
Research Article
Delving into Android Malware Families with a Novel
Neural Projection Method

Rafael Vega Vega ,1 Héctor Quintián,1 Carlos Cambra ,2 Nuño Basurto ,2

Álvaro Herrero ,2 and José Luis Calvo-Rolle 1,3

1University of A Coruña, Departamento de Ingenieŕıa Industrial, Avda. 19 de febrero s/n, 15495, Ferrol, A Coruña, Spain
2Grupo de Inteligencia Computacional Aplicada (GICAP), Departamento de Ingenieŕıa Civil, Escuela Politécnica Superior,
Universidad de Burgos, Av. Cantabria s/n, 09006, Burgos, Spain
3Research Institute of Applied Sciences in Cybersecurity (RIASC), Spain

Correspondence should be addressed to Rafael Vega Vega; rafael.alejandro.vega.vega@udc.es

Received 5 December 2018; Accepted 23 January 2019; Published 2 June 2019

Guest Editor: Alicja Krzemień

Copyright © 2019 RafaelVegaVega et al.This is an open access article distributed under theCreativeCommonsAttribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Present research proposes the application of unsupervised and supervised machine-learning techniques to characterize Android
malware families. More precisely, a novel unsupervised neural-projection method for dimensionality-reduction, namely, Beta
Hebbian Learning (BHL), is applied to visually analyze such malware. Additionally, well-known supervised Decision Trees (DTs)
are also applied for the first time in order to improve characterization of such families and compare the original features that are
identified as the most important ones.The proposed techniques are validated when facing real-life Androidmalware data bymeans
of the well-known and publicly available Malgenome dataset. Obtained results support the proposed approach, confirming the
validity of BHL and DTs to gain deep knowledge on Android malware.

1. Introduction and Previous Work

Undoubtedly, smartphones are one of the emerging tech-
nologies that have revolutionized the use of computing
systems. From the very beginning (late 1990s), more and
more smartphones are sold every year and it is expected
that the number of smartphone users passes the 2.7 billion
mark by 2019 [1]. Although there is a variety of operating
systems for such devices, Google’s Android is themost widely
used one [1] and, consequently, the number of Android users
has permanently increased. Concurrently, the number of
Android apps strongly increased in the last years but it started
to decline from 3.6 million in March, 2017 (highest value), to
2.6 million in September, 2018 [2].

From the security standpoint, one of the main problems
of smartphone apps is malware that is included in software in
general and in these apps in particular. Furthermore, “users of
mobile devices are increasingly subject to malicious activity
pushing malware apps” [3]. It is true that some effort has
been devoted by Google to remove and prevent malicious

apps from Google Play Market, but malware is still there [3].
Moreover, malware Android apps are increasing; in the third
trimester of 2018 there has been an increase of 1.7 million
detections [4].

As it can be seen, privacy and security of smartphones still
are open challenges [5] and many researchers are working
on this topic. To better fight against malware and be able
to develop an effective solution, understanding it and its
nature is required [6]. In keeping with this idea, present
paper proposes getting deeper knowledge about Android
malware for its better detection. More precisely, both super-
vised (Decision Trees) and unsupervised (Neural Projection
Method)machine-learning techniques are applied to increase
our knowledge about the main families of Android malware.
In order to validate the proposed techniques, they are applied
to the well-known Malgenome dataset [7] that is open and
real-life.

This pioneering work on collecting Android malware
found some interesting statistics [6]motivating further analy-
sis of malware: 36.7% of the collected apps leverage root-level

Hindawi
Complexity
Volume 2019, Article ID 6101697, 10 pages
https://doi.org/10.1155/2019/6101697

http://orcid.org/0000-0002-1186-5152
http://orcid.org/0000-0001-5567-9194
http://orcid.org/0000-0001-7289-4689
http://orcid.org/0000-0002-2444-5384
http://orcid.org/0000-0002-2333-8405
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/6101697

2 Complexity

exploits to fully compromise the security of the smartphone
and more than 90% of the apps tried to turn the smartphone
into a botnet controlled through network or short messages.

To improve present knowledge of Android malware
families, a novel neural-projection technique from the family
of Exploratory Projection Pursuit (EPP) techniques, named
Beta Hebbian Learning (BHL) [8], is applied. Obtained
results are then compared to those from several different
Decision Trees (DTs) [9] when trying to predict the malware
family from apps features.

Each app (data sample) that was collected for the
Malgenome dataset is defined as a set of certain features
using a binary representation. Apps were grouped according
to the family they belong to, and features were recalculated
for the whole family, taking into account which features were
present in the given apps. The generated high-dimensional
space is then analysed by means of BHL in order to reveal
the inner structure of the dataset. Obtained projections are
consequently scrutinized to get further knowledge about
the app features that define the organization of the data in
different groups and subgroups. For comparison purposes,
DTs have been additionally generated on the same features
set, in order to know the features that better discriminate
between the different malware families.

A variety of problems have been addressed by artificial
neural networks in recent decades [10–14]. More precisely,
neural projection models have been previously applied to a
wide variety of security datasets, including network traffic
[15, 16], SQL code [17, 18], and HTTP traffic [19]. Similarly,
from a more general perspective, different machine learning
solutions have been proposed to differentiate between legiti-
mate and malicious apps [20–22].

Visualization techniques have been previously applied
to this problem of analyzing malware [23–29]. However,
few dimensionality-reduction techniques have been applied
to Android apps in order to detect malware; Pythagoras
tree fractal visualization is proposed in [25], being all apps
scattered, as leaves in the tree. Graphs for deciding about
malicious apps by depicting lists of malicious methods,
needless permissions, and malicious strings were proposed
in [26]. Biclustering on permission information was used to
generate visualization in [27], while behavior-related dendro-
grams are generated out of malware traces in [28]. In the
later, different pieces of information are analysed, including
nodes related to the package name of the application, the
Android components that has called the API call, and the
names of functions and methods invoked by the application.
Differentiating from previous work, in present paper, a novel
neural projection technique is applied for the first time to the
characterization of Androidmalware [8, 24, 30]. Apps are not
analysed one by one, but family-level is considered instead.
Additionally, DTs are applied for the first time in order to
improve characterization of such families.

The rest of this paper is organized as follows; initially BHL
and DTs are presented and the analyzed dataset is described
in the following section. Then, the proposed experiments
are introduced and the obtained results are analyzed in
Section 3. Finally, conclusions and future work are presented
in Section 4 of the paper.

2. Materials and Methods

In present research, the EPP BHL algorithm [8] has been
applied to a dataset of malware families with the aim of
identifying the internal structure of such dataset and finding
families of malware with similar characteristics.The obtained
results have been compared with a well-known prediction
algorithm (DT) [9] to validate the BHL results regarding
the most relevant features to briefly characterize Malware
families.

2.1. Beta Hebbian Learning. The Beta Hebbian Learning
technique (BHL) [8] is an unsupervised neural network from
the family of EPP that employs the Beta distribution to update
its learning rule and fit the Probability Density Function
(PDF) of the residual with the distribution of a given dataset.

Thus, if the PDF of the residuals is known, the optimal
cost function can be determined. By using𝐵(𝛼, 𝛽) parameters
of the Beta distribution, the residual (e) can be drawnwith the
following PDF:

𝑝 (𝑒) = 𝑒𝛼−1 (1 − 𝑒)𝛽−1 = (𝑥 − 𝑊𝑦)𝛼−1 (1 − 𝑥 + 𝑊𝑦)𝛽−1 (1)

where 𝛼 and 𝛽 are used to adjust the shape of the PDF of
the Beta distribution, 𝑥 is the input of the network, 𝑒 is the
residual, 𝑊 is the weight matrix, and 𝑦 is the output of the
network.

Then, by using the following, gradient descent is per-
formed to maximize the likelihood of the weights:

𝜕𝑝𝜕𝑊 = (𝑒𝛼−2𝑗 (1 − 𝑒𝑗)𝛽−2 (− (𝛼 − 1) (1 − 𝑒𝑗) + 𝑒𝑗 (𝛽 − 1)))
= (𝑒𝛼−2𝑗 (1 − 𝑒𝑗)𝛽−2 (1 − 𝛼 + 𝑒𝑗 (𝛼 + 𝛽 − 2)))

(2)

In the case of BHL, the learning rule allows for fitting the
PDF of the residual, by maximizing the likelihood of such
residual with the current distribution.

Therefore, the neural architecture for BHL is defined as
follows:

𝐹𝑒𝑒𝑑𝑓𝑜𝑟𝑤𝑎𝑟𝑑 : 𝑦𝑖 = 𝑁∑
𝑗=1

𝑊𝑖𝑗𝑥𝑗, ∀𝑖 (3)

𝐹𝑒𝑒𝑑𝑏𝑎𝑐𝑘 : 𝑒𝑗 = 𝑥𝑗 − 𝑀∑
𝑖=1

𝑊𝑖𝑗𝑦𝑖 (4)

𝑊𝑒𝑖𝑔ℎ𝑡𝑠𝑢𝑝𝑑𝑎𝑡𝑒 : Δ𝑊𝑖𝑗
= 𝜂 (𝑒𝛼−2𝑗 (1 − 𝑒𝑗)𝛽−2 (1 − 𝛼 + 𝑒𝑗 (𝛼 + 𝛽 − 2))) 𝑦𝑖 (5)

2.2. Decision Trees. Decision Trees (DTs) [9] are machine-
learning algorithms widely used for prediction that have
proved their benefits in several real applications. They can be
categorized as supervised nonparametric inductive learning
techniques. They are based on the construction of diagrams
from a dataset, in a similar way to prediction systems based

Complexity 3

Root node

Decision node

Decision node
Leaf node

Leaf node

Branches Branches

BranchesBranches

Leaf node

BranchesBranches

Leaf node

Figure 1: Structure of decision trees.

on rules, which serve to represent and categorize a series of
conditions that occur repeatedly for the solution of a problem.

The main objective of a classification DT is to divide
a dataset into groups of samples as similar as possible in
relation to one of the features. They are made of three main
elements: root node (contains all samples of the dataset),
decision nodes (represent a decision or rule), and leaf nodes
(final label). A dataset is then classified based on subdivisions
of the DT nodes to reach one of the final (leaf) nodes whose
label corresponds to a class (Figure 1).

Several algorithms have been proposed so far to build
DTs and their efficiency has been proved. The most notable
ones [31] are ID3 (Iterative Dichotomiser 3), C4.5 (successor
of ID3), CART (Classification and Regression Tree), CHAID
(CHi-squared Automatic Interaction Detector), MARS, and
Conditional Inference Trees. Among all of them, CART has
been selected in present work due to two main reasons: the
binary nature of the dataset and the main objective of the
study (to identify the most relevant features of the dataset)
[31].

2.2.1. CART. TheClassification and Regression Tree (CART)
[9] is a binary tree, so each decision node has two binary
branches determined by a splinting function obtained by
processing variance function. In order to build the tree, this
CART algorithm takes 4 main steps [9]:

(1) Build the decision tree splitting nodes according to a
given function.

(2) Finish tree construction once the learning fits the stop
criteria.

(3) Pruning the tree to avoid overfitting.

(4) Select the best tree after pruning process.

Originally, the splitting function used by CART is the
Gini Index

𝐺𝑖𝑛𝑖 (𝑆) = 1 − 𝑛∑
𝑖=1

𝑝2𝑖 (6)

where 𝑆 is the dataset, 𝑛 is the number of classes in the
dataset, and p is the probability of different classes.Therefore,
a Gini index of 0 means a 100% accuracy in predicting the
class.

For comparison purposes, two other splitting functions
have been applied in present paper: Deviance (7) and Twoing
(8)

𝐷𝑒V𝑖𝑎𝑛𝑐𝑒 (𝑆) = − 𝑛∑
𝑖=1

𝑝𝑖 log2 𝑝𝑖 (7)

Twoing is a splitting function different from Gini and
Deviance. Being 𝐿 𝑖 and 𝑅𝑖 there is fraction of members
of class 𝑖 in the left and right child nodes after a split,
respectively. 𝑃𝐿 and 𝑃𝑅 are the fractions of observations that
split to the left and right, respectively.Therefore, the function
to be maximized is the one in

𝑃𝐿𝑃𝑅(𝑛∑
𝑖=1

󵄨󵄨󵄨󵄨𝐿 𝑖 − 𝑅𝑖󵄨󵄨󵄨󵄨)
2

(8)

On the other hand, in standard CART algorithm, the
split feature that is selected for a decision node is the one
that maximizes the split-criterion gain. Once again, for a
more comprehensive comparison, two other criteria have
been applied for selecting split features: curvature [32] and
interaction [33]. These criteria can be defined as follows:

(i) Curvature: it is based on the null hypothesis of unas-
sociated two features. With these criteria, the best
split predictor feature is the one that minimizes the

4 Complexity

significant p-values of curvature tests between each
feature and the response variable. Such a selection is
robust to the number of levels in individual features.

(ii) Interaction: it is based on the null hypothesis of
no interaction between the label and the predictor
features. Therefore, for deep decision trees, standard
CART tends to miss important interactions between
pairs of features when there are also many other less
important features. By means of this criterion, the
detection of such important interactions is improved.

2.3. Malgenome Dataset. The dataset used in this research
has been obtained from the Android Malware Genome
Project [7], which consists on 1260 Androidmalware samples
grouped in a total of 49 malware families. It was collected
from August 2010 to October 2011 and still is a standard
benchmark dataset for Android Malware.

This dataset contains malware apps installed in user
phones and based on 3 main attack strategies: repackaging,
update attack, and drive-by download. Samples of this dataset
were manually classified based on different aspects such
as installation and activation mechanisms and malicious
payloads nature. Collected malware was split in families that
were obtained “by carefully examining the related security
announcements, threat reports, and blog contents from
existing mobile antivirus companies and active researchers
as exhaustively as possible and diligently requesting malware
samples from them or actively crawling from existing official
and alternative Android Markets” [6].

The different families present in the dataset are
ADRD, AnserverBot, Asroot, BaseBridge, BeanBot,
BgServ, CoinPirate, Crusewin, DogWars, DroidCoupon,
DroidDeluxe, DroidDream, DroidDreamLight,
DroidKungFu1, DroidKungFu2, DroidKungFu3,
DroidKungFu4, DroidKungFuSapp, DoidKungFuUpdate,
Endofday, FakeNetflix, FakePlayer, GamblerSMS,
Geinimi, GGTracker, GingerMaster, GoldDream, Gone60,
GPSSMSSpy, HippoSMS, Jifake, jSMSHider, Kmin, Lovetrap,
NickyBot, Nickyspy, Pjapps, Plankton, RogueLemon,
RogueSPPush, SMSReplicator, SndApps, Spitmo, TapSnake,
Walkinwat, YZHC, zHash, Zitmo, and Zsone.

Therefore, the final dataset is made of a total of 49
samples, one for each family of malware, defined by a total of
26 binary features divided in 6 categories (Table 1). A detailed
description of each feature can be found in the original paper
[6], and some previous work where this dataset is used can be
found in [34–36].

3. Experiments and Results

This section presents the experiments performed and the
results obtained in the validation process of the proposed
solution.

Both BHL (Section 2.1) and DT (Section 2.2) algorithms
have been applied to the previously described dataset (Sec-
tion 2.3), in order to identify the features that define the
internal structure of the data and that support the grouping
of the different families of malware attacks. In the conducted

−1 −0.5 0 0.5 1 1.5

BHL

−2.5

−2

−1.5

−1

−0.5

0

0.5

Figure 2: BHL: Projection of malware families.

experiments, firstly BHL is applied to identify groups of
malware families with similar behaviour. This is done by
visually inspecting the obtained BHL projections, and the
most relevant features are consequently identified. Then, the
dataset is analyzed by means of DTs to determine the level of
importance of each feature, considering as the most relevant
features those that are used in the decision nodes at lowest
depth.

In Figure 2 it is shown the best projection obtained by
BHL using the following parameter values: 𝛼 = 3, 𝛽 = 4,𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 = 1000, and 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑟𝑎𝑡𝑒 = 0.05. These
parameter values were chosen in an experimental process
of trial and error. As parameter tuning is a task that is
very dependent on the dataset to be used, several initial
experiments were conducted with a range of combinations of
these parameter values.

Based on such projection, samples are grouped in 2
main clusters: G1 and G2 (Figure 3). Additionally, several
subgroups (at a 3 level depth, i.e., G1 󳨀→ G1A 󳨀→ G1A.1,
G1A.2, G1A.3, and G1A.4) can be defined in these main
groups.

Figure 4 presents the split of family groups in a schema
that shows the results of thoroughly analyzing the allocation
of families in groups. The most relevant features that have
been identified, varying from one cluster to another, can be
seen. As an example, data are split in G1 and G2 based on the
features “Repackaging” and “Standalone.” The complete lists
of families assigned to each one of the groups are presented
in Figures 5 and 6. Malware families are allocated in the same
group as they are associated to similar characteristics and
behaviour, and therefore there could be similar ways to deal
with them.

Based on the analysis of BHL results, the most relevant
features, in decreasing order of importance, are “Repackag-
ing” and “Standalone,” “Boot” and “Activation: SMS,” and
“Financial Charges: SMS.”

BHL clearly outperforms other algorithms used in pre-
vious works [24, 29], providing a clearer visualization

Complexity 5

Table 1: Features in the Malgenome Dataset.

Category 1: Installation 1.Repackaging, 2.Update, 3.Drive-by download, 4.Standalone
Category 2: Activation 5.Boot, 6.SMS, 7.Net, 8.Call, 9.USB, 10.PKG, 11.Batt, 12.SYS, 13.Main
Category 3: Privilege escalation 14.exploid, 15.RATC/zimperlich, 16.ginger break, 17.asroot, 18.encrypted
Category 4: Remote control 19.NET, 20.SMS
Category 5: Financial charges 21.phone call, 22.SMS, 23.block SMS
Category 6: Personal information stealing 24.SMS, 25.phone number, 26.user account

Table 2: Summary table of DT results: minimum depth of decision nodes for each one of the original features.

Deviance Gini Twoing

ID Feature Standard Curvature Interaction
curvature Standard Curvature Interaction

curvature Standard Curvature Interaction
curvature Average

1 Repackaging 1 2 4 1 2 6 1 2 4 2.56
5 BOOT 2 3 3 4 3 2 2 3 3 2.78
18 Encrypted 4 2 4 4 2 3.20
9 USB 6 3 5 3 4 6 3 4.29

3 Drive-by
Download 5 5 4 2 5 6 5 5 4 4.56

24 SMS 4 3 5 10 3 6 3 3 5 4.67
26 User Account 6 1 8 3 1 8 6 1 8 4.67
2 Update 5 7 4 2 6 3 5 7 4 4.78
19 NET 6 2 8 9 2 3 4 2 8 4.89
6 SMS 3 6 5 8 7 3 3 6 4 5.00
10 PKG 6 5 4 5 4 6 5 5.00
22 SMS 3 6 4 10 6 4 3 6 4 5.11
4 Standalone 5 10 3 3 9 3 5 10 3 5.67
8 CALL 4 7 4 8 4 7 5.67
11 BATT 4 9 5 4 5 4 9 5.71
16 Ginger Break 6 6.00
15 RATC/Zimperlich 6 8 1 9 9 8 7 8 1 6.33
7 NET 5 8 6 10 9 2 5 8 6 6.56
14 Exploid 5 8 6 9 6 6 5 8 6 6.56
17 Asroot 7 4 7 11 4 9 8 4 7 6.78
23 Block SMS 3 8 5 9 9 9 4 8 6 6.78
25 Phone Number 2 11 2 12 12 11 2 11 2 7.22
12 SYS 5 10 6 10 11 7 5 10 6 7.78
21 Phone Call 4 9 12 13 7 4 9 5 7.88
13 MAIN 6 11 7 10 12 1 6 11 7 7.89
20 SMS 10 8 9.00

of the internal structure of the dataset. Groups obtained
by BHL are more compact and well defined than the
groups generated by other EPP techniques in the previous
work.

In addition to the BHL experiments, experiments with
DTs were additionally conducted in order to compare and
validate the obtained results. As it has been previously
mentioned, 3 different splitting functions have been applied
in present paper: Gini, Deviance, and Twoing. In addition, 3
different criteria for selecting split features have been applied:
Standard, Curvature, and Interaction.

As an example, one of the obtained DTs is shown in
Figure 7. This is the tree generated from the Malgenome
dataset when applying the standard CART split criteria and
theDeviance function. It has been selected as it is the onewith
lowest depth. In the leaf nodes, labels refer to family numbers
(alphabetically ordered as presented in Section 2.3).

To show the most interesting results from the different
alternatives to build DT, information has been summarized
in Table 2. For each combination of splitting function and
selecting criteria, the minimum depth of decision nodes
linked to each one of the original features is shown. That is,

6 Complexity

−1 −0.5 0 0.5 1 1.5

BHL

−2.5

−2

−1.5

−1

−0.5

0

0.5

G1

G2

G1a G1b

G1a.1

G1a.2

G1a.3

G1a.4

G1b.1

G1b.2

G1b.3

G1b.4

G2a G2b

G2a.1

G2a.2

G2a.3

G2a.4

G2b.1

G2b.2

G2b.3

Figure 3: BHL: Labelling of clusters.

G1

G2

G1A

G1A.1 & G1A.2

G1A.3 & G1A.4

G1B

G1B.1 & G1B.2

G1B.3 & G1B.4

G2B

G2B.1

G2B.2 & G2B.3

G2A.1, G2A.2 & G2A.3

G2A

G2A.4

G1B.1

G1B.2

G2A.1

G2A.2 & G2A.3

Re
pa

ck
ag

in
g=

0
St

an
da

lo
ne

=1

Repackaging=1

Standalone=0

BOOT=1

BOOT=0

Financial Charges:SMS=0

Activation: SMS=0

Financial Charges:SMS=1
Activation: SMS=1

Financial Charges:SMS=1
Activation: SMS=1

Financial Charges:SMS=1
Activation: SMS=1

Financial Charges:SMS=1
Activation: SMS=1

Activation: SMS =0
Financial Charges:SMS=0

Financial Charges:SMS=1

Financial Charges:SMS=0

Activation: SMS=0

Activation: SMS =0
Financial Charges:SMS=0

Financial Charges:SMS=1

BOOT=1

BOOT=0

Figure 4: Schematic clustering and relevant features from BHL projection.

when the same feature appears in more than one node, the
minimum depth of all these nodes is the one selected for the
given feature. In the case a certain feature was not included in
the DT, there is no value.

In this table it can be seen that results (slightly or
significantly) vary when comparing the obtained results (by
different splitting function and selecting criteria) for a certain
feature. As general conclusions cannot be derived and to sum

up all figures, the average depth value is calculated for each
feature, that is, further analyzed.

When analyzing Figure 4 and Table 2, it can be seen
that results from BHL and DT are coherent. In the case of
BHL, it can be seen that Repackaging is identified as the
most discriminative feature, because the two main groups
in the dataset (G1 and G2) take complementary values for
such feature. Coherently, Repackaging is the feature with the

Complexity 7

G1

Gone60
DroidDeluxe
FakeNetflix
Asroot
Plankton
zHash
SndApps
TapSnake
GamblerSMS
Zitmo
Walkinwat
FakePlayer
GPSSMSSpy
SMSReplicator
RogueSPPush
RogueLemon
Spitmo
GGTracker
Lovetrap
Nickyspy
NickyBot
GoldDream
Kmin
YZHC
Crusewin

G1A

Gone60
DroidDeluxe
FakeNetflix
Asroot
Plankton
Zitmo
Walkinwat
FakePlayer
GPSSMSSpy
SMSReplicator
RogueSPPush
RogueLemon
Spitmo

G1B

zHash
SndApps
TapSnake
GamblerSMS
GGTracker
Lovetrap
Nickyspy
NickyBot
GoldDream
Kmin
YZHC
Crusewin

G1A.1

Gone60
DroidDeluxe
FakeNetflix
Asroot
Plankton

G1A.2

Zitmo
Walkinwat
FakePlayer

G1A.3

GPSSMSSpy
SMSReplicator

G1A.4

RogueLemon
Spitmo
RogueSPPush

G1B.1 & G1B.2

zHash
SndApps
TapSnake
GamblerSMS
Nickyspy

G1B.2

zHash
SndApps
TapSnake
GamblerSMS

G1B.3

NickyBot
GoldDream
Kmin
YZHC

G1B.4

GGTracker
Lovetrap
Crusewin

BOOT=0

BOOT=1

G1B.2

Nickyspy

Financial Charges:SMS=0

Financial Charges:SMS=0

Activation: SMS=0

Activation: SMS=0

Financial Charges:SMS=1

Activation: SMS=1

Financial Charges:SMS=1

Financial Charges:SMS=1

Activation: SMS=1

Figure 5: Families allocation in Group 1 and relevant features identified in BHL projection.

G2

DoidKungFuUpdate
DroidDream
DogWars
Jifake
DroidKungFu1
DroidKungFu2
DroidKungFu3
DroidKungFu4
DroidKungFuSapp
DroidDreamLight
DroidCoupon
GingerMaster
ADRD
jSMSHider
Zsone
BeanBot
AnserverBot
Endofday
BaseBridge
CoinPirate

BgServ
Pjapps

G2A

DoidKungFuUpdate
DroidDream
DogWars
Jifake
jSMSHider
Zsone
BeanBot

G2B

DroidKungFu1
DroidKungFu2
DroidKungFu3
DroidKungFu4
DroidKungFuSapp
DroidDreamLight
DroidCoupon
GingerMaster
ADRD
AnserverBot
Endofday
BaseBridge
CoinPirate
Geinimi
BgServ
Pjapps
HippoSMS

G2A.1, G2A.2 & G2A.3

DoidKungFuUpdate
DroidDream
DogWars
Jifake
jSMSHider

G2A.4

Zsone
BeanBot

G2B.1

DroidKungFu1
DroidKungFu2
DroidKungFu3
DroidKungFu4
DroidKungFuSapp
DroidDreamLight
DroidCoupon
GingerMaster
ADRD

G2B.2

AnserverBot
Endofday

G2B.3

BaseBridge
CoinPirate
Geinimi
BgServ
Pjapps
HippoSMS

BO
OT

=0

BOOT=1

G2A.1

DoidKungFuUpdate
DroidDream

G2A.2 & G2A.3

DogWars
Jifake
jSMSHider

Financial Charges:SMS=1

Financial Charges:SMS=0

Activation: SMS=0

Financial Charges:SMS=1

Activation: SMS=1

Financial Charges:SMS=1

Activation: SMS=1

Financial Charges:SMS=0

Activation: SMS=0

Geinimi

HippoSMS

Figure 6: Families allocation in Group 2 and relevant features identified in BHL projection.

8 Complexity

Figure 7: DT obtained with standard CART split criteria and Deviance function.

lowest mean depth, being included in all the generated trees.
Furthermore, it was selected for the root node of 3DTs.When
analyzing subgroups in BHL projection (Figure 3), it can be
seen that BOOT is the feature that drive the split in 1st-level
subgroups (subgroups G1A and G1B in the case of group
G1, and subgroups G2A and G2B in the case of group G2).
In keeping with this idea, according to DTs results, Boot is
the second feature with the lowest mean depth. For the next
level of importance, the BHL projection identifies Financial
Charges SMS and Activation SMS as the features that best
explain the split in different subgroups. The two of them are

also selected by DTs as ranked in the first half of features with
a lowestmean depth, although some other features take lower
values.

Additionally, from the DTs results (Table 2), Privilege
escalation-Ginger Break and Remote control-SMS can be
identified as the least relevant features. The former was not
included in 7 (out of 9) DTs while the latter was not included
in 6. Furthermore, Remote control-SMS is the feature with
a highest value of the average depth, taking a value of
9. It means that these features are almost useless when
characterizing malware families.

Complexity 9

Results from present paper are consistent with those
obtained in previous work [30] when applying Feature
Selection (FS) to the same dataset. Installation-Repackaging,
Activation-SMS, Activation-Boot, Remote Control-NET, and
Financial Charges-SMS were identified as the 5 most rel-
evant features in order to characterize malware families,
according to a given method of filter-based FS: Minimum-
Redundancy Maximum Relevance. This method is intended
at obtaining the maximum relevance to the output while
keeping redundancy of selected features to lowest levels.
Complementarily, two evolutionary approaches to FS (GA-
ICC-W and GA-I-W) identified Installation-Repackaging,
Installation-Standalone, Activation-SMS, Remote Control-
NET, and Financial Charges-SMS as the 5most relevant ones.
These methods perform the selection of features according
to the Information Correlation Coefficient and the Mutual
Information, respectively.

4. Conclusions and Future Work

In this paper, some machine learning techniques have been
applied to Android malware data in order to analyse the
features of such apps and subsequently identify the ones that
better define the organization ofmalware families. As a result,
detection and categorization of malware could be improved
and spedup at the same time. Furthermore, by knowing about
these features, malware apps could be identifiedmore quickly
and precisely and then removed from the official Android
market.

From the obtained results some conclusions can be
derived; first of all, the proposed machine-learning tech-
niques probed to successfully address the given challenge.
BHL has outperformed previous neural projection tech-
niques that have been applied to the same data in clearly
revealing the structure of the Malgenome dataset. Addition-
ally, features identified as the most important ones by such
EPP technique are also highlighted by DTs as being relevant
to better differentiate between malware families.

Obtained results are consistent with those obtained by
FS and hence validate present proposal. Future work will
focus on the development of a Hybrid Intelligent System
to integrate results from the previously validated machine-
learning techniques. In addition, it will be applied to up-to-
datemalware datasets in order to check its performancewhen
facing 0-day malware.

Data Availability

Dataset used in this research is available in [7]: Bibliog-
raphy: 7. (2010) Malgenome Project [Online], available at
http://www.malgenomeproject.org.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

This work is partially supported by Instituto Nacional de
Ciberseguridad (INCIBE) and developed by Research Insti-
tute of Applied Sciences in Cybersecurity (RIASC).

References

[1] Gartner, Global smartphone sales to end users from 1st
quarter 2009, 2018 https://www.statista.com/statistics/266219/
global-smartphone-sales-since-1st-quarter-2009-by-operating-
system/.

[2] AppBrain, Android and google play statistics, https://www
.appbrain.com/stats/stats-index.

[3] SOPHOSLABS, “Ltd., s., sophoslabs 2019 threat report,” Tech.
Rep., 2019.

[4] M. Labs, “Cybercrime tactics and techniques : Q3 2018,” Tech.
Rep., 2018.

[5] S. Arshad, M. A. Shah, A. Khan, andM. Ahmed, “Android mal-
ware detection & protection: A survey,” International Journal of
Advanced Computer Science and Applications, vol. 7, no. 2, 2016.

[6] Y. Zhou and X. Jiang, “Dissecting android malware: char-
acterization and evolution,” in Proceedings of the 2012 IEEE
Symposium on Security and Privacy, pp. 95–109, San Francisco,
Calif, USA, May 2012.

[7] Y. Zhou, Malgenome project. 2010 http://www.malgenome-
project.org.

[8] H. Quint́ıan and E. Corchado, “Beta hebbian learning as a
new method for exploratory projection pursuit,” International
Journal of Neural Systems, vol. 27, no. 6, Article ID 1750024, 2017.

[9] L. Breiman, Classification and regression trees, Routledge, Lon-
don, UK, 2017.

[10] P. J. Garćıa Nieto, J. Mart́ınez Torres, F. J. De Cos Juez, and
F. Sánchez Lasheras, “Using multivariate adaptive regression
splines and multilayer perceptron networks to evaluate paper
manufactured using Eucalyptus globulus,”AppliedMathematics
and Computation, vol. 219, no. 2, pp. 755–763, 2012.

[11] M. Paliwal and U. A. Kumar, “Neural networks and statistical
techniques: a review of applications,” Expert Systems with
Applications, vol. 36, no. 1, pp. 2–17, 2009.

[12] R. F. Garcia, J. L. C. Rolle, M. R. Gomez, and A. D. Catoira,
“Expert condition monitoring on hydrostatic self-levitating
bearings,” Expert Systems with Applications, vol. 40, no. 8, pp.
2975–2984, 2013.

[13] C. C. Turrado,M.D. C.M. López, F. S. Lasheras, B. A. R. Gómez,
J. L. C. Rollé, and F. J. D. C. Juez, “Missing data imputation
of solar radiation data under different atmospheric conditions,”
Sensors, vol. 14, no. 11, pp. 20382–20399, 2014.

[14] J. L. Calvo Rolle, I. Machón González, and H. López Garćıa,
“Neuro-robust controller for non-linear systems,”Dyna, vol. 86,
no. 3, pp. 308–317, 2011.

[15] Á. Herrero, E. Corchado, M. A. Pellicer, and A. Abraham,
“Hybrid multi agent-neural network intrusion detection with
mobile visualization,” in Innovations in Hybrid Intelligent Sys-
tems, pp. 320–328, 2008.

[16] R. Sánchez, Á. Herrero, and E. Corchado, “Visualization and
clustering for SNMP intrusion detection,” Cybernetics and
Systems, vol. 44, no. 6-7, pp. 505–532, 2013.

[17] C. Pinzón, Á. Herrero, J. F. De Paz, E. Corchado, and J. Bajo,
“CBRid4SQL: A CBR intrusion detector for SQL injection

https://www.statista.com/statistics/266219/global-smartphone-sales-since-1st-quarter-2009-by-operating-system/
https://www.statista.com/statistics/266219/global-smartphone-sales-since-1st-quarter-2009-by-operating-system/
https://www.statista.com/statistics/266219/global-smartphone-sales-since-1st-quarter-2009-by-operating-system/
https://www.appbrain.com/stats/stats-index
https://www.appbrain.com/stats/stats-index
http://www.malgenomeproject.org
http://www.malgenomeproject.org

10 Complexity

attacks,” in Proceedings of the 5th International Conference on
Hybrid Artificial Intelligence Systems HAIS 2010 - Part II, vol.
6077 of Lecture Notes in Computer Science, pp. 510–519, Springer
Berlin Heidelberg, 2010.

[18] C. Pinzón, J. F. De Paz, J. Bajo, Á. Herrero, and E. Corchado,
“AIIDA-SQL: An adaptive intelligent intrusion detector agent
for detecting SQL injection attacks,” in Proceedings of the 2010
10th International Conference on Hybrid Intelligent Systems, HIS
2010, pp. 73–78, USA, August 2010.

[19] D. Atienza, Á. Herrero, and E. Corchado, “Neural Analysis of
HTTP Traffic for Web Attack Detection,” in Proceedings of the
8th International Conference on Computational Intelligence in
Security for Information SystemsCISIS 2015, vol. 369 ofAdvances
in Intelligent Systems and Computing, pp. 201–212, Springer
International Publishing, 2015.

[20] L. Cen, C. S. Gates, L. Si, and N. Li, “A probabilistic discrimi-
native model for android malware detection with decompiled
source code,” IEEE Transactions on Dependable and Secure
Computing, vol. 12, no. 4, pp. 400–412, 2015.

[21] H.-J. Zhu, Z.-H. You, Z.-X. Zhu, W.-L. Shi, X. Chen, and L.
Cheng, “DroidDet: effective and robust detection of android
malware using static analysis along with rotation forest model,”
Neurocomputing, vol. 272, pp. 638–646, 2018.

[22] F. A. Narudin, A. Feizollah, N. B. Anuar, and A. Gani,
“Evaluation of machine learning classifiers for mobile malware
detection,” Soft Computing, vol. 20, no. 1, pp. 343–357, 2016.

[23] M. Wagner, F. Fischer, R. Luh et al., “A Survey of Visualization
Systems forMalware Analysis,” in Proceedings of the Eurograph-
ics Conference on Visualization (EuroVis) - STARs, 2015.

[24] A. González, Á. Herrero, and E. Corchado, “Neural visual-
ization of android malware families,” in International Joint
Conference SOCO’16-CISIS’16-ICEUTE’16, vol. 527 of Advances
in Intelligent Systems and Computing, pp. 574–583, Springer
International Publishing, Cham, 2017.

[25] A. Paturi, M. Cherukuri, J. Donahue, and S. Mukkamala,
“Mobile malware visual analytics and similarities of Attack
Toolkits (Malware gene analysis),” in Proceedings of the 2013
International Conference on Collaboration Technologies and
Systems, CTS 2013, pp. 149–154, USA, May 2013.

[26] W. Park, K. Lee, K. Cho, and W. Ryu, “Analyzing and detecting
method of Android malware via disassembling and visual-
ization,” in Proceedings of the 2014 International Conference
on Information and Communication Technology Convergence
(ICTC), pp. 817-818, Busan, South Korea, October 2014.

[27] V. Moonsamy, J. Rong, and S. Liu, “Mining permission patterns
for contrasting clean and malicious android applications,”
Future Generation Computer Systems, vol. 36, pp. 122–132, 2014.

[28] O. Somarriba, U. Zurutuza, R. Uribeetxeberria, L. Delosières,
and S. Nadjm-Tehrani, “Detection and visualization of android
malware behavior,” Journal of Electrical and Computer Engineer-
ing, vol. 2016, Article ID 8034967, p. 17, 2016.

[29] R. Vega Vega, H. Quintián, J. L. Calvo-Rolle, Á. Herrero, and
E. Corchado, “Gaining deep knowledge of Android malware
families through dimensionality reduction techniques,” Logic
Journal of the IGPL, 2018.

[30] J. Sedano, S. González, C. Chira, Á. Herrero, E. Corchado, and
J. R. Villar, “Key features for the characterization of Android
malware families,” Logic Journal of the IGPL, vol. 25, no. 1, pp.
54–66, 2017.

[31] S. Singh and P. Gupta, “Comparative study id3, cart and c4.
5 decision tree algorithm: a survey,” International Journal of

Advanced Information Science and Technology, vol. 27, no. 7, pp.
97–103, 2014.

[32] W.-Y. Loh and Y.-S. Shih, “Split selectionmethods for classifica-
tion trees,” Statistica Sinica, vol. 7, no. 4, pp. 815–840, 1997.

[33] W.-Y. Loh, “Regression trees with unbiased variable selection
and interaction detection,” Statistica Sinica, vol. 12, no. 2, pp.
361–386, 2002.

[34] L. Li, A. Bartel, T. F. Bissyande et al., “IccTA: Detecting Inter-
Component Privacy Leaks in Android Apps,” in Proceedings
of the 2015 IEEE/ACM 37th IEEE International Conference on
Software Engineering (ICSE), vol. 1, pp. 280–291, Florence, Italy,
May 2015.

[35] D. Arp, M. Spreitzenbarth, M. Hübner, H. Gascon, and K.
Rieck, “Drebin: effective and explainable detection of android
malware in your pocket,” in Proceedings of the 2014 Network and
Distributed System Security (NDSS) Symposium, vol. 14, pp. 23–
26, 2014.

[36] G. Suarez-Tangil, S. K. Dash,M. Ahmadi, J. Kinder, G. Giacinto,
and L. Cavallaro, “Droidsieve: Fast and accurate classification
of obfuscated android malware,” in Proceedings of the Seventh
ACM on Conference on Data and Application Security and
Privacy (CODASPY), pp. 309–320, Scottsdale, Arizona, USA,
2017.

Hindawi
www.hindawi.com Volume 2018

Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Problems
in Engineering

Applied Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Probability and Statistics
Hindawi
www.hindawi.com Volume 2018

Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi
www.hindawi.com Volume 2018

Optimization
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Engineering
 Mathematics

International Journal of

Hindawi
www.hindawi.com Volume 2018

Operations Research
Advances in

Journal of

Hindawi
www.hindawi.com Volume 2018

Function Spaces
Abstract and
Applied Analysis
Hindawi
www.hindawi.com Volume 2018

International
Journal of
Mathematics and
Mathematical
Sciences

Hindawi
www.hindawi.com Volume 2018

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific
World Journal

Volume 2018

Hindawi
www.hindawi.com Volume 2018Volume 2018

Numerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical Analysis
Advances inAdvances in Discrete Dynamics in

Nature and Society
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

Di�erential Equations
International Journal of

Volume 2018

Hindawi
www.hindawi.com Volume 2018

Decision Sciences
Advances in

Hindawi
www.hindawi.com Volume 2018

Analysis
International Journal of

Hindawi
www.hindawi.com Volume 2018

Stochastic Analysis
International Journal of

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/jmath/
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/jam/
https://www.hindawi.com/journals/jps/
https://www.hindawi.com/journals/amp/
https://www.hindawi.com/journals/jca/
https://www.hindawi.com/journals/jopti/
https://www.hindawi.com/journals/ijem/
https://www.hindawi.com/journals/aor/
https://www.hindawi.com/journals/jfs/
https://www.hindawi.com/journals/aaa/
https://www.hindawi.com/journals/ijmms/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ana/
https://www.hindawi.com/journals/ddns/
https://www.hindawi.com/journals/ijde/
https://www.hindawi.com/journals/ads/
https://www.hindawi.com/journals/ijanal/
https://www.hindawi.com/journals/ijsa/
https://www.hindawi.com/
https://www.hindawi.com/

