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Abstract 

Reducing costs in terms of time, animal sacrifice, and material resources with computational methods has 

become a promising goal in Medicinal, Biological, Physical and Organic Chemistry. There are many 

computational techniques that can be used in this sense. In any case, almost all these methods focus on few 

fundamental aspects including: type (1) methods to quantify the molecular structure, type (2) methods to link 

the structure with the biological activity, and others. In particular, MARCH-INSIDE (MI), acronym for 

Markov Chain Invariants for Networks Simulation and Design, is a well-known method for QSAR analysis 

useful in step (1). In addition, the bio-inspired Artificial-Intelligence (AI) algorithms called Artificial Neural 

Networks (ANNs) are among the most powerful type (2) methods. We can combine MI with ANNs in order 

to seek QSAR models, a strategy which is called herein MIANN (MI & ANN models). One of the first 

applications of the MIANN strategy was in the development of new QSAR models for drug discovery. 

MIANN strategy has been expanded to the QSAR study of proteins, protein-drug interactions, and protein-

protein interaction networks. In this paper, we review for the first time many interesting aspects of the 

MIANN strategy including theoretical basis, implementation in web servers, and examples of applications in 

Medicinal and Biological chemistry. We also report new applications of the MIANN strategy in Medicinal 

chemistry and the first examples in Physical and Organic Chemistry, as well. In so doing, we developed new 

MIANN models for several self-assembly physicochemical properties of surfactants and large reaction 

networks in organic synthesis. In some of the new examples we also present experimental results which were 

not published up to date. 

Keywords: Artificial neural networks; Drug-target networks; Multitarget QSAR; Organic reaction networks; 

Protein interaction networks; Surfactant QSPR models  
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1. INTRODUCTION  

Reducing costs in terms of time, animal sacrifice, and material resources with computational 

methods has become a promising goal in Medicinal, Biological, Physical and Organic Chemistry 

[1]. There are many computational techniques that can be used in this sense, to cite a few: 

Quantum Mechanics/Molecular Mechanics (QM/MM) [2], Monte Carlo methods (MC) [2, 3], 

Docking and/or Quantitative Structure-Activity Relationships (QSAR) [4-10]. In any case, almost 

all these methods focus on few fundamental aspects including: type (1) methods to quantify the 

molecular structure, type (2) methods to link the structure with the biological activity, and others. 

Several methods of type (1) use QM and/or Graph theory [11-15], whereas the type (2) methods 

use Statistical and/or Machine Learning (ML) techniques. DRAGON [16-18], TOPS-MODE [19-

22], TOMOCOMD [23, 24], CODESSA [25, 26], and MOE [27] are some of the most used 

software that implement type (1) methods. Linear Discriminant Analysis (LDA) implemented in 

STATISCA [28] or ML methods implemented in WEKA [29] are examples of type (2) methods 

and the software used to carry them out.  

 

In this context, different researchers/journals edited important monographic issues in order to 

discuss different computational methods. Some of the most recent have been published by Current 

Topics in Medicinal Chemistry. For instance, Bisson has edited a special issue about 

Computational Chemogenomics in Drug Design and Discovery [30]. Speck-Planche and Cordeiro 

have guest-edited a special issue about computer-aided techniques for the design of antihepatitis C 

agents [31]. Prado-Prado and García-Mera have also guest-edited a special issue about computer-

aided Drug Design and molecular docking for disorders of the central nervous system and other 

diseases [32]. González-Díaz has guest-edited two special issues about mt-QSAR and Complex 

Networks applied to Medicinal Chemistry [33, 34]. In all these issues, and others of the same 

journal, several reviews and research papers have been published in this area [5, 27, 35-69].  

 

In particular, the bio-inspired Artificial-Intelligence (AI) algorithms called Artificial Neural 

Networks (ANNs) are among the most powerful type (2) methods. Important applications of 

ANNs in classifications and feature selection have been published [70-74]. In this paper, we focus 

on one of these methods called MIANN. Thus, we review for the first time many interesting 

aspects of the MIANN strategy including theoretical basis, implementation in web servers, and 

examples of applications in Medicinal and Biological Chemistry. We also report new applications 

of the MIANN strategy in Medicinal Chemistry and the first examples in Physical and Organic 

Chemistry, as well. In so doing, we developed new MIANN models for drug-target interactions, 

several physicochemical properties of surfactants, and large reaction networks in organic 

synthesis. In some of the new examples we also present experimental results which were not 

published up to date.  

2. THE MIANN APPROACH  

MARCH-INSIDE (Markov Chain Invariants for Networks Simulation and Design) is a well-

known type (1) method for QSAR analysis. The method has been mentioned in many recent 

review works published by different groups [65, 75-82]. We can combine MI with different 

Machine Learning algorithms. In particular, we can combine MI with ANNs in order to seek 

QSAR models. The name of this strategy is MIANN (MARCH-INSIDE & ANN models).  

  



2.1. Theoretical Basis of MIANN Analysis  

2.1.1. Parameters for Drug Structure  

The MARCH-INSIDE approach [1, 65, 83] is based on the calculation of the different 

physicochemical molecular properties as an average of atomic properties (wj). For instance, it is 

possible to derive average estimations from molecular descriptors or local indices such as 

electronegativity values 
k
χ(G) [84, 85].  

 

 kχ(G) = ∑pk(χj) · χj

 

j=G

 (1) 

  

𝜃𝑘(𝐺) = −∑ 𝑘𝑝𝑗(𝐺) · log[ 𝑘𝑝𝑗(𝐺)]

𝑛

𝑗𝜖𝑅

 (2) 

  

𝜋𝑘(𝐺) = ∑  𝑘𝑝𝑖𝑗(𝐺)

𝑛

𝑖=𝑗𝜖𝑅

 (3) 

 

In this case, wj = χj, the atomic electronegativity. It is also possible to consider isolated atoms 

(k = 0) in a first estimation of the molecular properties 
0
χ(G), 

0
θ(G), or 

0
π(G). In this case, the 

probabilities 
0
p(χj) are determined without considering the formation of chemical bonds (simple 

additive scheme). However, it is possible to consider the gradual effects of the neighboring atoms 

at different distances in the molecular backbone. In order to reach this goal, the method uses an 

MCM, which determines the absolute probabilities pk(wj) with which the atoms placed at different 

distances k affect the contribution of the atom j to the molecular property in question.  

2.1.2. Parameters for Protein 3D Structures  

In this work, the information about the molecular structure of the proteins is codified using the 

MM method with the 
1
∏ matrix (the short-term electrostatic interaction matrix). The matrix 

1
∏ is 

constructed as a squared matrix (n
x
n), where n is the number of amino acids (aa) in the protein[86-

88]. In previous works we have predicted the protein function based on μk(R) and θk(R) values 3D-

Potentials for different types of interactions or molecular fields derived from 
1
∏. The main types 

of the used molecular fields are: electrostatic (E), Van der Waals (vdW) and HINT potential [87, 

89, 90]. In this paper, we have calculated πk(R) and θk(R) values only for E and HINT potentials. 

We have omitted the vdW term due to a simple reason, the HINT potential includes a vdW 

component. The values have been used here as inputs to construct the QSAR model. A detailed 

explanation on the subject has been previously published. As follows, we give the formula for 

πk(R), θk(R) and ξk(R) and some general explanations: 

 

𝜉𝑘(𝑅) = − ∑ 𝑘𝑝𝑗(𝑅) · 𝜉0(𝑗)

𝑗𝜖𝑅

 (4) 

  

𝜃𝑘(𝑅) = −∑ 𝑘𝑝𝑗(𝑅) · log[ 𝑘𝑝𝑗(𝑅)]

𝑛

𝑗𝜀𝑅

 (5) 

  

𝜋𝑘(𝑅) = ∑  𝑘𝑝𝑖𝑗(𝑅)

𝑛

𝑖=𝑗𝜖𝑅

 (6) 

 

  



It is remarkable that the spectral moments depend on the probability 
k
pij(R) with which the 

effect of the interaction f propagates from amino acid i
th

 to other neighboring amino acids j
th

 and 

returns to i
th

 after k-steps. On the other hand, both the average electrostatic potential and the 

entropy measures depend on the absolute probabilities 
k
pj(R) with which the amino acid j

th
 has an 

interaction of type f with the rest of amino acids. In any case, both probabilities refer to a first (k = 

1) direct interaction of type f between amino acids placed at a distance equal to k-times the cut-off 

distance (rij = k ·rcut-off). The method uses a Markov Chain Model (MCM) to calculate these 

probabilities, which also depend on the 3D interactions between all pairs of amino acids placed at 

a distance rij in r3 in the protein structure. However, for the sake of simplicity, a truncation or cut-

off function αij is applied in such a way that a short-term interaction takes place in a first 

approximation only between neighboring aa (αij = 1 if rij < rcut-off). Otherwise, the interaction is 

banished (αij = 0). The relationship αij may be visualized in the form of a protein structure complex 

network. In this network the nodes are the Cα atoms of the amino acids and the edges connect pairs 

of amino acids with αij = 1. Euclidean 3D space r3 = (x, y, z) coordinates of the Cα atoms of amino 

acids listed on protein PDB files. For the calculation, all water molecules and metal ions were 

removed.[1] The MI[1] software performs all these calculations by evaluation of the summation 

term either for all amino acids or only for some specific groups called regions or orbitals (R). 

These regions are often defined in geometric terms and called core, inner, middle or surface 

region. The protein is virtually divided into the following regions: c corresponds to core, i to inner, 

m to middle, and s to surface regions, respectively. The diameters of the regions are 0 to 25 for 

region c, 25 to 50 for region i, 50 to 75 for region m, and 75 to 100 for region s. These values are 

given in terms of percentage of the longest distance rmax with respect to the center of charge. 

Additionally, we consider the total region (t) that contains all the amino acids in the protein 

(region diameter 0 to 100% of rmax). Consequently, we can calculate different parameters (πk(R), 

ξk(R), and θk(R)) for the amino acids contained in a region (c, i, m, s, or t) and placed at a 

topological distance k within this region (k is the name of the order) [90-94]. In this work, we 

calculated a total of 90 indices (3 types of indices x 5 types of regions x 6 higher order considered) 

for each protein.  

2.2.2. Pseudo-Folding Parameters for Proteins Sequences  

The MARCH-INSIDE approach is based on the calculation of the different molecular 

parameters of both proteins (Ps) and drugs and/or organic ligands (Ls) of proteins [65, 82]. In this 

sense, different parameters of protein pseudo-folding in 2D lattice-like spaces have been used 

before in proteome research [95]. On the other hand, in previous works, we have predicted a 

protein function based on 3D-potentials for different types of interactions. The main types of 

potentials used are the averaged values of electrostatic, Van der Waals and HINT potentials [96, 

97]. In this paper, we combine for the first time the pseudo-folding electrostatic ξk potentials of 

protein sequences with average electronic parameters of drugs. These values of protein sequences 

were used as inputs to construct the QSAR model together with the parameters of drug structure. 

The key of the method is to overcome the higher dimension space bottleneck after previous 

grouping of the monomers (amino acids) into four groups. These four groups characterize the 

physicochemical nature of the amino acids as: polar, non-polar, acid, or basic. Classification of 

monomers (amino acids) as acid or basic prevails over polar/non-polar classification in such a way 

that the four groups do not overlap each other. Subsequently, each amino acid in the sequence is 

placed in a Cartesian 2D space starting with the first monomer at the (0, 0) coordinates. The 

coordinates of the successive amino acids are calculated following simple heuristics, in such a way 

it can be used for a DNA [98]. Secondly, the method uses the matrix 
1
∏, which is a squared matrix 

to characterize the protein sequence pseudo-folding into a 2D lattice-like space (see graphs). 

Please, note that the number of nodes (n) in the graph may be equal or even smaller than the 

number of amino acids in the protein sequence. Accordingly, the matrix 
1
∏ contains the 

probabilities 
1
pij to reach a node ni moving throughout a walk of length k = 1 from another node nj: 

 

𝑝𝑖𝑗(𝑃𝑛) =
𝑄𝑗(𝑃𝑛)

∑ 𝛼𝑖𝑙 · 𝑄𝑙(𝑃𝑛)𝑛
𝑚=𝑙

 (7) 

  



Where, Qj is the charge of the node nj and αij equals to 1 if the nodes ni and nj are adjacent in 

the graph and equals to 0 otherwise. The charge of the node Qj is equal to the sum of the charges 

of all amino acids projected over this node after protein sequence pseudo-folding. We can list all 

these Qj values calculating the elements of a vector of electrostatic potentials q0 ≡ [Qj/dj] ≡ [Q1/d1, 

Q2/d2,...Qj/dj, Qj+1/dj+1, ...Qn/dn] being dj the Euclidian distance from the node j
th

 and the center of 

coordinates (0, 0) in the 2D pseudo-folding space. Afterwards, the calculation of the average 

electrostatic potentials of protein pseudo-folding is carried out directly.  

 

𝜉𝑘 = 𝐩0 
𝑡.𝑘∏ · 𝐪0 = 𝐩0 

𝑡 · ( 1∏) 𝑘 · 𝐪0= ∑ 𝑝𝑘(𝑗) · 𝜉(𝑗)

𝑛

𝑗=𝑙𝜖𝑅

 (8) 

 

The average general potentials depend on the initial absolute probabilities p0(j) and the total 

potential with which all the amino acids projected over the lattice node j
th

 interact with the rest of 

amino acids projected over other nodes of the space. These are the probabilities with which the 

amino acids interact with other amino acids placed at a topological distance dij equal to k-times the 

cut-off distance (dij = k). These probabilities are the elements of the vector p0 ≡ [Qj/dj] ≡ [Q1/d1, 

Q2/d2,...Qj/dj, Qj+1/dj+1, ...Qn/dn].  

2.2.4. Parameters of PPIs Used in the MIANN Analysis  

In principle, we can use as input for the MIANN analysis of PPIs all types of PPI invariants 

calculated with MI. However, the only MI parameter calculated with MI that has been used for a 

MIANN analysis of PPIs until now is the entropy θk(R). The used entropy parameters represent the 

average electrostatic entropy (θ) due to the interactions between all pairs of amino acids allocated 

inside a specific protein region (R) and placed at a distance k from each other. In order to describe 

PPIs we need to use θk(R) values of two proteins, θk(
1
R) for protein 1 and θk(

2
R) for protein 2, in 

order to generate structural parameters describi>Curr. Top. Med. Chem.</secondary-

title></titles><periodical><full-title>Curr. Top. Med. Chem.</full-title></periodical> 

<pages>1883-8</pages><volume>12</volume><number>17</number><dates><year>2012 

</year></dates><pub-location>Netherlands</pub-location><isbn>1873-4294 (Electronic)&#xD; 

1568-0266 (Linking)</isbn><accessio
n-

θk(R): PPI Average Entropy Invariant (ti = a), PPI Entropy 

Difference Invariant (ti = d), and PPI Entropy Product Invariant (ti = p):  

 

 𝛼𝜃𝑘(𝑅) =  𝛼𝜃𝑘( 1𝑅1,  
2𝑅1) =

1

2
[𝜃𝑘( 1𝑅1) + 𝜃𝑘( 2𝑅1)] (9) 

  

 𝑑𝜃𝑘(𝑅) =  𝑑𝜃𝑘( 1𝑅1,  
2𝑅1) = |[𝜃𝑘( 1𝑅1) − 𝜃𝑘( 2𝑅1)]| (10) 

  

 𝑝𝜃𝑘(𝑅) =  𝑝𝜃𝑘( 1𝑅1,  
2𝑅1) = 𝜃𝑘( 1𝑅1) · 𝜃𝑘( 2𝑅1) (11) 

 

Notably, in order to guarantee that these parameters are invariant to protein labeling as 1 or 2, 

we have to always use the same 
1
R = 

2
R = R and k1 = k2 = k values. In order to calculate the θk(R) 

values for each protein, the method uses as a source of protein macromolecular descriptors the 

stochastic matrices 
1
∏e built up as squared matrices (n x n), where n is the number of amino acids 

(aa) in the protein. The subscript e points to the electrostatic type of molecular force field. In 

previous works we have predicted the protein function based on θk(R) values for different types of 

interactions or molecular fields. The main types of molecular fields used are the following: 

electrostatic, vdW, and HINT entropies.  

2.2.5. ANN Analysis in the Context of the MIANN Strategy  

On the one hand, the MIANN strategy involves using as inputs, in order to train the ANNs, the 

MI parameters of the r
th

 drugs or protein ligands (Lr) in general: 
k
χ(Lr), 

k
θ(Lr), or 

k
π(Lr). On the 

other hand, we should use the MI parameters of s
th

 protein sequences or 3D structures: 
k
ξ(Ps), 

k
θ(Ps), or 

k
π(Ps). In the case of a Linear ANN (LNN), the models may have the following general 



formulae for the cases of a drug, protein, DPIs, or PPI analysis (examples using only entropies 
k
θ(Lr) for drugs, ligands, or low-weight molecules and 

k
θ(Ps) for proteins):  

 

𝑆(𝐿𝑟)𝑝𝑟𝑒𝑑 = ∑ 𝛼𝑘 ·  𝑘𝜃(𝐿𝑟) + 𝑐0

5

𝑘=0

 (12) 

  

𝑆(𝑃𝑠)𝑝𝑟𝑒𝑑 = ∑ 𝑏𝑘 ·  𝑘𝜃(𝑃𝑠) + 𝑐0

5

𝑘=0

 (13) 

  

𝑆(𝐷𝑃𝐼𝑟𝑠)𝑝𝑟𝑒𝑑 = ∑ 𝛼𝑘 ·  𝑘𝜃(𝐿𝑟) + ∑ 𝑏𝑘 ·  𝑘𝜃(𝑃𝑠) +

5

𝑘=0

𝑐0

5

𝑘=0

 (14) 

  

𝑆(𝑃𝑃𝐼𝑟𝑠)𝑝𝑟𝑒𝑑 = ∑ 𝛼𝑘 ·
1

2
[𝜃𝑘(𝑃𝑟) + 𝜃𝑘(𝑃𝑠)]

5

𝑘=0

+ ∑ 𝑏𝑘 · |𝜃𝑘(𝑃𝑟) − 𝜃𝑘(𝑃𝑠)| + ∑ 𝑐𝑘 · 𝜃𝑘(𝑃𝑟) · 𝜃𝑘(𝑃𝑠) + 𝑑0

5

𝑘=0

5

𝐾=0

 

(15) 

 

The model deals with the classification of a set of compounds, proteins, DPIs, or PPIs, with or 

without affinity to different protein targets. A dummy input variable Affinity Class (AC) codifies 

the affinity; AC = 1 for well-known DPIs and AC = 0 otherwise. This variable indicates either 

high (AC = 1) or low (AC = 0) affinity of the drug to the target protein. The parameter S(DPIrs)pred 

is the output of the model and it is a continuous and dimensionless score that gives higher values 

for DPIs and lower values for nDPIs. In the model, ak, bk, and c0 represent the coefficients of the 

MIANN function determined by the LNN technique using the STATISTICA 6.0 software package 

[99]. We can check Specificity, Sensitivity, total Accuracy, or Area Under ROC curve (AUROC) 

to determine the quality-of-fit to data in the training and external validation series. DPIs and nDPIs 

cases in the validation series should not be used to train the model.  

2.2.6. Data Set Useful for the MIANN Analysis  

In principle, we can withdraw a dataset for the MIANN analysis from different public 

resources. However, in almost all cases we have obtained the datasets from the Drug Bank (DB, 

http://www.drugbank.ca/) an online source available for public research. From this website, we 

obtained a list of all drugs approved by the US Food and Drug Administration (US FDA, 

http://www.fda.gov/). We only included DPIs with known affinity of drugs to target with a known 

3D structure available in the Protein Data Bank (PDB, http://www.pdb.org)[100]. The data set 

contains more than >300 drugs with their respective >300 molecular targets. The data also contain 

negative cases made up of active compounds for known targets but not marketed as active against 

other targets (nDPIs). Therefore, we were able to collect over >6,000 cases (DPIs/nDPIs). Due to 

space constraints, the names, DB codes, SMILE codes, target function, and target PDB code for 

both drugs and/or targets were depicted in the supplementary material file SM2.pdf;.  

  



3. MIANN MODELS IN MEDICINAL CHEMISTRY  

3.1. Examples of ANN and MIANN Models in QSAR and mt-QSAR  

3.1.1. ANN Model of Drugs Multiplex Toxic Effects  

ANN models can be used not only in QSAR but also in mt-QSAR. For instance, in ref. [101], 

the authors reported the most recent upgrade of the ANN-based strategies for mt-QSAR. In so 

doing, they used the TOPS-MODE approach to calculate drug molecular descriptors and the 

STATISTICA software to seek different MIANN models such as Linear Neural Network (LNN), 

Radial Basis Function (RBF), Probabilistic Neural Networks (PNN) and Multi-Layer Perceptrons 

(MLP). The best model found was the LNN, which correctly classified 8,258 out of 9,000 

(Accuracy = 93.0%) multiplexing assay endpoints of 7,903 drugs (including both training and test 

series). Each endpoint corresponds to one out of 1,418 assays, 36 molecular or cellular targets, 46 

standard type measures, in two possible organisms (human and mouse). Secondly, we have 

determined experimentally, for the first time, the values of EC50 = 11.41 μg/mL and Cytotoxicity = 

27.1% for the drug G1 over Balb/C mouse spleen macrophages using flow cytometry. In addition, 

we have used the LNN model to predict the G1 activity in 1,265 multiplexing assays not measured 

experimentally (including 152 cytotoxicity assay endpoints). Both experimental and theoretical 

results point out a low macrophage cytotoxicity of G1. This work breaks new ground for the 'in 

silico' multiplexing screening of large libraries of compounds. The same idea behind the 

application of ANN models in QSAR and mt-QSAR can be applied to seek MIANN models. As 

follows we review some MIANN models in QSAR and mt-QSAR.  

3.1.2. MIANN Model of Drugs with Anti-Cancer Activity  

Developing a model for predicting anti-cancer activity of any classes of organic compounds 

based on molecular structure is a very important goal for a medicinal chemist. Nevertheless, the 

structural diversity of compounds is so vast that we may need non-linear models such as ANNs 

instead of linear ones. In a previous work we have used the MIANN strategy to solve this problem 

[102]. In this work, the MIANN analysis was used to model the anti-cancer activity of organic 

compounds, which has shown a high average accuracy of 93.79% (training performance) and 

predictability of 90.88% (validation performance) for the 8:3-MLP topology with different training 

and predicting series. This MIANN model compares favorably with respect to a previous linear 

model that showed only 80.49% of accuracy and 79.34% of predictability [103]. (Fig. 1) depicts a 

graphical abstract of this work. The present MIANN model based on the SmartMLP approach 

employed shorter training times of only 10h, while previous models have given accuracies of 70-

89% only after 25-46 h of training. In order to illustrate the practical use of the model in 

Bioorganic Medicinal Chemistry, we report the in silico prediction, and in vitro evaluation of six 

new synthetic tegafur analogues having IC50 values in a broad range between 37.1 and 138 μg/mL 

for leukemia (L1210/0) and human T-lymphocyte (Molt4/C8, CEM/0) cells. Theoretical 

predictions coincide very well with experimental results.  

  



 
 

 
Fig. (1). Graphical abstract of the first work with a MIANN model.  

3.1.3. MIANN Approach to mt-QSAR of Multi-Target AntiParasite Effects  

There are many pathogen parasite species with different susceptibility profile to anti-parasitic 

drugs. Unfortunately, most QSAR models predict the biological activity of drugs against only one 

parasite species. Consequently, predicting the probability with which a drug is active against 

different species with a single unified model is a goal of major importance. In so doing, we used 

the MIANN strategy to seek the first mt-QSAR model for 500 drugs tested in the literature against 

16 parasite species and other 207 drugs not tested in the literature using spectral moments. We 

tested different ANN topologies such as LNN and MLP, RBF and Probabilistic Neural Network 

(PNN), see (Fig.2). The best MIANN model found had an overall training performance of 87%. 

The present work reports the first attempts to calculate within unified framework probabilities of 

anti-parasitic action of drugs against different parasite species based on a spectral moment analysis 

[104].  

 
 

 
Fig. (2). Different ANN topologies used in MIANN studies.  

  



3.2. Examples of MIANN Models of DPIs  

3.2.1. ANN Models of DPIs  

Prediction of drug-target proteins interactions (DPIs) is very important for drug discovery. The 

importance of this topic increases if we take into consideration the high number of experimental 

assays that are necessary in order to elucidate all possible relationships in DPI complex networks. 

See for instance, the high complexity of bipartite graph constructed in Ref. [105] in order to 

represent all DPIs between drugs approved by the US FDA with different target proteins. Hence, 

the development of new computational methods able to accurately predict DPIs is of major interest 

[106]. We can discriminate between DPIs of drugs with high affinity and those pairs of drugs with 

no affinity to different targets (nDPIs) with models that use as input structural parameters of both 

drugs and protein targets. This type of QSAR-based methods for prediction of DPIs is a particular 

case of mt-QSAR models [1, 107-109]. To this end, we should take into consideration that they 

allow the study of multiple target proteins and allow the reconstruction of the respective DPI 

complex networks. Conversely, almost all QSAR techniques allow the prediction of DPIs for only 

one target [104, 110-119]. We can use ANN algorithms to seek mt-QSAR models of DPIs. For 

instance, the researchers combined in Ref. [120] the mt-QSAR ideas with an ANN algorithm to 

study compounds active against Colorectal Cancer (CRC). CRC is one of the most studied cancers 

because of its high prevalence and number of deaths. The same authors [121] used ANNs to 

construct an mt-QSAR model of DPIs for drugs with activity in patients with the Acquired 

Immunodeficiency Syndrome (AIDS). In both works, the ANN models found classified more than 

90% of active and inactive compounds in training and prediction sets. As follows we review some 

MIANN models for DPIs. (Fig. 3) shows the general workflow used to seek a MIANN model of 

DPIs.  

  



 
 

 
Fig. (3). Workflow of the MIANN strategy for the drug-target interaction network problem. 

3.2.2. MI-DRAGON: MIANN Models for DPIs  

In a more recent work [122], the scientists combined the MARCH-INSIDE method with the 

DRAGON software to create 2D MI-DRAGON, a new predictor for DPIs. The MARCH-INSIDE 

(MI) software was used to calculate 3D structural parameters for targets and the DRAGON 

software was used to calculated 2D molecular descriptors of drugs. Both classes of parameters 

were used as input of different ANN algorithms to seek an accurate non-linear mt-QSAR 

predictor. The best ANN model found is a MLP with profile MLP 21:21-31-1:1. This MLP 

classifies correctly 303 out of 339 DPIs (Sensitivity = 89.38%) and 480 out of 510 nDPIs 

(Specificity = 94.12%), corresponding to training Accuracy = 92.23%. The validation of the model 

was carried out by means of external predicting series with Sensitivity = 92.18% (625/678 DPIs; 

Specificity = 90.12% (730/780 nDPIs) and Accuracy = 91.06%. 2D MI-DRAGON offers a good 

opportunity for fast-track calculation of all possible DPIs of one drug enabling to re-construct 

large drug-target or DPIs complex networks. For instance, we reconstructed the complex network 

of the US FDA benchmark dataset with 855 nodes (519 drugs + 336 targets). Finally, the practical 

use of 2D MI-DRAGON was illustrated in one theoretic-experimental study. We reported the 

prediction, synthesis, and pharmacological assay of 10 different oxoisoaporphines with MAO-A 

inhibitory activity. The most active compound OXO5 presented IC50 = 0.00083 μM, notably better 

than the control drug Clorgyline.  

  



3.2.3. NL MIND-BEST: the MIANN Model of DPIs Implemented in a Web Server  

In references [123, 124], the authors developed both linear and MIANN models for DPIs using 

2D physicochemical properties of drugs, but 3D physicochemical properties (electrostatic 

potentials) of the protein. The accuracy of the best linear model was 94.4% (3,859/4,086 cases) for 

training and 94.9% (1,909/2,012 cases) for the external validation series. In addition, the model 

was implemented into the Web portal Bio-AIMS. In so doing, we called the new web server 

MIND-BEST [123], acronym of MARCH-INSIDE Nested Drug-Bank Exploration & Screening 

Tool. The URL for this server is http://bio-aims.udc.es/MIND-BEST.php. This on-line tool is 

based on PHP/HTML/Python and MARCH-INSIDE routines. This work also illustrates with two 

examples the practical uses of this server. The experiment 1 includes MIND-BEST prediction, 

synthesis, characterization, and MAO-A and MAO-B pharmacological assay of eight rasagiline 

derivatives, promising for anti-Parkinson drug design. Experiment 2 reports the sampling, parasite 

culture, sample preparation, 2-DE, MALDI-TOF and -TOF/TOF MS, MASCOT search, 3D 

structure modeling with LOMETS, and MIND-BEST prediction for different peptides found in the 

proteome of the bird parasite Trichomonas gallinae, which is promising for the discovery of 

antiparasite drug targets.  

 

We also published the MIANN version of the previous web server by the name NL MIND-

BEST [124]. In so doing, we solved the DPI problem using the MIANN methodology. In other 

words, we followed the same flowchart as in MIND-BEST to calculate the parameters of drugs 

and proteins, but using different non-linear ANNs to seek the model. The best MIANN model 

found was the MLP 20:20-15-1:1. This MLP correctly classifies 611 out of 678 DPIs (Sensitivity 

= 90.12%) and 3,083 out of 3,408 nDPIs (Specificity=90.46%), corresponding to training 

Accuracy = 90.41%. The validation of the model was carried out by means of external predicting 

series. The model correctly classifies 310 out of 338 DPIs (Sensitivity = 91.72%) and 1,527 out of 

1,674 nDPI (Specificity=91.22%) in validation series, corresponding to total Accuracy = 91.30% 

for validation series (Predictability). This model favorably compares with other ANN models 

developed in this work and Machine Learning classifiers published before to address the same 

problem in different aspects. This web server is located at the URL: http://bio-aims.udc.es/NL-

MIND-BEST.php. (Fig.4) shows the online user interface for the web server NL MIND-BEST. 

We also illustrated here, with two practical examples, the potential uses of this server. In 

experiment 1, we report for the first time the Quantum QSAR study, synthesis, characterization, 

and experimental assay of antiplasmodial and cytotoxic activities of oxoisoaporphine alkaloids 

derivatives as well as the NL MIND-BEST prediction of potential target proteins. In experiment 2, 

we report the sampling, parasite culture, sample preparation, 2-DE, MALDI-TOF, and -TOF/TOF 

MS, MASCOT search, MM/MD 3D structure modeling, and NL MIND-BEST prediction for 

different peptides found in the proteome of the human parasite Giardia lamblia, which is 

promising for the discovery of anti-parasite drug targets.  

  



 
 

 
Fig. (4). Online user interface for the web server NL MIND-BEST. 

3.2.4. MIANN Model of DPIs Based on Entropy Parameters  

In all these works, we used 2D/3D physicochemical parameters of drugs and proteins 

calculated with the MI software to apply the MIANN startegy. However, MI calculates not only 

physiochemical parameters from a more classical point of view, but also different theoretic 

invariants of molecular structure, which are useful to solve the DPI problem with QSAR models. 

For instance, Ref. [125] reported an alternative MIANN solution of the DPI problem using entropy 

parameters of both drug and target structure. The best MIANN model found is the MLP 32:32-15-

1:1. This MLP correctly classifies 623 out of 678 DPIs (Sensitivity = 91.89%) and 2,995 out of 

3,234 nDPIs (Specificity = 92.61%), corresponding to training Accuracy = 92.48%. The validation 

of the model was carried out by means of external predicting series. The model correctly classifies 

313 out of 338 DPIs (Sensitivity = 92.60%) and 1,411 out of 1,534 nDPIs (Specificity = 91.98%) 

in validation series, corresponding to total Accuracy = 92.09% for validation series 

(Predictability). The authors illustrated with two practical examples the use of this model. The first 

example includes the prediction, synthesis, characterization, and MAO-A and MAO-B 

pharmacological assay of 10 rasagiline derivatives promising for anti-Parkinson drug design. The 

second example contains the sampling, parasite culture, SEC and 1DE sample preparation, 



MALDI-TOF MS and MS/MS analysis, MASCOT search, MM/MD 3D structure modeling, and 

QSAR prediction for different peptides of hemoglobin found in the proteome of the human 

parasite Fasciola hepatica. This protein is promising for the discovery of anti-parasite drug 

targets.  

4. MIANN MODELS IN BIOLOGICAL CHEMISTRY  

4.1. Example of MIANN Model of PPIs  

The first MIANN model of PPIs reported up to date was introduced to study PPIs in the 

parasite Trypanosoma. Trypanosoma brucei causes African trypanosomiasis in human (HAT or 

African sleeping sickness) and Nagana in cattle. The disease threatens over 60 million people and 

uncounted numbers of cattle in 36 countries of sub-Saharan Africa and has a devastating impact on 

human health and the economy. On the other hand, Trypanosoma cruzi is responsible in South 

America for Chagas disease, which can cause acute illness and death, especially in young children. 

In this context, the discovery of novel drug targets in Trypanosome proteome is a major focus for 

the scientific community. Recently, many researchers have spent important efforts on the study of 

PPIs in pathogen Trypanosome species concluding that the low sequence identities between some 

parasite proteins and its human host render these PPIs as highly promising drug targets. To the 

best of our knowledge, there are no reported general models to predict Unique PPIs in 

Trypanosome (TPPIs) before the MIANN model published by our group. On the other hand, the 

3D structure of an increasing number of Trypanosome proteins is being reported in databases. In 

this sense, the introduction of a new model to predict TPPIs from the 3D structure of proteins 

involved in PPI is very important. For this purpose, we introduced new protein-protein complex 

invariants based on the Markov average electrostatic potential ξk(Ri) for amino acids located in 

different regions (Ri) of i-th protein and placed at a distance k from each other. (Fig. 5) illustrates 

the workflow used in this previous work [126].  

  



 
 

 
Fig. (5). Worflow used in the development of the MIANN server TrypanoPPI.   



We calculate more than 30 different types of parameters of 7,866 protein pairs (1,023 TPPIs 

and 6,823 non-TPPIs) from more than 20 organisms, including parasites and human or cattle hosts. 

We found a very simple linear model that predicts above 90% of TPPIs and non-TPPIs both in 

training and independent test sub-sets using only two parameters. The parameters were 
d
ξk(s) = 

|ξk(s1) – ξk(s2)| which are the absolute difference between the ξk(si) values on the surface of the two 

proteins of the pairs. We also tested non-linear ANN models for comparison purposes but the LNN 

model gives better results. We implemented this predictor in the web server named TrypanoPPI, 

freely available to public at http://bio-aims.udc.es/TrypanoPPI.php (see user interface in Fig.6). 

This is the first model that predicts how unique is a protein-protein complex in Trypanosome 

proteome with respect to other parasites and hosts, providing new opportunities for the discovery 

of anti-trypanosome drug targets.  

 
 

 
Fig. (6). Online user interface of the MIANN server TrypanoPPI. 

4.2. Example of a MIANN Model for Protein vs.Organism Self/Non-Self Analysis  

Infections caused by human parasites (HPs) affect the poorest 500 million people worldwide 

and unfortunately chemotherapy has become expensive, toxic, and/or less effective due to drug 

resistance. On the other hand, many 3D structures remain without function annotation in the PDB. 

We need theoretical models to quickly predict biologically relevant Parasite Self Proteins (PSP), 

which are expressed differently in a given parasite and are dissimilar to proteins expressed in other 

parasites and have a high probability to become new vaccines (unique sequence) or drug targets 

(unique 3D structure). We published a MIANN model for PSPs in eight different HPs (Ascaris, 

Entamoeba, Fasciola, Giardia, Leishmania, Plasmodium, Trypanosoma, and Toxoplasma) with 

90% accuracy for 15,341 training and validation cases [127]. The input parameters are the spectral 

moments of the Markov transition matrix for electrostatic interactions associated with the protein 

residue complex network calculated with the MARCH-INSIDE software. (Fig. 7) depicts the 

workflow used for the development of the model.  

  



 
 

 
Fig. (7). Workflow used for the development of the MIANN server MISSProt-HP. 

  



We implemented this model in a new web-server called MISS-Prot (MARCH-INSIDE Scores 

for Self-Proteins). MISS-Prot was programmed using PHP/HTML/Python and MARCH-INSIDE 

routines and is freely available at: http://bio-aims.udc.es/MISSProt-HP.php. This server is easy to 

use by non-experts in Bioinformatics who can carry out automatic online upload and prediction 

with 3D structures deposited at PDB (mode 1). We can also study outcomes of Peptide Mass 

Fingerprinting (PMFs) and MS/MS for query proteins with unknown 3D structures (mode 2). We 

illustrated the use of MISS-Prot in experimental and/or theoretical studies of peptides from 

Fasciola hepatica cathepsin proteases or present in 10 Anisakis simplex allergens (Ani s 1 to Ani s 

10). In doing so, we combined electrophoresis (1DE), MALDI-TOF Mass Spectroscopy, and 

MASCOT to seek sequences, Molecular Mechanics + Molecular Dynamics (MM/MD) to generate 

3D structures and MISS-Prot to predict PSP scores. MISS-Prot also allows the prediction of PSP 

proteins in 16 additional species including parasite hosts, fungi pathogens, disease transmission 

vectors, and biotechnologically relevant organisms. (Fig. 8) shows the online user interface of the 

MIANN server.  

 
 

 
Fig. (8). Online user interface of the MIANN server MISSProt-HP.  

4.3. Example of a MIANN Model for Enzyme Class Prediction  

4.3.1 EnzClassPred Server  

The server EnzClassPred is available in the Bio-AIMS portal (http://bio-

aims.udc.es/EnzClassPred.php). This MIANN server is a free on-line public tool based on 

PHP/HTML/Python and MARCH-INSIDE routines. The server is based on the models that we 

have published before [128]. The input of this server is a PDB id, it can accept maximum 50 

entries; for each of them it checks whether the structure has an annotation in the PDB, and if the 

annotation is present it reports the annotation of the PDB; otherwise it uses the model we have 

developed and makes a prediction of the structure. (Fig. 9) shows the online user interface of the 

MIANN server EnzClassPred. When the calculation is launched the user is redirected to the output 

page; on the top of the output page there is a direct link to the pdb page of each structure, the 

resume of the model and the EC classification. Below the classification there is a box where it can 

be specified whether the protein is present in the PDB or not, as already that if the protein is not 

met, the server activates the model developed earlier thus giving a prediction on the possible 

classification of the structure. To seek the MIANN model, we have calculated the 3D entropy and 



spectral moments of 4,755 proteins (859 enzymes and 3,896 non-enzymes); all these structures 

were retrieved from the PDB and divided into a positive series of enzymes and a negative series of 

non-enzymes. The LDA model found is very simple (three variables) and at the same time is able 

to predict the first EC number with an overall accuracy of 79% for our data set divided into both 

training and external validation series. In addition, the best non-linear ANN model is notably more 

complex but has an overall accuracy of >98%.  

 
 

 
Fig. (9). Online user interface of the MIANN server EnzClassPred. 

5. MIANN MODELS IN PHYSICAL CHEMISTRY  

5.1. MIANN QSPR Model of Self-Assembly in Surfactants  

5.1.1. Short Introductory Note  

Molecular self-assembly is the process through which single molecules arrange themselves 

spontaneously into different structures [129]. One of the most ubiquitous self-assembly processes 

in Physical Chemistry is the hierarchical organization of amphiphilic molecules into a huge variety 

of patterns as micelles, rods or liposomes among others [130, 131]. Such property has recently 

been employed to design and fabricate for a wide range of biotechnological applications because 

of their relatively simple structures and easy scale up commercial productions [132]. Some drugs 

exhibit amphiphile behavior, they tend to self-assembly, usually in a small aggregation number, 

when dispersed in aqueous solution in a surfactant-like manner [133]. Although drug micelles 

normally form at concentrations well above the concentration of the drug appearing in body 

systems, micelles may be present in the pharmaceutical formulation to overcome different 

challenges including poor bioavailability, stability, side effects or plasma fluctuations of drugs. 

Imipramine hydrochloride is one of the main tricyclic antidepressant drugs. It is used in clinics as 

an antidepressant and antipsychotic drug. It possesses a hydrophobic nitrogen-containing 

heterocycle bound to a short chain carrying a charged amino group [134]. It is widely recognized 

that the current experimental resources will not be adequate for the vast range of new drug 

molecules synthesized every day. An especially desirable feature for the pharmaceutical industry is 



the ability to know a priori and in situ the self-assembly properties of these compounds under 

different conditions.  

5.1.2. Materials  

Imipramine, 3-(10,11-dihydro-5H-dibenzo[b,f]azepin-5-yl)-N,N-dimethylpropan-1-amine 

hydrochloride of at least 98.5% purity were purchased from Sigma Chemical Co. and used without 

further purification. The drug was used as received. All measurements were performed using 

distilled water with conductivity below 3 μS·cm
-1

 at 298.15 K.  

5.1.3. Experimental Methods  

Electrical conductivities were measured using a Kyoto Electronics conductometer model CM-

117 with a K-121 cell type. The cell constant was determined using KCl solutions. All 

measurements were taken in a PolyScience Model PS9105 thermostated water bath, at a constant 

temperature within ± 0.05 K. The determination of the isotherms of conductivity was carried out 

by continuous dilution of a concentrated sample prepared by weight. The expected duration of the 

dynamics processes varies from10
-8

 to 10
-2

 s, i.e., between typical aggregate-solvent exchange 

time of amphiphilic molecules and typical fusion time of the corresponding aggregates. Thus, the 

equilibrium is guaranteed a few seconds after dilution [135]. Dynamic light scattering 

measurements were made at 298.0 ± 0.1 K and at a scattering angle of 90º. Time correlation was 

analyzed by an ALV-5000 (ALV-GmbH) instrument with vertically polarized incident light of 

wavelength λ = 488 nm supplied by a CW diode-pumped Nd; the YAG solid-state laser (Coherent. 

Inc.) operated at 400 mW. Data were analyzed to determine diffusion coefficients using the 

CONTIN software packages. Hydrodynamic radii were calculated from measuring diffusion 

coefficients by means of the Stokes- Einstein equation.  

5.1.4. Experimental Results  

For the studied temperature range, the electrical conductivity concentration dependence shows 

a monotonic increase with a slight gradual decrease in slope, as expected for self-assembly 

processes [136, 137]. Critical micellar concentrations (cmc) values were calculated by fitting the 

experimental isotherms to the non-linear function obtained by direct integration of a Boltzmann-

type sigmoid function[138]. The cmc obtained by this method as a function of temperature show 

the typical U-shaped behavior observed for the critical micelle concentration of surfactant 

molecules, see (Fig. 10).  

  



 
 

 
Fig. (10). Top: Fit of the temperature dependence of lnxcmc using the equation (16); and Botton: Size distribution of a 

solution of imipramine with a concentration twice the cmc.  

For those systems, the cmc decrease with temperature increase like that observed in (Fig. 10) at 

T<297 K- is typically explained by the net rupture of structured water surrounding the 

hydrophobic moiety, thus promoting aggregation. The opposite trend at higher temperatures is 

typically due to the dominant effect coming from the dehydration of the charged head groups 

accompanied of the subsequent electrostatic repulsion [139]. Thermodynamic parameters 

corresponding to the aggregation process can be obtained by analyzing the cmc dependence on 

temperature by means of [140]:  
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where the degree of ionization dependence on temperature, β = β0 + β1T and the standard change in 

isobaric molar heat capacity, ∆𝐶𝑃,𝑚
0 = ∆𝐶𝑃,𝑚

0∗
+ 𝛼(𝑇 − 𝑇∗), are explicitly considered. ln 𝑥𝑐𝑚𝑐

∗  and 

T
* 

correspond to the minimum value. (Fig. 10) shows the fair fit of equation (16) to experimental 

data. Results obtained from the fitting were: 297.4 K, -7.11, -363.41 J mol
-1

 K
-1

 and -2.67 for T
*
, 

ln 𝑥CAC
∗  , ∆𝐶𝑃,𝑚

0∗
 and α / R  respectively. The standard enthalpic and entropic changes due to 

aggregates formation at the minimum value are given by:  

 

∆𝐻𝑚
0∗

= 𝑅𝑇∗2𝛽1 ln 𝑥CAC
∗  [17] 
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The dependence of the thermodynamic functions on temperature is obtained from the following 

expressions:  
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∆𝑆𝑚
0 = ∆𝑆𝑚

0∗
+ ∆𝐶𝑃,𝑚

0∗
ln(𝑇/𝑇∗) + 𝛼{𝑇 − 𝑇∗ − 𝑇∗ ln(𝑇/𝑇∗)} (20) 

 

And the standard Gibbs energy of aggregates formation is given by:  

 
∆𝐺𝑚

0 = ∆𝐻𝑚
0 − 𝑇∆𝑆𝑚

0  (21) 

 

Heat capacity, enthalpy, entropy and standard free energy data corresponding to the 

aggregation process are listed in (Table 1). ∆𝐻𝑚
0  and ∆𝑆𝑚

0  are quite sensitive to temperature. ∆𝐻𝑚
0  

values indicate that the imipramine aggregation is increasingly more exothermic at higher 

temperatures. Negative ∆𝐻𝑚
0  values suggest the importance of London-dispersion interactions as 

the major force for aggregation. However, ∆𝑆𝑚
0  decreased with temperature and remained positive. 

This aggregation is entropic driven at low temperatures whereas enthalpic contributions become 

more important at high temperatures. The higher order of water molecules around hydrocarbon 

chains at lower temperatures could explain this. This fact has been observed for other drugs [141, 

142]. In (Table 1) we show the values of critical micelle concentration (cmc in mol kg
-1

), heat 

capacity, ∆𝐶𝑃,𝑚
0  (J mol

-1
 K

-1
), ∆𝐻𝑚

0  (J mol
-1

), ∆𝑆𝑚
0  (J mol

-1
 K

-1
), and standard free energy, ∆𝐺𝑚

0  (J 

mol
-1

) obtained for imipramine at different temperatures, T (K).  

Table 1. Values of Different Parameters Obtained for Imipramine at Different Temperatures 

T (K) cmc ∆𝐶𝑃𝑚
0  ∆𝐻𝑚

0  ∆𝑆𝑚
0  ∆𝐺𝑚

0  β S(nm2) N 

         

288.2 0.051 157.71 11696 51.32 26483 0.448 15.7632 9 
290.2 0.0478 202.09 12073 50.01 26582 0.4534 15.7632 9 

293.2 0.0475 268.66 12559 47.48 26479 0.4615 15.7632 9 

296.2 0.0462 335.23 13649 44.31 26771 0.4696 15.7632 9 
298.2 0.0444 379.61 14376 41.83 26849 0.475 15.7632 9 

301.2 0.046 446.18 15467 37.6 26790 0.4831 15.7632 9 

303.2 0.048 490.56 16193 34.44 26632 0.4885 15.7632 9 
305.2 0.0481 534.94 16920 31 26379 0.4939 15.7632 9 

308.2 0.0539 601.51 18010 25.34 25819 0.502 15.7632 9 

313.2 0.0623 712.46 19827 14.61 24402 0.5155 15.7632 9 

𝑆𝑖𝑗(𝑍𝑖𝑗 > 0) 

T(K) cmc ∆𝐶𝑃𝑚
0  ∆𝐻𝑚

0  ∆𝑆𝑚
0  ∆𝐺𝑚

0  β S(nm2) N 

288.2 0.05311 -0.0106 0.0322 0.02195 0.03427 0.06583 0.07995 0.05924 
290.2 0.0285 -0.0352 0.00759 -0.0027 0.00967 0.04123 0.05534 0.03463 

293.2 -0.0084 -0.0721 -0.0293 -0.0396 -0.0272 0.00432 0.01843 -0.0023 

296.2 -0.0453 -0.109 -0.0662 -0.0765 -0.0642 -0.0326 -0.0185 -0.0392 
298.2 -0.0699 -0.1336 -0.0908 -0.1011 -0.0888 -0.0572 -0.0431 -0.0638 

301.2 -0.1068 -0.1705 -0.1277 -0.138 -0.1257 -0.0941 -0.08 -0.1007 

303.2 -0.1314 -0.1952 -0.1524 -0.1626 -0.1503 -0.1187 -0.1046 -0.1253 
305.2 -0.1561 -0.2198 -0.177 -0.1872 -0.1749 -0.1433 -0.1292 -0.1499 

308.2 -0.193 -0.2567 -0.2139 -0.2241 -0.2118 -0.1802 -0.1661 -0.1868 

313.2 -0.2545 -0.3182 -0.2754 -0.2856 -0.2733 -0.2418 -0.2276 -0.2484 
<χ>(anion) -0.1492 0.794355 0.08703 0.17656 0.0172 -0.24795 -0.50690 -0.3305 

<χ>(cation) -0.13596 0.266749 0.06963 0.19678 0.09557 -0.30615 -0.34548 -0.08415 
         

 

  



Dynamic light-scattering measurements were performed to obtain a size distribution of the 

aggregates. The concentration chosen was twice the cmc, this way we ensured the presence of 

aggregates. The correlation functions from dynamic light scattering were analyzed by the Contin 

method.  Polydispersity indices generated by this analytical method were less than 0.1, indicative 

of a reasonable degree of monodispersity of size. (Fig. 2) shows the size distribution obtained. It is 

a single peak which corresponds to an aggregate with a mean diameter of 2.24 nm. Aggregation 

number can be estimated from this value. Assuming that the aggregates have spherical shape, the 

aggregation numbers are obtained from the total surface area of the aggregates and the minimum 

area per molecule 1.73 nm
2
 (obtained from surface tension measurements [143]). Thus, we obtain 

a mean value of 8 imipramine molecules per aggregate. This value correlates well with that 

obtained from static light scattering, 7 [134].  

5.1.5. The MIANN Models of Multiple Self-Assembly Properties of Surfactants   

In this work we have tried to obtain for the first time a linear model able to predict the 

probability with which a compound (i-th) presents an experimental value of the property (j-th) 

higher than the average value of this property for this data set. The best model found using LDA 

was the following:  

 

𝑆𝑖(𝑍𝑖𝑗 > 0) = 3,91375 + 0,011557 · 𝑒𝐶𝑠𝑎𝑙𝑡 
(𝑚𝑜𝑙·𝐿−1)

− 0,012303 · 𝑇(𝐾)𝑗 + 0,244894

·  5𝜒(𝑎𝑛𝑖𝑜𝑛)𝑖 − 0,047320 ·  5𝜒(𝑐𝑎𝑡𝑖𝑜𝑛)𝑖 + 1,919078 ·  5〈𝜒〉(𝑎𝑛𝑖𝑜𝑛𝑠𝑗)

+ 3,436077 ·  5〈𝜒〉(𝑐𝑎𝑡𝑖𝑜𝑛𝑠)𝑗 𝑛 = 1085 𝜒2 = 221,2429 𝑝(𝜒2) < 0.01 

(22) 

 

In this equation, Sij(Zij > 0) is a real-valued score (output of the linear model) that can be used 

to discriminate between surfactants with high probability p(Zij > 0) of showing a high Zij > 0 and 

others with high probability p(Zij ≤ 0) of presenting a Zij ≤ 0. Considering that Zij is a 

standardization coefficient used to scale the values of the different properties to a single 

adimensional scale, we calculated this parameter as follows: Zij = (Yij - <Y>j)/SDj. Where, Yij is 

the value of the j-th property of the i-th surfactant; <Y>j is the average value of its property in the 

data set and SDj is the standard deviation. These parameters allowed us to classify the surfactants 

as “active” => C = 1 => Zij > 0 => Yij > <Y>j or “non-active” => C = -1 => Zij ≤ 0 => Yij ≤ <Y>j, 

that is, surfactants with a higher or lower-than-the-average value of the observed property j-th. The 

independent terms of the equation are: Csalt is the concentration of the salt in the solvent used;  is 

the average electronegativity of the surfactant for the anion or cation part; and <χ> are the average 

value of χ for those surfactants with Zij > 0. These terms were calculated using the MARCH-

INSIDE software. In addition, n is the number of cases used to train the model and χ
2
 is Chi-square 

statistics with a given p-lvel = p(χ
2
). (Table 1) shows the overall results obtained for this model in 

training and validation series. We used this linear model to predict the behavior of imipramine in 

other experimental conditions, different from those used in the previous experiments. In the 

bottom part of (Table 2) we found the values of Sij(Zij > 0) predicted with this model for 

imipramine NaCl at 0.1 mol·Kg
-1

.  

  



Table 2. Results of the LDA vs. MIANN Analysis for Multiple Properties of Surfactants  

MIANN model 
Train  

Statistic Parameter 
 Validation 

Cij Total Correct (%)   (%) Correct Total 

           
LDA 1 403 293 72.7  Sensitivity  73.7 98 133 

 0 682 492 72.1  Specificity  72.8 166 228 

PNN 6:6-1085-2-2:1 1 403 56 13.9  Sensitivity  15.0 20 133 
 0 682 681 99.9  Specificity  100.0 228 228 

MLP 6:6-8-1:1 1 403 340 84.4  Sensitivity  85.7 114 133 

(MLP1) 0 682 527 77.3  Specificity  77.2 176 228 
MLP 6:6-10-1:1 1 403 347 86.1  Sensitivity  83.5 111 133 

(MLP2) 0 682 529 77.6  Specificity  76.3 174 228 

RBF 6:6-1-1:1 1 403 272 67.5  Sensitivity  69.2 92 133 
 0 682 410 60.1  Specificity  62.3 142 228 

LNN 6:6-1:1 1 403 297 73.7  Sensitivity  75.2 100 133 

 0 682 452 66.3  Specificity  67.1 153 228 
           

 

Table 3. Results of the MIANN Analysis One Enantioselective Reactions Network 

MIANN Model 

profile 

|Diff-eeR(%)|  

≥ 100 

Training  Statistic 

Parameter 

 CV 

Total Correct %   % Correct Total 

           
MLP1 10:10-8-1:1 yes 2683 2498 93.1  Sensitivity  92.6 1260 1361 

 no 14721 13617 92.5  Specificity  93.1 6831 7341 

MLP1 10:10-11-1:1 yes 2683 2544 94.8  Sensitivity  93.8 1277 1361 
 no 14721 13800 93.7  Specificity  94.2 6918 7341 

MLP1 10:10-12-1:1 yes 2683 2546 94.9  Sensitivity  93.7 1275 1361 

 no 14721 13810 93.8  Specificity  94.3 6921 7341 
MLP2 10:10-7-6-

1:1 
yes 2683 2513 93.7  Sensitivity  93.5 1272 1361 

 no 14721 13695 93.0  Specificity  93.6 6874 7341 

MLP2 10:10-10-

11-1:1 
yes 2683 2508 93.5  Sensitivity  93.2 1268 1361 

 no 14721 13645 92.7  Specificity  93.3 6850 7341 
RBF 10:10-1-1:1 yes 2683 1796 66.9  Sensitivity  66.1 899 1361 

 no 14721 9846 66.9  Specificity  67.4 4949 7341 

MLP2 10:10-9-12-
1:1 

yes 2683 2531 94.3  Sensitivity  93.5 1272 1361 

 no 14721 13762 93.5  Specificity  93.9 6891 7341 

LNN 10:10-1:1 yes 2683 1879 70.0  Sensitivity  71.4 972 1361 
 no 14721 10461 71.1  Specificity  69.8 5121 7341 

           

 

Next, we carried out an ANN analysis of the data set used before in order to obtain MIANN 

models. As usual, we carried out AI experiments with different ANN topologies. (Table 4) shows 

the most interesting results found. As we can note, some MIANN models improve the results 

obtained by LDA. For instance, the MIANN model MLP1 with profile MLP 6:6-8-1:1 improves 

LDA in terms of Sensitivity both in Training and external Validation series. Sensitivity of LDA 

was ≈ 72% whereas this MIANN model presented a Sensitivity > 84% in both series. It means that 

MIANN is able to improve LDA by 10 percent points. However, this is considered at cost of 

complicating the linear model, transforming it into a non-linear ANN with H1 = 8 (hidden 

neurons). (Table 2) depicts the overall results found with different MIANN models as well. Last, 

(Fig. 12) depicts the topology of the MLP1 model and the AUROC values of some of the MIANN 

models trained here. Notably, both the MLP1 and MLP2 have an AUROC = 0.89. However, it is 

well-known that MLP2 needs a second hidden layer of neurons, 10 more neurons in the present 

case (profile MLP 6:6-10-1:1), which complicates the model to gain nothing in terms of 

Sensitivity or Specificity with respect to MLP1, see (Table 2).  



 
 

 
Fig. (11). Topology of the ANN MLP1and AUROC plots of MIANN models for surfactants.  

 
 

 
Fig. (12). AUROC analysis of the MIANN models obtained for the reaction network. 

  



6. MIANN MODELS IN ORGANIC CHEMISTRY  

6.1. MIANN Approach to QSRR Models of Reaction Networks  

6.1.1. Short Introductory Note to QSRR Models  

The asymmetric 1,2-addition of organometallic reagents to imines is a powerful tool to form 

carbon-carbon bonds. Thus, it is possible to introduce a new stereogenic center in organic 

molecules[144-153],providing ready access to enantiomerically enriched amines with a 

stereogenic center at the α-position, an important structural feature in many biologically active 

compounds. These optically active amines are also important compounds because of their broad 

range of applications such as chiral auxiliaries, resolving agents and building blocks for the 

synthesis of natural and unnatural compounds, and their pharmacological properties [154-158]. In 

this kind of reactions many variables, substrates, organo-lithium reagents, chiral ligands, products 

and variables of reaction condition are involved. Therefore, there is a huge field of possible 

reactions to investigate.  

 

Quantitative Structure-Reactivity Relationships (QSRR) studies, based on molecular 

descriptors of chemical structure, may play an important role in the prediction of biological 

activity or specific property of a reaction. For example, the authors of ref. [159] describe QSRR 

for kinetic chain-transfer constants for 90 agents on styrene polymerization at 60º C in which 

three- and five-parameter correlations were obtained with R
2
 of 0.725 and 0.818, respectively. 

Other scientists propose substructural fragments as a simple and safe way to encode molecular 

structures in a matrix containing the occurrence of fragments of a given type [160]. Satoh and 

coworkers investigated a dataset of 131 reactions focusing on the changes of electronic features on 

the oxygen atoms at the reaction sites by principal component analysis and self-organizing neural 

networks analyses [161]. On the other hand, Long and Niu developed Quantitative Structure-

Property Relationship (QSPR) for rate constants (k) of alkylnaphthalene reactions with chlorine, 

hydroxyl and nitrate radicals using partial least squares (PLS) regression [162]. Different scientis 

investigated the prediction of oxidoreductase-catalyzed reactions based on atomic properties of 

metabolites [163]. As above-mentioned, QSRR models may be used to predict effect of changes in 

reaction variables over enantioselectivity but we also need tools to describe the huge amount of 

information generated. This sort of problem may be investigated using reaction networks to 

regroup reactions with inverse results in which the enantioneric excess and configuration are 

changed from R to S.  

 

In a previous work [164] we have constructed a MLR-QSRR equation to investigate which 

variables influence more strongly the change on enantioselectivity. The most important variables 

were the differences between the initial and final reaction for: product partition coefficient (∆Pp), 

chiral ligands hardness (∆Hl), solvent dipolar moment (∆Ds), reaction time (∆tr), reaction 

temperature (∆Tr), addition temperature (∆Ta), average enantiomeric excess for reactions using the 

same procedure (∆Ae), substrate molar refractivity (∆Mi), and steric constant (∆So) and hardness of 

organolithium compounds (∆Po), respectively. Using these variables, the best model found was:  

 
∆𝑒𝑒(𝑅)% = −6.60 + 5.80 · ∆𝑃𝑝 − 4.63 · ∆𝐻𝑖 − 23.08 · ∆𝐷𝑠 + 44.18 · ∆𝑡𝑟 − 1.23 · ∆𝑇𝑟

− 0.18∆𝑇𝑎 + 0.24∆𝐴𝑒 + 1.90 · ∆𝑆0 − 8.22 · ∆𝑃0 − 0.24 · ∆𝑀𝑖   𝑛
= 17404   𝑅2 = 0.803   𝑅2 𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 = 0.803   𝐹 = 7120.7   𝑝 < 0.00001 

(22) 

 

where, n is the number of cases (reaction pairs) used to train the model, R
2
 and R

2
 adjusted are the 

training and adjusted square regression coefficients, F is Fisher ratio, and p the level of error. All 

these reactions have been previously reported in the literature [165-177]. This model, with ten 

variables, predicts correctly 80.3% of variance of the data set with a standard error of 29.35%. 

Notably, the adjusted values of R
2
 and R

2
 are equal, which indicates that the model is not over-

fitted due to incorporating an elevated number of parameters.  

  



In order to achieve the enantiomeric excess and configuration of the product with a network 

approach where one node represents a reaction and the edges show reaction pairs with high 

propensity to R/S chirality inversion, we carried out the following steps. First, we calculated the 

observed and QSRR-predicted average-scores that numerically characterize the propensity of one 

reaction to yield R/S chirality inversion. These scores were labelled as Obs. Avg.∆ee(R)% and 

Pred.Avg.∆ee(R)%: 

 

𝑂𝑏𝑠. 𝐴𝑣𝑔. ∆𝑒𝑒(𝑅)%𝑣 =
1

228
∑ ∆𝑒𝑒(𝑅)%𝑜𝑏𝑠.(𝑣, 𝑤) =

1

228
∑ (𝑒𝑒(𝑅)%𝑜𝑏𝑠(𝑣) −𝑤=228

𝑊=1
𝑤=228
𝑤=1

𝑒𝑒(𝑅)%𝑜𝑏𝑠(𝑤))  
(23) 

  

Pr  𝑒𝑑. 𝐴𝑣𝑔. ∆𝑒𝑒(𝑅)%𝑣 =
1

228
∑ ∆𝑒𝑒(𝑅)%𝑝𝑟𝑒𝑑.(𝑣, 𝑤) =

1

228
∑ (𝑒𝑒(𝑅)%𝑝𝑟𝑒𝑑(𝑣) −𝑤=228

𝑊=1
𝑤=228
𝑤=1

𝑒𝑒(𝑅)%𝑝𝑟𝑒𝑑(𝑤))  
(24) 

 

Where, Obs.Avg.∆ee(R)%v is the difference between observed R enantiomeric excess for 

reaction v minus observed R enantiomeric excess for reaction w and Pred.Avg. ∆ee(R)% is the 

difference between predicted R enantiomeric excess for reaction v minus observed R enantiomeric 

excess for reaction w. Then, we used these scores as inputs in a Microsoft-Excel sheet to calculate 

the elements of the Boolean or Adjacency matrix (A) associated to the reaction network as 

follows:  

 

𝐴 = {

𝑖𝑓 𝑠𝑖𝑔𝑛(𝑒𝑒(𝑅)%𝑜𝑏𝑠(𝑣)) = 𝑠𝑖𝑔𝑛(𝑒𝑒(𝑅)%𝑜𝑏𝑠(𝑤) ) 𝑡ℎ𝑒𝑛 𝛼𝑣𝑤 = 0
𝑒𝑙𝑠𝑒   
𝑖𝑓 [𝑂𝑏𝑠 𝐴𝑣𝑔 ∆𝑒𝑒(𝑅)%𝑣 − 𝑂𝑏𝑠 𝐴𝑣𝑔 ∆𝑒𝑒(𝑅)%𝑣] ≤ 𝑐𝑢𝑡 − 𝑜𝑓𝑓 𝑡ℎ𝑒𝑛 𝛼𝑣𝑤 = 0

𝑒𝑙𝑠𝑒  𝛼𝑣𝑤 = 1

  (25) 

 

In order to validate the model we used it to predict 26,106 reactions pairs never used to train 

the model (validation series). In this series the results were: R
2
 = 79.98%, F = 1043·10

2
 and p < 

0.00001. The model explains correctly 80.0% of variance of the data set with a standard error of 

29.79% in the validation series. These results indicate that we developed an accurate model 

according to previous reports on the use of MLR in QSRR [178-180]. In this previous work, we 

constructed the observed reaction using the observed values, considering the experimental data. 

Next, we predicted the reaction network with the QSRR model and last we compared both 

networks. In order to compare them, we used the sensitivity, specificity and accuracy by means of 

a Chi-Square test. The value obtained for the p < 0.00001 was with Chi-square = 293.364, 

demonstrating that both networks are very similar.  

6.1.2. MIANN-QSRR Model of Reaction Networks for 1,2-Addition of Organometallic Reagents to 

Imines  

We propose herein, for the first time, a MIANN-QSRR model able to predict the difference in 

enantiomeric excess for R-product between two pairs of reactions (∆ee(R)%) in the reaction 

network, which reaches similar/dissimilar enatioselectivity after the modification of reaction 

variables. These QSRR models combine the MI and ANN software to predict the configuration of 

the new stereogenic center formed in the synthesis of amines, taking into consideration similar 

reaction pairs in which the enantiomeric excess increases or reduces.  

6.1.3. MI Methods Used  

The MIANN model used here is based on the calculation of the different physicochemical 

molecular properties (λm) for substrates, organolithium reagents, chiral ligands and products (λs, 

λo, λl, λp), respectively. These λm are calculated as an average of atomic properties (λj). For 

instance, it is possible to derive average estimations of refractivities (MRs, MRo, MRl, MRp), 

partition coefficients (Ps, Po, Pl, Pp), and hardness (ηs, ηo, ηl, ηp) that we are going to use in this 

work, as seen in the equation below [85]:  

  



𝜆𝑚 =
1

6
∑  𝑘𝜆 =

1

6
∑  ∑𝑝𝑘(𝜆𝑗) · 𝜆𝑗

𝑗

5

𝑘=0

5

𝑘=0

 (26) 

 

It is possible to consider isolated atoms (k = 0) in the estimation of the molecular properties 0η, 
0
χ, 

0
MR, 

0
α, 

0
P. In this case the probabilities 

0
p(λj) are determined without considering the 

formation of chemical bonds (simple additive scheme). However, it is also possible to consider the 

gradual effects of the neighboring atoms at different distances in the molecular backbone. In order 

to reach this goal, the method uses an MM, which determines the absolute probabilities 
k
p(λj) with 

which the atoms placed at different distances k affect the contribution of the atom j to the 

molecular property in question.  

 

𝑘𝜆 = [ 0𝑝(𝜆1)
0 𝑝(𝜆2)…  0𝑝(𝜆𝑛)]

[
 
 
 
 
 1𝑝1,2  1𝑝1,2  1𝑝1,3 ·  1𝑝1,𝑛

 1𝑝2,1  1𝑝2,2  1𝑝2,3 ·  1𝑝2,𝑛

· · · · ·
· · · · ·

 1𝑝𝑛,1 · · ·  1𝑝𝑛,𝑛]
 
 
 
 
𝑘

·

[
 
 
 
 
𝜆1

𝜆2

·
·

𝜆𝑛]
 
 
 
 

= ∑ 𝑘𝑝(𝜆𝑗) · 𝜆𝑗

𝑛

𝑗=1

 (27) 

 

Where, from left to right, the first term is 
k
λ, which is the average molecular property 

considering the effects of all the atoms placed at distance k over every atomic property λj. The 

vector on the left side of the equation contains the probabilities 
0
p(λj) for every atom in the 

molecule, without considering chemical bonds. The matrix in the center of the equation is the so-

called stochastic matrix. The values of this matrix (
1
pij) are the probabilities with which every atom 

affects the parameters of the atom bonded to it. Both kinds of probabilities 
0
p(λj) and 

1
pij are easily 

calculated from atomic parameters (λj) and the chemical bonding information:  

 

 0𝑝𝑖𝑗 =
𝜆𝑗

∑ 𝜆𝑘
𝑛
𝑘=1

 (28) 

  

 1𝑝𝑖𝑗 =
𝛿𝑖𝑗 · 𝜆𝑗

∑ 𝛿𝑖𝑘 · 𝜆𝑘
𝑛
𝑘=1

 (29) 

 

The only difference is that in the probabilities 
0
p(λj) we consider isolated atoms by carrying out 

the sum in the denominator over all n atoms in the molecule. On the other hand, for 
1
pij chemical 

bonding is taken into consideration by means of the factor δij. This factor has the value 1 if atoms i 

and j are chemically bonded and it is 0 otherwise. All calculations were performed using the 

MARCH-INSIDE program version 3.0 [181], which can be obtained for free academic use, upon 

request, from the corresponding author of the present work.  

6.1.4. ANN Analysis  

Given the λm of the above-mentioned molecular parameters and λorv of the other reaction 

variables such as (T(a), T(r), t(r)), we can calculate the differences ∆λ = λ= (r2) - λ(r1) for any 

reaction pairs. Using these ∆λm and ∆λorv values as input we performed different ANN anlyses to 

fit the QSRR model, including the LNN equation with the form:  

 

Δ𝑒𝑒(𝑅)%𝑝𝑟𝑒𝑑 = ∑ 𝑏𝑚 · Δ𝜆𝑚 + ∑𝑏𝑜𝑟𝑣 · Δ𝜆𝑜𝑟𝑣 + 𝑏0

 

𝑜𝑟𝑣

 

𝑠,𝑙,𝑜,𝑝

 (30) 

 

The parameter ∆%ee (R)pred (the prediction of the difference in enantiomeric excess for R-

product between two pairs of reactions) is the output of the model. In equation (6), b represents the 

coefficients of the variables in the model, determined with the ANN module of the STATISTICA 

6.0 software package [99]. The data set included a series of reported an organolithuim addition to 

imines in presence of chiral ligands reactions.  

  



6.1.5. Results of the MIANN Model  

We studied the previous data set with different MIANN approaches: LNN, MLP1, MLP2, and 

RBF. (Table 3) shows the best results found. The LNN model gives good classification results 

with Sensitivity (Sn) and Specificity (Sp) higher than 70%, except for Sp in Cross-Validation (CV) 

series. These results of the MIANN analysis confirm the findings of our previous work. There is a 

strong linear relationship between the MI parameters studied and the inversion of chirality in the 

present reaction network, taking into consideration the change of specific reaction parameters as 

well. In any case, the use of non-linear MIANN strategy notably improved the results found with 

the linear MIANN model obtained by LNN. More specifically, the model 1 is a MIANN model 

with topology MLP1 that shows very high (>90%) values of Sn and Sp both in training and cv 

series, using only one hidden layer with 8 hidden neurons. (Fig. 12) shows the AUROC values of 

the MIANN model developed for the reaction network.  

CONCLUSIONS  

The MIANN models may be used to model very different data and reduce experimental costs 

in different areas of the molecular sciences, including Physical, Organic, and Medicinal 

Chemistry. In almost all cases the non-linear MIANN models improve the results obtained with a 

linear method.  
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