.884
RacketSports 0.888 0.447 0.849 0.816 0.816
Handwriting 0.433 0.179 0.280 0.328 0.621
BasicMotions 1 1 1 0.600 0.750

Average 0.864 0.652 0.831 0.679 0.824

9. Conclusions and Future Work

Given the massive amount of data that are generated everyday, TSC has become a
topic of paramount importance. MTSC is a more challenging task than UTSC given the
high dimensionality of MTS objects. Classification of MTS should take into account the
relationships between dimensions. Whereas most of the approaches for MTSC are based
on considering that the different classes are described by means of unequal geometric
profiles, only a few authors have tackled the classification task from a point of view of
multivariate generating processes. The first contribution of this paper was addressing that
issue by proposing F4, a versatile, effective and efficient classifier for MTSC. F4 consists
of two steps: feature extraction via QCD and MODWT, and feeding a traditional random
forest classifier with the extracted features. F4 was tested in a wide variety of simulated
scenarios, including stationary and nonstationary settings. In all of the considered cases,
F4 led to very good results, comparing favourably with some powerful classifiers proposed
in the literature.

The great performance of F4 when dealing with nonstationary MTS called for its
evaluation in some real datasets, which are usually comprised of nonstationary series.
Particularly, the UEA multivariate time series classification archive provided a good starting
point. Actually, we were sceptical about F4 performing well in these datasets. Furthermore,
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we did not suspect that F4 would be able to beat ZK and DTW in some of them. The classes
in these datasets are often characterised by changes in level and other shape patterns,
and neither of them are taken into consideration by F4, which is mainly based on the
dependence structure within and between MTS dimensions. Thus, another contribution of
this work was to show that even in an MTSC problem calling for a shape-based classifier, a
dependence-based classifier could be helpful.

Finally, F4 was also used to solve a classical problem in medicine: classifying ECG
signals of MI and healthy patients. The approach was successful in discriminating between
both types of signals in a well-known ECG dataset.

There are two main ways through which this work could be further developed. First,
an extension of F4 considering the inclusion of geometric features could be constructed.
This way, classification performance is likely to improve substantially, at least when coping
with datasets such as the ones in the UEA archive. Indeed, we have already obtained
promising preliminary results by considering this approach. Second, it would be interesting
to design an even computationally cheaper version of F4 to properly cope with situations
in which the number of dimensions becomes considerably large. Both approaches will be
properly addressed in upcoming months.
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