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selection of models of DNA
substitution for multicore clusters
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Abstract
This paper presents the high-performance computing (HPC) support of jModelTest2, the most popular bioinformatic tool
for the statistical selection of models of DNA substitution. As this can demand vast computational resources, especially in
terms of processing power, jModelTest2 implements three parallel algorithms for model selection: (1) a multithreaded
implementation for shared memory architectures; (2) a message-passing implementation for distributed memory archi-
tectures, such as clusters; and (3) a hybrid shared/distributed memory implementation for clusters of multicore nodes,
combining the workload distribution across cluster nodes with a multithreaded model optimization within each node. The
main limitation of the shared and distributed versions is the workload imbalance that generally appears when using more
than 32 cores, a direct consequence of the heterogeneity in the computational cost of the evaluated models. The hybrid
shared/distributed memory version overcomes this issue reducing the workload imbalance through a thread-based
decomposition of the most costly model optimization tasks. The performance evaluation of this HPC application on a
40-core shared memory system and on a 528-core cluster has shown high scalability, with speedups of the multithreaded
version of up to 32, and up to 257 for the hybrid shared/distributed memory implementation. This can represent a reduc-
tion in the execution time of some analyses from 4 days down to barely 20 minutes. The implementation of the three
parallel execution strategies of jModelTest2 presented in this paper are available under a GPL license at http://code.goog
le.com/jmodeltest2.
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1. Introduction

In recent years, DNA sequence data has been accumulated

in databases (e.g. GenBank) at an exponential rate. These

DNA sequences can be used for example to study the his-

tory of the different species that inhabit our planet, for

example estimating phylogenetic trees from multiple sequ-

ence alignments. All phylogenetic methods make assump-

tions, whether explicit or implicit, about the process of

DNA substitution (Felsenstein, 1988). It is well known that

the use of one or another probabilistic model of nucleotide

substitution can change the outcome of the analysis (Buck-

ley, 2002; Buckley and Cunningham, 2002; Lemmon and

Moriarty, 2004), and model selection has become a routine

step for the estimation of molecular phylogenies.

The most popular bioinformatic tool to select appropri-

ate models of DNA substitution for a given DNA sequence

alignment is jModelTest (Posada, 2008). This program

calculates the likelihood score for each model and uses dif-

ferent model selection techniques to choose the ‘‘best’’ one

according to the likelihood and number of parameters. The

model selection strategies implemented in jModelTest are

the Akaike information criterion (AIC) (Akaike, 1974),

Bayesian information criterion (BIC) (Schwarz, 1978) and

dynamic likelihood ratio tests (dLRTs) (Posada and Cran-

dall, 2001).
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jModelTest supports 88 submodels of the general time-

reversible model (Table 1). In top of different substitution

schemes and ACGT frequencies, each of these models can

assume that some sites do not change between sequences

(i.e. are invariant; ‘‘þI’’ parameter), or they do it at differ-

ent rates (approximated with a discrete gamma distribution

‘‘þG’’). The estimation of the a shape parameter of the

gamma distribution can be complicated, and models that

include this parameter (‘‘þG’’ models) carry an extra com-

putational burden.

We define the basic execution task as the optimization

of a single model. jModelTest makes an extensive use of

third-party bioinformatics libraries and software, aggregat-

ing multiple tasks in a pipeline and providing a high-level

view of the analysis. Figure 1 shows the workflow of jMo-

delTest, where the most time-consuming part of the process

is the calculation of the likelihood scores (carried out by the

PhyML program (Guindon and Gascuel, 2003)). Because

this calculation represents more than 99% of the execution

time in most cases, our parallel adaptation is focused in this

part of the model selection process. The parallel strategies

here exposed are implemented in a new version of jMo-

delTest, available at http://code.google.com/jmodeltest2.

A preliminary version of the parallelization of jModelTest,

including only the shared and distributed memory versions,

has been presented by Darriba et al. (2011a). This paper

extends the previous work by implementing a hybrid

shared/distributed memory version which overcomes the

limitations of the previous work, namely the poor scalabil-

ity and the workload imbalance, achieving 8 times higher

performance (from speedups around 30 to speedups around

230).

2. Parallel algorithm for model selection

Most of the execution time of the model selection analysis

is spent optimizing each substitution model from the candi-

date model set, maximizing the likelihood function (the

Table 1. Substitution models available in jModelTest. Any of these can include a proportion of invariable sites (þI), rate variation
among sites (þG), or both (þIþ G).

Model Free parameters Base frequencies Substitution rates Substitution code

JC k Equal AC ¼ AG ¼ AT ¼ CG ¼ CT ¼ GT 000000
F81 k þ 3 Unequal AC ¼ AG ¼ AT ¼ CG ¼ CT ¼ GT 000000
K80 k þ 1 Equal AC ¼ AT ¼ CG ¼ GT, AG ¼ CT 010010
HKY k þ 4 Unequal AC ¼ AT ¼ CG ¼ GT, AG ¼ CT 010010
TrNef k þ 2 Equal AC ¼ AT ¼ CG ¼ GT, AG, CT 010020
TrN k þ 5 Unequal AC ¼ AT ¼ CG ¼ GT, AG, CT 010020
TPM1 k þ 2 Equal AC ¼ GT, AT ¼ CG, AG ¼ CT 012210
TPM1uf k þ 5 Unequal AC ¼ GT, AT ¼ CG, AG ¼ CT 012210
TPM2 k þ 2 Equal AC ¼ AT, CG ¼ GT, AG ¼ CT 010212
TPM2uf k þ 5 Unequal AC ¼ AT, CG ¼ GT, AG ¼ CT 010212
TPM3 k þ 2 Equal AC ¼ CG, AT ¼ GT, AG ¼ CT 012012
TPM3uf k þ 5 Unequal AC ¼ CG, AT ¼ GT, AG ¼ CT 012012
TIM1ef k þ 3 Equal AC ¼ GT, AT ¼ CG, AG, CT 012230
TIM1 k þ 6 Unequal AC ¼ GT, AT ¼ CG, AG, CT 012230
TIM2ef k þ 3 Equal AC ¼ AT, CG ¼ GT, AG, CT 010232
TIM2 k þ 6 Unequal AC ¼ AT, CG ¼ GT, AG, CT 010232
TIM3ef k þ 3 Equal AC ¼ CG, AT ¼ GT, AG, CT 012032
TIM3 k þ 6 Unequal AC ¼ CG, AT ¼ GT, AG, CT 012032
TVMef k þ 4 Equal AC, AT, CG, GT, AG ¼ CT 012314
TVM k þ 7 Unequal AC, AT, CG, GT, AG ¼ CT 012314
SYM k þ 5 Equal AC, AG, AT, CG, CT, GT 012345
GTR k þ 8 Unequal AC, AG, AT, CG, CT, GT 012345

Figure 1. jModelTest algorithm workflow.
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likelihood is the probability of the data, a multiple sequence

alignment, given the model), which depends on the size and

complexity of the data. For large-scale alignments this can-

not be completed in a reasonable time with just a single core.

Thus, we implemented a high-performance computing

(HPC) version of jModelTest that supports its parallel exe-

cution on shared memory systems such as current multicore

desktop processors and HPC clusters, distributing the

workload among nodes and also taking advantage of multi-

core processors within nodes.

Maximum likelihood model optimization was proved

NP-complete (Chor and Tuller, 2006). Thus, it is really dif-

ficult to estimate the runtime of each single task. However,

we can estimate the relative workload depending on the

model parameters. Figure 2 shows the high variance between

task runtimes regarding invariant sites (þI) and discrete rate

categories (þG) parameters. This variance slightly depends

on the input data characteristics (e.g.number of taxa,

sequences length or divergence between sequences). A rep-

resentative real dataset (91 taxa and 33,148 base pairs). In

order to homogeneously distribute the workload, it is better

to run the most complex (i.e.þIþG andþG models) tasks at

first (reverse complexity estimate). The lightest tasks would

take up the remaining computational resources as long as the

candidate models are optimized.

This paper presents three parallel algorithms for model

selection using asynchronous communication and dynamic

load-balancing: (1) a threaded shared-memory approach

using Java built-in thread pool; (2) a distributed memory

approach using a Message-Passing in Java (MPJ) (Shafi

et al., 2009); and (3) a hybrid shared-distributed memory

approach using message-passing for inter-node synchroni-

zation, a custom thread pool for intra-node synchronization,

and OpenMP (Dagum and Menon, 1998) for parallelizing

the basic task. The first two approaches are based on

the parallel execution of model optimization tasks, present-

ing a coarser-grained parallelism than the last one, where

the model optimization is executed in parallel as well

(multilevel parallelism, with message-passing combined

with shared memory thread pools and OpenMP base

executions).

2.1. Design overview

The original implementation was partially redesigned to

grant model extensibility, traceability and encapsulation,

taking advantage of the code included in the ProtTest3

API (Darriba et al., 2011b), a similar program for protein

sequences already adapted for HPC environments.

Figure 3 shows the high-level design of the HPC version

of jModelTest. There is not coupling between the front-end

and the back-end layers, delegating communications through

a façade design pattern. Some features were organized into a

class hierarchy, decoupling the related classes from the con-

troller (i.e. ModelTestService), therefore making the model

easier to extend through several interfaces:

1. The execution modes use the RunPhyml hierarchy.

A common interface hides the model optimization

behavior, and internally is able to run several PhyML

instances in a shared memory architecture using a

thread pool (RunPhymlThreaded), synchronize sev-

eral processes in a distributed memory architecture

(RunPhymlMPJ) or synchronize multiple thread

pools in different nodes (RunPhymlHybrid).

2. The model selection task can be performed applying

different information criteria that in general terms

behaves in the same way. For this reason a common

specification (InformationCriterion) hides each sin-

gle criterion. As before, this decouples these classes

from the controller, and also brings extensibility to

the architecture.

3. The view classes do not directly depend on the inner

model. The use cases are implemented in the main

application service. Using an observer design pat-

tern the execution information is displayed in real

time. This works this way not only for the graphical

user interface (GUI), but also for the command

Figure 2. Computational load and execution times of the 88 model optimizations. There are 22 models of each rate variation para-
meter. The pie graph represents the proportion of the execution times of the models including invariant sites (þI), rate variation among
sites (þG) or both (þIþG).
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console executions, both threaded and distributed.

In the distributed approach, only the root model is

in charge of the I/O operations, unless they mean

read/write data from/into scratch.

2.2. Shared memory implementation

The shared memory implementation of jModelTest relies

on a thread pool to handle the execution of tasks on shared

memory architectures. This approach is fully portable as it

relies on thread pools from the Java Concurrence API, pres-

ent in Java 1.5 and higher. Figure 4 and Algorithm 1 present

the shared memory parallel operation. The task queue con-

tains the whole set of tasks which will be processed by the

thread pool in a particular order (reverse complexity esti-

mate) (Figure 5(a)).

This multithreaded shared memory approach is espe-

cially suitable for the parallel execution of jModelTest2

on multicore desktop computers, benefiting also from the

availability of a GUI. However, it is limited by the number

of available cores in the system, and especially from the

memory consumption, directly proportional to the number

of cores being used.

2.3. Distributed memory implementation

In order to handle the computation of tasks on distributed

memory architectures (e.g. clusters), this implementation

manages processes, which rely on message-passing for

communication, and uses a dedicated distributor thread to

allocate the workload according to a dynamic distribution

strategy (Figure 5(b)).

The process synchronization is explicitly achieved

through message-passing blocking communication. The

models are sequentially distributed and gathered among

the processes through non-blocking communications.

Only the root process is in charge of I/O, centralizing the

displaying of runtime information and results. This central

management has a negligible impact on the whole perfor-

mance as long as there is no output during the model opti-

mization task, which is by far the most time-consuming

part of the model selection process. Every process works

with its own copy of the input alignment from scratch,

avoiding this way read or write conflicts. Figure 6 and

Algorithm 2 show the operation in a distributed memory

environment.

This approach saves the previous bottleneck with mem-

ory requirements. However, because each single task is

executed sequentially, the workload imbalance in the

model optimization tasks (see Figure 2) represents a new

bottleneck. In fact, in most cases half of the candidate mod-

els requires more than 80% of the total execution time. The

more computational resources are used, the more probably

is that the total execution time depends on the optimization

of a single model, the one which takes longer to optimize.

This way, looking at Figure 2 it can be seen that the max-

imum runtime of a single model optimization is 248 min-

utes. The total runtime of the dataset is 135 hours. Thus,

dividing the total runtime by the maximum single task run-

time we can estimate that the highest speedup achievable is

32.83, no matter how many processes are used. Although

this is a particular example, empirical tests show that the

workload imbalance usually leads to a maximum speedup

below 40 for these task-level parallel strategies.

Figure 3. High level design of jModelTest2.

Darriba et al. 115



Speedupmax ¼
Runtime

Runtimemax

2.4. Parallel model optimization implementation

A detailed knowledge of the performance of the PhyML

parallel implementation is key for an optimal assignment

of resources (processor cores) for each model optimization

task. As the þG and þIþG models used to take four times

longer to optimize than the rest of the models, a proportion

of four-to-one in relative speedups would balance the work-

load for each task. However, since the parallel efficiency of

the PhyML parallel implementation is not optimal a trade-

off between the expected speedup and the available compu-

tational resources has to be considered.

PhyML uses the Maximum Likelihood algorithm (ML)

(Felsenstein, 1981) for finding the model parameters that

maximize the likelihood function. The likelihood evalua-

tion algorithm is the most time-consuming part of the

ML process, because it is executed for each new model

state proposal (i.e. after changing the parameters configura-

tion, the tree topology or the branch lengths). This likeli-

hood evaluation algorithm is highly parallelizable, since

it is a site-independent operation performed all along the

column patterns in the alignment. We have slightly chan-

ged the source code fixing unnecessary carried dependen-

cies in order to parallelize this loop using OpenMP.

Further than the source code analysis, the results of the par-

allel PhyML have been thoroughly validated. The sources

of this parallel patch are available from the authors.

Figure 8 shows the performance of this OpenMP-based

parallel PhyML version, where the scalability is notably

higher for models with rate variation among sites (þG).

In these models, the likelihood evaluation for each site is
Figure 4. Activity diagram for the shared memory parallel
operation algorithm.

Data: Execution parameters, input data, resource information
Result: Best-fit model
begin Application initialization // tasks initialization

build(model set);
Estimate workload per model;
Sort models in reverse complexity estimate;
begin Initialize parallel environment

Initialize thread pool;
Synchronize thread pool;

end
end

begin Tasks Computation // model optimization

build(task queue);
foreach model optimization task do

Wait for an idle thread;
Assign the next task to the thread;
Optimize model;

end
end

Algorithm 1. jModelTest algorithm for shared memory parallel model optimization.
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repeated for each different rate category (typically four

categories are used).

The parallel section here represents around 75% of

runtime for single category models and 98% of the total

execution time for models with rate variation among sites.

Amdahl’s law states an expected speedup of 2.91 and 7.02,

respectively, using 8 threads, and 3.36 and 12.31, respec-

tively, using 16 threads. However, there is a high parallel

overhead as long as the consumed execution time is caused

by a large number of sequential repetitions of the call to this

function and not so by the computational load of this loop

itself.

Looking at these results, it is important to select the best

ratio of resources allocated to þG and þIþG models

regarding non-gamma models. For example, a four-to-one

ratio is expected to balance the workload of the tasks for

four- and eight-core nodes. In addition, using a number

of threads that is a divisor of the number of available cores

per node will maximize the number ofþG andþIþG mod-

els that can be optimized in parallel. For example, an effi-

cient allocation rule for a cluster of 12-core nodes would be

the use of 4 or 6 threads for each gamma model (þG and

þIþG) and a single thread for the rest (uniform rates

and þI).

2.5. Hybrid shared/distributed memory
implementation

The performance limitations of the previous implementa-

tions can be solved using the previous parallel implementa-

tion of the basic task for avoiding workload imbalance, and

relying on a distributed memory approach to cope with

memory limitations, thus implementing a three-level hybrid

shared/distributed memory implementation (Figure 5(c)).

Figure 9 and Algorithm 3 show its operation in a hybrid

shared/distributed memory environment, such as a cluster

of multicore nodes. A single jModelTest process is exe-

cuted for each node, containing a custom thread pool

implementation that manages the tasks that are executed

within the node, and the number of cores allocated for each

task (i.e.the number of OpenMP threads used for the model

optimization task). This distribution, known as ‘‘thread

scheduling’’, allows different amounts of computational

resources to be assigned depending on the estimated

Figure 5. Parallel execution strategies in (a) shared memory, (b) distributed memory and (c) hybrid shared/distributed memory.

Darriba et al. 117



Figure 6. Activity diagram for the distributed memory parallel operation algorithm.
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workload of each task. Therefore, the parallel efficiency is

maximized in the simplest models by using a reduced num-

ber of cores (one or two), while the heaviest tasks are split,

thus balancing the global workload.

Parallel synchronization between nodes is performed

using MPJ, as in the previous distributed memory version.

Each MPJ process uses a custom implementation of the

thread pool, where both tasks and cores per task are man-

aged. Thus, the model optimization tasks can be heteroge-

neously distributed among the total number of cores

within the node. The workload is decomposed relying

on our custom parallel PhyML version implemented with

OpenMP.

3. Performance evaluation

The performance of the three parallel algorithms for

model selection of jModelTest2 has been evaluated on two

Data: Execution parameters, input data, resource information
Result: Best-fit model
begin Application initialization // tasks initialization

build(model set);
if Master process then

Estimate workload per model;
Sort models in reverse complexity estimate;
build(task queue);

else
Wait for task;

end
end

begin Tasks Computation // model optimization
if Master process then

while There are active workers do
Wait for task request;
if Worker had a previous model then

Receive results from previous model;
Update execution progress;

end
if Task queue is not empty then

Send the next task to the requester worker;
else

Send termination message to the worker;
end

end
else

Send task request;
while There are tasks to execute do

Receive task;
Execute task;
Send task request;
Send previous task results;

end
Finalize;

end
end

Algorithm 2. jModelTest algorithm for distributed memory parallel model optimization.

Figure 7. Maximum reachable speedup using task-level
parallelization.
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representative HPC systems, a 40-core shared memory sys-

tem and a cluster of multicore nodes (44 nodes with 12

cores per node, hence 528 cores). The distributed memory

and the hybrid shared/distributed memory algorithm have

been evaluated in this latter system.

3.1. Data set configuration

The data sets used in the performance evaluation consist of

4 simulated multiple sequence alignments, covering a wide

range of number of sequences, from 12 to 91, and a wide

range of sites for each sequence, from 3000 to 33,148 (see

Table 2). The largest alignment, ALIGN1 (91 sequences of

33,148 sites), has the largest sequential runtime (5.65 days)

whereas the sequential execution time of the smallest one,

ALIGN4 (12 sequences of 5831 sites), is around 5 hours.

The calculation of the model likelihood scores requires

an initial phylogenetic tree (‘‘base’’ tree), generated using

likelihood estimation (ML) (Felsenstein, 1981). This algo-

rithm provides much more accurate results in the model

selection process in exchange of significantly higher run-

times than other algorithms such as BIONJ (Gascuel,

Figure 9. Activity diagram for the hybrid shared/distributed memory parallel operation algorithm.
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1997). ML estimation is NP-complete, while BIONJ has a

computational complexity of Oðn3Þ, where n is the number

of sequences.

The distribution of the tasks is limited by the maximum

number of substitution models to be computed, 88 in this

case, so it is not possible to take advantage from the use

of more than 88 processes. Moreover, the variability of the

runtimes across models has a significant impact on perfor-

mance as workload imbalance reduces the speedup and the

parallel efficiency obtained. Thus, Figure 2 presents the

overhead of the model likelihood calculation of ALIGN1

for each model type. In this case, when a small number

of models per processor is distributed the differences in

execution times can delay significantly the completion of

the parallel execution.

Furthermore, even the execution times of the optimiza-

tion of the models with the same parameters (e.g. ‘‘þI’’ and

‘‘þIþG’’ models) present significant variance. This char-

acteristic, together with the fact that their execution time

cannot be estimated a priori, contribute to the presence of

a performance bottleneck as the number of cores increases

(i.e. the fewer models per processor, the less probability the

work is balanced). In order to reduce this overhead a

Data: Execution parameters, input data, resource information
Result: Best-fit model
begin Application initialization // tasks initialization

build(model set);
if Master process then

Estimate workload per model;
Set the required threads per task;
Sort models in reverse complexity estimate;
build(task queue);

else
begin Initialize parallel environment

Initialize custom thread pool;
end
Wait for tasks;

end
end

begin Tasks Computation // model optimization
if Master process then

while There are active workers do
Receive task request and number of idle threads on the requester pool;
if Task queue is not empty then

Select the most complex task that requires at most the available threads;
Send the next task to the requester worker;

else
Send termination message to the worker;

end
end

else
while There are tasks to execute do

while There are idle threads do
Send task request and number of idle threads;
Receive task;
Execute task in parallel asynchronously;

end
Wait for idle threads;

end
Finalize;

end
Gather selection results at the Master process;

end

Algorithm 3. jModelTest algorithm for hybrid shared/distributed memory model optimization.

Table 2. Data sets used in the performance evaluation.

Name
Number of
sequences Length

Base
Tree

Sequential
runtime

(hh:mm:ss)

ALIGN1 91 33,148 ML 135:42:01
ALIGN2 40 4,203 ML 15:23:56
ALIGN3 40 3,200 ML 14:33:48
ALIGN4 12 5,831 ML 4:51:13
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heuristic, which consists of starting the optimization with the

most complex models, has been proposed. This approach has

reported more balanced executions as the main source of

imbalance, starting the computation of a complex model at

the end of the optimization process, is avoided.

However, the scalability using the shared and distributed

memory implementations is limited by the replacement

models with the largest execution time, which can account

for more than 80% of the overall runtime. In these cases,

the runtime is determined by the longest optimization, even

if the execution is prioritized efficiently using the proposed

heuristic for selecting the models to be optimized first.

3.2. Testbed configuration

The shared memory testbed is a system with 4 Westmere-

EX (Westmere-based EXpandable/multiprocessor) Intel

Xeon E7-4850@2.0 GHz 10-core processors (hence, 40

cores) and 512 GB memory. The OS is Linux Ubuntu

11.10 64 bits, the C compiler is gcc 4.6 and the JVM is

OpenJDK 1.6.0_23 64-bit Server VM.

The second testbed is a cluster of multicore nodes, used

for the evaluation of the distributed and hybrid shared/dis-

tributed memory implementation. This cluster is also a

Westmere-based system, Westmere-EP (Efficient Perfor-

mance), which consists of 44 nodes, each of them with 2

Intel Xeon X5675@3.06 GHz hexa-core processors (hence

12 cores per node, 528 cores in the cluster) and 24 GB of

RAM (1104 GB of RAM in the cluster). The interconnec-

tion networks are InfiniBand (DDR 4X: 16 Gbps of maxi-

mum theoretical bandwidth), with OFED driver 1.5.3, and

Gigabit Ethernet (1 Gbps). The OS is Linux CentOS 5.3,

the C compiler is gcc 4.6, the JVM is Oracle 1.6.0_23, and

the Java message-passing library is FastMPJ 1.0b.

The performance metrics considered in this performance

evaluation are the execution time and its associated speedup,

defined as SpeedupðnÞ ¼ Tseq=Tn, where Tseq is the runtime

of the sequential execution of jModelTest2, and Tn the

time measured when using n cores. Another metric consid-

ered is the parallel efficiency, defined as EfficiencyðnÞ ¼
SpeedupðnÞ=n, which is 100% in the case of a linear

speedup (speedup of n when using n cores) and is close to

0% in case of highly inefficient parallel executions.

3.3. Evaluation of the shared memory algorithm

Figure 10 and Table 3 present, respectively, the speedups

and execution times obtained using the shared memory

implementation in the 40-core Westmere-EX shared mem-

ory system. In this scenario the speedup is close to the ideal

case (i.e. obtaining speedups around n with n cores), espe-

cially using up to 24 threads. The use of a higher number of

threads (32 and 40) results in workload imbalance due to

the reduced number of models optimized per thread, which

makes it more difficult to balance the workload even with

this dynamic distribution.

The processors of this testbed have simultaneous multi-

threading (SMT) or hyperthreading, whose activation allows

to run 80 threads simultaneously on 40 physical cores (two

threads per physical core). However, the use of more than

40 threads in this evaluation has not reported any benefit

as the workload imbalance limits the scalability. In fact, the

speedups obtained from running 64 and 80 threads (not

shown for clarity purposes) are slightly lower than running

40 threads due to the higher overhead of executing twice the

number of model optimization tasks, which burdens memory

access performance and OS thread scheduling. This result

would seem questionable as Intel has reported that hyper-

threading can provide up to 30% higher performance and

indeed we reported such a performance benefit in our previ-

ous work on an 8-core system (Darriba et al., 2011a). Nev-

ertheless, there is no contradiction as hyperthreading

increases jModelTest2 shared memory scalability when an

increment in the number of threads improves the workload

balance, such as running on an 8-core system, whereas it

does not yield any benefit when using 40 or more cores.

3.4. Evaluation of the distributed memory algorithm

The distributed memory implementation of jModelTest2

has been evaluated on the Westmere-EP cluster, showing

1

4

8

12

16

20

24

28

32

1 2 4 8 12 16 24 32 40

Sp
ee

du
p

Number of Threads

Performance of the shared memory implementation

ALIGN1
ALIGN2
ALIGN3
ALIGN4

Figure 10. Scalability of the shared memory version (40-core
Westmere-EX testbed).

Table 3. Execution times (hh:mm:ss) in a shared memory system
(40-core Westmere-EX testbed).

Threads ALIGN1 ALIGN2 ALIGN3 ALIGN4

1 135:42:01 15:23:56 14:33:48 04:51:13
2 66:11:01 07:39:52 07:45:53 02:37:45
4 34:14:08 03:56:18 03:43:59 01:17:28
8 17:39:16 02:16:03 01:52:30 00:38:01
12 12:10:04 01:20:03 01:17:56 00:27:40
16 09:31:29 01:02:39 01:02:13 00:24:02
24 06:19:31 00:42:45 00:47:34 00:11:57
32 05:36:53 00:38:21 00:41:11 00:10:33
40 04:49:08 00:37:08 00:38:27 00:09:02
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the measured execution times and the associated speedups

in Figure 11 and Table 4, respectively. In this testbed the

sequential execution time is around 15–25% faster than

on the Westmere-EX system, an expected result according

to their respective computational power, measured in terms

of the SPEC CPU floating point CFP2006 benchmark (the

optimization of models is intensive in floating point opera-

tions). Thus, a single core from the Westmere-EX system

obtains a result of 49.6 in the CFP2006 whereas a single

core from the Westmere-EP system achieves a result of

60.3, a 22% higher.

This implementation distributes the workload among the

available message-passing processes, using up to 88 pro-

cesses, the maximum number of models to be optimized

and running each process in a single core. In this testbed the

particular allocation of processes among the cluster nodes

has a negligible impact on performance (< 0:1% runtime

overhead) due to the computationally intensive nature of

the application with respect to the communications

required (ML optimization accounts for nearly all of the

execution time). In this performance evaluation the pro-

cesses have been distributed among the cluster nodes using

a fill-up allocation rule, minimizing the number of nodes by

using the 12 cores available per node (e.g. the execution

using 88 processes has distributed 12 processes per node

across 7 nodes, and 4 processes in the eighth node).

The workload imbalance presented in the evaluated data

sets (22 out of 88 tasks optimizing the most complex mod-

els accounts for approximately 50% of the total runtime and

44 out of 88 tasks require more than 80% of the total run-

time, as shown in Figure 2) imposes an upper bound in the

scalability, limiting the measured speedups to around 30, as

for the shared memory implementation. Thus, distributing a

small number of models per process severely limits the load

balancing benefits, as it is not possible to take advantage of

the spare computational power available once a process

finishes its task processing and the task queue is empty.

In fact, little performance benefits are obtained when using

more than 32 processes, the speedups using 32 processes

are around 25 (78% parallel efficiency), whereas the speed-

ups using 88 processes are around 30 (34%), the use of 56

additional processes (a 175% resources increase, from 32

up to 88 cores) hardly improves speedups (20% higher,

from 25 to 30). When using more than 32 cores most of the

processes only compute a single model and finish working

earlier than the longest running model, which is the one that

determines the overall runtime (and, hence, the speedup) in

these scenarios.

3.5. Evaluation of the hybrid shared/distributed
algorithm

The limitations of the shared and distributed memory

implementations of jModelTest2 have motivated the devel-

opment of a more scalable implementation based on the

decomposition of the model optimization among multiple

threads (see Section 2.4). This decomposition depends on

the allocated resources, the number of available cores per

node and the computational cost of each model optimiza-

tion. Thus, the longest running model computations, such

as the gamma models (þG and þIþG), are split among

multiple threads whereas the lightest ones are executed

by one or two threads. The final objective is to achieve the

workload balance among all of the involved processes.

Thus, this new implementation is able to take advantage

of hybrid shared/distributed memory architectures, such

as clusters of multicore nodes, without compromising sig-

nificantly its efficiency.

This new implementation of jModelTest2 has been eval-

uated on the Westmere-EP cluster, where each node has 12

physical cores and can run up to 24 simultaneous threads

thanks to hyperthreading. The measured execution times

and the associated speedups are shown in Figure 12 and

Table 5, respectively. The experimental results have been

obtained using 12 threads per node for executions from

192 up to 480 threads, thus 16, 24, 33 and 40 nodes have

been used for executions on 192, 288, 396 and 480 threads,

respectively. The performance results using 40 threads (4

nodes) and 88 threads (8 nodes) are also shown for com-

parative purposes against the results of the shared and dis-

tributed memory versions, evaluated using up to 40 and 88

cores, respectively. Here the resources allocated for each

type of model (i.e. uniform, þI, þG or þIþG) are selected

1
4
8

12
16
20
24
28
32

1 1216 22 32 44 64 88

Sp
ee

du
p

Number of Cores

Performance of the distributed memory implementation
ALIGN1
ALIGN2
ALIGN3
ALIGN4

Figure 11. Scalability of the distributed memory version
(Westmere-EP testbed).

Table 4. Execution times (hh:mm:ss) of the distributed memory
implementation (Westmere-EP testbed).

Threads ALIGN1 ALIGN2 ALIGN3 ALIGN4

1 100:11:08 12:53:56 12:36:04 04:01:50
12 09:25:32 01:05:50 01:03:29 00:21:34
16 08:51:50 00:49:56 00:49:47 00:16:58
22 06:11:03 00:45:38 00:46:15 00:15:39
32 04:03:22 00:27:44 00:32:50 00:09:38
44 04:11:06 00:32:05 00:34:47 00:09:03
64 04:19:04 00:25:41 00:24:31 00:08:47
88 03:30:02 00:26:36 00:25:31 00:07:49
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depending on the number of total resources. For example,

an execution with 4 nodes and 12 threads per node would

use 4 threads for each gamma model (þG and þIþG) and

a single thread for the rest.

This benchmarking has also taken into account the eva-

luation of the impact of hyperthreading in the performance

of this new implementation. Thus, the executions with 576,

696 and 792 threads have used 32 nodes � 18 threads per

node, 29 nodes � 24 threads per node and 44 nodes � 18

threads per node, respectively. The main conclusion

derived from the analysis of these performance results is

that jModelTest2 takes advantage of hyperthreading, both

running the maximum number of simultaneous threads per

node (24) or sharing half of the physical cores (18 threads

running on 12 physical cores).

The analysis of the results shows that this implementa-

tion achieves significantly higher scalability, speedups

around 230, in the range 203–257, which is the result of

multiplying the scalability of the distributed memory pro-

cessing (speedups around 30) by the scalability obtained

by the parallel execution of the optimization of the models

(speedups up to 8). In fact, this multilevel parallel imple-

mentation increases 8 times jModelTest2 performance,

that is to say, its performance benefits are equivalent to

the scalability obtained from the parallelization of the

model optimization.

4. Conclusions

A popular tool for the statistical selection of models of DNA

substitution is jModelTest, a sequential Java application that

requires vast computational resources, especially CPU

hours, which has motivated the development of its parallel

implementation (jModelTest2, distributed under a GPL

license at http://code.google.com/jmodeltest2). This paper

presents its three parallel execution strategies: (1) a shared

memory multithread GUI-based desktop version; (2) a dis-

tributed memory cluster-based version with workload distri-

bution through message-passing; and (3) a multilevel hybrid

shared/distributed memory version that distributes the com-

putation of the likelihood estimation task across cluster

nodes while taking advantage, through a thread-based paral-

lelization, of the multiple cores available within each node.

The performance evaluation of these three strategies has

shown that the hybrid shared/distributed memory imple-

mentation of jModelTest2 presents significantly higher

performance and scalability than the shared and distributed

memory versions, overcoming their limitations that force

their execution using only up to 32–40 cores. Thus, the new

implementation can take advantage efficiently of the use of

up to several hundreds of cores. The observed parallel effi-

ciencies are around 38–49%, with speedups in the range

203–257 on 528 physical cores. This performance has been

obtained thanks to the workload balance provided by the

thread-based decomposition of the most costly model opti-

mization tasks.

The shared memory implementation of jModelTest2

provides scalable performance although generally up to

40 threads. Nowadays this limitation is becoming more and

more important as the number of available cores per system

continues increasing, especially with the advent of many-

core processors which definitely demand further workload

decomposition in jModelTest2.

The distributed memory implementation shows similar

performance results as the shared memory version despite

supporting distributed memory architectures with hundreds

of cores. In fact, using more than 32 cores results in highly

inefficient scalability gains due to the significant workload

imbalance present in jModelTest2. However, this solution

avoid memory limitations with large input data.

The hybrid shared/distributed memory implementation

provides a three-level parallelism avoiding memory limita-

tion as the previous strategy while using a heterogeneous

computational resource distribution in order to achieve a bet-

ter load balancing. Although there is a high overhead in the

parallel execution of each task, this strategy homogenizes

the task execution times, thus balancing the workload.
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