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Abstract 

This paper analyses the permanent deformation performance of an unbound granular material that 

has been subjected to repeated triaxial loads. The study focuses on the evolution of the cumulative 

strain and includes a classification of the specimens according to the shakedown concept. This was 

done by fitting models that express the cumulative strain to cyclic loads and  stress level. The 

predictions of the models were not absolutely perfect. The results with the granular material were 

not satisfactory enough to warrant their use in a low traffic road pavement section in Galicia 

(Spain). 
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1. Introduction 

The budget earmarked for road pavement construction exceeds 25% of the total resources 

dedicated to the construction of roads all over the world. Some of the most frequently used 

pavements are the types designated as flexible and semi-flexible which are composed of granular 

layers that provide the support for bituminous layers. Moreover, granular layers may be employed 

as bases for rigid pavements if materials of non-erosional quality are being used. 

Thus, granular layers play a very important role in the behaviour of pavements. In fact, the design 

life of the pavement has much to do with the quality and response of the granular layers. 

Nevertheless, owing to a combination of the relatively low cost of these materials, their 

heterogeneous nature and the limited effort required to manufacture them, they have received little 

attention in terms of predicting their structural performance. 

Even so, several researchers have obtained prediction models for permanent deformation, yet none 

of these have been fully incorporated into the technical guidelines for pavement structural design in 

most countries. Therefore, the objective of this article is to examine the applicability of the main 



models that predict cumulative permanent deformation depending on the number of load cycles and 

level of stress. Thus, this paper aims to incorporate these models into the analytical structural 

design of pavements in Spain. 

2. Granular material and preparation of specimens 

The unbound material tested was crushed granitic stone, frequently used as a subbase for road 

pavements in the region of Galicia. Its grading curve (fig. 1) falls within the limits corresponding to 

the granular material designated as ZA25, defined in the “General technical specifications for 

works on roads and bridges” in Spain [1]. Table 1 shows the results of other characterisation tests, 

all of which fulfil the conditions laid down in the above-mentioned specifications, with the 

exception of the Los Angeles Coefficient, which, with a value of 37%, is slightly higher than the 

35% specified as the maximum. 

The laboratory sample was prepared using a special cylindrical aluminium mould consisting of two 

pieces which allowed it to be opened lengthwise for easy removal of the compacted sample. In the 

first part of the test, four laboratory samples of granular material were compacted in the mould 

(without a membrane), and their dry densities and optimum moistures were obtained. Afterwards, 

the specimens that were to be subjected to the triaxial test were fabricated. Before compacting the 

material, the first membrane was attached to the wall of the container by applying a vacuum 

between the mould and the membrane. Compaction was carried out in three layers, with a vibrating 

hammer - 20 seconds for each layer. The laboratory samples were compacted at the optimum 

moisture content (6.4%) to reach the maximum dry density (2.3 g/cm
3
). After compaction was 

completed and before implementing the actual dynamic tests, the specimens were held for 24 hours 

in a humid chamber at a temperature of 20˚C with a relative humidity of 95%. 

3. The triaxial apparatus and stress path 

The tests were carried out with a dynamic triaxial apparatus, consisting essentially of a main unit 

containing the axial load system generator and a removable chamber. Three controllers are used to 

generate the chamber and back pressure, as well as the air pressure, in the partially saturated 

samples. The most commonly used chamber fluid is deaerated water, although with laboratory 

samples of granular material, oil can also be used. The analogical signals sent from the transducers 



and load cell are received by a module where they are transformed into digital signals. The system 

has a converter for the digital signals sent from the computer. This system is located in the main 

unit and facilitates the transmission of the user’s orders to the motor controller. The whole system 

is controlled by a PC which is equipped with the appropriate software allowing for easy and 

accurate communication between the user and the triaxial apparatus. This software makes it 

possible to select the type of test to be performed as well as all the parameters, stress paths, data to 

be stored, etc. This apparatus is limited to laboratory samples with a maximum diameter of 100 

mm and a height of 200 mm. Moreover, the apparatus allows the laboratory sample to be subjected 

to cyclic axial deviatoric stresses, but it is not feasible to vary the confining radial stresses at the 

same time. 

The stress path was selected according to the stress produced in a section of pavement in use in 

Spain. To be exact, section 4131 of the “Regulations on pavement sections and pavement 

structural layers” [2] was considered, conforming to 100 mm of asphalt mixture material and 200 

mm of granular material resting upon a sub-grade of type E3 (cement stabilised soil with a CBR 

greater than 20). Consequently, the principal stresses (1 and 3) were calculated in the pavement 

section, with a single axle load of 130 kN using single tires having a tire pressure of 900 kPa and a 

contact area of 15.16 cm in the radius. The calculation was made with a three-dimensional model 

of the section and a programme of finite differences (FLAC 3D)[3]. The stresses were found at 

different points in the granular material. The results were expressed in terms of deviator stress 

q=1-3 and mean normal stress p (Figure 2). For this reason, it was decided to subject 

the laboratory samples to eleven different stress paths. With this task, dynamic tests of 2 x 10
5
 load 

cycles were carried out with a sinusoidal wave frequency of 1 Hz (Table 3). 

4. Permanent deformation models 

The permanent deformation models employed in this paper were the Sweere model [4]; the Wolff 

model [5]; the exponential law model [6] and the Paute model [7] (Table 2). The first three are non-

linear models that predict the permanent deformation 1p(%)  as a function of the number of cycles 

(N). The Paute model also predicts permanent deformation *
1p(%) as a function of N; but 

subtracting the permanent deformation of the first 100 cycles. In the Paute model, parameter A is 



considered to be the limit value of the accumulated permanent axial deformation when N tends to 

infinity. On the other hand, according to Paute et al [7] when parameter B is negative or 

excessively small, it should be considered a “practical value” as the limit of the cumulative 

permanent axial deformation. In practice, the authors recommend comparing the value of A with 

the twice the value of the cumulative permanent deformation corresponding to the first 20000 

cycles, which is equal to 2 [  %20000*
p1 ]. When A is greater than 2 [  %20000*

p1 ] the latter 

should be taken as the “practical value”. Also studied were the “Second part of the Paute model” 

[7] and the Lekarp model [8]; [9]. These models predict permanent deformation as a function of the 

stress (Table 2). 

5. Classification of granular material using the “shakedown concept” 

For the purpose of classifying the structural response of the material to the applications of load 

cycles, the criterion proposed by Werkmeister et al [10] was used. According to this criterion, a 

material would fall into one of the following three cases:  

 “Range A”, (Plastic Shakedown), when the cumulative permanent strain rate (1p(%)/N) 

decreases rapidly until it reaches a state of equilibrium. The deformation is entirely resilient 

and does not produce permanent deformations. The material does not reach failure. 

 “Range B”, (Plastic Creep), when the cumulative permanent strain rate is either decreasing or 

constant. Although the deformation is not entirely resilient, permanent deformation is 

acceptable. For a great number of load cycles the material may reach failure. 

 “Range C”, (Incremental Collapse), when the cumulative permanent strain rate increases very 

rapidly, failure occurs with a relatively small number of load cycles. 

In figure 3, 1p(%)/N versus 1p(%) is represented for the eleven stress conditions in which the 

dynamic triaxial tests were carried out. This figure shows that in the four curves with stress paths 

P1, P2, P3 and P6, as the aforementioned rate decreases rapidly, the cumulative permanent axial 

strain undergoes a relatively minor increase. In this way, it gives rise to four almost vertical and 

parallel lines, which indicate that in practice, a stabilisation of the granular material has taken 

place. By using the classification of the “shakedown concept” of  Werkmeister [10], the material in 

these cases was considered to be in “range A”. Therefore under these loads, according to the above 



classification, with this range, rutting is not produced in the material. On the other hand, in the 

same figure it was observed that for stress path P11, the increase in 1p(%) was a little more 

accentuated. Here the line is now almost off the vertical,  less inclined and the decrease in the rate 

does not produce the stabilisation of permanent deformation, so the material may possibly behave 

as in “range B”. In the line that represents stress path P5, at first the increase in 1p(%) is even 

more accentuated. Curiously, it would seem that a slight stabilisation was produced in the central 

zone (between 1p =1.4% and 1p =1.6%), with 1p(%) increasing considerably at the end of the 

curve. Here, the material is in “range C”, especially at the end of the line. Finally, for the five stress 

paths P4, P10, P7, P9 and P8 the material behaves between “range B” and “range C”. However, 

when N increases it gives rise to a sharp increment in 1p(%), clearly passing over to “range C”, 

where rutting will be produced. 

6. Goodness-of-fit results 

Table 3 shows all the values for the parameters of equations 1, 2, 3, 4 as well as the determination 

coefficients R
2
. In figure 4 the values predicted for equation 1 (Sweere model) and the laboratory 

data for the eleven stress paths are represented. In general, the experimental data are close to the 

continuous lines of the models. In this sense, the adjustment may be considered satisfactory, seeing 

that in all the cases the determination coefficients (R
2
) yield a result of over 91%. An interesting 

observation is that the statistical analysis of the residuals indicated that in the long term (that is, for 

a higher number of cycles), this equation tends to underestimate the observed values of 1p. 

On the contrary, the determination coefficients R
2
 of equation 2 (Wolff model) for P1, P2, P3, P6 

and P11, do not result in values that are as satisfactory as those predicted by equation 1. Even so, 

the adjustments are acceptable, ranging between 80 and 85%. In the curves corresponding to stress 

paths P4, P5, P7, P8, P9 and P10, the adjustment is much better, where R
2
 is greater than 90%. 

From the analysis of the residuals it was deduced that in the long term, equation 2 tends to 

overestimate the observed values of 1p(%). 

On the other hand, when the non-linear regression analysis of equation 3 (non-linear model of three 

parameters) was carried out, a very good adjustment was seen between the estimated and observed 



values of the permanent deformation (R2
 greater than 95%). Equation 3 also underestimates the 

observed values of 1p (%) in the long term. 

Equation 4 (Paute model) presents R2 
values of higher than 85%, except in the cases of stress paths 

P4, P7 and P10, in which the value decreases by up to 80%. The values of B are always negative 

and very small. Figure 4 it clearly shows that the values of the A parameters do not represent the 

limit of *
1p(%). Therefore the practical values are those corresponding to 2 [  %20000*

p1 ]. It is of 

interest to point out that in the continuous curves corresponding to equation 4 in figure 4, the limits 

of accumulative permanent strain *
1p(%) are very close to these practical values (except P5, P8, 

P9 and P11). In the long term, equation 4 also underestimates the laboratory values of *
1p(%). 

Afterwards, the values for parameters a and b in equation 5 were also obtained. These parameters 

were different for the eleven stress paths. So, the second part of the Paute model does not 

accurately express the variations of parameter A with respect to stress. 

Finally, parameters a and b in equation 6 (Lekarp model) are 1.30 x 10
-2

 and 5.40 respectively. The 

R2
 coefficient is equal to 91.63%. For this model there is a good fit between the observed values 

and those predicted by the theoretical model. 

7. Plastic deformation (rutting) 

Rutting is produced by a single axle load of 130 kN with single tires upon section 4131. To 

estimate the rut depth, the highest values of the permanent deformation were taken into account; 

that is to say, those corresponding to stress paths P8 (for equations 1, 2 and 3) and P5 (for equation 

4). This depth is simply the product of the predicted accumulative permanent strain 1p and the 

thickness of the granular material (200 mm), where 1p =1p(%)/100 was obtained with equations 1, 

2, 3 and 4. The second part of the Paute model was rejected because it was not fulfilled in this case, 

as discussed earlier. The Lekarp model was not used either because it does not take into account 

the number of cycles in the long term. 

On the other hand, it should be mentioned that under the Spanish pavement regulations [2] it is 

foreseen that 50 heavy vehicles per day (pavement section 4131) will be supported in the service 

lane. In view of this information, this traffic flow was considered in order to estimate (by means of 

equation 7) the number of 130 kN axles in the service traffic lane during the analysis period [11]: 



    x365 A x C x AADTN HVT      (7) 

where: 
NT = Number of standard loads of 130 kN during the analysis period. 

AADTHV = Annual average daily heavy traffic in the service lane, during the analysis period. 

C = Traffic growth factor. 

A = Equivalence factor of a heavy vehicle on standard axles. 

 

With an annual estimated growth of 2% for a design period of 20 years the result is a C equal to 

24.30. On the other hand, A is equal to 0.70 [11]. Under these premises NT is equal to 3.10 x 10
5
 

load cycles. Thus, in the design period of the pavement, rut depths of 4.73 mm; 5.87 mm; 5.01 mm 

and 2.10 mm are predicted respectively with equations 1, 2, 3 and 4. 

8. Discussion of the results 

From the results of the triaxial tests it can be deduced that the increase in permanent deformation 

does not behave in the same way under all load conditions. In the curves with stress paths P1, P2, 

P3 and P6, a very slow increase in 1p (%) is produced, virtually giving rise to stabilisation (“range 

A” of Werkmeister). In the curve with stress path P11, the increase in 1p (%) is a little more 

accentuated (“range B” of Werkmeister). On the other hand, in the curves with stress paths P4, P5, 

P7, P8, P9 and P10, the increase is much more accentuated and the stabilisation of the material is 

not observed (“range C”). This result is due to the fact that when the values of the deviator stresses 

approach the failure envelope of the material, a clear acceleration in the increase of 1p is produced. 

Employing equations 1, 3 and 4 a better fit is obtained for the stress conditions of P1, P2, P3, P6 

and P11, whereas in equation 2 the R2
 coefficient is greater in the cases of P4, P5, P7, P8, P9 and 

P10. 

Equation 1 (Sweere model) has a very good fit, although when the granular material is found in 

“range C” (starting from approximately 10
5
 cycles) it underestimates the laboratory values of the 

deformation as can be seen in figure 4. As pointed out previously, this model has the disadvantage 

of making predictions set under the laboratory values for a greater number of axles. 

When the material is in “range C” (fig. 4), equation 2 (Wolff model) is better adjusted starting from 

10
4
 cycles. The main discrepancies between the predicted and observed values are manifested 

during the first 10
3
 cycles. Nevertheless, it is necessary to proceed with caution when making long 

term predictions, since this model is very conservative. 



Equation 3 (non linear model of three parameters) is the one that presents the best R-square 

values. Nonetheless, this model has the same drawback as equation 1, i.e. it underestimates the 

observed values of 1p(%) when the material is in “range C”. Therefore, it also has the 

disadvantage of offering lower long term strain values than those of laboratory. 

Equation 4 (Paute model) also underestimates the laboratory values for a large number of cycles in 

“range C”. Furthermore, according to table 3, the values of B are consistently low and negative. 

The values of the A parameters do not coincide with the limits of permanent deformation and it was 

necessary to adopt the practical values, 2 [  %20000*
p1 ], as limits of permanent deformation. 

The rut depth predictions offered by equations 1, 2 and 3, were found to be quite similar up to a 

number of cycles equal to 10
5
 (fig. 5). From here on, the predictions of equation 2 increase very 

rapidly, whereas those of equations 1 and 3 stay within the same order. As expected, the predictions 

of equation 4 are somewhat different because they do not take into account the permanent 

deformation accumulated during the first 100 cycles. In this sense, when N=100 cycles equations 1, 

2 and 3 predict rut depths of 3.09 mm, 3.60 mm and 3.18 mm respectively. 

It is evident that by adopting the failure criterion of the Transportation Research Laboratory (rut 

depth of 10 mm in the surface of the pavement) [12], the prediction offered by equations 1, 2, 3 and 

4 does not exceed the maximum permanent deformation that would be considered admissible. 

Nevertheless, to be able to make a comparison with the aforementioned limit, it would be necessary 

to determine the permanent deformation in each layer (asphalt mixture layer, granular material 

layer and sub-grade) and sum up the results. 

In cases of more than 2 x 10
5
 axles, the values obtained with equation 2 keep on the safe side and 

therefore this law is deemed to be conservative and tends to reject materials that could be 

structurally valid. On the other hand, for more than 2 x 10
5
 axles, equations 1, 3 and 4 are non-

conservative (in the sense that they predict deformations lower than those of the laboratory and 

consequently might admit unsuitable materials from a structural point of view). 

It would be interesting to compare the results of these models with a TRL lineal rut model 

determined from the analysis of the performance of full-scale experimental pavements [13]. The rut 

model in question is: RD=2.66+0.84 N and it predicts the rut depth (RD) on the surface of a granular 



base pavement. Figure 5 shows that when N=0 the initial rut depth is 2.66 mm (assumed for new 

surfaces at the time of construction). In the design period, when NT is 0.310 x 10
6
 rutting is equal to 

2.92 mm, but this depth includes the rutting of various materials (not only the base course). Also, it 

can be compared with a modification of the Asphalt Institute sub-grade strain criteria utilised by 

Deacon et al [14]. According to these authors, when the compressive strain (v) at the top of the 

sub-grade is equal to 7.90 x 10
-4

, the rut depth contributed by unbound layers is assumed to 

accumulate as follows: RD=0.052 N0.372, where the coefficients are experimentally determined from 

least square analyses using the WesTrack data. The increase of rutting in the latter model is more 

accentuated, thus in the design period rutting is equal to 5.72 mm (figure 5). 

In the long term predictions provided by the TRL and WesTrack equations are higher than the 

predictions of equations 1, 3 and 4 and lower than those of equation 2. According to these results, it 

would also seem that in the long-term, equation 2 is conservative and equations 1, 3 and 4 are non-

conservative (figure 5). It is important to note, however, that these rut models are based on 

pavement materials, designs and construction standards practised in the USA and England. 

In view of the above, it would seem advisable to consider the main failure criterion to be the fact 

that the granular material is found in “range C” owing to the number of axles and the stress level 

that must be supported by the pavement section. Therefore, we would have to reject the use of this 

material under section 4131 because of the inadmissible plastic ruts it would produce. 

9. Conclusions 

From the results of this research the following conclusions may be drawn: 

 Equations 1, 3 and 4 are models which, in the long term, predict smaller plastic deformations 

than those that were observed, whereas equation 2 is a model that in the long term predicts 

higher results than those observed. 

 Equations 1, 2 and 3 predict very similar rut depths between 10
3
 and 2 x 10

5
 cycles. From this 

point on, predictions diverge, with the rut depths predicted by equation 2 being very high in 

comparison with the ones predicted by the other equation. 

 The granular material analysed was demonstrated to be unsuitable for use under section 4131 

for road pavements in Galicia. This is due to the fact that, under the stress levels it must 



support, it falls within “range C” of the “shakedown concept” classification, which indicates 

that plastic ruts would be produced. 
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Figure 1. Grading curve of the material 
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Figure 2. Stress Paths 
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Figure 3. Cumulative permanent strain rate versus cumulative permanent strain 
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Figure 4. Permanent deformation versus load cycles 
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Equation 2

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06

N

 i
p

(%
)

 

Equation 3
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Equation 4
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Figure 5. Prediction of rut depths 

Standard error bars represent the 99% confidence interval of a mean. 
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Table 1. Characterisation tests 

TEST PARAMETER RESULT 

Modified Proctor Test 
Dry density (g/cm3) 2.3 

Optimum moisture 
content (%) 

6.4 

Atterberg Limits Non plastic Non plastic 

Sand Equivalent Sand Equivalent 51 

Los Angeles Abrasion Coefficient (%) 37 

Organic material content Proportion (%) 0.19 

Surface cleanness Coefficient (%) 1.3 

Elongation Index Elongation Index (%) 3.0 

Percentage of fractured particles Proportion (%) 100 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. Permanent deformation models 

Models linking permanent deformation to the number of loading cycles 

Equation Model Reference Parameters 

1   B
p1 N  · A%   

Sweere [4] 
A, B 

2      N·B
p1 e1  AN · m %   

Wolff [5] 
A, B, m 

3   CN · A% B
p1   

Paute [6] 
A, B, C 

4  























B

*
p1

100

N
1 · A%  Paute [7] 

A, B 

Models linking permanent deformation to stress 

Equation Model Reference Parameters 

5 
 

 *

*

pp 

q
  ·  ba

pp 

q

A





  Paute [7] 

A, a, b, 

p
*
=s/m where q=m.p+s is the 

failure equation of the material 

6  

b

max0

refp1

p

q
·a

p/L

)N(












 Lekarp [8]; [9] 

a, b, Nref 

L=(q
2
+p

2
)
0.5 

po=100 kPa 

 

 

 

 

 

 

 



 

 

Table 3. Model parameters 

Parameter A B C m R
2
 

Equation Equation Equation Equation Equation 

Stress Path q (kPa) p (kPa) 3 (kPa) 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 

P1 200.00 116.67 50.00 
0.21 0.32 0.04 103.09 0.05 -0.06 0.13 -1.47 x 10-4 ---- ---- 0.19 ---- ---- 5.33 x 10-7 ---- ---- 98.07 85.36 98.86 93.48 

P2 227.00 125.66 50.00 
0.29 0.47 0.11 149.46 0.06 -0.05 0.10 -1.62 x 10-4 ---- ---- 0.20 ---- ---- 8.44 x 10-7 ---- ---- 98.16 87.51 98.42 93.55 

P3 250.00 133.33 50.00 
0.47 0.64 0.02 130.15 0.04 -0.08 0.20 -1.82 x 10-4 ---- ---- 0.52 ---- ---- 8.94 x 10-7 ---- ---- 94.83 86.47 98.02 92.10 

P4 275.00 141.66 50.00 
0.37 0.87 0.02 303.64 0.11 -0.04 0.31 -2.74 x 10-4 ---- ---- 0.52 ---- ---- 3.53 x 10-6 ---- ---- 93.86 93.90 97.73 82.01 

P5 300.00 150.00 50.00 
0.58 1.40 0.22 46.07 0.10 -0.01 0.15 -28.67 x 10-4 ---- ---- 0.48 ---- ---- 3.35 x 10-6 ---- ---- 94.03 94.03 95.66 91.38 

P6 324.00 180.00 72.00 
0.26 0.39 0.05 22.18 0.05 -0.06 0.13 -8.67 x 10-4 ---- ---- 0.23 ---- ---- 6.78 x 10-7 ---- ---- 97.16 86.99 97.92 92.27 

P7 273.00 128.00 37.00 
0.91 1.46 0.02 14.82 0.06 -.0.07 0.30 -5.80 x 10-3 ---- ---- 1.18 ---- ---- 3.61 x 10-6 ---- ---- 91.84 92.49 97.58 82.24 

P8 245.00 112.00 30.00 
1.21 1.80 0.04 115.81 0.05 -0.07 0.26 -8.26 x 10-4 ---- ---- 1.46 ---- ---- 3.65 x 10-6 ---- ---- 92.37 90.86 96.67 86.16 

P9 217.00 99.00 27.00 
1.09 1.71 0.06 75.60 0.05 -0.06 0.23 -1.22 x 10-3 ---- ---- 1.30 ---- ---- 3.67 x 10-6 ---- ---- 93.67 90.62 96.84 85.66 

P10 191.00 91.00 27.00 
0.79 1.38 0.01 11.49 0.07 -0.07 0.34 -8.09 x 10-3 ---- ---- 1.11 ---- ---- 4.08 x 10-6 ---- ---- 91.68 92.68 99.01 80.35 

P11 165.00 85.00 30.00 
0.48 0.75 0.20 38.82 0.06 -0.06 0.10 -1.26 x 10-3 ---- ---- 0.31 ---- ---- 1.36 x 10-6 ---- ---- 99.64 79.42 99.88 97.54 

 

 


