
 

 

 

Efficient and accurate methods for 

computational simulation of netting 

structures with mesh resistance  

to opening 

 

 

Amelia de la Prada Arquer 

 

DOCTORAL THESIS 

 

Advisor: Manuel González Castro 

Programa Oficial de Doctorado en Ingeniería Industrial 

 

Ferrol, July 2014 

 



 

  



 

 

 

 

 

 

 

A mi familia: 

 Florian, Amelia y Manuel 

 

 

To my family: 

 Florian, Amelia y Manuel 

 

  



  



 

i 
 

Aknowledgements  
This Ph.D. thesis has been conducted at the Mechanical Engineering 

Laboratory of University of A Coruña, headed by Prof. Javier Cuadrado. This 

research was motivated by the project PSE-REDES, Subproject 3, Simulation, 

experimentation and design of fishing gears, supported by the Spanish Ministry of 

Science and Innovation. 

First, I wish to express my special gratitude to Prof. Manuel González, my 

advisor, for his excellent advice, dedication, patience, and the passion for research 

and well-finished work he has transmitted to me. Also, I would like to thank to Prof. 

Javier Cuadrado, for giving me such a great opportunity. 

I would like to thank my colleagues at the Mechanical Engineering 

Laboratory:  Alberto, Daniel, David, Emilio, Florian, Fran, Miguel, Roland and 

Urbano. For the fabulous work environment they have provided, their useful advice 

and the enjoyable hours we have spent together. 

During my doctorate, I have made a stay at the IFREMER at Brest, under the 

supervision of Daniel Priour. I am grateful for his kindness and the very interesting 

and productive conversations that helped me to better understand the fishing nets’ 

behaviour. Also, many thanks to his research team for welcoming me so warmly. 

Finally, I owe my heartfelt thanks to my close people: to my parents, for 

supporting me despite the distance that separates us; and last but no least to my 

husband, Florian, for his love and support, which always encourage me to give the 

best of myself. 

 



ii 
 

  



 

iii 
 

Agradecimientos 
Esta tesis doctoral ha sido realizada en el Laboratorio de Ingeniería Mecánica 

de la Universidad de A Coruña, dirigido por el profesor Javier Cuadrado. Esta 

investigación fue motivada por el proyecto PSE-REDES, Subproyecto 3, Simulación, 

experimentación and rediseño de artes y dispositivos de pesca, financiado por el 

Ministerio de Ciencia e Innovación de España. 

En primer lugar, me gustaría dar las gracias al profesor Manuel González, mi 

director de tesis, por sus excelentes consejos, dedicación, paciencia y la pasión por la 

investigación y el trabajo bien hecho que ha sabido trasmitirme. También agradecer 

al profesor Javier Cuadrado, por haberme brindado esta gran oportunidad.  

Quiero dar las gracias a mis compañeros del Laboratorio de Ingeniería 

Mecánica: Alberto, Daniel, David, Emilio, Florian, Fran, Miguel, Roland and 

Urbano, por el fabuloso ambiente de trabajo, sus utilísimos consejos y las agradables 

horas que hemos pasado juntos.  

Durante mi doctorado he realizado una estancia en el IFREMER en Brest, 

bajo la supervisión de Daniel Priour. Le estoy muy agradecida por su amabilidad y 

las interesantes conversaciones que me ayudaron a entender mejor el 

comportamiento de las redes de pesca. Me gustaría agradecer también a su equipo de 

investigación, por haberme proporcionado una acogida tan cálida. 

Finalmente, me gustaría dar las gracias a aquellas personas que siempre han 

estado a mi lado, a mis padres, por su cariño y apoyo a pesar de la distancia que nos 

separa y, por último, a mi esposo Florian, por su amor y apoyo que siempre me 

impulsan a dar lo mejor de mí.  



iv 
 

  



 

v 
 

Abstract 
Current research in computational simulation of fishing gears focuses on 

efficient numerical models that accurately predict the behaviour of the netting 

structure. This thesis is collection of four papers related to the development of a new 

model that includes the mesh resistance to opening. 

Firstly, several nonlinear stiffness models of a net twine are developed. The 

net twine is modelled as a double-clamped beam and its force-displacement response 

is calculated by finite element analysis and approximated with three different 

models. The proposed models overcome the drawbacks of previous models. The 

twine model is based on the bending stiffness and other geometrical properties of the 

netting material, so, a procedure to quantify them is presented. Although the 

methodology is similar to the previous studies, several original contributions are 

introduced, like a simpler experimental set-up. This procedure is also used to validate 

the presented twine models with experimental data. 

Regarding the simulation, the performance of a fishing gear is mainly 

determined by its equilibrium shape. In this thesis, the robustness and efficiency of 

gradient-based energy minimization methods and Newton iteration are compared by 

applying them to a set of benchmark problems.  

Finally, a lumped mass formulation for netting structures is developed. The 

lumped mass formulation is widely used to model netting structures, but in this thesis 

the linear springs that traditionally connect the nodes are replaced by the developed 

twine model. Besides, the knots are modeled as spheres instead of point masses. 

Although the expressions of the presented model are more complex than those of the 

spring model, it has been demonstrated that both models have a similar 

computational overhead. To validate the model, a netting panel is simulated and 

compared with experimental results. 
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Resumen 
La investigación actual en simulación computacional de artes de pesca se 

centra en modelos numéricos eficientes capaces de predecir con precisión el 

comportamiento del material de la red. Esta tesis es un compendio de artículos 

relativos al desarrollo de un nuevo modelo que incluye la resistencia a la apertura. 

En primer lugar, se desarrollan varios modelos de rigidez no lineal para un 

hilo de red. El hilo es modelado como una viga biempotrada y su respuesta fuerza-

desplazamiento es calculada mediante análisis por elementos finitos y aproximada 

por tres modelos diferentes. Se obtienen diferentes variantes en función de la 

expresión utilizada para aproximar dicha respuesta. El modelo propuesto supera las 

desventajas de los modelos previos. El modelo está basado en la rigidez a flexión, 

por tanto, se presenta también un procedimiento para cuantificarla. Aunque la 

metodología es similar a la de estudios previos, en esta tesis se aportan nuevas 

contribuciones, como un montaje experimental más simple. 

En cuanto a la simulación, el funcionamiento de un arte de pesca viene 

determinado principalmente por su posición de equilibrio. En esta tesis se comparan 

la robustez y eficiencia de los métodos de minimización de energía basados en el 

gradiente y del método de Newton-Raphson, aplicándolos a un conjunto de 

problemas representativos.  

Finalmente, se desarrolla una formulación basada en masas suspendidas para 

modelar la red. La formulación de masas suspendidas es ampliamente utilizada para 

modelar la red, pero en esta tesis los muelles que tradicionalmente conectan los 

nodos son remplazados por el modelo de hilo propuesto. Además, los nudos de la red 

son modelados como esferas en lugar de masas puntuales. Aunque las expresiones 

del modelo propuesto son más complejas que las de los muelles, se demuestra que 

ambos modelos tienen un coste computacional similar. Para validar el modelo, un 

paño de red es simulado y comparado con resultados experimentales. 
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Resumo 
A investigación actual en simulación computacional de redes de pesca 

céntrase en modelos numéricos eficientes, capaces de prever con precisión o 

comportamento da estructura da rede. Esta tese é un compendio de artigos sobre o 

desenvolvemento dun novo modelo que inclúe a resistencia á abertura. 

En primeiro lugar, desenvólvense varios modelos de rixidez non lineal para 

fíos de redes. O fío é modelado como unha viga biempotrada e a súa resposta de 

forza-desprazamento foi calculada mediante análise de elementos finitos e 

aproximada mediante diferentes modelos. O modelo proposto supera as desvantaxes 

dos modelos anteriores. O modelo baséase na rixidez a flexión, e polo tanto, tamén se 

presenta un novo método para cuantificala. Aínda que a metodoloxía é semellante á 

de estudos anteriores, o novo método ten importantes vantaxas, como por exemplo 

unha configuración experimental máis simple. 

Con respecto á simulación, compárase a robustez e eficiencia de dúas familias 

de métodos para calcular a posición de equilibrio: métodos de minimización 

baseados no gradiente e método de Newton-Raphson, aplicándose a un conxunto de 

problemas representativos. 

Por último, desenvólvese unha nova formulación de masas suspendidas para 

estruturas de rede. A formulación de masa suspendida é amplamente utilizada para 

modelar a rede, pero nesta tese os resortes que tradicionalmente conectando os nodos 

son reemplazados polo modelo desenvolvido nesta tese. Ademais, os nós da rede son 

modelados como esferas, en vez de masas puntuais. Aínda que as ecuacións do 

modelo proposto son máis complexas do que as resortes, móstrase que ambos 

modelos posúen un custo computacional similar. Para validar o modelo, un pano de 

rede é simulado e comparado cos resultados experimentais. 
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Resumen extendido 

Motivación 

La conservación de los recursos marinos es fundamental para suministrar 

alimentos a la población mundial y garantizar la sostenibilidad del sector pesquero 

como un medio de vida. La FAO (Food and Agriculture Organization of the United 

Nations) estima que unos 3 mil millones de personas dependen del pescado como su 

principal fuente de proteína animal (FAO, 2012).  Sin embargo, la contaminación, la 

sobreexplotación y la destrucción de los hábitats marinos están amenazando el futuro 

de este sector. Por ello, la Unión Europea está haciendo grandes esfuerzos políticos 

para garantizar su continuidad. 

Una de las estrategias a seguir es mejorar el diseño de artes de pesca para 

reducir su impacto medioambiental e incrementar su eficiencia energética. Estos 

objetivos están directamente relacionados con la forma que toma la red ante un flujo 

de corriente, esto es, su comportamiento estructural e hidrodinámico (Suuronen, 

2005). Dicho comportamiento depende de muchos factores: la geometría de la red 

(forma, tamaño y configuración de las mallas, presencia de elementos rígidos y 

flexibles, cables, etc.), condiciones de trabajo (velocidad de arrastre, tipo de suelo 

marino, olas, condiciones climáticas, etc.) y peso y volumen de la captura. Entender 

y predecir la influencia de estos factores es crítico para mejorar los nuevos diseños. 

 El método tradicional para comprobar el funcionamiento de un arte de pesca 

consiste en campañas experimentales, que son enormemente costosas y lentas. Como 

alternativa más barata, se utilizan los ensayos en canal hidrodinámico, aun así, estos 

ensayos siguen siendo lentos y caros porque, además del coste de alquiler de las 

instalaciones, los ensayos se realizan con prototipos escalados del arte. Además, no 

permiten reproducir las condiciones de trabajo reales (olas, corrientes variables, 

suelo marino, etc.). Los inconvenientes de estos ensayos han impulsado el desarrollo 

de modelos numéricos para predecir la forma del arte, no obstante, la validación de 

éstos modelos con ensayos experimentales es siempre necesaria. 
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La presente tesis doctoral es un compendio de cuatro artículos enfocados al 

modelado y simulación de redes,  con el objetivo de desarrollar un modelo numérico 

robusto y eficiente computacionalmente, capaz de predecir con exactitud el 

comportamiento real de la red, pudiendo resolver algunos de los inconvenientes de 

los modelos previos. 

Resistencia a la apertura de mallas 

En un paño de red, el hilo se anuda formando un conjunto de mallas, cuya 

configuración puede ser tipo diamante (la más común), hexagonal o cuadrada. Uno 

de los rasgos más relevantes de las mallas es la resistencia a la apertura, puesto que 

ésta es crucial para alcanzar uno de los objetivos relativos a reducir el impacto 

medioambiental de un arte de pesca, la selectividad. 

La selectividad se define como la capacidad para capturar especies objetivo y 

dejar a las otras escapar. Se ha demostrado que la selectividad depende 

principalmente de la resistencia a la apertura debido a que ésta limita la apertura de 

las mallas en el copo, impidiendo que los peces de talla pequeña escapen (Herrmann, 

B., 2006; Sala, A., 2007b).  La mayoría de los modelos numéricos para redes ignoran 

la resistencia a la apertura porque asumen que los hilos son completamente flexibles 

y flectan sin resistencia. Sin embargo, en los últimos años crece la tendencia a 

utilizar hilos más gruesos y fuertes en la fabricación de copos de red ya que así 

aumenta su durabilidad,  afectando negativamente a la selectividad al incrementar la 

resistencia a la apertura de las mallas. Por lo tanto, la incorporación  de la resistencia 

a la apertura a los modelos numéricos es esencial para poder predecir con precisión 

el comportamiento de la red. 

En mallas tipo diamante, la resistencia a la apertura se caracteriza por la 

rigidez a flexión EI del hilo (Herrmann, B., 2006; O’Neill, 2004). Entonces, el 

principal reto es el desarrollo de un modelo de resistencia a la apertura que esté 

basado en esta propiedad. La investigación más relevante sobre rigidez a flexión ha 

sido desarrollada por O’ Neill (2002); él describió las ecuaciones que gobiernan la 

flexión en un hilo basándose en la teoría de vigas, encontrando dos soluciones 

analíticas para ellas (una solución exacta y una solución asintótica aproximada).  

Aunque estas soluciones analíticas son muy apropiadas para describir la flexión en el 
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hilo (O’Neill and Priour, 2009; Sala et al., 2007a), presentan dos inconvenientes 

importantes a la hora de aplicarlas a la simulación numérica de redes: su alto coste 

computacional y que no tienen en cuenta los esfuerzos axiales, al considerar el hilo 

inextensible. 

Puesto que los modelos presentados dependen de la rigidez a flexión, la 

medida de esta propiedad mecánica es indispensable. La investigación más relevante 

ha sido desarrollada por Sala (2007a), pero ésta requiere un instrumento de medida 

especialmente diseñado para medir deformaciones en un paño de red, que no está 

disponible en el mercado. Además, los autores remarcaron la falta de ajuste entre los 

datos experimentales y el modelo numérico (utilizaron la solución asintótica de 

O’Neill (2002)).  

Por lo tanto, los objetivos de la presente tesis, en cuento a la resistencia a la 

apertura son: 

1) Desarrollar un modelo de hilo que supere las desventajas explicadas 

anteriormente. El modelo debe representar de forma correcta el 

comportamiento a flexión de un hilo, y ser robusto y eficiente desde el punto 

de vista computacional,  puesto que va orientado a la simulación de artes de 

pesca reales, que pueden estar formados por un gran número de variables.  

2) Desarrollar un montaje experimental que permita analizar datos para estimar 

la resistencia a la apertura de forma más simple y precisa que el método 

propuesto por Sala et al. (2007a).  

Los artículos asociados a esta investigación son los artículos No.1 y No. 2: 

El artículo No.1 comprende el primer objetivo de esta tesis. En él, se presenta 

un nuevo modelo de hilo a flexión, el cual trata de resolver los inconvenientes de los 

modelos desarrollados por O’Neill (2002). El segundo artículo corresponde al 

segundo objetivo, donde se describe un procedimiento experimental para medir la 

rigidez a flexión y otros parámetros geométricos para diferentes materiales de red. 
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Equilibrio estático de redes 

En lo que respecta a la simulación, en la mayoría de aplicaciones marítimas, 

el funcionamiento de un arte de pesca viene determinado, principalmente por su 

posición de equilibrio bajo condiciones estáticas o quasi-estáticas, esto es, su 

posición de equilibrio sometido a una corriente de agua constante (Priour, 1999; 

Priour et al., 2009; O’Neill and Priour, 2009). Se trata de resolver el sistema de 

ecuaciones formado por todas las fuerzas que actúan en el arte de pesca, por ejemplo, 

las fuerzas elásticas, derivadas de los modelos de la red (como los descritos 

anteriormente) y cables, las fuerzas hidrodinámicas, contacto con el fondo marino, 

peso y flotación, etc. Algunas de estas fuerzas introducen ecuaciones altamente no 

lineales en el sistema, esto hace la aplicación de algoritmos iterativos necesaria para 

resolver el problema. 

 Uno de los métodos más comunes para resolver sistemas de ecuaciones no 

lineales es el método de Newton-Raphson, aunque ha sido ya utilizado con éxito, 

presenta dos desventajas principales: la primera es la dificultad de implementación 

del método, puesto que requiere la matriz Jacobiana de las fuerzas descritas 

anteriormente; la segunda es que la matriz Jacobiana puede presentar problemas de 

mal condicionamiento a lo largo de las iteraciones. Como alternativa al método de 

Newton-Raphson, en esta tesis se propone el uso de métodos de minimización de 

energía basados en el gradiente. 

En cuanto a la implementación del modelo, es necesaria una formulación 

basada en el modelo de hilo mencionado anteriormente. Una de las formulaciones 

más utilizadas es la formulación basada en masas suspendidas (Bessoneau, J.S. and 

Marichal, D. 1998; Le Dret et al. 2004; Lee et al., 2005; Li et al., 2006; Takagi et al., 

2004; Theret, F., 1993), ésta consiste en una serie de masas puntuales (que 

representan los nudos de la red) interconectadas por muelles lineales (que 

representan los hilos). Las formulaciones de masas suspendidas desarrolladas hasta 

ahora presentan dos inconvenientes principales: (i) la aproximación de los hilos 

como muelles lineales y (ii) no tienen en cuenta el tamaño de los nodos de red. 

Además, como los muelles no representan el comportamiento real del muelle, se 

suelen añadir nodos intermedios para mejorar la precisión del modelo, lo cual 

incrementa el coste computacional. 
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Por tanto, los objetivos de la tesis son: 

3) Encontrar el método más apropiado para resolver la posición de equilibro de 

la red con el objetivo de solventar las desventajas del método de Newton-

Raphson.  

4) Desarrollar un modelo de red basado en la formulación de masas suspendidas 

y el modelo de hilo del artículo No. 1, teniendo en cuenta el tamaño de los 

nudos. El modelo debe ser validado comparando los resultados numéricos 

con datos experimentales.  

Los artículos de esta tesis relacionados con estos objetivos son los artículos 

No. 3 y No. 4: 

Aunque encontrar el método más apropiado para simular la red (el tercer 

objetivo de esta tesis) es una tarea intermedia para simular el modelo propuesto, el 

artículo No. 3 consiste en un estudio detallado sobre éste objetivo. Es un análisis de 

la robustez y la eficiencia computacional de dos familias de métodos: el método de 

Newton-Raphson (NR) y métodos de minimización de energía basados en el 

gradiente, con el objetivo de analizar sus ventajas e inconvenientes y cómo les 

afectan distintas características de la red. 

El artículo No. 4 comprende el cuarto objetivo, usando los artículos 

mencionados anteriormente para alcanzarlo: el modelo de hilo del artículo No. 1 es 

incorporado a la formulación de masas suspendidas. Para encontrar su posición de 

equilibrio, se utiliza el método basado en el gradiente propuesto en el artículo No. 3. 

Finalmente, se utiliza el experimento presentado en el artículo No. 2 para validar el 

modelo. 

Resultados 

Los modelos de hilo propuestos (modelo de ajuste polinómico de las fuerzas, 

y modelo de ajuste por splines de la energía potencial del artículo No.1) cumplen con 

éxito los objetivos planteados. Los modelos coinciden con la solución obtenida 

mediante análisis por elementos de una viga a flexión en el artículo No. 1. Aunque 

los modelos no son igualmente precisos, los errores relativos a la solución de 

referencia son aceptables, ajustándose perfectamente a los resultados experimentales, 
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tanto en la validación experimental del modelo en el artículo No. 1 como en las 

estimaciones de la rigidez a flexión en el artículo No. 2, con un coeficiente de 

determinación comprendido entre 0.97 y 0.99 para todos las muestras de paños de 

red ensayadas.  

Además, se han implementado también las soluciones asintótica y exacta 

desarrolladas por O’Neill (2002), para compararlas con los modelos propuestos. Sus 

diferencias pueden apreciarse en el test del artículo No. 1 mencionado anteriormente. 

La solución exacta coincide con la referencia hasta que la deformación vertical es 

muy alta, lo mismo ocurre con la solución asintótica la explicación para este 

fenómeno es que O’Neill no tuvo en cuenta la deformación axial. Además, la 

solución asintótica presenta diferencias más pronunciadas respecto a la solución de 

elementos finitos. Estas diferencias tienen un impacto negativo en el ajuste con los 

datos experimentales; el peor ajuste en el artículo No. 1 se corresponde con el de la 

solución asintótica  y en el artículo No. 2 generó problemas en la estimación de 

parámetros, coincidiendo con las observaciones de Sala et al. (2007a). Por el 

contrario, la solución exacta generó ajustes muy precisos en ambos artículos. La 

solución exacta representa con éxito el comportamiento del hilo, sin embargo, lo 

hace bajo un alto coste computacional y una difícil implementación. Los nuevos 

modelos propuestos son una alternativa a la solución exacta, puesto que sus 

ecuaciones son mucho más simples y eficientes pero la calidad del ajuste con los 

datos experimentales es muy similar.   

En cuanto al montaje experimental, en este trabajo se propone una alternativa 

más simple que el utilizado por Sala et al. (2007a). Aunque el montaje se describe en 

detalle en el artículo No. 2, los resultados experimentales se utilizan en más artículos 

con diferentes propósitos: en el artículo No.1 se utilizan para validar el modelo de 

hilo, y en el artículo No. 4 vara validar el modelo de red, particularizado para las 

dimensiones de la muestra de red.  

El procedimiento propuesto en el artículo No. 2 proporciona estimaciones 

para la rigidez a flexión y otros parámetros geométricos a partir de datos 

experimentales. Se han analizado dos modelos de hilo desarrollados en (O’Neill, 

2002) y otros dos modelos de hilo ya estudiados en el artículo No. 1 combinados con 

cuatro estrategias diferentes de restricción de parámetros. Se ha demostrado que el 
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método propuesto es una forma simple y eficiente para estimar la resistencia a la 

apertura de redes. No obstante, hay que tener en cuenta que las estimaciones no son 

valores reales absolutos de las propiedades de la red, sino parámetros de calibración 

de los diferentes modelos. Por tanto,  el modelo utilizado para estimar los parámetros 

debe ser el mismo que el que se aplicará para predecir el comportamiento de la red. 

Sin embargo, este método presenta algunas objeciones que requieren 

investigaciones futuras: en primer lugar, este método no permite estimar la altura del 

nodo; segundo, no tiene en cuenta la flexión fuera del plano de la red, la cual puede 

influir en la resistencia a la apertura. Además, en el artículo No. 2, se ha demostrado 

que la resistencia a la apertura es diferente en los ciclos de carga y descarga, 

probablemente causada por deformaciones plásticas en el material debido a que 

estuvo expuesto a altas tensiones durante largo tiempo. Estos resultados sugieren que 

son necesarias investigaciones futuras para analizar cómo el historial de carga afecta 

a la resistencia a la apertura durante el uso de los artes de pesca.  

En lo que respecta al análisis de métodos para la simulación de redes, los 

resultados muestran que el método de minimización de energía basado en el 

gradiente más adecuado es el método de memoria limitada BFGS (LBFGS). Por otro 

lado, la mejor variante de la familia de NR es el método NR de paso limitado 

(propuesto por los autores). Ambos métodos tienen sus ventajas e inconvenientes y el 

uso de uno u otro viene indicado por la situación. Por un lado LBFGS es más robusto 

y eficiente en problemas donde la posición inicial está lejos de la solución, por 

ejemplo, cuando ésta es muy difícil de estimar, como en redes compuestas por 

paneles diferentes. Por otro lado NR es más rápido cuando la posición inicial está 

muy cerca de la posición de equilibrio, por ejemplo, cuando las condiciones de 

simulación son levemente modificadas respecto a la situación anterior, como en las 

aplicaciones de optimización automática de la topología de la red (Khaled et al., 

2012; Priour, 2009). De hecho, ambos métodos pueden incluso combinarse, 

utilizando LBFGS en las primeras iteraciones para acercar la posición inicial al 

equilibrio y después aplicar NR para aumentar la precisión de los resultados. En 

cuanto a la implementación de los métodos, LBFGS es mucho más fácil de 

implementar, puesto que no requiere la matriz Jacobiana. 
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En el artículo No. 4, el método LBFGS es utilizado para calcular la posición 

de equilibrio de una red modelada con una formulación que incluye la resistencia a la 

apertura. El modelo propuesto se basa en la formulación de masas suspendidas, pero 

los muelles lineales que tradicionalmente conectan los nodos son reemplazados por 

el modelo de hilo de ajuste polinómico de la fuerza descrito en el artículo No. 1. 

Además, los nodos de la red son aproximados como esferas en lugar de masas 

puntuales. Para validar el modelo, los datos experimentales del artículo No. 2 son 

analizados con el modelo propuesto como función modelo en la regresión, 

particularizado para el paño de red utilizado en los experimentos. La bondad del 

ajuste confirma que el modelo es capaz de predecir la resistencia a la apertura. Dado 

que el modelo de hilo ya ha sido validado en el artículo No. 1, en este caso los 

sujetos de validación son: la aproximación de la geometría del paño de red mediante 

la formulación de masas suspendidas y la hipótesis de nodos esféricos. En cuanto a la 

eficiencia computacional, aunque pueda parecer que la incorporación del modelo de 

hilo a la red incrementa su coste computacional porque requiere la evaluación de 

raíces y funciones trigonométricas, se ha demostrado lo contrario. Un experimento 

numérico se ha llevado a cabo para comparar su eficiencia computacional con el 

modelo tradicional de masas suspendidas, los resultados  muestran que aunque el 

tiempo por evaluación de función por nodo del modelo propuesto es más alto, no es 

necesario incluir los nodos intermedios del modelo tradicional, resultando en un 

coste computacional total similar. 

Conclusiones 

Esta tesis aspira a desarrollar nuevos modelos de hilo eficientes y precisos 

para simulación numérica de redes, incluyendo la resistencia a la apertura. Los 

modelos propuestos alcanzan con éxito los objetivos planteados en esta tesis.  

1) Los modelos de hilo propuestos están basados en la aproximación de la 

respuesta obtenida mediante análisis por elementos finitos de una viga a 

flexión. Trabajos experimentales confirman que los modelos propuestos son 

muy precisos. Además son más eficientes que los modelos previos puesto que 

expresan las fuerzas del hilo como función explicita de su deformación 

2) El montaje experimental propuesto es más simple y barato que el prototipo 

construido por Sala et al. (2007a). La combinación de los nuevos modelos de 
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hilo presentados en el artículo No. 1 con las estrategias de restricción de 

parámetros resulta en un método simple y preciso para estimar la resistencia a 

la apertura de mallas. 

3) De los métodos comprobados en la tesis, los más robustos y eficientes para 

simular redes han sido LBFGS y Newton-Raphson de paso limitado, pero los 

resultados demuestran que el método más apropiado depende de la situación. 

LBFGS es más robusto y eficiente cuando la posición inicial está lejos del 

equilibrio. Por el contrario, Newton-Raphson es más rápido cuando la 

posición inicial está cerca de la posición de equilibro. Además LBFGS es 

mucho más sencillo de implementar.  

4) El modelo de hilo propuesto se ha incorporado con éxito a la formulación de 

masas suspendidas. El modelo es más preciso que los modelos previos puesto 

que tiene en cuenta la flexión en hilos y el tamaño de los nodos. Además su 

coste computacional no es superior a los modelos previos. 

5) Finalmente, el modelo de red se ha validado experimentalmente, ajustando 

los datos experimentales del artículo No. 2 con el modelo propuesto, 

particularizado para la muestra de red utilizada en los experimentos. Los 

resultados confirman que la calidad del ajuste es muy buena. 
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Introduction 

1. Background 

The preservation of marine resources is mandatory to supply food to the 

world population and to guarantee the sustainability of the fishing sector as a 

livelihood. The Food and Agriculture Organization of the United Nations (FAO) 

estimates that about 3.0 billion people depend on fish as their main source of animal 

protein (FAO, 2012). However, pollution, overfishing and destruction of marine 

habitats are threatening the future of this sector; in order to overcome these 

problems, the European Union is making hard political efforts, promoting research in 

this topic.  

One of the pursued goals is to enhance the design of the fishing gears in order 

to reduce their environmental impact and increase their energy efficiency. These 

goals are primarily related with the shape that the netting structure takes under the 

current flow, that is, its structural and hydrodynamic behaviour (Suuronen, 2005). In 

any case, the structural and hydrodynamic behavior is dependent on many different 

factors: the geometry of the netting structure (mesh shape, size and configuration, 

material properties, flexible and rigid bodies, wires etc…); working conditions 

(towing speed, composition of the seabed, waves, weather conditions…) and catch 

fish (weight and volume of the catch).  Being able to understand and forecast the 

influence of these factors is critical to improve the new designs. 

The traditional method to check the correct performance of a fishing gear is 

by experimental campaigns, which are very expensive and time-consuming. 

Although experimental tests in flume tank are used as a cheaper alternative (Priour et 

al., 2005; O’Neill et al., 2005; Balash, 2012), they are still costly and time-

consuming because, in addition to the cost of renting the tank facilities, scaled 

prototypes of the gear are necessary. Besides, they do not allow the simulation of real 

working conditions (fishing operations, composition of the seabed, etc.). The 

drawbacks of the experimental tests have encouraged the development of numerical 
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models to predict the shape of the netting structure. Even so, experimental validation 

of the numerical models is always required. 

Up to now, different numerical models for the netting structures have been 

developed, which can be categorized as: (1) 1D finite element models (Bessoneau 

and Marichal, 1998; Tsukrov and Eroshkin, 2003; Le Dret et al., 2004), (2) 2D finite 

element models, (Priour, 1999; Priour, 2003; Nicoll et al., 2011), (3) lumped mass 

models (Takagi et al., 2004; Lee et al., 2005;  Li et al., 2006) and (4) differential 

equation models for axisymmetric structures (O’Neill, 2002; Priour, 2009). Such 

models have been successfully applied to solve real-life design and optimization 

problems. 

2. Aim and motivation 

This Ph.D. thesis is a compendium of four publications regarding the 

development and validation of an accurate and efficient model of a netting structure. 

Subsection 2.1 focuses on the development of a numerical model able to represent 

the real behaviour of a netting twine. It also addresses experimental methods to 

measure the mechanical and geometrical properties of netting panels. Subsection 2.2 

regards the implementation and simulation of the model. 

2.1 Mesh resistance to opening  

In a netting panel, the twine is knotted making up a set of meshes, which can 

be diamond (the predominant type), hexagonal or square shaped. One of the most 

relevant features of the netting structure is the mesh resistance to opening, since it 

governs one of the major concerns related to reducing the environmental impact of a 

fishing gear: the selectivity.  

The selectivity is defined as the ability to capture the target species and let the 

others scape. It has been demonstrated that the selectivity depends primarily on the 

resistance to opening since it hampers the mesh opening in the cod-end, thereby 

limiting the escapement of small fish (Herrmann, 2006; Sala, 2007b). Most of the 

numerical models for netting materials ignore mesh resistance to opening because 
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they assume that twines are completely flexible and easily bent without resistance. 

However, in recent years, there is a tendency towards thicker and stronger twines in 

the manufacture of netting materials for the codend of trawls because it increases the 

durability of the netting, affecting negatively to the selectivity as the mesh resistance 

to opening increases. This makes the incorporation of the mesh resistance to opening 

to the numerical models of the netting materials essential to accurately predict the 

selective performance of fishing gears by simulation. 

In diamond mesh panels, the resistance to opening is mainly characterized by 

the bending stiffness EI of the twine (Herrmann, B., 2006; O’Neill, 2004). Therefore, 

the main challenge is the development of a model of the netting structure that takes 

into account this mechanical property. Theoretical models for the mesh resistance to 

opening are generally based on the beam theory of solid mechanics. The most 

comprehensive research about twine bending stiffness has been developed by O’ 

Neill (2002). He described the equations of a bending twine assuming that it can be 

modeled as a double-clamped beam. He found two analytical solutions for these 

equations (an exact and an approximated asymptotic solution). These analytical 

solutions are highly valuable to describe bending stiffness (O’Neill and Priour, 2009; 

Sala et al., 2007a) but they have two major drawbacks when they are incorporated in 

numerical simulation of flexible net structures: their high computational cost and 

they do not take into account axial deformations.  

As the previous numerical models are based on the bending stiffness EI, the 

quantification of this mechanical property is necessary. Unfortunately, despite there 

are some studies about it in the literature, the research about this topic is still scarce 

(Sala et al., 2007a; Priour and Cognard, 2011; Balash, 2012). The most relevant 

research was carried out by Sala et al. (2007a), but it required a specially designed 

measuring instrument which is not commercially available. Besides, the authors 

reported a systematic lack of fit between the experimental data and the model (they 

used the asymptotic solution developed by O’Neill (2002)). 

Consequently the objectives of this thesis regarding the modelization of the 

netting material are the following: 



4 
 

1) To develop a twine model able to overcome above-mentioned disadvantages. 

The model has to accurately represent the behaviour of the bending twine, 

taking into account also the axial deformations. Besides, it must be 

computationally robust and efficient since the model aims at being used in 

simulation of real fishing gear, which can have a large number of variables. 

2) To design a new experimental set-up and procedure to analyse experimental 

data to quantify the mesh resistance to opening of netting panels in a simpler 

and more accurate way than the method proposed by Sala et al. (2007a).  

The publications related to this research are: 

- Article No. 1: de la Prada, A. González M., 2014. Nonlinear stiffness models 

of a net twine to describe mesh resistance to opening of flexible net 

structures. Journal of Engineering for the Maritime Environment. 

DOI:10.1177/1475090214530876 

- Article No. 2: de la Prada, A. González M., 2014. Quantifying mesh 

resistance to opening of netting panels: experimental method, regression 

models and parameter estimation strategies. ICES Journal of Marine Science. 

DOI 10.1093/icesjms/fsu125 

The first article covers the first objective: a new model for the twine bending 

is developed, which tries to overcome the disadvantages of O’Neill’s models. The 

second publication addresses the second objective. It develops an experimental 

procedure to measure the bending stiffness and other geometrical parameters of 

netting materials.  

2.2 Static equilibrium of netting structures 

Regarding the simulation, in most marine applications the performance of a 

fishing gear is mainly determined by its equilibrium shape under static or quasi-static 

conditions (Priour, 1999; Priour et al., 2009; O’Neill and Priour, 2009). It consists in 

solving the static equilibrium equations taking into account all the forces that act on 

the netting structure, for example, the elastic forces from the models of the netting 

structure (like the twine model developed previously) and wires, the hydrodynamic 

forces, contact with the seabed, weight and buoyancy, etc. Some of these forces are 
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defined by high non-linear expressions; hence, iterative methods are required to 

solve the equations. 

One of the most popular methods to solve non-linear systems is the Newton-

Raphson (NR) iteration. Although it has been already used in netting applications 

(Priour, 1999), it presents two main disadvantages: the first one is the difficulty of 

implementation of the method, as it requires the Jacobian matrix of the forces; the 

second downside is that the Jacobian matrix is often ill-conditioned during the 

iterations. As an alternative to the NR method, gradient-based energy minimization 

methods are proposed in this thesis. The only reference in the literature to the use of 

them to calculate the equilibrium shape of netting structures can be found in (Le Dret 

et al., 2004), which briefly mentions the use of the Polak-Ribière version of the 

nonlinear conjugate gradient method. However that work assesses neither the 

computational performance nor the robustness of the method in comparison to the 

NR method. This makes the analysis of gradient-based methods and their comparison 

with NR methods a subject worthy of investigation. 

As far as the modelization of the netting of the fishing gear is concerned, it is 

necessary a formulation based on the above-mentioned twine model. One of the most 

used formulations is the spring-based lumped mass formulation (Bessoneau, J.S. and 

Marichal, D. 1998; Le Dret et al. 2004; Lee et al., 2005; Li et al., 2006; Takagi et al., 

2004 ; Theret, F., 1993). It consists on a series of point masses (representing netting 

knots) that are interconnected with linear springs (representing twines). Existing 

lumped mass formulations have two main drawbacks: (i) the approximation of the 

net twines as linear springs and (ii) the knot size is not taken into account.  

Moreover, as linear springs cannot represent the behaviour of a real twine, 

intermediate knots are introduced to improve the accuracy of the model, which also 

increase the computational cost. 

The objectives of this part of the thesis are: 

3) To find the most suitable iterative method to solve the equilibrium shape of 

netting structures, in order to overcome the drawbacks of the classical 

Newton-Raphson iteration.  



6 
 

4) To develop a model of the netting structure based on the lumped mass 

formulation and the twine model from Article No.1, taking into account the 

knot size. The model of the netting structure has to be validated by comparing 

the results from computational simulation with experimental data.  

The publications of this thesis related to this research are: 

- Article No. 3: de la Prada, A. González M., 2014. Assessing the suitability of 

gradient-based energy minimization methods to calculate the equilibrium 

shape of netting structures. Computers and structures.                                 

DOI: 10.1016/j.compstruc.2014.01.021 

- Article No. 4: de la Prada, A. González M., 2014. An efficient and accurate 

model for netting structures with mesh resistance to opening. International 

Journal of Solids and Structures. In review. 

Although finding the best simulation method (third objective of this thesis) is 

an intermediate task to simulate the fishing gear, we have reported a detailed study in 

Article No. 3. It contains a comprehensive analysis of the robustness and 

computational performance of numerical methods to find the equilibrium position of 

netting structures. Two families of methods have been tested: Newton iteration and 

gradient-based energy minimization methods. In order to get insight on the 

advantages and disadvantages of each method and identify how they are affected by 

particular characteristics of the netting structure. 

Article No. 4 comprises the objective 4, using the previous articles as tools to 

accomplish it: the model of the netting structure is based on the twine model 

presented in Article No. 1, which is used in the lumped mass formulation. To find the 

equilibrium shape, the gradient-based method proposed in Article No. 3 is applied. 

Finally, the experimental set-up presented in Article No. 2 is used to validate the 

model.  
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3. Results and discussion 

This section presents a brief combined discussion of the four articles in this 

thesis. Please refer to the full publications in the Appendix for further details. 

3.1 Mesh resistance to opening 

The developed twine models (polynomial fitting of the force and the spline 

fitting of the potential energy from the Article No. 1) have successfully accomplished 

the objectives of this thesis. The models match up with the finite element solution for 

a bending beam in Article No. 1. Although the three models are not equally accurate, 

the relative errors of all of them are acceptable. This results in excellent fittings with 

the experimental data in Article No. 1 and also when estimating the bending stiffness 

in Article No. 2, with high values of the coefficient of determination R2, ranging 

between 0.97 and 0.99 for every tested netting panels. 

The exact and the asymptotic solution from (O’Neill, 2002)  have been also 

implemented in order to compare them with the proposed models. Their differences 

can be noticed in the above-mentioned bending beam test presented in Article No. 1. 

The exact solution matches with the reference finite element solution until the 

normal deformation of the mesh is high. The same occurs with the asymptotic 

solution. The explanation for these results is that the models developed by O’Neill 

(2002) do not take into account the effect of the axial deformation of the twine. 

Moreover, the asymptotic solution presents more pronounced differences in 

comparison with the finite element solution. These differences have a negative 

impact on the goodness of fit when this model is used to analyse experimental data. 

The worst fits in Article No. 1 and Article No. 2 were given by the asymptotic 

solution. Moreover, it caused identifiably problems in Article No. 2, also reported by 

Sala et al. (2007a). On the contrary, the exact solution provided highly accurate 

fittings in both articles, which suggests that the axial deformation applied in the 

experiments was not important enough to have an effect that cannot be predicted by 

the exact solution (the panels were stretched until the normal mesh opening reached 

an 80% of the nominal mesh size).  
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Consequently, the exact solution succeeds in representing the twine 

behaviour. However, this comes at the cost of a high computational overhead and a 

very difficult computer implementation due to the complexity of the highly non-

linear implicit expressions. This is a very important drawback since, as shown in 

Article No. 3, most simulation methods (e.g. gradient-based and NR) require 

evaluating the forces as explicit function of the deformation. When using NR the 

implementation is even more difficult, because it also needs the Jacobian of the 

forces. Thus, the proposed models are a good alternative to the exact solution, 

because they provide similar goodness of fit with experimental data but their 

equations are much simpler and efficient. 

Note that the third twine model presented in Article No. 1, the spring-based 

model, was developed to make the model able to deal with large axial deformations. 

However, in Article No. 4 it has been proved that this objective can be also 

accomplished with the polynomial fitting of the force model (which covers small 

deformations) combined with a linear spring model (which covers large 

deformations) using a blending function as a transition between both models.  

Regarding the experimental methods to measure the mesh resistance to 

opening of netting panels, this work proposes in Article No. 2 a simpler alternative 

method to the method proposed by Sala et al. (2007a). The proposed experimental 

set-up is also used in other articles for different aims: in Article No. 1 it is used to 

validate the proposed twine models, while in Article No. 4, it is used to validate the 

presented lumped mass formulation for netting structures model.  

The procedure presented in Article No. 2 managed to provide accurate and 

plausible estimates of the twine bending stiffness and other geometrical parameters 

of the netting panel. Two of the twine models described in Article No. 1 and the two 

models developed in (O’Neill, 2002) were used to analyse experimental data, 

combined with four different parameter estimation strategies. The method proved to 

be a simple yet accurate way to quantify the mesh resistance to opening of netting 

panels. Nevertheless, the parameter estimates depend on the twine model used to 

analyse the experimental data. Hence, they are not absolute measurements of the 

netting properties, but rather calibration parameters for different theoretical models 
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of mesh resistance to opening, as observed by Sala et al. (2007a). Therefore, the 

model used to estimate the parameters should be the same that will be used to make 

predictions of the netting behaviour.  

This method presents some objections that require further research. Firstly, as 

the experiment is uniaxial, it does not allow estimating the knot height. Secondly, 

this method does not take into account the out-of-plane bending in netting panels, 

which can influence the mesh resistance to opening. Besides, in Article No. 2, it has 

been demonstrated that the mesh resistance to opening is different in the loading and 

unloading cycles of the experimental set-up. This is probably caused by plastic 

deformations in the netting material due to long-term exposure to high stress. This 

result suggests that further research is required to investigate how the loading history 

affects the mesh resistance to opening of netting during the lifespan of a fishing gear. 

3.2 Static equilibrium of netting structures 

The motivation of Article No. 3 is to analyse and compare methods to 

calculate the equilibrium shape of the netting structure. A set of benchmark problems 

(10 different cases) is solved to better understand the robustness and computational 

performance of two families of methods: Newton-Raphson iteration and gradient-

based methods. The triangular finite element developed by Priour (1999) is used to 

model the netting structure.  

Results show that the most suitable gradient-based method is the limited 

memory BFGS method (LBFGS). Also, the best NR method is the NR step limit 

variant (proposed by the authors). Both methods have their advantages and 

drawbacks. LBFGS is more robust and efficient in problems where the initial 

position is very different from the equilibrium position. This is useful to calculate the 

equilibrium position of trawls made up by many different panels that make difficult 

to estimate a good initial position. On the other hand, NR is faster when the initial 

position is close to the equilibrium position. For instance, to calculate the equilibrium 

position of a problem which is slightly modified with respect to the previous 

equilibrium situation, like in optimization of netting structures (Khaled et al., 2012; 

Priour, 2009), where only small changes in panel dimensions are applied. Actually, 
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both methods can be combined, using LBFGS at first iterations to bring the shape of 

the netting structure closer to the equilibrium and then apply NR to increase the 

accuracy of the solution. Regarding the implementation of the methods, LBFGS is 

considerably easier to implement and allows testing new force models as it does not 

require the Jacobian of the forces. 

In addition to the 10 test cases presented in Article No. 3, the LBFGS and NR 

methods have been used to calculate the equilibrium position of complete trawls 

under a uniform current flow. These results have not been included in this thesis. 

In Article No. 4, the LBFGS method is used to calculate the equilibrium 

position of a netting structure modelled with a formulation that includes de mesh 

resistance to opening. The proposed model is based on the lumped mass formulation, 

but the linear springs that traditionally connect the nodes are replaced by the 

polynomial fitting of the force twine model presented in Article No. 1. Besides, the 

knots are approximated as spheres instead of point masses. To validate the model, the 

experimental data from Article No. 2 are analysed with the proposed model for the 

netting structure. The goodness of fit confirms that the proposed model accurately 

predicts the mesh resistance to opening of netting panels. Note that the twine force 

model has already been validated in Article No. 1; hence in this case the objective is 

to validate the approximation of the panel geometry with the lumped mass model and 

the hypothesis of spherical knots. Regarding the computational efficiency, although 

it may seem that the proposed model is slower than the classical lumped mass model 

because it requires the evaluation of root and trigonometric functions, it has been 

demonstrated otherwise. A numerical experiment has been carried out to compare its 

computational efficiency with the traditional lumped mass formulation based on 

linear springs. The results show that, although the time per evaluation of the force 

model is higher, it avoids the inclusion of intermediate nodes, resulting in a similar 

computational overhead. The proposed model does not affect to the number of 

iterations.  

Remark that gradient-based methods from Article No. 3 require that the 

forces are conservative. If it is not the case (like the polynomial fitting model and the 

spring-based model from Article No. 1), the energy required by the gradient-based 
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method is approximated, which increases the number of iterations necessary for the 

convergence. Although it has been proved that this method is still competitive (as 

shown in Articles No. 3 and No. 4), the spline fitting of the potential energy model 

presented in Article No. 1 has been specially developed to preserve the condition of 

conservative forces. This model has already been successfully implemented in the 

same way as in article No. 4, but the results are not included in this thesis.  

4. Conclusions 

This thesis aims to develop new efficient and accurate methods for numerical 

simulation of netting structures with mesh resistance to opening. The models and 

methods presented in this thesis successfully accomplish the proposed objectives.   

The first objective of this thesis was to develop new twine models that are 

more accurate and more efficient than the models from the literature (Article No. 1). 

The proposed models are based on the approximation of the response obtained by a 

finite element analysis of a bending double clamped beam. Experimental work 

confirms that the proposed models are highly accurate.  They are also more efficient 

than the previous models since they express the twine forces as an explicit function 

of its deformation. 

The second objective was to develop a new experimental method to quantify 

the mesh resistance to opening of netting panels (Article No. 2). The proposed 

uniaxial experimental set-up is simpler than the biaxial set-up developed by Sala et 

al. (2007a). The combination of the new twine models presented in Article No. 1 

with suitable estimation strategies results in a method that proved to be a simple yet 

accurate way to quantify the mesh resistance to opening of netting panels.  

The third objective was to investigate methods to calculate the equilibrium 

position of the netting structure (Article No. 3). Two families of methods have been 

evaluated: gradient-based energy minimization methods and Newton-Raphson 

methods. The most robust and efficient methods are the gradient-based LBFGS 

method and the variant step limit Newton Raphson method. Results show that the 

most suitable one depends on the application. LBFGS is more robust and faster when 
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the initial position is far from the equilibrium. On the contrary, Newton-Raphson 

performs better when it is very close to the equilibrium. LBFGS is considerable 

simpler to implement. 

The fourth objective of this thesis was to develop a new model for netting 

structures with mesh resistance to opening (Article No. 4). This has been achieved by 

incorporating the twine model developed in Article No. 1 into a lumped mass 

formulation. Finally, the model is validated by fitting the experimental data from 

Article No. 2 with the numerical results obtained by simulation of the proposed 

model. The goodness of fit confirms that the proposed model accurately predicts the 

mesh resistance to opening. In addition, it is as efficient as previous models that do 

not take into account the mesh resistance to opening. 
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Nonlinear stiffness models of a net
twine to describe mesh resistance to
opening of flexible net structures

Amelia de la Prada and Manuel González

Abstract
Numerical simulation of marine flexible net structures allows predicting the behavior of fishing gears and aquaculture
cages. In recent years, the tendency toward the use of thicker and stronger twines in netting materials has made its
resistance to opening a key factor in the performance of such structures. To accurately describe the mesh resistance to
opening, a net twine was modeled as a double-clamped beam and its force–displacement response was calculated by
finite element analysis. Fitting techniques were used to develop three different dimensionless stiffness models that
express elastic forces in the twine as an explicit nonlinear function of its deformation: (1) a polynomial fitting of the
force, (2) a spline fitting of the potential energy, and (3) a spring-based model able to deal with large axial deformations.
Each model has different characteristics and advantages. Numerical and experimental tests were used to assess and com-
pare them with previous models described in the literature. The results show that the presented models have very good
accuracy and high computational efficiency. They will allow introducing accurate simulation of mesh resistance to opening
in numerical simulations of marine netting structures without a high impact in the computational performance.
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Introduction

Flexible net structures are extensively used in marine
applications such as fishing and aquaculture. Several
numerical models and simulation methods have
been specially developed for this kind of marine
structures,1–9 and they have been successfully applied
to real-life design problems.10–15

A major concern in the fishing industry is fishing
gear selectivity, which is mainly affected by the size and
shape of netting meshes during the fishing operation.16

In recent years, the tendency toward the use of thicker
and stronger twines in the manufacture of fishing net-
ting materials has caused a reduction in the selective
performance. This reduction in selectivity is related to
the increasing bending stiffness of the twines that ham-
pers mesh opening and the release of small fish.16–19 An
increasing twine bending stiffness also changes the over-
all shape of the netting structure during fishing opera-
tions.19,20 This makes the mesh resistance to opening of
net panels a key factor in the performance of fishing
gears. In panels of diamond-oriented mesh, the predo-
minant netting in towed fishing gears, the resistance to

opening is mainly characterized by the bending stiffness
of the netting twine, also known as flexural rigidity
(EI). Therefore, methods to measure bending stiffness
and to incorporate this mechanical property in numeri-
cal simulations of flexible net structures are subjects
worthy of investigation.

The most comprehensive research about twine bend-
ing stiffness has been developed by O’Neill:21 he
described the equations governing the bending stiffness
of a twine assuming that (1) the slope angle between
the twine and the knot at the insertion point remains
fixed, (2) the bending moment is proportional to the
curvature of the twine, and (3) there is no twine
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extension. He found two analytical solutions: (1) an
exact solution, expressed as a set of implicit highly non-
linear equations involving elliptic integrals and (2) a
simpler asymptotic solution that expresses the coordi-
nates of the end point of the twine as an explicit func-
tion of the tensile forces acting on it. Both solutions
were used to study the factors influencing the measure-
ment of netting mesh size,22 and the asymptotic solu-
tion was used to develop an experimental method for
measuring bending stiffness in netting panels.23

Although these analytical solutions are highly valuable
to describe bending stiffness, they have two major
drawbacks when they are incorporated into numerical
simulations of flexible net structures:

1. Numerical formulations often need to evaluate elas-
tic forces in twines as a function of mesh deforma-
tion.3,4,6,7 The asymptotic solution provides the
opposite expression, and therefore, it needs to be
numerically inverted for every mesh element in the
model at every simulation iteration, causing a signifi-
cant computational overhead compared with current
formulations that do not consider bending stiffness.
The overhead of the exact solution is even higher.

2. Both solutions can only be numerically inverted
for twine deformations that are compatible with
bending without axial deformation. This is a down-
side because mesh twines also experience moderate
extension. A workaround would be the use of sepa-
rate solutions for bending and axial deformations,
but this approach would ignore the probable cou-
pling between both deformations due to tension
stiffening.24

Priour25 proposed a model based on the assumption
that the couple created by the twines on the knot varies
linearly with the angle between twines. Although this
model can be easily included in numerical formulations,
it is not derived from any physical law and the twine
bending stiffness EI is not a parameter of the model.
Nevertheless, it has been demonstrated that for large-
deformation bending, this model can be modified to
approximate the above-mentioned asymptotic solu-
tion.26 The textile sector has also developed models for
characterizing the bending stiffness of fabrics,27–29 but
they have similar drawbacks as the models developed
by O’Neill.21

The goal of this work is to develop accurate and effi-
cient force models to describe the bending behavior of
a twine, which can be easily incorporated into existing
numerical formulations to simulate marine net struc-
tures. These models should meet the following two
requirements:

1. To achieve high computational efficiency, they
should express elastic forces in a twine as explicit
functions of the twine deformation. This will allow
including mesh resistance to opening in numerical
simulations without a noticeable increase in

computer time, which is already high in some
applications.3,4,7,12

2. They should allow evaluating elastic forces for
twine deformations that include moderate axial
elongation.

This work is focused on the modeling of mesh resis-
tance to opening of flexible net structures, that is, the
stiffness of the structure. It is not aimed at developing a
complete model for static or dynamic analysis of marine
flexible net structures. Therefore, mass, damping, and
hydrodynamic forces on the net structure are out of the
scope of this article. Examples of complete static and
dynamic models for marine flexible net structures are
available in the literature.3,4,7,8,15

The proposed approach is to use a finite element
model (FEM) of the twine and to calculate its force–
displacement response using finite element analysis.
Then fitting techniques are used to develop three approx-
imate force models that fit the force–displacement
response of the twine FEM. Each of the three force mod-
els has different features and advantages. A numerical
test problem and experimental data are used to evaluate
and compare the three approximated force models and
the two analytical solutions proposed by O’Neill.21

Description of the twine FEM

The twine was modeled as a two-dimensional (2D)
double-clamped beam between knots represented as
points P0 and P1, as shown in Figure 1. The slope angle
u0 between the twine and the knots at the insertion
points remains fixed. The coordinate system has its
x-axis aligned with the undeformed beam to make the
obtained results independent from u0. Point P0 is fixed
and P1 is free to move under an applied force F or a
prescribed displacement U = (Ux, Uy) with respect to
its undeformed position.

The force–displacement response of the beam was
obtained using the finite element method. The beam
was discretized with 20 quadratic three-dimensional
beam elements based on Timoshenko beam theory; this
element is well-suited for large rotation and/or large
strain nonlinear applications. It was verified that this
mesh discretization size achieves good convergence in
all the performed analyses. Since a tridimensional beam
element was used, additional boundary conditions were
applied to make the model to behave as the 2D model,
as shown in Figure 1.

Dimensional analysis was applied to make the
results from the finite element analysis applicable to
twines of different properties. Let us select as indepen-
dent variables of the model the properties of the twine
(unstretched beam length L, flexural rigidity EI and
axial rigidity EA) and the polar coordinates (R, u) of
P1, which are directly related to a prescribed displace-
ment U = (Ux, Uy). The dependent variables are the
two components of the force F at P1. Therefore, any of
these two force components F can be expressed as
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F=F(L,EA,EI,R,u) ð1Þ

Dimensional analysis leads to four dimensionless
similarity parameters (P0, P1, P2, and P3) which are
selected as follows: dimensionless force component f,
dimensionless radial coordinate r, angle u, and para-
meter g

P0 = f=F
L2

EI
ð2Þ

P1 = r=
R

L
ð3Þ

P2 =u ð4Þ

P3 = g =L2 EA

EI
ð5Þ

Hence, the nondimensionalized version of equation
(1) can be expressed as

f= f(r,u, g) ð6Þ

Dimensionless Cartesian coordinates (x, y) and dis-
placements (u) are obtained in a similar way

x=
X

L
, y=

Y

L
, u=

U

L
ð7Þ

According to equation (6), forces depend on three
parameters, which makes extremely difficult to graphi-
cally represent the force–displacement response of the
model and to fit approximate expressions to it. Since
parameter g represents the ratio between axial and
bending forces, the authors decided to simplify the
analysis by studying the force–displacement response
as a set of continuous functions of the first two para-
meters (r, u) for discrete values of the twine axial rigid-
ity EA

fEAi = fEAi (r,u) ð8Þ

The results from this work will demonstrate that this
decision is correct since the effect of EA on f is small
compared with r and u. Representative values of twine

axial rigidity EA in netting panels range from 500 to
3000N,3,30,31 although some authors have reported val-
ues for aquaculture net cages as low as 80 N32 or as
high as 4000 N.8 In this work, the authors studied the
force–displacement response of the twine for four val-
ues of EA: 500, 1000, 2000, and 3000 N.

Force–displacement response

To obtain the force–displacement response of the
FEM, a series of geometric nonlinear static analyses
were performed applying an enforced displacement
constraint (ux, uy) at point P1 to calculate the reaction
force F at that point. The magnitude of (ux, uy) in each
analysis corresponds to the position of each of the ver-
tices of the regular curvilinear grid, as shown in
Figure 2. In this grid, the dimensionless radial coordi-
nate r takes Nr linearly equally spaced values in the
interval [rmin, rmax] = [0.92, 1.05], and the angular
coordinate u takes Nu linearly equally spaced values in
the interval [0, P/2]. This grid size spans most of the
deformed positions that a twine can undergo in bend-
ing and moderate compression/tension. The grid discre-
tization size was adjusted to Nr3Nu = 27 3 27 (729
static analyses) in order to obtain a smooth results grid.
Four series of analyses were performed, one for each
value of EA (500, 1000, 2000, and 3000 N).

The clearest view of the results is provided by a grid
surface representation of the polar components (fr, fu)
of the dimensionless force f obtained for each discrete
value of axial rigidity EA. In addition, replacing the
angular coordinate u by cos u results in smoother sur-
faces that simplify the data fitting. Figure 3 shows this
representation for a twine with EA = 500 N. For
higher values of EA, the surfaces have the same overall
shape but with a higher slope with respect to r.

Missing points in the surfaces represent failed analy-
ses. Most of them are concentrated in two regions: the
very large-deformation bending region of cos u \ 0.35

Figure 1. Finite element model of a twine, represented in undeformed and deformed shapes.

de la Prada and González 3
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(u . 70�) and the high-compression, small-bending
region delimited by cos u . 0.9 (u \ 26�) and r \
0.95. When point P1 moves into these regions, the
FEM becomes very ill-conditioned and the static analy-
sis fails or provides meaningless results. The series of
static analyses were run again increasing the finite ele-
ment discretization in a factor of 4 (80 elements instead
of 20) with similar results. The percentage of failed
analyses (and the area of the two ill-conditioned
regions) increased with the axial rigidity: 19% (EA =
500 N), 29% (EA = 1000 N), and 40% (EA = 2000
N). For EA = 3000 N, 58% of the analyses failed and
the authors excluded this data set from the research. In
any case, the two regions with failed analyses represent

extreme and unusual cases of twine deformation. For
example, most of the first region (u . 70�) is often not
physically meaningful because the maximum physical
value for u is P/2 2u0 (Figure 1), and representative
values for u0 in diamond-shaped meshes range from 5�
to 15�.

Cutting the fr surface in Figure 3(a) with plane fr =
0 generates the trajectory of P1 along the path of 0
radial force that defines the limit between twine tension
and compression. This trajectory is a line r = a cos(u)
+ b in the selected coordinate space and it is virtually
independent of EA (see Table 1).

Approximate force models

Force model No. 1: polynomial surface fitting

The first force model consists of a polynomial surface
fitting of the force–displacement response: two polyno-
mial surfaces of degree m3n were fitted to the surfaces
of the force components fr and fu, as shown in Figure 3

f(r, cos u)=
X

0\ i+ j\m+ n

cijr
i( cos u)j ð9Þ

The surface fitting was calculated using weighted lin-
ear least squares regression since the data set has negli-
gible scatter and no outlier points. Weights were
adjusted to give more significance to points near the
path fr = 0, as shown in Table 1, because forces are
small in this region and residuals cause high relative
errors. Constraints were applied to the coefficients cij in
order to generate polynomial expressions with the same
zeros as the original FEM: fr (r = 1, cos u = 1) = 0
and fu (r, cos u = 1) = 0. Two additional constraints
were tested and rejected because they proved to be too
restrictive and impeded a good fit: fr (r = a cos u+ b,
cos u) = 0, which represents the path fr = 0 shown in

Figure 2. Regular curvilinear grid used to calculate the force–
displacement response of the twine.

Figure 3. Dimensionless force–displacement response of a twine with axial rigidity EA = 500 N, as a function of the position of its
end point P1 (r, cos u): (a) radial component fr and (b) tangential component fu.
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Table 1, and fr (r, cos u = 1) } (r2 1), which repre-
sents the behavior of the beam under axial loads at
u = 0; nevertheless, the obtained fitted expressions are
very close to satisfy these constraints.

The best fit was obtained with a polynomial degree
(m, n) of (2, 3) for fr and (1, 4) for fu. Coefficient values
and the coefficient of determination R2 for the fitting
are provided in Table 2 (radial force) and Table 3 (tan-
gential force). A visual inspection of the residuals con-
firmed the excellent quality of the fitting indicated by
the high value of R2.

Force model No. 2: spline surface fitting

The beam model described in Figure 1 is a conservative
system, and preserving this characteristic is essential
when energy minimization methods are applied to find
the equilibrium position of netting structures.2,33 But
force model No. 1 described in the previous subsection
is not a gradient field, and therefore, it does not pre-
serve this property.

A conservative force model can be obtained by fit-
ting the potential energy of the system instead of the
force–displacement response and then evaluating forces
as the gradient of the fitted expression. However, a
polynomial fitting of the potential energy cannot gener-
ate an accurate gradient force field because even small
fitting errors in the energy can generate high errors in
its gradient due to the differentiation process.
Consequently, a spline interpolation was used because
it provides much better fittings than polynomials.

A dimensionless potential elastic energy v is defined
as function of the potential elastic energy V of the
beam as

v=V
L

EI
ð10Þ

The procedure followed to obtain the force–
displacement response also provides the dimensionless
potential elastic energy v, which is represented in
Figure 4 for a twine with EA = 500 N; for higher val-
ues of EA, the surfaces have the same overall shape but
a higher slope.

The surface of dimensionless potential energy v = v
(r, u) was approximated using bicubic spline 2D inter-
polation. This procedure computes (Nr2 1) 3 (Nu2 1)
bicubic spline patches, where each patch (i, j) spans the
rectangular region [ri, ri+1] 3 [uj, uj+1]. Then, v at
each patch (i, j) is calculated as

vij(r,u)=
X3
k=0

X3
l=0

cijkl r� rið Þk u� uj

� �l ð11Þ

and the polar components of the force are evaluated as

f ijr (r,u)=
∂vij
∂r

ð12Þ

f iju(r,u)=
1

r

∂vij
∂u

ð13Þ

Spline patches are twice continuously differentiable
across patch limits, and therefore, the continuity of
forces is ensured. This method calculates the 16 3

(Nr2 1) 3 (Nu2 1) coefficients needed to define the
interpolation; in the followed procedure, Nr = Nu =
27, resulting in 676 patches and 10,816 coefficients.
Coefficient values are provided in a machine-readable
supplementary file.

Force model No. 3: spring-based model for vertical
forces

Mesh twines can experience large, unrealistic axial
deformations in the numerical simulation of net

Table 1. Path of 0 radial force (fr = 0): coefficient values and
coefficient of determination R2 for the simple linear regression
r = a cos(u) + b.

Axial rigidity (EA) (N) a b R2

500 0.2018 0.7984 0.99993
1000 0.2023 0.7979 0.99994
2000 0.2018 0.7981 0.99992

Table 2. Polynomial surface fitting of the dimensionless radial
force fr: coefficient values and coefficient of determination R2.

cij Twine axial rigidity (EA)

500 N 1000 N 2000 N

c00 26.58 3 103 28.58 3 103 22.02 3 104

c10 1.18 3 104 1.36 3 104 2.90 3 104

c01 2.74 3 104 5.55 3 104 1.34 3 105

c20 24.92 3 103 24.59 3 103 27.42 3 103

c11 25.65 3 104 21.12 3 105 22.60 3 105

c02 4.34 3 102 25.95 3 102 26.67 3 103

c21 2.88 3 104 5.59 3 104 1.22 3 105

c12 21.63 3 101 1.59 3 103 1.23 3 104

c03 23.16 3 102 27.04 3 102 23.04 3 103

R2 0.994 0.992 0.990

Table 3. Polynomial surface fitting of the dimensionless
tangential force fu: coefficient values and coefficient of
determination R2.

cij Twine axial rigidity (EA)

500 N 1000 N 2000 N

c00 21.28 3 102 21.12 3 102 29.35 3 102

c10 1.76 3 102 1.73 3 102 1.06 3 103

c01 6.80 3 102 4.05 3 102 4.03 3 103

c11 27.31 3 102 24.49 3 102 24.35 3 103

c02 22.06 3 103 22.04 3 103 27.86 3 103

c12 2.09 3 103 1.96 3 103 8.36 3 103

c03 1.54 3 103 1.85 3 103 4.70 3 103

c13 21.53 3 103 21.68 3 103 25.06 3 103

c04 22.50 3 101 21.05 3 102 6.55 3 101

R2 0.985 0.983 0.977

de la Prada and González 5
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structures, and twine force models must be able to deal
with these situations. For example, the model usually
goes through positions far from the equilibrium in sta-
tic equilibrium analysis based on Newton iteration6 or
iterative optimization.2

A twine force model based on linear springs, which
is the most common for numerical simulation of
marine netting structures,3,4,6,7 can deal easily with
extreme axial deformations and reach the equilibrium
position in few iterations. However, force models devel-
oped in the previous subsections do not have this capa-
bility: the polynomial surface fitting generates
erroneous force values when r is far from the interval
[rmin, rmax], and the spline surface fitting cannot be eval-
uated outside this interval. Therefore, they cannot be
used as stand-alone models, but they need to be com-
bined with a classic spring-based force model for large
axial deformations.

The force model developed here aims at dealing with
large axial deformations, and at the same time, achieving
good accuracy in situations where the normal forces
applied to the twine are small compared with the trans-
verse forces (Fy � Fx in Figure 1 when u0 = 0). This
situation is often present in some applications, for exam-
ple, in T90 netting panels placed in cod-ends of fishing
trawls,34 where the force component in the direction of
the water flow is much higher than other components.

The twine FEM was used to calculate the force–
displacement response of a twine when a vertical force
(Fy . 0, Fx = 0) is applied to P1. Note that this force
distribution (Fx = 0) only matches exactly with a 0
transverse force if u0 = 0; nevertheless, u0 is usually
below 15� in diamond-shaped meshes. A series of static
analyses were run with increasing values of Fy, for twine
axial rigidity EA of 500, 1000, and 2000 N. The trajec-
tory of P1 is represented in Figure 5 and was adjusted

to an ellipse using nonlinear regression. Points with x
\ 0.5 (u . 60�) were removed from the regression
since in this region the axial deformation of the twine
becomes noticeable and the points separate from an
elliptical path. Regression results (Table 4) confirm that
the fitting is virtually exact for u \ 60� and nearly
independent of EA.

The proposed force model approximates the radial
force fr as a linear spring with variable-length req

fr(r, cos u)=EA
L2

EI

� �
r� req( cos u)
� �

ð14Þ

With this expression, iterative methods can converge to
the equilibrium position in few iterations even if the
axial deformation is large. The length function
req( cos u) is calculated to generate the same radial
force as the FEM when point P1 moves along the ellip-
tical trajectory, as shown in Figure 5

req( cos u)= r( cos u)� 1

EA

� �
EI

L2

� �
f FEMr ( cos u) ð15Þ

This expression generates a set of points (req, cos u),
which are approximated by a fifth-degree polynomial
using linear regression

Figure 4. Dimensionless potential elastic energy v of a twine
with axial rigidity EA = 500 N, as a function of the position of its
end point P1 (r, cos u).

Figure 5. Trajectory of twine end point P1 when a vertical
force Fy is applied to it, for twine axial rigidity EA = 500 N.

Table 4. Coefficient values and coefficient of determination R2

for the elliptical regression of the trajectory shown in Figure 5.

Axial rigidity (EA) (N) a b R2

500 1 0.9118 0.99998994
1000 1 0.9086 0.99998196
2000 1 0.9069 0.99997217

6 Proc IMechE Part M: J Engineering for the Maritime Environment
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req( cos u)=
X5
i=0

ci( cos u)i ð16Þ

Coefficients are provided in Table 5; c0 ! 1 andP5
i=1 ci ! 0 as EA!N, as expected. The tangential

force component fu is calculated as a function of u by
substituting in the tangential force model of the poly-
nomial surface interpolation (equation (9)) the radius
r=r(u) of the elliptical trajectory shown in Figure 5.

Test problem and results

To evaluate the accuracy of different models of mesh
resistance to opening, they have been used to calculate
the force–displacement response of a twine with u0 = 0
when a vertical force (Fy . 0, Fx = 0 in Figure 1) is
applied to P1. This test problem represents the force dis-
tribution used to develop force model No. 3.

Force–displacement response

The test problem was solved using three different
approaches, as follows:

1. The twine FEM, which calculates the displacement
(ux, uy) of P1 as a function of fy; this solution was
considered the reference solution.

2. The exact and the asymptotic analytical solutions
described by O’Neill,21 which provide the position
(x, y) of P1 as a function of the force magnitude
and force angle (P/2 in this case).

3. The three approximate force models developed in
this work. Since they provide explicit expressions
for the force as a function of the position, the fol-
lowing set of nonlinear equations was solved to
find the equilibrium position (r, cos u) for a verti-
cal force fy

fx(r, cos u)= fr cos u� fu sin u=0
fy(r, cos u)= fr sin u+ fu cos u

�
ð17Þ

The bending force model developed by Priour25 was
not included in this comparison because it has been
already demonstrated26 that it is very similar to the
asymptotic solution.21 The following figures show the
results for a twine with axial rigidity EA = 500 N. For

higher values of EA (1000 and 2000 N), figures are very
similar for uy \ 0.7, the interval where axial deforma-
tion is negligible. Figure 6 plots the vertical force fy as
a function of the vertical displacement uy. Figure 7 rep-
resents the trajectory of point P1 as the vertical force fy
increases from 0 to 250. Figure 8 compares the different
solution methods to the FEM, showing absolute and
relative errors in force and position calculated from
Figure 6.

The exact analytical solution is virtually identical to
the FEM solution in the region where axial deforma-
tion is negligible (uy \ 0.7, u \ 48�), with relative
errors below 4% (force) and 1% (position). For higher
vertical deformations, axial deformation becomes
noticeable and the relative error in force increases
exponentially.

The asymptotic analytical solution has the highest
deviation from the FEM. It generates a positive force
for 0 vertical deformation, which results in high relative
errors for uy \ 0.1 (u \ 6�); in the interval 0.2 \ uy
\ 0.7 (12� \ u \ 48�), the relative errors also sur-
pass 30% in force and position. The generated trajec-
tory of P1 follows a line instead of an ellipse and
deviates significantly from the FEM for u \ 48�. For
higher vertical deformations, the asymptotic solution
converges to the exact analytical solution.

Force model No. 2 (spline fitting) is virtually identi-
cal to the FEM solution for all the range of vertical
deformations, with relative errors below 2% (force)
and 1% (position). Force models No. 1 (polynomial fit-
ting) and No. 3 (spring-based model) have a similar
behavior: although both of them generate a 0 force for
uy = 0, the force is slightly lower than the FEM force
in the interval 0.05 \ uy \ 0.35 (3� \ u \ 20�),
generating high relative errors in force and position
due to the small absolute value of the FEM forces. For

Table 5. Coefficient values and coefficient of determination R2

for the polynomial curve fitting of req.

ci Twine axial rigidity (EA)

500 N 1000 N 2000 N

c0 1.032 1.017 1.009
c1 20.6585 20.5551 20.4872
c2 1.427 1.115 0.8789
c3 21.398 20.9335 20.5363
c4 0.7955 0.4606 0.1427
c5 20.1979 20.1042 20.006747
R2 0.99854 0.99996 0.99976

Figure 6. Vertical force fy as a function of the vertical
displacement uy, for twine axial rigidity EA = 500 N.
FEM: finite element model.
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higher deformations, both models are closer to the
FEM, with relative errors below 8% (force) and 5%
(position) for the spring-based model, and below 12%
(force) and 7% (position) for the polynomial surface
fitting. In the interval where the axial deformation
becomes noticeable (uy . 0.7, u . 48�), the position
error is below 2%. Both methods generate a trajectory
of P1 almost identical to the FEM.

Effect of twine axial rigidity

The test problem was solved using the FEM for differ-
ent values of twine axial rigidity EA in order to evaluate
the effect of this parameter. Figure 9 plots the vertical
force fy as a function of the vertical displacement uy,
and Figure 10 plots fy as a function of EA for different
values of uy.

The approximated force models developed in this
work were calculated for a set of discrete values {EA1,
EA2, EA3} = {500, 1000, 2000 N}. For moderate verti-
cal deformations (uy \ 0.7, u \ 48�), the effect of EA

Figure 7. Trajectory of point P1 for twine axial rigidity EA =
500 N.
FEM: finite element model.

Figure 8. Comparison of the different solution methods with the finite element method, for twine axial rigidity EA = 500 N:
(a) absolute error in force, (b) absolute error in position, (c) relative error in force, and (d) relative error in position.
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is negligible since axial deformation is imperceptible.
For higher deformations, Figure 10 suggests that the
force–displacement response for a particular value of
EA can be calculated using three-point parabolic inter-
polation/extrapolation from the force models calculated
for {EA1, EA2, EA3}.

Experimental validation

An alternative version of the experiment carried out by
Sala et al.23 was used to verify that the presented mod-
els can predict the mesh resistance to opening of real
netting. A polyethylene netting panel with a nominal
mesh size of 80 mm and a twine diameter of 4 mm (a
common material in European commercial fishing nets)
was mounted between a fixed bar and a free bar, as
shown in Figure 11. A growing force Fpanel was applied
to the free bar to open the netting meshes, and the
resulting length of the panel Lpanel was measured. The
experimental data were analyzed with the method pro-
posed by Sala et al.:23 the twine bending stiffness EI
was estimated using nonlinear least squares regression
to fit a force model for mesh resistance to opening to
the experimental data. This method also allows evalu-
ating how well the model can predict the results of the
experiment. Figure 12 compares the experimental data
with the predictions provided by different models of
mesh resistance to opening, including the three models
presented in this work. The legend shows the estimate
of EI and the coefficient of determination R2 for each
model. The model by Priour25 could not be used
because it does not take into account the bending stiff-
ness EI.

The results show that the exact model by O’Neill21

and model No. 2 have an excellent agreement with

experimental data (R2 . 0.99) and similar estimates of
EI. Models No. 1 and No. 3 give a slightly worse, but
still very satisfactory fitting. The asymptotic model by
O’Neill21 gives the worst results, with appreciable devia-
tions from experimental data in the region of small and
moderate forces. Note that this was the model used by
Sala et al.23 to measure the mesh resistance to opening
of a wide range of netting materials, and the results
indicated that the model can predict the behavior of
such materials with enough accuracy.

Figure 9. Vertical force fy as a function of the vertical
displacement uy for different values of twine axial rigidity EA,
calculated with the finite element method.

Figure 10. Vertical force fy as a function of the twine axial
rigidity EA for different values of vertical displacement uy,
calculated with the finite element method.

Figure 11. Experimental setup for measuring mesh resistance
to opening of a netting panel.
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Discussion

The FEM used in this work assumes that the twine
behavior follows the Timoshenko beam theory, and
that the slope angle u0 between the twine and the knots
at the insertion points remains fixed. These assump-
tions are unlikely to hold exactly for all kinds of netting
materials due to the complex structure of the constitu-
ent fibers of fishing netting, and more experimental
work will be needed to evaluate their validity. In addi-
tion, the beam theory is often not valid to represent the
behavior of twines in moderate or high compression. In
spite of this the FEM makes less assumptions about
twine behavior that previously existing models,21 since
it takes into account axial deformations and geometric
nonlinearities caused by large rotations.

The results from the test problem support the select
size [rmin, rmax] = [0.92, 1.05] for the regular curvilinear
grid used to calculate the force–displacement response
of the twine FEM (Figure 2): the dimensionless radial
coordinate r was bounded to this interval for u \ 80�
(Figure 7), and higher values of u are often impractic-
able due to physical limitations (umax = P/2 2u0).
For situations different from the test problem, that is,
Fx . 0 and Fy . 0, then umax = tan21(Fy/Fx) and the
behavior in Figures 7 and 9 indicates that r will not
exceed rmax = 1.05 for the usual values of EA, unless
extremely high forces are applied.

The results also support the decision of studying the
force–displacement response of the beam model as a set
of continuous functions of (r, u) for discrete values of

the twine axial rigidity EA. This decision was based on
the assumption that the effect of EA on the dimension-
less forces is small compared with r and u. According
to Figures 9 and 10, the effect of EA is insignificant for
moderate vertical deformations of the mesh (uy \ 0.7,
u \ 48�). The effect of EA is only noticeable for very
large vertical deformations (uy . 0.8, u . 60�), but
such deformations hardly happen in real marine net
structures because the applied forces are not so high. In
any case, the presented approach is able to take into
account the small effect of EA using the aforemen-
tioned three-point parabolic interpolation from the
force models calculated for {EA1, EA2, EA3}.

The behavior of the asymptotic analytical solution
agrees with the results reported by O’Neill,21 which
shows that it is very accurate in comparison to the exact
analytical solution for f . 25. On the other hand, this
solution has significant errors in force and position for
smaller values of the dimensionless force f (equivalent
to u \ 50� in the test problem), especially in the trajec-
tory of the twine end point, and this fact could partially
explain the lack of fit with experimental results reported
by Sala et al.23

Another interesting matter is related to the fact that
most numerical formulations for flexible net structures
model the axial behavior of the twine as a linear spring,
and therefore assume that its natural length remains
constant during mesh opening.3,4,6,7 Table 1 reveals
that this assumption is not correct since the length cor-
responding to a 0 axial force decreases as the bending
angle increases. The same conclusion could be achieved
using the exact analytical solution,21 which generates a
similar shape for a bending twine (Figure 7). As a
result, the mesh shape and dimensions calculated by
such formulations will differ from the actual values,
and this fact has an impact on the accuracy of selectiv-
ity of fishing gears calculated with those methods.
Conversely, the three developed force models take into
account the coupling between axial and bending defor-
mations, and therefore, it is expected that they can gen-
erate more precise mesh shapes.

Regarding computational efficiency of the evalua-
tion of forces as a function of twine deformation, the
three approximate force models are extremely efficient
due to their explicit and simple expressions, even for
force model No. 2 (spline surface fitting). Conversely,
the computational cost of the asymptotic analytical
solution is notably higher, and the exact analytical solu-
tion proved to be extremely inefficient.

The numerical and experimental validations carried
out in this work are based on static analysis. Hence, this
work does not demonstrate that the presented models
are efficient and accurate for dynamic analysis. But the
results show that they are better (i.e. significantly faster
with similar or even better accuracy) than existing mod-
els developed by Priour25 and O’Neill21 when applied to
static analysis. Therefore, it is reasonable to suppose
that they will also perform better than such existing

Figure 12. Length of the netting panel in normal mesh
direction Lpanel as a function of the applied force Fpanel. Fittings
obtained with different models of mesh resistance to opening
are shown: the exact and asymptotic models by O’Neill21 and
the three models presented in this work. Model No. 1 refers to
the polynomial fitting of the force, Model No. 2 refers to the
spline fitting of the potential energy, and Model No. 3 refers to
the spring-based model. The legend also provides the estimates
for twine bending stiffness EI and the coefficient of
determination R2 for each model.
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models when applied to dynamic analysis. Further
research must be carried out to verify this hypothesis.

Finally, Table 6 summarizes the differences between
the three presented force models and previous models
for mesh resistance to opening. The comparison shows
that the models developed in this work have strong
advantages over previous models. The comparison also
helps to choose which one of the three presented force
models is best suited for a particular application.

Conclusion

A FEM of a twine has been used to develop three
dimensionless approximate force models of mesh resis-
tance to opening, which express elastic forces in a twine
as explicit functions of twine deformation. Each force
model has different features, and researchers can
choose which one better fits the requirements of a par-
ticular application:

1. A polynomial fitting of the force components, with
good accuracy and extremely easy to implement.

2. A spline fitting of the potential energy, which gen-
erates a highly accurate, conservative force field
suitable to energy optimization methods, at the
cost of a slightly more complex implementation.

3. A spring-based model able to deal with large axial
deformations, designed for situations where the
normal forces applied to the twine are small com-
pared with the transverse forces.

The developed force models have good accuracy and
high computational efficiency. They will allow introdu-
cing accurate simulation of mesh opening resistance in
existing numerical formulations for marine netting
structures without a high impact in their computational
performance. In the future, the authors will apply these
models to the static and dynamic analysis of such struc-
tures under hydrodynamic loads. Furthermore, they
may also be useful to analyze data from experimental
work to measure mesh resistance to opening, with the

intention of achieving a better goodness of fit with pre-
vious force models. However, several questions remain
open and require further research, such as the behavior
of force models No. 1 and No. 2 under large axial
deformations.
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Abstract 

The increased mesh resistance to opening of netting panels manufactured with thick and 

stiff twines has a notable impact in the structural response and selective performance of 

the fishing gears. The only available method to quantify the mesh resistance to opening 

of netting panels was described in (Sala et al., 2007b). We present an alternative method 

with a similar methodology: we attempt to estimate the mechanical and geometrical 

properties of a netting material that best fits the experimental measurements of a netting 

panel. We introduce three major contributions: (i) a considerably simpler uniaxial 

experimental setup, which stretches a netting sample in the normal direction of the 

meshes while leaving free its deformation in the transverse direction; (ii) more accurate 

theoretical models for mesh resistance to opening; (iii) new strategies to estimate the 

parameters of the models. We present the results of the analysis of polyethylene (PE), 

compacted polyethylene (CPE), single-twine and double-twine netting. Some of the 

assessed combinations of estimation strategies and theoretical models have an excellent 

goodness of fit with experimental data. The method proved to be a simple yet accurate 

way to quantify the mesh resistance to opening of netting panels.  

 

Keywords: bending stiffness; flexural rigidity; mesh resistance to opening; twine; 

regression 
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Introduction 

In recent years, there is a tendency in some sectors of the fishing industry towards the 

use of thicker and stiffer twines in the manufacture of netting materials for the codend 

of trawls. The increased mesh resistance to opening of such materials has a notable 

impact in the structural response and performance of the fishing gears. For example, an 

increased mesh resistance to opening hinders mesh opening in the cod-end (O’Neill, 

2004), which affects the escapement of small fish. Theoretical and experimental studies 

demonstrate that mesh resistance to opening plays as major role in the reduction of 

selective performance of trawls (Herrmann and O’Neill, 2006; Herrmann et al., 2013; 

Lowry and Robertson, 1996; Sala et al., 2007a). Theoretical models for mesh resistance 

to opening are generally based on the beam theory of solid mechanics. In diamond mesh 

panels, the predominant netting in towed fishing gears, the resistance to opening is 

mainly characterized by the bending stiffness of the netting twine. An increased twine 

bending stiffness also changes the overall shape of the fishing gear during fishing 

operations (O’Neill, 2004; Priour, 2001). Therefore, methods to quantify the mesh 

resistance to opening and to incorporate this property in theoretical models of netting 

materials are necessary to accurately predict the selective performance of fishing gears 

by simulation. Despite this, research about this topic is still scarce (Priour and Cognard, 

2011). 

The only available method to quantify mesh resistance to opening of netting panels is 

described in (Sala et al., 2007b). The method uses a specially designed instrument that 

applies normal and transversal displacements to a netting sample and measures the 

generated reaction forces. Then, twine bending stiffness and geometric parameters of 

the netting are estimated through nonlinear regression analysis of the obtained 

experimental data.  The asymptotic solution for a bending twine proposed in (O’Neill, 
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2002) is used as model in the regression analysis. Although the method proved to be 

robust and useful to estimate mesh resistance to opening, the authors reported several 

problems: inconsistencies between normal and transversal forces and displacements, 

occasional unrealistic estimates of geometrical parameter values and systematic lack of 

fit of the model to the experimental data. Another concern is that the authors carried out 

the regression analysis using the force as independent variable and the displacement as 

dependent variable, despite the force was an effect caused by an applied displacement in 

the experimental setup. The complexity of the experimental setup required by this 

method is another important drawback. 

A method to estimate twine bending stiffness was proposed by (Priour and Cognard, 

2011). The method measures the out-of-plane bending deformation of a netting sample 

and then adjusts a theoretical model of a cantilever beam to the experimental data, in 

order to estimate the twine bending stiffness EI. The method is very simple, but it has 

some drawbacks. It does not take into account the knot size, which can have an 

important effect on the shape of the codends (PREMECS: Development of predictive 

model of cod-end selectivity, 2000). In addition, and it cannot estimate the slope angle 

between twines and knots at the insertion points.  

The goal of this article is to describe a simple but accurate experimental method to 

quantify the mesh resistance to opening of netting panels. We follow a methodology 

similar to (Sala et al., 2007b), that is, we attempt to estimate the mechanical and 

geometrical properties of a netting material that best fit the experimental measurements 

of a netting panel. This research introduces three original contributions:  

(i) The biaxial experimental setup used in (Sala et al., 2007b) requires a very complex 

measurement instrument which is not commercially available. In contrast, this work 
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proposes a new uniaxial experimental setup that notably simplifies the required 

measurement instrument.  

(ii) The regression model used in (Sala et al., 2007b) is the asymptotic model for a 

bending twine described in (O’Neill, 2002). This model is an approximate solution. This 

work uses more accurate models to describe mesh resistance to opening: the exact 

model described in (O’Neill, 2002) and two recently developed models based on finite 

element analysis (de la Prada and González, 2014a). 

(iii) The parameter estimation strategy used in (Sala et al., 2007b) fixed one of the 

geometrical properties of the netting (the slope angle between the twine and the knots) 

and leaved the remaining parameters unconstrained. As results, the estimates were 

sometimes out of physical limits. This work assesses other estimation strategies that 

avoid that problem. 

Material and Methods 

Theoretical models for mesh resistance to opening 

Priour proposed a theoretical model for mesh resistance to opening based on the 

assumption that the couple created by mesh twines on the knot varies linearly with the 

angle between twines (Priour, 2001). Although this model can be easily introduced in 

numerical formulations for netting structures, it does not involve parameters with 

specific physical interpretation, and therefore it is not suited to identify the mechanical 

properties of the netting (e.g. twine bending stiffness) from experimental data. 

O'Neill proposed a physically-oriented approach to the problem (O’Neill, 2002) by 

modelling the twine as a bi-dimensional double-clamped beam (Figure 1) and 

describing the equations governing its bending assuming that: (i) the slope angle  
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between the twine and the knots at the insertion points remains fixed, (ii) the bending 

moment is proportional to the curvature of the twine, (iii) there is no twine extension. 

He found two analytical solutions: the exact solution and an asymptotic solution. The 

exact solution expresses the coordinates of the end point of the twine p1 (Figure 1) as a 

set of implicit non-linear equations. To overcome the high complexity of the exact 

solution, the asymptotic solution expresses the coordinates of p1 as an explicit function 

of the tensile forces acting on it: 
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where  is the slope angle between the twines and the knots at the insertion points, Ltwine  

is the twine length, EI is the twine bending stiffness,   5.022
yx FFF  ,

)(tan 1
xy FF  and Fx and Fy are the tensile forces that act at the end of the twine. 

This approximation is very close to the exact solution when  22
twineFLEI < 0.04. 

Both analytical solutions were used in (O’Neill, 2003) to study the factors influencing 

the measurement of netting mesh size. The asymptotic solution was used in (Sala et al., 

2007b) to develop an experimental method for quantifying mesh resistance to opening. 

It has been demonstrated that the model proposed in (Priour, 2001) can be modified to 

approximate the asymptotic solution for small values of  2 (O’Neill and Priour, 2009). 

In  (de la Prada and González, 2014a) a different approach was followed aiming at 

development of models that enable a fast and accurate evaluation of elastic forces in the 

twine as a function of its deformation. The mesh twine was also modelled as a double-

clamped beam (Figure 1), but its force-displacement response was calculated by finite 
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element analysis (Zienkiewicz, 2000). Then, fitting techniques were used to develop 

two dimensionless models. The first model, named the polynomial model, fits a 

polynomial of the radial and tangential force components Fr and F that act at the end of 

the twine. This results in a polynomial degree (m,n) of (2,3) for Fr and (1,4) for F: 
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r rc
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where   twinetwinetwine Lyxr
5.022  , )(tan 1

twinetwine xy  and  = .  

The second model, called the spline model, calculates Fr and F as the gradient of the 

potential elastic energy V of the twine. V was interpolated with (Nr 1)×( N 1) bicubic 

spline patches, where each patch (i, j) spans the rectangular region [ri, ri+1]×[j , j+1] 

and expresses V as: 
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3
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0

,  (5) 

A comprehensive description of the polynomial and spline models is provided in (de la 

Prada and González, 2014a), with comparisons to the abovementioned exact and 

asymptotic models described in (O’Neill, 2002). The spline model is very accurate and 

it is well suited for simulation methods based on energy minimization (de la Prada and 

González, 2014b). The polynomial model has a simpler mathematical form at the cost 

of a slightly lower accuracy (5%  10% of deviation), as reported in (de la Prada and 

González, 2014a). 
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Experimental setup 

The experimental setup is portrayed in Figure 2. A rectangular netting sample is 

attached between an upper fixed bar and a bottom free bar, with the normal direction of 

the meshes aligned to the vertical axis of the figure (i.e. perpendicular to the bars). The 

free bar can move in the normal direction of the netting while keeping its orientation 

parallel to the fixed bar. The attachment system between the netting sample and the bars 

allows the netting knots to freely move in the transverse direction of the netting when 

the sample is stretched. In this way, the force applied to meshes and twines in the 

transverse direction of the netting is zero. The panel has mn and mt netting meshes in 

normal and transverse direction respectively. During the experiment, the sample is 

stretched in the normal direction of the netting to open the meshes.  

The sample is stretched by applying a force Fpanel to the free bar. The normal length of 

the panel Lpanel, defined as the distance between centres of the upper and bottom knots, 

is calculated as Lpanel  = D0 (DR+DL)/2 D1 D2, where distances D0, D1 and D2 are 

measured at the beginning of the experiment and distances DR and DL are measured for 

each value of Fpanel (both distances should be equal in theory, but in practice slight 

differences can appear due to misalignment of the free bar). Fpanel is generated by 

applying calibrated weights to the free bar. The weight of the free bar (0.68 N) and 

mounting hooks (0.04 N each) is also included in Fpanel. Distances D1 and D2 are 

measured with a Vernier calliper, while distances D0, DR and DL are measured with 

digital laser rangefinders with an accuracy of 0.5 mm. Other measuring procedures are 

also compatible with the experimental setup described in Figure 2: for example, Lpanel 

could be prescribed and the required Fpanel could be measured. 
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The objective of this work is not to quantify the mesh resistance to opening for a wide 

range of netting materials, but rather to investigate different combinations of regression 

models and parameter estimation strategies for the proposed uniaxial experimental 

setup. Hence, a number of new and unused netting samples were tested. All of them are 

used in commercial North Sea trawls. Their main characteristics are given in Table 1: 

materials are sorted according to the perceived mesh resistance to opening from manual 

manipulation of the netting, from low (PE 802.5) to high (CPE2 804) stiffness. 

The following steps were performed for each netting sample: 

i. The netting is attached to the bars and distances D1 and D2 are measured. At this 

moment Fpanel is equal to the weight of the bottom free bar and hooks (0.7 N). 

ii. Fpanel is increased. Load increments start with 0.5 N and increase up to a 

maximum value of 9.8 N as Lpanel increases. 

iii. Distances DR and DL are measured at every minute to monitor netting twine 

relaxation (Sala et al., 2007b); when they get stabilized, the final values are 

recorded. 

iv. Steps (ii) and (iii) are repeated until Lpanel reaches 80% of mnLmesh, where Lmesh 

is the nominal mesh size. Above this value, the main characteristic contributing 

to mesh resistance to opening is twine axial stiffness EA rather than twine 

bending stiffness EI (de la Prada and González, 2014a). 

Netting materials used in fishing gears may experience high tensile forces able to 

generate permanent plastic deformations in twines and knots. To simulate such situation 

in the experimental setup, the maximum value of Fpanel reached in step (iv) is applied for 

one hour to the netting. Then steps (ii) and (iii) are repeated with decreasing values of 
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Fpanel in step (ii). In this way two sets of data are obtained: a loading cycle and an 

unloading cycle.  

Data analysis 

To analyse the experimental data it is necessary to make the same assumptions as in 

(Sala et al., 2007b), which define the idealized panel represented in Figure 3: (i) the 

netting is homogeneous, so all the meshes experience the same deformation, (ii) knots 

can be represented as rectangles of size a  b, and (iii) twines emerge from knots at the 

corners of the rectangles. Note that the knot size a  b is smaller than the measured 

outer knot size aext  bext given in Table 1. The mechanical and geometrical parameters 

of this idealized netting panel are estimated by fitting theoretical models for mesh 

resistance to opening to experimental data. The observed variable in the experiment is 

the distance between twine knots in the normal direction of the netting 

npanelknots mLy 2  (6) 

and the explanatory variable is the vertical force applied to the twines 

tpanely mFF 2  (7) 

The predicted values for the distance between knots can be expressed as 

 ,,ˆ twinetwineknots LEIyby   (8) 

where ytwine can be calculated with any theoretical model for mesh resistance to opening. 

Therefore, four parameters can be estimated: EI, Ltwine, b and . Notice that the knot 

dimension a cannot be estimated with the proposed experimental setup because the 

transversal length of the panel is not measured. Preliminary analysis show that there are 

not outlier points in the experimental data. For simplicity, the observed and the 
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explanatory variables are assumed to be distributed with constant variance. Therefore, 

nonlinear least squares regression is used (Seber, 1989). 

With respect to the regression model  ,, twinetwine LEIy  in Eq. (8), the four models for 

mesh resistance to opening described in Section 2 were assessed: the exact model, the 

asymptotic model, the polynomial model and spline model. The use of the asymptotic 

model is straightforward, since it provides twiney  as an explicit function of the 

explanatory variable Fy. The other models need to be numerically solved for every 

evaluation in the regression analysis. 

A remark must be made regarding the use of the asymptotic model in this experimental 

setup, where Fx = 0  )(tan 1
xy FF  = /2 in Eq. 1 and 2. The asymptotic 

approximation is very close to the exact solution when 2 < 0.04 (O’Neill, 2002), but 2 

usually ranges from 0.4 and 0.1 in most part of the loading and unloading cycles of our 

experiments. This is explained in Figure 4, which shows the dimensionless vertical 

displacement of the twine calculated with Eq. 2 for  = /2, as a function of the 

parameter 2 = )( 2
twineFLEI  and the slope angle . Since Fx = 0, the mesh can be opened 

in normal direction with a relatively small force. Hence, the condition 2 < 0.04 can only 

be achieved provided that   is small and the mesh is nearly completely opened 

(ytwine/Ltwine ≥ 0.75). The only way to achieve 2 < 0.04 without completely opening the 

mesh is to apply a transversal force Fx > 0 to reduce  as in the experimental setup used 

in (Sala et al., 2007b). Nevertheless, (de la Prada and González, 2014a) shows that the 

vertical position of the twine twiney  predicted by the asymptotic model is close to the 

exact model even if  = /2 (relative error below 10% in most of the range of 

displacement), because most of the error in this model is in the horizontal position xtwine. 
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As a result, the asymptotic solution can still be used as model in this experimental setup, 

but caution should be taken to interpret its goodness of fit. 

Parameter estimation strategies 

Regression analysis can generate parameter estimates that are out of physical limits. For 

example, (Sala et al., 2007b) reported that the estimates for  were often negative, 

which is physically impossible. To circumvent this problem, constraints can be applied 

to the parameters. Table 2 summarizes the two types of parameter constraints 

considered in this work.  

A fixed constraint means to remove the parameter from the regression analysis, which 

greatly reduces the required computational effort. For example, (Sala et al., 2007b) 

fixed  to 0 to avoid negative estimates, and this constraint was also considered in this 

work. Fixed constraints for Ltwine and b are obtained by assuming that the knot size a  b 

matches 2D*
twine  D*

twine, with D*
twine = Dtwine for single twine netting and D*

twine = 

2Dtwine for double twine netting. This is a plausible assumption after a visual inspection 

of several netting samples (see Figure 3).  

Another approach is to constrain parameters between minimum and maximum physical 

limits. The limits for Ltwine and b are obtained by assuming that the knot size a  b can 

be neither negative nor greater than aext  bext. A minimum value of 5 for  seems 

reasonable to avoid knot overlapping when no forces are applied to the netting, and it is 

also consistent with visual observations in the netting samples.  

Finally, the different constraints listed in Table 2 were combined to form the four 

parameter estimation strategies summarized in Table 3. All of them were assessed in 

this work.  
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Results 

Figure 5 shows an example of the data sets obtained in the loading cycle and in the 

unloading cycle. The number of recorded measurements in every netting panel and 

cycle ranged between 17 and 21. The two data sets are quite different. The length of the 

panel end
panelL at the end of the unloading cycle is higher than the length start

panelL  at the 

beginning of the loading cycle. The ratio start
panel

end
panel LL  is higher in PE netting samples 

(1.52 on average) than in the CPE sample (1.23) or the CPE2 sample (1.37). The two 

data sets were analysed separately to quantify the mesh resistance to opening. 

Loading cycle 

Table 4 shows the results of the nonlinear regression with unconstrained parameters 

(parameter estimation strategy No. 1). Confidence intervals for estimates of EI are 

represented as a percentage; confidence intervals for other parameters are omitted 

because they are of the same order of magnitude as confidence intervals for estimates of 

EI. The goodness of fit is measured with the coefficient of determination R2. Results 

indicate that all models can fit a diverse variety of experimental data sets, as represented 

by their ability to achieve very high R2 values at the cost of providing estimates of Ltwine, 

b and  that are often out of their physical limits. Estimates of EI are inconsistent in 

some cases. For example, the estimates for PE 804 and PE 1004 are very different, 

despite their stiffness seems very similar when they are manipulated by hand.  

This unconstrained regression analysis exposed the degree of correlation in the 

parameters of two models. The exact model generates several solutions with R2 > 0.99, 

showing some degree of correlation between parameters: Figure 6 reveals a nonlinear 

correlation between EI and , and a linear correlation between b and Ltwine. 
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Nevertheless, it is easy to select the best solution, since most of them have unrealistic 

parameter estimates: among the solutions with plausible estimates, the one with highest 

R2 is listed in Table 4. The asymptotic model exhibits a very strong correlation between 

EI and , and between b and Ltwine (Figure 6). It generates multiple solutions with 

identical R2, most of them with plausible estimates, so it is not possible to identify the 

best solution. Hence, results for this model are not listed in Table 4. An analysis of Eq. 

(2) and Eq. (8) reveals that parameters are not identifiable for this regression model 

because its basis functions are not orthogonal when  is constant (Seber, 1989). 

Table 5 shows the results of the regression with min/max constraints on all the 

parameters (parameter estimation strategy No. 2). Despite the constraints on the 

parameters, R2 values are almost as high as in Table 4. Confidence intervals for the 

spline model are unusually high. Table 6 shows the results for the parameter estimation 

strategy No. 3, which applies fixed constraints on Ltwine and b and min/max constraints 

on . In this strategy, the fixed values for Ltwine and b correlate with visual observations 

of the netting. Furthermore, the computational effort of the regression analysis is 

reduced by about one order of magnitude with respect to the previous estimation 

strategies (e.g. from 10 minutes to 20 seconds for the polynomial and the spline 

models). R2 values are still very high, confidence intervals are reduced and the estimates 

of EI obtained with the three models are closer to each other than in Table 4 and Table 

5. Notice that the constraint on   was activated in only one netting sample (PE 803). 

Regarding the asymptotic model, the strong correlation between EI and   is still present 

in this analysis. 

Finally, Table 7 shows the results with a fixed constraint on   and leaving the 

remaining parameters unconstrained (parameter estimation strategy No. 4), as in the 
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analysis carried out in (Sala et al., 2007b). With this estimation strategy, the asymptotic 

model can only estimate EI, and therefore Ltwine and b are not listed for this model. R2 

values are high except when the asymptotic model is applied to very stiff materials 

(CPE 805 and CPE2 804). However, estimates of EI are inconsistent for all models: 

estimates for stiff materials (PE 804 and PE 1004) are very similar to estimates for 

very soft materials (PE 802.5 and PE 1002.5), which seems abnormal. In addition, 

estimates of Ltwine and b are often out of physical limits. 

A visual inspection of the residual plots of all the analysis confirm that the models have 

a very good fit when R2 > 0.98. R2 values between 0.9 and 0.98 often under-predict the 

experimental data, and values below 0.9 correspond to inaccurate fits. Results from the 

parameter estimation strategies No. 2 (Table 5) and No. 3 (Table 6) are summarized in 

Figure 7 and Figure 8. Figure 7 shows a box plot of the R2 values for different 

combinations of estimation strategies and regression models. Figure 8 plots the 

estimates of EI against the linear density of the netting (kRtex). 

Unloading cycle 

Parameter estimation strategies No. 1 and 4 have not been used for the unloading cycle 

due to the disadvantages exposed in the loading cycle. Table 8 shows the results with 

the strategy No 2: min/max constraints on all the parameters (compare to the loading 

cycle in Table 5). R2 values are very good for stiff materials and acceptable for soft 

materials. Estimates of  are considerably increased in all materials compared with the 

loading cycle. Visual observations of the netting samples after the experiment also show 

an increased, but it is not as high as the estimated values. Average estimates of EI are 

slightly lower than in the loading cycle. The polynomial and spline models exhibit very 

wide confidence intervals in some cases. 
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Table 9 shows the results with fixed constraints on Ltwine and b, and min/max constraints 

on  (compare to the loading cycle in Table 6). Fittings for PE netting samples have R2 

< 0.9, which indicates a poor fit. This fact is confirmed by a visual inspection of the 

residual plots. Conversely, CPE 805 shows acceptable R2 values and CPE2 804 

shows very good fits. For these stiff materials, EI estimates are of the same order of 

magnitude than those calculated for the loading cycle. 

Discussion 

The proposed uniaxial experimental setup has a major advantage over the biaxial setup 

used in the ROD-m prototype instrument developed in (Sala et al., 2007b): it can be 

carried out in standard uniaxial universal testing machines, provided special fixtures are 

mounted to allow the attached knots to freely move in the transverse direction of the 

netting. Even if such a machine is not available, the experiment can be easily carried out 

by manual means with a simple and inexpensive setup, as in this work. On the other 

hand, the uniaxial experimental setup does not provide measurements of transverse data 

and the knot width a cannot be directly estimated from the experiment. However, the 

good results obtained with the parameter estimation strategy No. 3, based on simple 

assumptions about the values of Ltwine and b, suggest that  the knot width a could also be 

estimated as a = (Lmesh  2Ltwine)/2. Note that better approximations could be obtained 

using the results from (O’Neill, 2003).  

The data analysis assumed that all the meshes experience the same deformation. This 

assumption is not completely true because the panel was hold in vertical position during 

the experiment. Twines at the top of the panel support more weight than twines at the 

bottom due to the mass of the netting. The ratio of the weight of the netting to the 

weight of the free bar ranged from 0.34 (PE 1002.5) to 1.51 (CPE2 804). The ratio of 
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the weight of the netting to the maximum applied force ranged from 1.7% to 2.5%. 

Hence, the assumption about uniform mesh deformation is plausible except at the 

beginning of the loading cycle and at the end of the unloading cycle. The assumption 

would be correct during all the cycle provided the panel was hold in horizontal position. 

Regarding the parameter estimation strategies, strategies No. 1 and No. 4 do not offer 

advantages over the others, and, in fact, have important disadvantages: estimates of EI 

are inconsistent and estimates of geometrical parameters are often out of physical limits. 

The other two strategies have their own advantages and disadvantages. Strategy No. 2 

(min/max constraints on all parameters) provides slightly better fits, but Strategy No. 3 

(fixed constraints on Ltwine and b and min/max constraints on ) simplifies the analysis, 

narrows the confidence intervals and provides EI estimates that are closer across 

different models. Moreover, the min/max constraint on  is hardly activated and could 

be removed, resulting in an even simpler unconstrained regression analysis. The lower 

computational effort required by Strategy No. 3 can be an advantage when the number 

of experimental data points is high (e.g. hundreds of points). In these cases, Strategy 

No. 2 can take hours to analyse the experimental data while Strategy No. 3 can take 

minutes. The main disadvantage of strategy No. 3 is that it cannot provide good fits for 

the unloading cycle, except for the very stiff materials. It seems that the large mesh 

opening applied to PE netting samples before the unloading cycle has introduced 

permanent deformations in the twines which cause it to not match the idealized netting 

material described in Figure 1 and Figure 3. On the contrary, the permanent 

deformations in CPE netting samples seem to be small due to their increased stiffness 

and strength, and therefore, analysis results for their unloading cycles are still quite 

acceptable. 
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Regarding the regression models, the asymptotic model exhibits identifiability problems 

in the proposed uniaxial experimental setup. Similar problems of correlation between 

parameters have been already reported in (Sala et al., 2007b). All three of the other 

models provide similar and very good fits. The exact model seems more reliable due to 

its narrower confidence intervals. However, this comes at the cost of a very complex 

computer implementation. The polynomial and spline models are easier to implement, 

but they provide wider confidence intervals. The variations in estimates provided by 

different models may seem surprising. However, the estimates are not absolute 

measurements of the netting properties, but rather calibration parameters for different 

theoretical models, as observed in (Sala et al., 2007b). Therefore, the model used to 

analyse the experimental data should be the same model that will be used to make 

predictions of the netting behaviour. For example, to simulate gear behaviour (Lee et 

al., 2005; Li et al., 2006; Priour, 1999; Priour et al., 2009; Takagi et al., 2004) or 

codend selectivity (Herrmann, 2005; O’Neill and Herrmann, 2007).  

A detailed analysis of the fits revealed that the estimates given by the exact and spline 

models are interchangeable. See, for example, the estimates for CPE 805 in Table 5. 

They are very different, but when the exact model is evaluated with the parameters 

estimated with the spline model, it provides a R2 value of 0.9987. Conversely, when the 

spline model is evaluated with the parameters estimated with the exact model, it 

provides a R2 value of 0.9988. Visual inspections of the residual plots confirm that both 

fits are extremely good and virtually identical. On the contrary, estimates from the 

polynomial model are not interchangeable with other models. This behavior agrees with 

the numerical experiments in (de la Prada and González, 2014a), which showed that the 

exact and spline models provide almost identical results. In fact, this also suggests that 

the narrow confidence intervals of the exact model are not realistic, since very similar 
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goodness of fits can be obtained with very different parameter values. In this sense, the 

wide confidence intervals of the spline model seem more realistic. 

The EI estimates obtained with our best estimation strategies (Figure 8) are smaller than 

those obtained in (Sala et al., 2007b) for similar materials. It is difficult to compare the  

results from both works because (Sala et al., 2007b) does not provide qualitative or  

quantitative indicators of the goodness of fit. 

The difference between the loading and the unloading experimental data sets seems a 

result of the plastic deformations in the netting due to long-term exposure to high stress. 

Such plastic deformations may be related to viscoelastic creep, which can occur in 

polymers at room temperatures (McCrum et al., 1997). The available theoretical models 

for mesh resistance to opening assume a lineal material, and therefore they can only 

predict the behaviour of netting that operates in the linear range. They cannot be used to 

predict plastic deformations. For this reason, the loading and the unloading cycles need 

to be analysed separately, and the data analysis gives different parameter estimates in 

both cycles. In fact, Figure 5 shows that the mesh resistance to opening is different in 

both cycles. This result suggests that further research is required to investigate how the 

loading history affects the mesh resistance to opening of netting during the lifespan of a 

fishing gear. 

Some objections can be made to the experiments presented in this work. In (Sala et al., 

2007b), a series of pretension cycles were applied to the netting samples to remove the 

irreversible part of the elongation and to safeguard against knot slippage (Sala et al., 

2004). We applied such pretension by manual means, which obviously cannot achieve 

the high tensile loads applied in (Sala et al., 2007b). However, we believe that this does 

not invalidate the excellent results obtained with the proposed combination of 
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experimental setup, regression models and estimation strategies. Another concern is that 

several samples of the same material should be tested in order to obtain average 

estimates of mesh resistance to opening, as in (Sala et al., 2007b). Due to resource 

limitations, we only tested one sample per material, which means that the obtained 

estimates may be affected by irregularities or defects in the sample. Nonetheless, as 

stated in the Introduction, the goal of this work is not to quantify the mesh resistance to 

opening for a range of netting materials, but rather to investigate the soundness of the 

presented method.  

Conclusions 

The method we have presented proved to be a simple yet effective method to quantify 

the mesh resistance to opening of netting panels. Its main advantage over the method 

described in (Sala et al., 2007b) is the simplicity of our uniaxial experimental setup, 

which does not require complex and specially designed measuring instruments. In fact, 

our experiment can be carried out by manual means or in standard universal testing 

machines with inexpensive modifications of clamps and fixtures. The advantage over 

the method described in (Priour and Cognard, 2011) is that the presented method takes 

into account the knot size and can estimate the angle . 

We recommend starting the data analysis assuming that Ltwine = Lmesh/2 2Dtwine  and b = 

Dtwine, in order to estimate EI and   with an unconstrained nonlinear regression. This 

kind of analysis is simple and fast, and often provides excellent results when the netting 

material has not suffered permanent plastic deformations due to large mesh opening. If 

this analysis fails to provide a good fit, a second analysis should be carried out to 

estimate the four parameters EI, Ltwine, b, and ,  with a min/max constrained nonlinear 

regression using the parameter limits listed in Table 2. This approach always provides 
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good fits and parameter estimates within physical limits. Our method does not allow one 

to estimate the knot width a from experimental data, although it could be estimated as a 

= (Lmesh  2Ltwine)/2. Better approximations might be obtained using the results from 

(O’Neill, 2003). 

The three theoretical models  exact, polynomial and spline  for mesh resistance to 

opening provide very similar goodness of fit. We recommend analysing the 

experimental data with the same model that will be used to predict netting deformations. 

It was found that the loading history can modify the mesh resistance to opening of a 

netting panel. Further research is required to investigate this issue. 
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TABLES 

Table 1. Main characteristics of the netting samples: nominal stretched mesh size (Lmesh), nominal twine 

diameter (Dtwine), external knot width (aext) and height (bext), number of meshes in transverse (mt) and 

normal (mn) directions and linear density (Rtex). Material codes: PE is traditional single twine greed-braid 

polyethylene, CPE is single twine compacted polyethylene and CPE2 is double-twine compacted 

polyethylene. 

Netting 
Lmesh

(mm)
Dtwine 
(mm)  

aext

(mm)
bext 

(mm) mtmn
Rtex

(g/1000m)

PE 802.5 80 2.5 8.5 5.5 48 2540

PE 1002.5 100 2.5 8.5 5.5 310 2870

PE 803 80 3 11.0 6.0 312 4225

PE 804 80 4 12.5 8.5 310 5623

PE 1004 100 4 12.5 8.5 38 6474

CPE 805 80 5 16.0 12.0 38 11423

CPE2 804 80 4 25.0 14.0 25 12310

 

Table 2. Constraints that can be applied to the parameters in the regression analysis. D*
twine = Dtwine for 

single twine netting and D*
twine = 2Dtwine for double twine netting. 

Constraint  EI Ltwine b  

Fixed - Lmesh/2 2D*
twine D*

twine 0 

Min/max 
Min 0 Lmesh/2 aext 0 5 

Max  Lmesh/2 bext 90 

 

Table 3. Description of the different parameter estimation strategies used in the regression analysis. 

Estimation 
strategy 

Constraint applied on parameter 

Ltwine b  

1 - - - 

2 Min/max Min/max Min/max 

3 Fixed Fixed Min/max 

4 - - Fixed 
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Table 4. Results of the analysis with unconstrained parameters (parameter estimation strategy No. 1), 

loading cycle. 

Netting Model 
EI 

(N/mm2) 
Ltwine 

(mm) 
b

(mm) 


(deg)
R2

PE 802.5 

Exact 23  6% 28 9.9 0 0.9995

Polynomial 58  23% 53 -16.8 22 0.9995

Spline 10  3% 20 17.9 -21 0.9996

PE 1002.5 

Exact 21  22% 37 9.3 -2 0.9956

Polynomial 22  39% 32 13.6 4 0.9973

Spline 10  34% 24 21.8 -17 0.9930

PE 803 

Exact 28  60% 27 11.4 -1 0.9965

Polynomial 33  36% 32 5.1 6 0.9984

Spline 13  9% 19 18.8 -21 0.9969

PE 804 

Exact 92  66% 32 3 19 0.9995

Polynomial 107  31% 43 -10.0 25 0.9994

Spline 50  86% 25 9.7 9 0.9996

PE 1004 

Exact 33  9% 21 23 0 0.9991

Polynomial 85  38% 41 2.4 22 0.9987

Spline 19  8% 17 26.7 -12 0.9993

CPE 805 

Exact 153  7% 22 15.6 1 0.9998

Polynomial 140  31% 25 10.2 7 0.9974

Spline 181  6% 23 14.5 4 0.9997

CPE2 804 

Exact 1001  70% 34 1.7 25 0.9996

Polynomial 289  32% 24 9.7 10 0.9986

Spline 238  10% 19 16.3 0 0.9992

 

Table 5. Results of the analysis with min/max constraints on all the parameters (parameter estimation 

strategy No. 2), loading cycle. 

Netting Model 
EI 

(N/mm2) 
Ltwine 

(mm) 
b

(mm) 


(deg)
R2

PE 802.5 

Exact 27  2% 35.2 2.0 7 0.9928

Polynomial 33  37% 36.8 0.0 11 0.9979

Spline 32  214% 33.7 3.8 8 0.9991

PE 1002.5 

Exact 27  1% 45.4 0.9 5 0.9926

Polynomial 31  44% 41.5 3.7 12 0.9956

Spline 30  261% 41.5 3.8 10 0.9872

PE 803 

Exact 57  1% 35.5 2.8 15 0.9931

Polynomial 34  36% 32.8 4.6 7 0.9984

Spline 39  395% 32.4 5.3 8 0.9946

PE 804 

Exact 119  2% 32.0 3.8 19 0.9949

Polynomial 66  8% 33.4 0.0 17 0.9987

Spline 67  98% 27.9 6.3 15 0.9996

PE 1004 

Exact 159  1% 42.0 2.8 29 0.9983

Polynomial 85  38% 41.0 2.4 23 0.9987

Spline 111  220% 37.6 6.3 25 0.9986

CPE 805 

Exact 445  1% 32.4 6.1 18 0.9993

Polynomial 159  36% 26.5 8.8 9 0.9973

Spline 244  71% 25.8 11.5 10 0.9997

CPE2 804 

Exact 683  1% 28.5 7.4 18 0.9993

Polynomial 294  33% 24.2 9.5 10 0.9986

Spline 373  111% 22.5 12.4 9 0.9993
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Table 6. Results of the analysis with fixed constraints on Ltwine and b and min/max constraints on  

(parameter estimation strategy No. 3), loading cycle. 

Netting Model 
EI 

(N/mm2) 
Ltwine 

(mm) 
b

(mm) 


(deg)
R2

PE 802.5 

Exact 34  1% 35 2.5 10 0.9955

Polynomial 33  6% 35 2.5 10 0.9938

Spline 35  6% 35 2.5 10 0.9990

PE 1002.5 

Exact 39  2% 45 2.5 9 0.9814

Polynomial 56  24% 45 2.5 17 0.9182

Spline 77  39% 45 2.5 23 0.9464

PE 803 

Exact 29  2% 34 3 5 0.9765

Polynomial 35  6% 34 3 9 0.9974

Spline 37  25% 34 3 9 0.9914

PE 804 

Exact 126  3% 32 4 19 0.9920

Polynomial 99  12% 32 4 15 0.9780

Spline 126  11% 32 4 19 0.9904

PE 1004 

Exact 219  2% 42 4 30 0.9873

Polynomial 164  14% 42 4 24 0.9759

Spline 218  13% 42 4 29 0.9852

CPE 805 

Exact 248  2% 30 5 19 0.9914

Polynomial 198  5% 30 5 15 0.9958

Spline 273  6% 30 5 20 0.9946

CPE2 804 

Exact 310  3% 24 8 18 0.9852

Polynomial 233  7% 24 8 13 0.9938

Spline 314  10% 24 8 18 0.9881
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Table 7. Results of the analysis with fixed constraint  = 0 (parameter estimation strategy No. 4), loading 

cycle. Low R2 values are marked in bold font. 

Netting Model 
EI 

(N/mm2) 
Ltwine

(mm)
b (mm) R2

PE 802.5 

Exact 24  3% 28.4 9.7 0.9995

Polynomial 20  9% 27.5 9.4 0.9930

Spline 22  4% 28.1 9.4 0.9992

Asymptotic 41  10% - - 0.9936

PE 1002.5 

Exact 23  17% 37.9 8.7 0.9956

Polynomial 18  6% 27.9 17.6 0.9969

Spline 19  13% 32.3 13.2 0.9896

Asymptotic 37  21% - - 0.9812

PE 803 

Exact 29  8% 27.7 10.7 0.9964

Polynomial 26  6% 27.4 10.1 0.9979

Spline 27  10% 27.2 10.6 0.9952

Asymptotic 49  20% - - 0.9876

PE 804 

Exact 35  4% 20.6 13.9 0.9995

Polynomial 28  12% 21.1 12.2 0.9929

Spline 33  4% 20.3 13.8 0.9996

Asymptotic 39  31% - - 0.9574

PE 1004 

Exact 33  5% 21.2 23.2 0.9991

Polynomial 28  10% 21.8 21.7 0.9934

Spline 31  5% 20.9 23.1 0.9991

Asymptotic 41  31% - - 0.9656

CPE 805 

Exact 148  5% 21.2 15.9 0.9998

Polynomial 97  14% 21.0 13.9 0.9960

Spline 144  5% 21.0 15.9 0.9998

Asymptotic 30  56% - - 0.7612

CPE2 804 

Exact 240  11% 18.8 16.1 0.9988

Polynomial 164  13% 18.8 14.3 0.9968

Spline 233  11% 18.6 16.1 0.9989

Asymptotic 32  64% - - 0.7161
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Table 8. Results of the analysis with min/max constraints on all the parameters (parameter estimation 

strategy No. 2), unloading cycle. 

Netting Model 
EI 

(N/mm2) 
Ltwine 

(mm) 
b

(mm) 


(deg)
R2

PE 802.5 

Exact 23  0.4% 34.0 0.1 49 0.9897

Polynomial 17  195% 31.5 2.2 46 0.9798

Spline 24  219% 31.5 2.3 51 0.9873

PE 1002.5 

Exact 21  1% 41.7 1.7 41 0.9871

Polynomial 15  85% 41.5 0.3 46 0.9617

Spline 49  255% 41.6 1.1 56 0.9724

PE 803 

Exact 31  0.3% 35.1 0.2 50 0.9903

Polynomial 12  108% 30.6 3.8 44 0.9635

Spline 12  92% 31.2 3.2 44 0.9637

PE 804 

Exact 41  0.4% 30.6 1.4 48 0.9860

Polynomial 22  78% 29.2 2.1 44 0.9907

Spline 42  137% 27.6 4.0 50 0.9930

PE 1004 

Exact 107  1% 40.0 2.1 53 0.9937

Polynomial 24  53% 38.0 2.7 41 0.9917

Spline 65  132% 37.5 3.9 50 0.9947

CPE 805 

Exact 80  1% 24.3 8.8 35 0.9931

Polynomial 52  117% 24.2 8.2 32 0.9971

Spline 78  600% 24.0 8.6 37 0.9963

CPE2 804 

Exact 234  1% 29.0 2.8 40 0.9987

Polynomial 93  44% 23.4 7.8 30 0.9993

Spline 249  254% 31.2 0.1 43 0.9989

 

Table 9. Results of the analysis with fixed constraints on Ltwine and b and min/max constraints on  

(parameter estimation strategy No. 3), unloading cycle.  

Netting Model 
EI 

(N/mm2) 
Ltwine 

(mm) 
b

(mm) 


(deg)
R2

PE 802.5 

Exact 264  30% 35 2.5 52 0.8343

Polynomial 433  18% 35 2.5 50 0.8563

Spline 279  31% 35 2.5 52 0.8321

PE 1002.5 

Exact 752  37% 45 2.5 55 0.7635

Polynomial 853  48% 45 2.5 52 0.8490

Spline 787  37% 45 2.5 55 0.7678

PE 803 

Exact 239  42% 34 3 56 0.7947

Polynomial 348  22% 34 3 54 0.8261

Spline 351  0% 34 3 59 0.8561

PE 804 

Exact 535  33% 32 4 48 0.8086

Polynomial 973  26% 32 4 47 0.8482

Spline 567  35% 32 4 48 0.8054

PE 1004 

Exact 712  27% 42 4 51 0.8513

Polynomial 1373  22% 42 4 50 0.8415

Spline 753  28% 42 4 51 0.8485

CPE 805 

Exact 263  15% 30 5 40 0.9661

Polynomial 214  15% 30 5 35 0.9764

Spline 277  16% 30 5 40 0.9614

CPE2 804 

Exact 171  6% 24 8 35 0.9975

Polynomial 133  8% 24 8 30 0.9948

Spline 182  7% 24 8 35 0.9949
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FIGURES 

 

 

 

Figure 1. Double-clamped beam model of a mesh twine. 
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Figure 2. Design of the experimental setup and general view of a netting sample during the test. 

 

Figure 3. Idealized netting where mesh twines are modelled as beams emerging from the corners of 

rectangular knots. 
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Figure 4. Dimensionless vertical displacement of the twine (ytwine/Ltwine) calculated with the asymptotic 

solution as a function of  22
twineFLEI  for different slope angles . 

 

Figure 5. Experimental data obtained for PE 803, showing the difference between loading and unloading 

cycles. 
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Figure 6. Multiple solutions of the regression with unconstrained parameters for PE 1004, showing the 

correlation between parameters in the exact and the asymptotic models: (a) bending stiffness EI versus 

slope angle  , (b) knot height b versus twine length Ltwine. 
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Figure 7. Box plot of the R2 values from the parameter estimation strategies No. 2 and No. 3, loading 

cycle. 

 

Figure 8. Estimates of EI against the linear density of the netting obtained with parameter estimation 

strategies No. 2 (Table 5) and No. 3 (Table 6). 
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This paper assesses the robustness and efficiency of gradient-based energy minimization methods to cal-
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1. Introduction

Netting structures are extensively used in commercial fishing
and aquaculture. The increasing concerns about the environmental
impact and the energy efficiency in these industries have driven
the development of numerical models specially designed for this
class of structures. They can be categorized as 1D finite element
models [1–3], 2D finite element models [4–6], lumped mass mod-
els [7–9] and differential equation models for axisymmetric struc-
tures [10,11]. Regarding the type of analysis, some applications
require to calculate the dynamic behavior of the structure
subjected to water currents, waves and tides, and therefore a
direct numerical integration of the equations of motion is used
[7,8,12,13]. Other applications only require to calculate the static
equilibrium shape of the structure subjected to a constant water
current [4,11,14,15], and this work focuses in this kind of analysis.

The robustness and computational efficiency of the equilibrium
shape calculation is becoming a key issue due to the recent inception
of topology optimization of netting structures [16–18], since it is
used to evaluate the objective function in such optimizations. The
number of function evaluations is usually high because the number
of design variables in netting structures is also high; for example, a
recent iterative algorithm to optimize the energy efficiency of fish-
ing gears [17] requires in the order of 104 structures which is done
in 10–20 h of computing time in modern multi-core computers to
optimize a structure with 134 design variables. Methods based on
heuristics (e.g. evolutionary algorithms), better suited to multi-
objective optimization of netting structures, will require even more
function evaluations and more robust calculations. Furthermore, the
design of netting structures for fishing or aquaculture is an iterative
optimization process, given the complexity and multidisciplinary
nature of these systems: the results of a starting optimization often
reveal problems related to factors not included in the numerical
model (e.g. environmental impact or fish behavior), and a new opti-
mization must be launched with additional constraints to avoid
them; in addition, the uncertainty in the numerical model (ocean
currents, friction with sea bottom. . .) also make necessary to launch
several optimizations with different model parameters.

The equilibrium shapes of netting structures modeled with fi-
nite elements is normally calculated by solving the equilibrium
equations of the model with the Newton–Raphson method. The
aim of this work is to investigate the robustness and computational
performance of gradient-based methods to calculate the equilib-
rium shape by directly minimizing the total energy, as an alterna-
tive to the Newton–Raphson iteration used in the scientific
literature. Whereas both approaches are theoretically equivalent,
our hypothesis is that some gradient-based optimization methods
can outperform Newton–Raphson iteration as they do not require
matrix operations and they are not affected by ill-conditioned stiff-
ness matrices which are often present in netting structures.
Although energy minimization methods are usually not competi-
tive for the analysis of general structures, they have proved to be
a very effective method for some particular kinds of application,
such as unstable trusses [19] or hyperelastic membranes [20].

http://crossmark.crossref.org/dialog/?doi=10.1016/j.compstruc.2014.01.021&domain=pdf
http://dx.doi.org/10.1016/j.compstruc.2014.01.021
mailto:amelia.delaprada@udc.es
mailto:manuel.gonzalez@udc.es
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http://dx.doi.org/10.1016/j.compstruc.2014.01.021
http://www.sciencedirect.com/science/journal/00457949
http://www.elsevier.com/locate/compstruc


A. de la Prada, M. González / Computers and Structures 135 (2014) 128–140 129
The main contribution of this work is a comprehensive assess-
ment of the robustness and computational performance of both
families of methods (gradient-based energy minimization and
Newton iteration) to calculate the equilibrium shape of netting
structures, in order to get insight on the advantages and disadvan-
tages of each method and identify how they are affected by the
particular characteristics of the structure. The assessment is car-
ried out by means of a set of benchmark problems that replicate
different challenging features that are present in real world appli-
cations of netting structures.

The only reference in the literature to the use of energy minimi-
zation methods to calculate the equilibrium shape of netting struc-
tures can be found in [3], which briefly mentions the use of the
Polak–Ribière version of the nonlinear conjugate gradient method.
However, that work assesses neither the computational perfor-
mance nor the robustness of the method in comparison to the
Newton–Raphson iteration normally used in these applications.

The remaining of the paper is organized as follows: Section 2
describes the numerical model of the netting structure and the
simulation methods compared in this work. Section 3 describes
the set of benchmark problems used to evaluate the performance
of the different simulation methods. In Section 4, results from
the numerical experiments are presented and discussed. Finally,
Section 5 provides conclusions and topics for future work.

2. Methods

2.1. Numerical model

The numerical model used in this work is considered the state-
of-the-art for equilibrium shape calculation in netting structures
[6,21,14,16–18]; a summarized description is provided here, since
details can be found in the references. Without loss of generality,
the netting structure is supposed to be made up by panels of dia-
mond mesh, the predominant netting in the fishing and aquacul-
ture industry. The netting surfaces were discretized with the
triangular finite element developed in [4]. This element assumes
that all twines in each of the two directions of the netting are par-
allel, and that twines behave as bars made of isotropic and linear
elastic material; each node of the element has three translational
degrees of freedom. In addition, the mesh resistance to opening
is modeled as a torque proportional to the twine angle [22]. Cables
and ropes in the structure are modeled as linear bar elements [4],
since their bending stiffness is negligible.

Following the same procedure as in the scientific literature
[4,22], the direct formulation of the finite element method is used
instead of the variation formulation, that is, forces are directly cal-
culated from the position of the nodes in the finite element mesh.
The forces applied to the model are:

(i) Elastic forces in triangular finite elements and bars, through
the formulation described in [4,22].

(ii) Weight and buoyancy.
(iii) Hydrodynamic drag forces, through the simplified expres-

sions for static analysis based on the drag forces that act on
a bar under a uniform current flow [23], without taking into
account the fluid–structure interaction and dynamic terms
[1]. The fluid velocity is projected in two components vn and
vt, normal and tangential to the netting twine, which generate
the normal drag force Fn and the tangential friction force Ft, as
a function of the twine length L, twine diameter d, fluid den-
sity q and friction and drag coefficients Cf and Cd. For a trian-
gular finite element, the total hydrodynamic force is the sum
of the forces acting on all the twines in the element. The same
expressions are used to calculate hydrodynamic forces in
cables and ropes discretized by bar elements:
Ft ¼
1
2
qCdLdjvt jvt

Fn ¼
1
2
qCf Ldjvnjvn

ð1Þ

Fluid–structure interaction is not considered because this topic is
still an open problem in underwater netting structures [24]. There-
fore, the velocity field of the fluid is not affected by the shape of the
netting structure.
2.2. Newton iteration

The equilibrium shape of the netting structure can be obtained
by solving the equilibrium equations in the deformed configura-
tion of the structure, in order to account for the large displace-
ments and rotations:

FðqÞ ¼ 0 ð2Þ

where q is the nodal coordinate vector and F is the nodal force vec-
tor which accumulates the contributions of the aforementioned
forces. This non-linear system of equations can be solved with the
well-known Newton–Raphson (NR) iteration:

di ¼ �J�1ðqiÞFðqiÞ ð3Þ
qiþ1 ¼ qi þ kdi ð4Þ

where J is the Jacobian matrix of F, d is the search direction and k is
the step length. The classic NR method (k = 1) is not a globally con-
vergent algorithm, and unfortunately the initial position of the net-
ting is often numerically far from the solution. In addition, the
Jacobian matrix is often ill-conditioned with respect to inversion,
because the in-plane stiffness of the net is several orders of magni-
tude higher than the bending stiffness and the mesh opening stiff-
ness; as a consequence, some iterations make a vast change in the
variables and the method does not converge. The scientific litera-
ture about equilibrium shape calculation in netting structures does
not provide details about the techniques used by other authors to
overcome these issues [6,21,14,16–18]. In this work we have fol-
lowed two different approaches:

The first approach is to globalize the NR iteration with a line
search and the Armijo Rule [25,26]: for a search direction di, a suc-
cession of steps lengths kj are tested until the sufficient decrease
condition is satisfied (typically a = 10�4):

jFðqi þ kjdiÞj < ð1� aÞjFðqiÞj ð5Þ

The values for kj are calculated using the three-point safeguarded
parabolic model described in [25]. In addition, after five rejected
steps (which in practice means stagnation in the iteration), the iter-
ation is finished with a step length calculated with the second ap-
proach. This variant of the NR method will be referred to as NR
line search.

The second approach calculates the step length at each iteration
with

ki ¼
kmax=maxðdiÞ if maxðdiÞ > kmax

1 otherwise

�
ð6Þ

where the maximum step length per coordinate kmax is selected as a
fraction of the characteristic length of the netting structure; our
experience suggests that a value about 1% is appropriated in most
situations. We have not found references to this method in the lit-
erature, but according to our experience, it often works better than
the line search in netting structures. This variant of the NR method
will be referred to as NR step limit.
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2.3. Gradient-based optimization methods

As an alternative to the NR method used in the literature, the
authors propose the use of gradient-based energy minimization
methods to find the steady-state equilibrium position by minimiz-
ing of the total energy of the system. The principle of minimum to-
tal potential energy can be extended to system with nonconvex
nonsmooth forces [27] leading to the unconstrained minimization
problem

min
q

f ðqÞ ð7Þ

where the objective function is defined as

f ðqÞ ¼ Ep �Wnc ð8Þ

where Ep represents the potential energy due to conservative forces
(deformation in netting and cables, mesh opening resistance,
weight and buoyancy) and Wnc represents the work carried out by
non-conservative forces acting on the system (e.g. hydrodynamic
forces and friction). Wnc is calculated using a path-following
method [27] which allows to find the equilibrium position of non-
conservative systems using energy minimization methods.With this
approach, the gradient g of the objective function is the opposite of
the nodal force vector F:

g ¼ rf ðqÞ ¼ �FðqÞ ð9Þ
2.3.1. Short-listing of optimization methods
Given the large number of existing unconstrained optimization

methods [28,29], a selection process was applied in order to nar-
row the scope. Optimization methods that need second-order
derivatives of the objective function (Hessian) were rejected, since
their evaluation would have a computational cost similar to the
evaluation of the search direction di in the Newton–Raphson meth-
od. Therefore, the scope was limited to methods that only need
first-order derivative information, that is, gradient-based methods.
In addition, only methods that show good performance with med-
ium-large problems were selected, since problem sizes in our tar-
get application are usually in the order of 102 to 104 variables.

Ten different gradient-based optimization methods were pres-
elected (see Table 1), including line search methods, trust region
methods and methods for noisy objectives. They were used to solve
the test case No. 1 described in Section 3, which is an undemanding
numerical problem. In order to reduce the development time of
this prescreening process, publicly available implementations in
Matlab programming language were used [28,30,31]; Table 1 also
lists the function name of the implementation tested for each
Table 1
Shortlisted gradient-based optimization methods, the implementation refers to the
function name in the cited reference.

Optimization method Implementation Succeed

Smooth objective:
Steepest descent Steep [28]
Nonlinear conjugate gradient ncg [30] X
BFGS lbfgs [30] X

bfgswopt [28]
fminunc [31]

Dogleg-Trust region ntrust [28]
Newton-CG Trust region cgtrust [28] X
Truncated Newton tn [30]

Non smooth objective:
Implicit filtering imfil [28]
Nelder–Mead simplex nelder [28]

fminsearch [31]
Multidirectional search mds [28]
Hooke–Jeeves hooke [28]
method. While these Matlab implementations may not deliver
the best computational performance, they can be used to compare
the number of function and gradient evaluations carried out to
solve the problem. Most of the methods could not solve the prob-
lem in a reasonable number of function evaluations due to very
poor convergence or stagnation in the iteration, and tuning the
algorithm parameters did not improve the behavior. The only three
methods that succeeded in solving the problem are described in
the next subsections.

2.3.2. Nonlinear conjugated gradient method
The nonlinear conjugated gradient method (CG) belongs to the

family of line search methods, where each iteration i determines a
search direction si and then minimizes f (qi + aisi) with respect to
the step length ai to generate a new iterate qi+1 = qi + aisi. CG meth-
ods calculate the search direction using conjugacy properties [29].
The implementation used by the authors follows the algorithm
described in [28]:

1. Initial position: q0

2. Evaluate f0 = f (q0), g0 = �F(q0)
3. Initial approximation: s0 = �g0, i = 0
4. While ||gi|| > 0
5. Compute step length ai, set qi+1 = qi + aisi

6. Evaluate gi+1 = �F(qi+1)
7. Compute bi+1

8. si+1 = �gi+1 + bi+1si

9. i = i + 1
10. End while
11. Solution: q⁄ = qi

bi+1 in Step 7 is computed with the Polak–Ribière method, since
it proved to be more efficient that other methods in this
application:

biþ1 ¼
sT

iþ1ðsiþ1 � siÞ
sT

i si

ð10Þ
2.3.3. Limited memory BFGS method
Quasi-Newton optimization methods also follow the line search

strategy but they evaluate the search direction s for each iteration i
according to the formula

si ¼ �H�1
i gi ð11Þ

where H�1 is the inverse of the second-order derivative of f (the
Hessian matrix). Quasi-Newton methods estimate H with informa-
tion of the gradient g and the position q. The BFGS method (Broy-
den–Fletcher–Goldfarb and Shanno) estimates H with the
expression

HBFGS
iþ1 ¼ Hþ 1þ cT Hc

dTc

 !
ddT

dTc
� dcT HþHcdT

dTc
ð12Þ

ci ¼ giþ1 þ gi ð13Þ

di ¼ qiþ1 þ qi ð14Þ

Note that sub-index (i) has been omitted on the right-hand side of
Eq. (12). Results have demonstrated that BFGS is generally the most
robust and efficient of quasi-Newton’s methods [29]. To avoid
matrix operations and the large memory storage of the classic BFGS
method, we selected the limited memory BFGS variant (LBFSG), that
uses the history of the iteration to compute the step without matrix
operations [28,30]; our implementation follows the algorithm
described in [30].



Table 3
Relevant features of each test case.

Feature Test case

1 2A 2B 3A 3B 4A 4B 5 6A 6B

Large displacements – U U U U U U U U U

High initial stress – U – – – – – – – –
Far initial position – U – – – – – – U –
Netting with low

compression stiffness
– – – U – U U U U U

Netting with very low
compression stiffness

– – – – U U U U U U

Cables – – – – – U U – U U

Cables, high stiffness – – – – – – U – – –
Ground contact – – – – – – – U U U

Panel parallel to flow – – – – – – – – U U

(a)
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2.3.4. Newton-CG Trust region
Line search methods and trust-region methods both generate

steps with the help of a quadratic model of the objective function,
but they use it in different ways. Line search methods generate a
search direction, and then find a suitable step length a along this
direction. Trust-region methods work in the opposite way: they
define a region around the current iteration within which they
trust the model to be an adequate representation of the objective
function, and then choose a suitable direction; in practice, the size
of the region and the length of the step are chosen simultaneously.

The Newton-CG Trust described in [28] combines the trust re-
gion ideas with the Truncated Newton CG method, which approx-
imates the search direction of the Newton method using CG. The
implementation used by the authors follows the algorithm detailed
in [28]:

1. Initial position: q0

2. Evaluate f0 = f (q0), g0 = �F(q0)
3. i = 0
4. While ||gi|| > 0
5. Compute si by solving r2f (qi)si = �gi using a CG method
6. Compute step length ai, set qi+1 = qi + aisi

7. Evaluate gi+1 = �F(qi+1)
8. i = i + 1
9. End while

10. Solution: q⁄ = qi

3. Benchmark setup

3.1. Description of the test cases

A small set of simple test cases has been defined to measure the
ability of gradient-based energy minimization methods to deal
with the challenges arising in the calculation of equilibrium shapes
of netting structures. In the literature, the performance of numer-
ical models and simulation methods for netting structures is usu-
ally demonstrated with real world problems, like fishing gears or
aquaculture cages. On the other hand, small and simple test cases
offer advantages over complex problems [32]: they can isolate a
specific characteristic of netting structures, and therefore evaluate
the response of a model or method that particular characteristic. In
addition, comprehensive model descriptions can be provided and
other authors are encouraged to reuse them because they need
to invest little time in the modelization, thus making easier to
compare results of different research works.

Table 2 list the test cases proposed in this work. Each test fea-
tures a particular characteristic (see Table 3) and it is usually based
on a previous, simpler test. Some tests are available in two vari-
ants, with different initial positions or stiffness values. Each test
Table 2
List of test cases.

Test
no.

Based
on

Description Variant

1 – Base test
2 1 Large displacements 2A Far initial position

2B Near initial
position

3 2B Low stiffness in
compression

3A Low stiffness
3B Very low stiffness

4 3A Cables in the structure 4A Medium stiffness
4B High stiffness

5 3A Rope with ground contact
6 – Panel with ground contact 6A Far initial position

6B Near initial
position
will be described with a figure of the netting structure showing
the coordinate system and the position and numbering of repre-
sentative points in the structure, whose initial coordinates (SI)
are provided in a table. Fixed points are marked with a bold dot
in the figures and with an ‘‘(f)’’ symbol in the tables. Figures also
show the initial position of the structure and a wireframe repre-
sentation of the finite element mesh in the equilibrium position.
In all tests, the structure is exposed to a constant water current
of 2 m/s in y direction, which is a representative value of the oper-
ation conditions in fishing and aquaculture applications.

Test 1 consists on a square netting panel with its four corners
fixed, as shown in Fig. 1. The dimensions, configuration and
mechanical properties of the panel are listed in Table 4; note that
the couple due to mesh opening stiffness is zero for a twine angle
of 30� instead of 0� as in [22], which explains why the resistance to
opening is much higher than in [22]. Mesh coordinates [4] of points
0–3 are (0,0), (100,0), (100,100) and (0,100) respectively. In the
(b)

Fig. 1. Test 1, base test: (a) initial position, (b) equilibrium position.



Table 4
Properties of the netting panel in test 1.

Property Value

Number of meshes 100 � 100
Mesh size 80 mm (diamond type)
Mesh orientation Normal direction along z
Twine diameter 2.5 mm
Twine angle 30 deg
Panel density 0.29 kg/m2

Twine axial stiffness (EA) 2000 N
Resistance to opening 35 Nm/rad

(a)

(b)

(c)

Fig. 2. Test 2, panel undergoing large displacements: (a) initial position for test 2A,
(b) initial position for test 2B, (c) equilibrium position.

Table 6
Initial position for test 2.

Point Test 2A Test 2B

x y z x y z

0 (f) �2.36 0 0 �2.36 0 0
1 (f) 2.36 0 0 2.36 0 0
2 (f) 2.36 0 1.07 2.36 0 1.07
3 (f) �2.36 0 1.07 �2.36 0 1.07
4 0 0 0 0 2.92 �0.47
5 2.36 0 0.35 2.84 0.60 0.06
6 2.36 0 0.71 2.84 0.44 0.73
7 0 0 1.07 0.2 2.83 1.01
8 �2.36 0 0.71 �2.88 0.50 0.81
9 �2.36 0 0.35 �2.74 0.66 0.14
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initial position (Table 5), the fixed points form a rectangle of
7.72 � 2.07 m, which corresponds to the undeformed dimensions
of the netting panel, and therefore the net has no initial stress
and the initial position of the static analysis is numerically close
to the equilibrium position. This test is not a challenging problem,
but it is included in the benchmark setup since it is the foundation
for the following tests, which share most of the properties of the
netting panel. In addition, it can be used to easily detect simulation
methods not suited for netting structures, since methods that show
a bad performance with this undemanding test will not be able to
cope with any of the next tests. Test 1 was used in the short-listing
of optimization methods described in Section 2.3.1.

Test 2 is based on test 1, but the corner points of the netting pa-
nel are fixed closer to each other to generate a bag-shaped equilib-
rium position (Fig. 2(c)). Two variants are provided for the initial
position, defined in Table 6. In test 2A (Fig. 2(a)) the panel starts
from a flat initial position, which is numerically quite far from
the equilibrium position and generates a very high initial compres-
sion stress; solving this tests with a method with good global con-
vergence properties requires in the order of 10 more iterations
than test 1. On the other hand, in test 2B (Fig. 2(b)) the initial posi-
tion is closer to the equilibrium position, since the coordinates of
points 4–9 correspond to the solution in Fig. 2(c); in this test var-
iant, the position of the mesh nodes is interpolated from the posi-
tion of points 0–9 using NURBS (non-uniform rational basis
splines). Mesh coordinates [4] of points 4–9 are (50,0), (100,100/
3), (100,200/3), (50,100), (0,200/3) and (0,100/3) respectively.

In test 1 and test 2, the twine axial stiffness has the same value
in tension and compression. While this material behavior may be
representative of some metallic netting structures used in aquacul-
ture cages, most of the netting materials in fishing and aquaculture
applications have a negligible bending stiffness, hence they are as-
sumed to take no compression [33,34]. Test 3 is based on test 2B
but introduces this non-linear material behavior when subjected
to either tension or compression. Since a zero value of axial stiff-
ness in compression often generates numerical problems in an
equilibrium shape calculation, in practice a small positive value
is used: higher values improve convergence, but they introduce
more error in the solution. This test has two variants with different
values of axial stiffness in compression, defined as a percentage of
the axial stiffness in tension: 1.25% (test 3A) and 0.001% (test 3B).
According to the authors’ experience, the value in test 3A is
approximately the minimum value to achieve good convergence
using the NR-line search method. The value in test 3B is virtually
Table 5
Initial position for test 1.

Point x y z

0 (f) �3.86 0 0
1 (f) 3.86 0 0
2 (f) 3.86 0 2.07
3 (f) �3.86 0 2.07
identical to the assumption of no compression, and therefore gen-
erates more accurate results for this kind of netting materials.
Fig. 3 shows the equilibrium position for both test variants; note
the different shape in the lateral sides.

Cables are often present in netting structures. Test 4 adds four
cables to test 3A, as shown in Fig. 4. The cables, with a natural
length of 1 m and a diameter of 26 mm, connect the netting corner
points 0–3 (which are free in this test) to the fixed points 10–13. In
the initial position, the coordinates of points 10–13 are displaced
1 m in the �y direction with respect to points 0–3. Two test



Fig. 3. Test 3, panel with low compression stiffness, equilibrium positions for: (a)
test 3A and (b) test 3B.

(a)

(b)

Fig. 4. Test 4, panel with cables: (a) initial position, (b) equilibrium position.

(a)

(b)

Fig. 5. Test 5, panel with footrope and ground contact: (a) initial position, (b)
equilibrium position.
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variants are provided, with different values of cable stiffness.
Cables in test 4A have an axial stiffness (EA) of 104 N, characteristic
of synthetic ropes or wire ropes of small diameter. In test 4B the
axial stiffness is 107 N, a value characteristic of wire ropes of large
diameter; this test variant is more challenging, due to the large dif-
ferences in stiffness in the model. The initial position and solution
is the same for both tests variants, since the cable elongation is
negligible.

Trawling is a method of fishing that involves pulling a bag-
shaped fishing net through the sea behind one or more boats.
Due to its importance for the commercial fishing industry and its
environmental impacts, numerical simulation and optimization
of fishing trawls is an active topic of research [3,16–18]. The next
tests introduce two features present in trawl gears.

Bottom trawling is a sort of trawling where the net is pulled
along the seafloor: a weighted foot rope is attached to the lower
mouth of the net in order to keep it close up to the seafloor. This
feature is modeled in test 5, which adds a footrope with ground
contact to test 3A. Although this netting structure is moving with
a constant velocity through the sea, the usual modeling practice
is to locate the system of reference on the structure, fix the points
which are connected to the boat by cables, and apply a water
velocity opposite to the boat velocity. With this model, the bound-
ary conditions and initial position of test 3A can also be used for
this test. The footrope is modeled with bar elements and repre-
sented as a dotted line in Fig. 5; it has a natural length of 7.72 m,
a diameter of 26 mm, a weight of 10 kg and an axial stiffness of
104 N. To model the contact with the sea bottom, for each node i
located below the sea bottom (zi < zground

i ), a normal contact force
Fn proportional to the indentation is applied

Fn ¼ kgroundðzi � zground
i Þbz ð15Þ

and a tangential drag force Ft is calculated as

Ft ¼ gFnbv ð16Þ

where bz is a unit vector normal to the sea bottom (assumed con-
stant in this test), bv is a unit vector in the direction of the relative
velocity between node i and the water, projected to the sea bottom
surface. kground and g depend on the characteristics of the sea floor
and the design of the footrope. In this test case, the sea bottom is
located at z = 0, kground = 105 N/m and g = 1.0 (coefficients of friction
equal or greater than 1 are used to model friction in sandy or mud-
dy seafloor). The initial position for this test is the same used for test
3A and test 2B, with the exception of points 4 and 7, which are
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located at the new equilibrium position for this test (differences are
caused by the contact with the sea bottom at z = 0): point 4 is
placed at (0,2.96,0) and point 7 at (0,2.73,1.97).

Test 6 features another characteristic of trawling: the presence
of large pieces of netting parallel to the water current. In this test
(Fig. 6), the netting panel is pulled along the seafloor by two cables
connected to the moving points 4–5; using the same modeling
technique as in the previous tests, moving points become fixed,
and a water velocity opposite to the pull velocity is applied. Cables
have a natural length of 10 m, a diameter of 26 mm and an axial
stiffness of 104 N (a low value is used to avoid too large variation
of stiffness in the structure, as in test 4B). A footrope is placed in
the front side of the netting (between points 0 and 1) to keep it
in contact with the seafloor; it has a natural length of 2.07 m, a
weight of 100 kg, a diameter of 26 mm and an axial stiffness of
104 N. The sea bottom is located at z = �3 m, and contact is mod-
eled with the same expressions and parameters as in Test 5. Two
variants are provided for this test, with far (6A) and near (6B) ini-
tial positions: coordinates are provided in Table 7. In the equilib-
rium position, the rear part of the panel is located about 30 cm
above the sea bottom (Fig. 6(c)).
3.2. Numerical experiments

Three numerical experiments were carried out to evaluate the
robustness and computational efficiency of the selected gradient-
(a)

(b)

(c)

Fig. 6. Test 6, panel aligned with flow current: (a) initial position for test 6A, (b)
initial position for test 6B, (c) equilibrium position.

Table 7
Initial position for test 6.

Point Test 6A Test 6B

x y z x y z

0 �1.03 10 0 �0.82 8.68 �2.70
1 1.03 10 0 0.82 8.62 �2.70
2 1.03 17.72 0 1.00 16.42 �2.73
3 �1.03 17.72 0 �1.00 16.42 �2.73
4 (f) �5.03 0 0 �5.03 0 0
5 (f) 5.03 0 0 5.03 0 0
based optimization methods, and to compare them with the New-
ton–Raphson methods normally used for the equilibrium shape
calculation of netting structures. The first one consisted on a com-
parison of the three gradient-based optimization methods selected
in Section 2.3. Test 1 was used to carry out this comparison, since it
is an undemanding problem and can be used to easily detect sim-
ulation methods not suited for netting structures. The second
numerical experiment consisted on a comparison of the best opti-
mization method in the previous experiment against the two vari-
ants of the Newton–Raphson iteration described in Section 2.2. All
the test cases described in Section 3 were used in this comparison.
Finally, the third numerical experiment investigated the effect of
the problem size on the computational performance of the three
methods tested in the second experiment.

The numerical model and simulation methods have been imple-
mented in C/C++ programming language and optimized to achieve
the best computational performance by using state-of-the-art lin-
ear algebra implementations [35]. In the case of the Newton–Raph-
son iteration, the Jacobian was evaluated with analytical
expressions and it was stored in a compressed column sparse ma-
trix; Eq. (3) was reordered and solved with the KLU sparse linear
equation solver, since it proved to be the most efficient among
the solvers described in [35] for problems with similar size and
structure. A sequential, single-core version of the algorithms was
used, since parallelization of the simulation methods is out of the
scope of this work. The codes were compiled with Microsoft Visual
C++ 2010 and all numerical experiments were carried out on an In-
tel Core i7 CPU 2.67 GHz running Windows 7 64.

Reference solutions for each test case were obtained by running
a dynamic simulation of the model until it reached a steady state; a
very low stopping tolerance |g|/N of 10�12 was used in order to ob-
tain highly accurate equilibrium positions. The implicit single-step
Newmark method was used as numerical integration scheme.
While dynamic simulation requires exceptionally long CPU times
to reach steady state (between 1 and 5 h with the abovementioned
stopping tolerance, depending on the test case), it is a very reliable
method to perform equilibrium shape calculation of netting struc-
tures, since it can find the equilibrium position even for the most
complex and demanding problems.

Table 8 shows the size of the finite element mesh for each test
case, and the resulting number of variables N. Since the likelihood
of getting folded or tangled mesh configurations during the itera-
tion process increases with the number of 2D triangular elements
in the finite element mesh, the authors decided to use models with
a small number of triangular elements: in this way, failures in the
equilibrium shape calculation are hardly caused by a tangled mesh.
The number of finite elements will be increased in the third
numerical experiment to investigate the effect of the problem size.

4. Results and discussion

4.1. Comparison of optimization methods

The three gradient-based optimization methods short-listed
and described in Section 2.3 were applied to solve test 1: nonlinear
Table 8
Size of the finite element mesh in each test case.

Test 2D elements 1D elements Nodes Variables

1 208 0 121 363
2 196 0 114 342
3 196 0 114 342
4 196 52 166 498
5 202 12 117 351
6 208 269 387 1161



Table 9
Computational effort (function calls) and precision of different optimization methods
applied to test 1.

Precision Method Function calls |g|/N

Medium |g|/N 6 0.5 CG 967 0.4989
LBFGS 521 0.4405
CGTRUST 881 0.3413

High |g|/N 6 0.05 CG 2353 0.0408
LBFGS 993 0.0469
CGTRUST 1717 0.0439
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conjugated gradient method (CG), limited memory BFGS (LBFGS)
and Newton-CG Trust region (CGTRUST). The three optimization
methods were run with a gradient norm stopping tolerance |g|/N
of 5 � 10�2 and converged to the reference solution calculated by
dynamic simulation (Fig. 1(b)).

Fig. 7 shows the iteration history for the three methods: objec-
tive function and gradient norm |g| divided by the number of vari-
ables N. The number of function calls (evaluation of objective
function and gradient) is used as a measurement of the computa-
tional effort since it is nearly proportional to the CPU-time in the
three compared methods, due to the similar internal structure of
their algorithms. The iteration history shows that LBFGS achieves
a steeper descent in the objective function, especially at the begin-
ning of the optimization process; it also achieves a more sustained,
less noisy reduction of the gradient norm.

Table 9 summarizes the computational effort needed to attain
two levels of gradient norm stopping tolerance |g|/N, correspond-
ing to medium precision (0.5) and high precision (0.05) solutions.
Medium precision solutions are usually adequate to evaluate the
performance of netting structures used in fishing and aquaculture,
because the level of uncertainty in the numerical model is high
(mechanical properties of the netting, drag coefficients. . .) [18].
High precision solutions may only be used as a final validation in
the design cycle. Results in the table show that LBFGS is almost
twice as efficient as CG or CGTRUST, both for medium and high
precision.
4.2. LBFGS versus Newton–Raphson iteration

The second numerical experiment compares the NR line search
and NR step limit methods described in Section 2.2 with the best
optimization method in the first numerical experiment (LBFGS).
The three methods were used to solve all the test cases described
(a)

(b)

Fig. 7. Iteration history for different optimization methods applied to test 1: (a)
norm of the gradient g divided by the size of the problem N, (b) objective function.
in Section 3 with a gradient norm stopping tolerance |g|/N6 10�2.
In this experiment, the CPU time was used as a measurement of
the computational effort instead of the number of function calls,
since NR function calls include the evaluation of the Jacobian and
therefore they are not comparable with LBFGS function calls. The
presented CPU times do not include the preprocessing time before
starting the analysis, which is higher in NR methods due to the
assembling and symbolic factorization of the sparse Jacobian.

Fig. 8 shows the iteration history of the three methods for all
the test cases, representing the evolution of the log of the gradient
norm |g|/N. Table 10 shows the computational effort (CPU-time)
required to attain a medium precision solution |g|/N 6 0.5. The
table also provides the value of |g|/N in the last iteration and the
error in position, measured as the norm of the difference between
the solution q provided by the method and the reference solution
qref calculated by dynamic simulation, divided by N. Position errors
in the order of 10�2 m are a sign of an incorrect solution, which of-
ten shows tangled 2D elements in the mesh. Position errors of 10�3

m or less generally correspond to good quality solutions, where the
difference between the deformed shapes of the structure q and qref

is hardly noticeable in a visual comparison. Finally, Fig. 9 displays
the computational performance in a bar chart to compare methods
at a glance.

Regarding the behavior of NR methods, they successfully solve
all test cases except 2A and 3B. In test 2A (netting undergoing large
displacements, far initial position), despite NR methods converge
to the stopping tolerance, they generate solutions with tangled
meshes, as indicated by the high position error in Table 10. In test
3B (netting material with very low compression stiffness),
although they can eventually attain the medium precision solution
|g|/N 6 0.5 (and the corresponding CPU-time is shown in Table 10
and Fig. 9), they cannot converge to the prescribed stopping gradi-
ent norm tolerance |g|/N 6 10�2 because the iteration enters in a
never-ending oscillation loop: the Jacobian approaches singularity
due to the presence of elements in compression, and therefore the
generated search directions have very poor quality. A visual
inspection of the solution shows some regions with tangled ele-
ments, but a good overall shape as indicated by the position error
in Table 10. Note that these corroboration methods (visual inspec-
tion and comparison with a reference solution) cannot be used in
many applications, such as automatic optimization of netting
structures. In the remaining of the test cases, the iteration history
shows two characteristic stages of the Newton iteration: an initial
stage where the gradient norm is high and decreases slowly with
frequent peaks, and a final stage where the method enters in the
local convergence region and the gradient is severely reduced in
few iterations. The initial stage is present in all the test cases,
which means that a globally convergent algorithm is needed even
if the initial position is fairly close to the equilibrium position (e.g.
test 2B and specially test 6B). The NR line search method often
reaches stagnation points, followed by a step calculated by the
NR step limit method (as described in Section 2.2) that causes a
peak in the gradient norm curve. The NR step limit method is not
affected by stagnation, and in fact it performs better than NR line
search in all test cases except 2A.



Fig. 8. Iteration history of different solution methods: log of the norm of the gradient g divided by the size of the problem N.
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Regarding the LBFGS method, it successfully solves all test cases
except 4B (cables with a stiffness four orders of magnitude higher
than the netting stiffness). Its behavior in test 4B is similar to those
of NR methods in test case 3B: the convergence is very slow, and
although it can eventually attain the medium precision solution,
it cannot converge to the prescribed stopping gradient norm toler-
ance. Despite the overall position error is not high, a visual inspec-
tion of the solution shows some 2D elements in a wrong position.
Additional tests were carried out to verify that the convergence of
LBFGS gets worse as the difference in stiffness values increases. Ta-
ble 10 also shows a high position error for LBFGS in test 6A for a
tolerance |g|/N 6 0.5, but it can eventually reach the correct solu-
tion at the stopping tolerance |g|/N 6 10�2. The poor computa-
tional performance of LBFSG in test 6 can only be explained by



Table 10
Precision and computational effort of NR line search (NR-LS), NR step limit (NT-SL)
and LBFGS methods, for a stopping tolerance of |g|/N 6 0.5.

Test Method Function calls |g|/N |q � qref|/N Time (s)

1 NR-LS 11 0.248 5.000 � 10�6 0.047
NR-SL 13 0.189 1.000 � 10�6 0.049
LBFGS 174 0.494 2.890 � 10�4 0.046

2A NR-LS 96 0.455 1.570 � 10�2 0.376
NR-SL 335 0.293 1.552 � 10�2 0.994
LBFGS 522 0.483 5.229 � 10�3 0.131

2B NR-LS 81 0.206 9.500 � 10�5 0.299
NR-SL 39 0.154 1.000 � 10�5 0.116
LBFGS 291 0.462 1.425 � 10�3 0.074

3A NR-LS 40 0.411 3.900 � 10�5 0.151
NR-SL 34 0.312 6.700 � 10�5 0.100
LBFGS 287 0.471 1.560 � 10�3 0.073

3B NR-LS 37 0.482 2.752 � 10�3 0.140
NR-SL 64 0.344 3.249 � 10�3 0.188
LBFGS 361 0.457 2.238 � 10�3 0.092

4A NR-LS 36 0.322 1.550 � 10�4 0.138
NR-SL 25 0.141 1.510 � 10�4 0.077
LBFGS 284 0.491 1.921 � 10�3 0.080

4B NR-LS 49 0.471 1.450 � 10�4 0.189
NR-SL 29 0.323 1.695 � 10�3 0.089
LBFGS 4247 0.472 4.353 � 10�3 1.193

5 NR-LS 46 0.395 1.903 � 10�3 0.178
NR-SL 30 0.333 1.467 � 10�3 0.092
LBFGS 317 0.500 6.130 � 10�4 0.084

6A NR-LS 24 0.472 2.659 � 10�3 0.117
NR-SL 37 0.410 1.542 � 10�3 0.144
LBFGS 1070 0.452 1.213 � 10�2 0.431

6B NR-LS 54 0.495 7.007 � 10�4 0.278
NR-SL 39 0.295 1.100 � 10�3 0.146
LBFGS 702 0.486 4.268 � 10�3 0.284

Fig. 9. Computational effort of NR line search, NR step limit and LBFGS methods, for
a stopping tolerance of |g|/N 6 0.5.
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the presence of netting parallel to the water current, because
cables of medium stiffness and ground contact were already pres-
ent in tests 4A and 5. In this configuration, vertical forces on the
rear part of the panel are small and more or less independent of
the vertical position of the netting, and therefore LBFSG has trouble
in finding the equilibrium position in the vertical direction; we still
do not fully understand all the mechanisms that cause this defi-
cient behavior of LBFGS. In the remaining of the test cases, the iter-
ation history of LBFGS shows a consistent reduction of the gradient
norm, with small bounces in tests 2A and 3B. In general, the
gradient norm curve fits very well with a straight line; the noise
in the curve has a frequency of 4–5 iterations and a small ampli-
tude. This means that the convergence ratio of the LBFGS method
is practically independent on how far the initial position is from
the solution, which makes LBFGS more robust than NR methods.
Furthermore, users can easily predict the additional computational
effort required to enhance the accuracy in the solution.

Results in Table 10 indicate that NR methods obtain a better
precision that LBFSG: the error in position with respect to the ref-
erence position is, on average, one order of magnitude smaller. The
main reason is that NR iterations in the local convergence region
reduce the gradient norm in large steps, and therefore the final va-
lue of |g|/N is usually a fraction of the 0.5 stopping value required
to achieve a medium precision solution. On the other hand, LBFSG
reduces the gradient norm is small steps, and its final value of |g|/N
is only slightly below the stopping value.

With respect to the computational effort required to attain a
medium precision solution |g|/N 6 0.5, LBFSG is equal or faster
than the best NR method (usually NR line search) in all of the test
cases except tests 6A-6B and obviously test 4B, despite it requires
in the order of 10 times more function evaluations. This is because
LBFSG only requires vector operations, and therefore its iterations
are considerably faster than NR iterations, which require the solu-
tion of a linear equation system. LBFGS spends most of the time in
function evaluations, while NR methods spend it in factorizations
and back-substitutions to solve Eq. (3).

If a very high precision were required, for example the stopping
tolerance in this experiment (|g|/N 6 10�2), the iteration history
shows that NR methods would be faster than LBFSG in all the test
cases. However, in this situation the best approach would be to
solve the problem with an hybrid method: start with LBFSG to at-
tain medium precision, and then continue the iteration with a clas-
sic Newton iteration to improve the solution with quadratic
convergence in a few iterations; this combination of the two meth-
ods can generate high precision solutions with a computational ef-
fort smaller than NR methods.

In the case of shape optimization for netting structures that re-
quire the calculation of the equilibrium shape to carry out the eval-
uation of the objective function, the suitability of NR and LBFGS
depends on the type of optimization strategy. In shape optimiza-
tion methods that modify just one design variable at each iteration
[17,18], the initial position for the equilibrium shape calculation
(taken from the solution of the previous optimization iteration)
is nearly identical to the solution, and therefore NR methods or
even a classic Newton iteration will be more convenient. On the
other hand, more advanced optimization methods that modify all
the design variables at every iteration, or heuristic methods that
can make large modifications in the design variables (e.g. mutation
operators in genetic algorithms), will generate initial positions that
are numerically far from the solution, and therefore LBFSG will be
more suitable.
4.3. Effect of problem size

The size of the finite element models used in the previous
numerical experiments is small, in the order of hundreds of vari-
ables (Table 8), to avoid tangled up mesh configurations in the iter-
ation procedure. Since real world applications of netting structures
require larger models, it is interesting to investigate how the prob-
lem size affects the computational performance of the assessed
methods.
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In this numerical experiment, the three methods compared in
the previous experiment were applied to solve test case 1 using a
numerical model of increasing size: the size of the triangular finite
elements in the mesh was reduced progressively to increase the
number of variables N from 363 (initial value in Table 8) to approx-
imately 5000.

Results from this experiment are summarized in Fig. 10, which
plots the computational effort (CPU-time) as a function of the
problem size (number of variables N). Despite the three methods
have a similar performance for very small problems, the advantage
of the LBFGS method over NR methods increases noticeably with
the problem size: for 5000 variables, LBFGS is 4 times faster than
the best NR method. If this ratio is applied to scale the relative per-
formances shown in Fig. 9 for small problems, LBFGS is estimated
to be between 2 and 8 times faster than NR methods for problems
of medium size (N � 5000), depending on the test case. For models
with N � 104 variables, which can be considered as large models in
the numerical simulation of netting structures [18], the trend on
the right side of the figure suggests that the advantage of LBFGS
can be even higher.

These results are explained by the fact that LBFGS only requires
vector operations, while NR methods require the solution of a lin-
ear equation system. Despite a high-performance sparse solver was
used in the implementation of NR, it is clearly outperformed by
LBFGS for medium and large problem sizes. It is important to men-
tion that LBFGS was implemented using the reference implementa-
tion of the Basic Linear Algebra Subprograms (BLAS) to evaluate the
vector operations; if a hardware-optimized implementation were
used, the performance of LBFGS in large problems could increase
by a 30–40% [35]. However, the effect of the BLAS implementation
in the performance of the direct sparse solver used in NR methods
is negligible [35].

Fig. 10 also shows interesting behaviors of the two methods. For
N < 3000, the LBFGS curve fits nearly exactly with a straight line of
slope 1.5 � 10�4, while NR curves have a worse linear fitting and a
slope three times higher. For N > 3000 the slopes of the three meth-
ods are reduced, probably due to effects in the cache memory of
the CPU hardware. However, the performance of NR methods gets
more irregular as the problem size increases: this is caused by tan-
gled mesh configurations generated occasionally during the itera-
tion process, which increase the number of iterations required to
converge to the solution. On the other hand, LBFGS does not gener-
ate tangled meshes because iterations advance at very small steps.
Note that the test case used in this numerical experiment (test 1) is
an easy, undemanding problem where the starting position is close
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Fig. 10. Effect of problem size N on the computational efficiency of different
methods applied to Test 1.
to the solution and mesh elements undergo small displacements;
in problems where the mesh displacements are larger (e.g. test
cases 2–5), the chances of getting tangled meshes are increased,
and therefore the performance of NR methods will get even more
irregular. According to the authors’ experience, tangled mesh con-
figurations are among the major causes of failure of NR methods in
medium and large problems.
4.4. Implementation issues

Besides the results of the three numerical experiments pre-
sented in this section, the authors’ experience with the different
solution methods has also provided results related to their
implementation.

The implementation of gradient-based optimization methods,
and in particular the LBFGS method, is easier and more straightfor-
ward than NR methods, because the algorithms only require vector
computations and avoid any kind of matrix operation. On the other
hand, an efficient implementation of NR methods require the use
of compressed sparse matrices, reordering algorithms and sparse
linear equation solvers, which appreciably increments the com-
plexity of the code.

Another disadvantage of NR methods is the need of analytical
expressions (for the sake of efficiency) to evaluate the contribution
of the different force terms to the Jacobian, which may have singu-
larities that cause a failure in the method. For example, our imple-
mentation of the Jacobian of the hydrodynamic force model used in
this work presents singularities when any of the two twine direc-
tions in a triangular finite element is parallel to the fluid velocity,
since the cross product of both vectors is used during the evalua-
tion; the workaround used by the authors was to make a momen-
tary small change in the orientation of the triangular element
during the Jacobian evaluation. These problems are hard to detect
and require extensive debugging of the Jacobian terms. Conversely,
gradient-based energy minimization methods only require energy
terms, which can be easily calculated and do not present singular-
ities. The implementation of material nonlinearity is also easier in
energy minimization methods [19].

The LBFGS method also seems to be more suited to paralleliza-
tion, because it spends most of the CPU time in evaluating energy
and force in each finite element. Since these evaluations can be car-
ried out in parallel with a low synchronization cost, the theoretical
speedup of a parallel implementation is high. On the contrary, NR
methods spend most of the CPU time in the solution of Eq. (3):
numerical factorization of the Jacobian and back-substitution. A
parallel linear equation solver could be used, but their speedups
for the typical problem sizes in this application field are low
[36], and therefore the theoretical speedup of a parallel NR imple-
mentation is also low.
5. Conclusions and future work

The aim of this paper has been to assess the robustness and
computational efficiency of gradient-based energy minimization
methods to calculate the equilibrium shape of netting structures,
as an alternative to the Newton–Raphson iteration that is normally
used in this kind of analysis. For this purpose, the authors used a
set of benchmarks problems that replicate different challenging
features that are present in real world applications of netting struc-
tures. Orientation-dependent non-conservative forces (e.g. drag)
were included in the numerical model.

Ten gradient-based optimization methods were preselected
for evaluation, and three of them were suitable for netting
structures: nonlinear conjugated gradient, limited memory Broy-
den–Fletcher–Goldfarb and Shanno (LBFGS) and Newton-CG trust
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region. Numerical experiments show that LBFGS is nearly twice as
efficient as the other methods.

LBFGS was compared with two globalized variants of the New-
ton–Raphson (NR) iteration: the well-known NR line search meth-
od, which uses a line search and the Armijo rule as sufficient
decrease condition, and the NR step limit method that limits the
step length by a fraction of the characteristic length of the netting
structure.

Regarding the behavior of NR methods, the following conclu-
sions can be established:

– The NR step limit method performs better than the NR line
search method in most of the problems, since it is not affected
by stagnation.

– Both methods exhibit poor convergence in netting materials
with very low compression stiffness (equal or less than 1% of
the tension stiffness).

– Both methods have difficulty with initial positions that are far
from the solution, since their iteration process usually generates
tangled meshes which increase the computation time and may
converge to an invalid (e.g. tangled) solution.

– Their performance gets more irregular as the problem size
increases, since the chances of generating a tangled mesh con-
figuration during the iteration are also increased.

Regarding the LBFGS method, it has been found that it has the
following advantages over Newton–Raphson methods:

– It is usually faster in achieving medium precision solutions,
and its advantage increases with the problem size. For prob-
lems of medium size (N � 5 � 103 variables), LBFGS is esti-
mated to be between 2 and 8 times faster, depending on
the type of problem. In the unusual cases where a high preci-
sion solution is required, the use of LBFGS followed by a clas-
sic Newton iteration is presumably faster than a globalized
NR method. Only problems with a starting position that is
nearly identical to the solution make LBFGS slower than NR
methods.

– It is more robust, since it often converges to the solution at a
constant rate regardless of the goodness of the initial position,
the magnitude of the displacements in the structure or the size
of the finite element mesh. LBFGS does not suffer from stagna-
tion and it avoids the generation of tangled meshes.

– It is significantly easier to implement: its algorithm avoid
matrix operations, and it does not require the error-prone eval-
uation of analytical Jacobians. The lack of Jacobians also makes
easier to implement and test new force models.

– It offers more opportunities for parallelization, since it spends
most of the computing time in function evaluations, which
can be parallelized with high theoretical speedups.

On the other hand, LBFGS also has drawbacks. It shows very
poor convergence in problems with elements of very different stiff-
ness (four orders of magnitude or more), such as soft netting struc-
tures attached to wire ropes of medium or large diameter.
Problems where netting panels are towed parallel to the water
flow, such in the case of bottom trawl fishing gears, also reduce
the convergence ratio of the method.

The advantages of the LBFGS method suggest that is it a good
candidate to replace or complement Newton–Raphson methods
currently used in the equilibrium shape calculation of netting
structures. Further research must be carried out to diminish its
drawbacks and to verify that it also exhibits good performance
when applied to real world applications in fishing and aquaculture.
Results also show that both LBFGS and NR are several order of
magnitude faster than dynamic simulation methods used by some
authors to find the equilibrium shape of netting structures
[1,7,9,23].

In addition, the proposed set of test cases has demonstrated to
be a useful tool to assess the performance of simulation methods
for netting structures, since it has revealed the advantages and
shortcomings of the tested methods. Its simplicity also encourages
its reuse in future research, making easier to compare results from
different works.
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Abstract 

Netting structures are extensively used in industrial fishing and aquaculture. In recent 

years, there is a trend towards the use of netting materials manufactured with thicker 

and stiffer twines. The increased mesh resistance to opening of such materials has a 

notable impact in the structural response and performance of the structures. Several 

models exist to simulate this behaviour, but they do not combine efficiency and 

accuracy. This works describes a new lumped mass model for netting structures with 

mesh resistance to opening. It is designed to be used in applications that only require 

calculating the shape of the structure but not the stress field in the material, a common 

case in marine applications. The model combines a non-linear twine beam model for 

small axial deformations, a twine spring model for large axial deformations and a sphere 

model for netting knots. Results of numerical and experimental validations are 

presented. The model is robust, accurate and very efficient: its computational 

performance is similar to linear models that do not consider mesh resistance to opening. 

It shows an excellent agreement with experimental data, significantly better than 

previous models described in the literature. Furthermore, it can be easily implemented 

in existing computer codes for netting structures based on lumped mass methods. 

 

Keywords: netting, resistance to opening, elastic behavior, lumped mass, equilibrium 
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1. Introduction 

Flexible netting structures are extensively used in marine applications such as industrial 

fishing gears and aquaculture cages. The increasing concerns about the energy 

efficiency and environmental impact of these structures have driven the development of 

numerical models specially designed for them. They can be categorized as 1D finite 

element models (Tsukrov et al., 2003; Wan et al., 2002), 2D finite element models 

(Nicoll et al., 2011; Priour, 2003, 1999), lumped mass models (Bessonneau and 

Marichal, 1998; Le Dret et al., 2004; Lee et al., 2005, 2008; Li et al., 2006; Takagi et 

al., 2004; Theret, 1993) and differential equation models for axisymmetric structures 

(O’Neill, 1999; Priour et al., 2009). Such models have been successfully applied to 

solve real-life design and optimization problems in fishing and aquaculture (DeCew et 

al., 2010; Lee et al., 2011, 2011; Priour, 2009; Shimizu et al., 2007; Xu et al., 2011). 

In most marine applications, the performance of a netting structure is mainly determined 

by its equilibrium shape under static or quasi-static conditions. Stress or vibrations 

under dynamics loads are not important in this kind of structures. For example, the 

shape of a fishing trawl affects its hydrodynamic drag and its energy efficiency (Priour, 

2009), and individual mesh shapes determine the size selectivity of a fishing gear 

(O’Neill and Herrmann, 2007). In addition, the computational performance of the 

models is becoming an important issue due to the recent inception of topology 

optimization of netting structures (Khaled et al., 2012; Priour, 2009). Therefore, most 

netting models focus on calculating the equilibrium position in an efficient and accurate 

way, and they do not calculate stress fields in the material.  

In recent years there is a trend towards the use of netting materials manufactured with 

thicker and stiffer twines in order to increase the durability of the fishing gears (Sala et 
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al., 2007b). The increased mesh resistance to opening of such materials has a notable 

impact in the structural response and performance of the gears. Fig.  1 illustrates the 

effect of the resistance to opening in netting of diamond-oriented mesh (Fig.  1a), the 

predominant material in marine applications: thicker and stiffer twines hinder mesh 

opening in normal direction (Fig.  1b) compared with transverse direction (Fig.  1c). The 

mesh resistance to opening is mainly characterized by the twine bending stiffness EI 

(Herrmann and O’Neill, 2006; O’Neill, 2004). Theoretical and experimental studies 

demonstrate that mesh resistance to opening plays as major role in the reduction of 

selective performance of fishing trawls (Herrmann and O’Neill, 2006; Herrmann et al., 

2013; Lowry and Robertson, 1996; Sala et al., 2007a): an increased resistance to 

opening hampers mesh opening in the codend (the aft end of fishing trawls where fish is 

retained), which affects the escapement of small fish. An increased twine bending 

stiffness also changes the overall shape of the fishing gear during fishing operations 

(O’Neill, 2004; Priour, 2001), which has an impact on the hydrodynamic drag and thus 

affects the energy efficiency of the gear (Priour, 2009). Therefore, methods to 

incorporate mesh resistance to opening in numerical models of netting materials are 

becoming fundamental to accurately simulate the structural response and performance 

of modern flexible netting structures. 

Most of the numerical models for netting materials ignore mesh resistance to opening 

because they assume that twines are completely flexible and easily bent without 

resistance. Only two models have been adapted to take into account this mechanical 

property. Priour proposed a model based on the assumption that the couple created by 

the twines on the knots varies linearly with the angle between twines (Priour, 2001). 

Although this linear model can be easily included in numerical formulations, it is not 

derived from any physical law and the twine bending stiffness EI is not a parameter of 
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the model. O’Neill described the equations governing the bending stiffness of a twine 

and found an exact analytical solution and an asymptotic analytical solution (O’Neill, 

2002). The exact solution is far too complex for practical applications. The asymptotic 

solution expresses the position of the end points of the twine as an explicit function of 

the tensile forces acting on it. It is only valid when the tensile forces are very high 

compared to the twine bending stiffness, and it is used in the differential equation 

models by the same author (O’Neill and Herrmann, 2007), which are limited to 

axisymmetric structures. This asymptotic solution has drawbacks when used in more 

general numerical formulations (i.e., not limited to axisymmetric structures) that need to 

evaluate elastic forces in twines as a function of mesh deformation: it does not consider 

twine axial elongation and it needs to be numerically inverted for every mesh element in 

the model at every simulation iteration, causing a significant computational overhead. 

We have recently developed a nonlinear stiffness model for a twine (de la Prada and 

González, 2014a) that overcomes the drawbacks of the two abovementioned models for 

mesh resistance to opening: it takes into account both axial and bending stiffness of the 

twines, it is very accurate and it has a low computational overhead. This work uses that 

twine stiffness model to develop an efficient and accurate model to calculate the 

equilibrium position of flexible netting structures with mesh resistance to opening. The 

main contributions of this work are: 

(i) The twine stiffness model developed in (de la Prada and González, 2014a) is only 

valid for small axial deformations.  However, twines can experience very large and 

unrealistic axial deformations in numerical simulations due to iterations that lead the 

model through positions very far from the equilibrium (de la Prada and González, 

2014b). Here we extend our twine stiffness model in order to be able to deal with such 

large axial deformations. 
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(ii) Previous numerical models of netting represent knots as points and therefore neglect 

their size and structure. A preliminary research with analytical axisymmetric models in 

(O’Neill, 1999) demonstrate that taking into account the structure of the knots is 

essential to get a good agreement between numerical and experimental results. The 

numerical model presented here represents knots as spheres instead of points, and 

therefore the average knot radius is taken into account in the simulations. 

(iii) Previous models of netting based on the lumped mass method require eight point 

masses to represent a numerical mesh: four at the knots and four at the midpoint of the 

twines. The twine stiffness model used in this work avoids the need of the point masses 

at the centres of the twines, thus reducing the number of degrees of freedom of the 

models. 

The remaining of the paper is organized as follows: Section 2 describes the numerical 

model for netting structures; Section 3 presents a numerical validation, comparing the 

model with a detailed finite element model and assessing its robustness and accuracy; 

Section 4 presents an experimental validation of the model; Section 5 assesses the 

computational efficiency of the model and compares it with a traditional formulation 

which does not consider mesh resistance to opening. Finally, Sections 6 and 7 present 

the discussion and the conclusions. 

2. Model 

2.1. Twine model for small axial deformations 

The twine stiffness model used in this work was developed by the authors in (de la 

Prada and González, 2014a). Based in the approach proposed in (O’Neill, 2002), a 

twine is modelled as the bi-dimensional double-clamped beam shown in Fig.  2, where 



7 

p0 and p1 are the points where the beam attaches to the knots and 0 is the slope angle 

between the twine and the knots at the insertion points. The x-axis and the y-axis are 

aligned with the transverse direction and the normal direction of the mesh, respectively. 

The novelty of this model is the method used to obtain the force-displacement response 

of the twine. Point p0 was fixed and an enforced displacement constraint was applied to 

p1 to calculate the reaction force beamf at that point by nonlinear static finite element 

analysis (Zienkiewicz, 2000). The displacement constraint placed p1 on the vertices of a 

rectangular curvilinear grid of size [rmin, rmax][φmin, φmax] = [0.92, 1.05] [0, π/2], 

where   twinetwinetwine Lyxr
5.022  is the dimensionless distance between p0 and p1, twineL is 

the length of the twine, 0  and  twinetwine xy1tan . This grid spans all the 

deformed positions that a twine can undergo in bending and moderate compression or 

tension. A static analysis was run for each vertex of the grid, and dimensional analysis 

and fitting techniques were applied to the obtained results to find a dimensionless model 

that expresses the reaction force beamf as an explicit function of the twine deformation. 

The best compromise between simplicity and accuracy consists on a polynomial surface 

fitting of the polar components of the force ),( beambeam
r

beam FF f  as a function of the 

coordinates (r, ) of p1, resulting in a polynomial degree (m, n) of (2,3) for the radial 

component and (1,4) for the tangential component: 
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Coefficient values of both polynomial surfaces are provided in Table 1 and Table 2 for 

three representative values of the twine axial stiffness EA in netting materials: 500 N, 

1000 N and 2000 N. It was shown in (de la Prada and González, 2014a) that the effect 

of EA is negligible for moderate vertical deformations of the twine ( < 48°). For larger 

deformations, forces can be evaluated using three-point parabolic interpolation for a 

given EA. The resulting twine stiffness model has a high goodness of fit with respect to 

the finite element model, with a coefficient of determination R2 above 0.98 and a 

relative error below 7%. 

2.2. Twine model for large axial deformations 

The twine model described in the previous subsection is only valid for deformations 

within the boundaries of the rectangular curvilinear grid [rmin, rmax][φmin, φmax] used to 

generate the fitting. This grid size spans all of the deformed positions that a mesh twine 

can undergo in real applications of netting structures, but twines can experience larger, 

unrealistic axial deformations in a numerical simulation due to iterations that lead the 

model through positions very far from the equilibrium (de la Prada and González, 

2014b). This is often the case when Newton iteration is used to find the equilibrium 

position of the structure, particularly at the first iterations. In order to overcome this 

problem, the beam model is replaced by a translational spring between p0 and p1 when 

the dimensionless distance r between both points is outside the interval [rmin, rmax]. In 

this way, if the twine reaches a very large axial deformation, the spring model is 

activated to bring it close to the equilibrium position in a few iterations. 

The translational spring force is expressed in polar components as )0,( spring
r

spring Ff , and 

two models for spring
rF  are considered in this work. The first one corresponds to an ideal 

mechanical linear spring of natural length Ltwine:  
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)1()(  rEArF spring
r  (3) 

while the second model corresponds to a spring with variable natural length, thus taking 

into account the reduction in the distance between p0 and p1 as the twine bends: 

))(cos()cos,(  eq
spring

r rrEArF   (4) 

where the length req(cos ) is the dimensionless radial coordinate of the trajectory 

described by p1 when beam
rF  is zero. This trajectory was calculated in (de la Prada and 

González, 2014a) as bareq   cos)(cos  , and the coefficients a = 0.202 and b = 

0.798 are nearly independent of the twine axial stiffness EA.  

To achieve a smooth transition between the beam model and the spring model, a 

piecewise linear blending function α(r) is defined. Hence, the total force in the twine f(r, 

) = (Fr, F) can be expressed as a composition of the forces derived from the beam 

model beamf (Eq. 1 and Eq. 2) and the spring model springf (Eq. 3 or Eq. 4): 

  springbeamr fff )1(,    (5) 

Fig.  3 shows the shape of the function α(r) defined in Eq. 6. The parameter ε 

determines the width of the transition region.  
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When r < (rmin – ε) or r > (rmax + ε), the twine is highly stressed, α = 0 and the model 

behaves as a spring. When rmin ≤ r ≤ rmax, the model behaves as a beam. 
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In the unusual applications where the netting structure in equilibrium position may have 

twines with large compression that affect the overall shape of the structure, the axial 

stiffness EA in Eqs. (3) and (4) can be replaced by a lower value when r < rmin. 

2.3. Mesh model 

Most models for marine netting structures are based on the lumped mass method: the 

netting is modelled as a series of lumped point masses that are interconnected with 

massless force elements (Bessonneau and Marichal, 1998; Le Dret et al., 2004; Lee et 

al., 2005, 2008; Li et al., 2006; Takagi et al., 2004; Theret, 1993). We chose this 

modelling method because it is very efficient when the stress fields in the material are 

not required and it allows introducing new force elements in an easy way.  

For the sake of clarity, the following description assumes that (i) the netting material 

has a diamond-mesh configuration (Fig.  1), the most common netting in marine 

applications; and (ii) a numerical mesh represents a physical mesh. These assumptions 

do not limit the applicability of the formulation. The mesh model presented in this work 

can be easily adapted to other mesh geometries, for instance, square and hexagonal 

meshes. Mesh grouping techniques can be used to model a group of physical meshes by 

a single equivalent numerical mesh in order to reduce the number of variables in the 

model (Theret, 1993).  

A numerical mesh (Fig.  4) is made up of four nodes {p0, p1, p2, p3} placed at the centre 

of the knots.Each node pi has tree translational degrees of freedom (x, y, z) and an 

associated lumped mass that represents ¼ of the total mass of the numerical mesh. 

Nodes are numbered in clockwise order: nodes p0 and p2 are aligned with the transverse 

direction of the mesh (Fig.  1) and nodes p1 and p3 are aligned with the normal direction. 

In this way, the transverse direction t of the mesh is calculated as: 
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0202 )( ppppt   (7) 

Netting knots are modelled as spheres of diameter D centred at the nodes. The knots are 

connected by four massless twine elements {T01, T21, T23, T03}. The ending points of the 

twines pij and pji are located at the surface of the knot spheres and aligned with the 

nodes pi and pj:  
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ijijiij
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The following paragraphs describe how to evaluate the elastic forces on nodes p0 and p1 

due to twine element T01. The procedure for twines T21, T23 and T03 is analogous.  

A local basis {ur, u, uz} is defined for each twine Tij. Fig.  4 shows the local basis of 

twine T01 (uz is not shown since it is normal to the plane of the figure). The origin of 

coordinates is located on point p01, and the directions are defined as: 
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The dimensionless polar coordinates r and φ of the twine are evaluated as 

00

1001

)cos(  


r

twine

a

Lr

ut

pp
 (10) 

and they are used to evaluate the twine force     FFr r
twine ,, f  according to Eq. 5. 

The force applied by twine T01 on its ending nodes p0 and p1 can be expressed in the 

local basis of the twine as 
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These local forces are transformed to the global coordinate system by the twine 

transformation matrix T: 

 zr uuuT 01   (12) 

twinetwine

twinetwine

1011

0010

fTf

fTf




 (13) 

The total force on each node also includes the contribution of all the usual forces that 

act on marine netting structures, which can be calculated with well-known methods 

(Priour, 2013): hydrodynamic drag fhydro , weight fweight, buoyancy fbuoyancy and bottom 

contact with the seafloor fcontact: 

contact
i

buoyancy
i

weight
i

hydro
i

twine
ii ffffff   (14) 

Previous lumped mass models of netting structures use eight nodes per mesh: four at the 

knots and four at the midpoint of the twines. The nodes at the midpoint of the twines are 

required to simulate twine bending, because such models represent twines as bar 

elements articulated in the nodes. Our model avoids the nodes in the twines because our 

twine element takes into account twine bending, thus reducing the number of degrees of 

freedom in the model. 

As far as the knot shape is concerned, experimental methods to measure mesh resistance 

to opening (Sala et al., 2007b) assume that knots are rigid rectangles of size a  b and 

that twines emerge from the rectangle corners (Fig.  5). Note that the rectangle size does 

not match with the knot external size aext   bext because in the numerical model the 

twine is modelled as the central line of the real twine. This work models knots as 
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spheres of diameter D, and D can be estimated from the rectangle size a  b estimated 

from experimental measurements. We have found that D = (a + b) / 2 works well. 

3. Numerical validation 

Three numerical experiments were carried out to evaluate the accuracy and the 

robustness of the numerical model described in the previous section. The test problem 

used in the three experiments is based on the experimental procedure used in (Sala et 

al., 2007b) to measure the mesh resistance to opening of netting panels. It consists on a 

3×3 mesh netting panel that is stretched by applying simultaneous transverse and 

normal loads Ft and Fn to its edges, while the transverse Lt and normal Ln mesh 

openings are measured (Fig.  6). The loads and the properties of the netting panel are 

taken from (Sala et al., 2007b) for traditional green-braided polyethylene 7270 Rtex: 

mesh size Lmesh = 92 mm, knot size a  b = 22.1 mm, EI = 345 N/mm2 and φ0 = 15. 

The applied loads Ft = Fn range from 0 to 15 kg. 

3.1. Comparison with a detailed finite element model 

A detailed finite element model (FEM) of the test problem was built with a commercial 

software (ANSYS, 2007). Each twine was discretized with 20 BEAM189 elements, a 

quadratic 3D element based on Timoshenko beam theory suited for large rotation and 

large strain linear applications. Knots were modelled as rigid rectangles using four 

MPC184-Rigid-Beam elements. The model has 2220 nodes and 13320 degrees of 

freedom. A geometric nonlinear static analysis was used to calculate the mesh openings 

Lt and Ln for each value of the applied load. The test problem was also modelled with 

the formulation described in the previous Section. This lumped mass model has 24 

nodes and 74 degrees of freedom. The optimization method described in (de la Prada 
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and González, 2014b) was used to find the equilibrium shape of the panel for each value 

of the applied load. 

Fig.  7 compares the solutions of the two models: it plots the values of Lt and Ln (Fig.  

7a) and the relative errors in both variables calculated with the lumped mass model 

using the FEM solution as reference (Fig.  7b). Both models generate very similar 

solutions, and the relative error of the lumped mass model is below 5% in most of the 

load range. This error is a result of two simplifications: (i) the approximation introduced 

in the twine stiffness model described by Eqs. (1) and (2), and (ii) the approximation of 

knots as spheres instead of rectangles. The relative error in Ln reaches 12% when the 

applied load is close to zero, but this situation does not happen in real-life applications.  

3.2. Robustness to bad initial positions 

Numerical methods to find the equilibrium shape of netting structures start from an 

initial position provided by the user. In real marine applications (e.g. complex designs 

of fishing gears), it is difficult to estimate a good initial position. Hence, the netting 

model and the solution method should be robust enough to converge to the right 

solution despite of starting from bad initial positions. In this numerical experiment, the 

equilibrium shape of the test problem (Fig.  6) is calculated for a load of 3 kg starting 

from different initial positions, in order to evaluate the robustness of our formulation.  

The initial position is obtained by applying a stretching factor β  to the shape of the 

unstretched panel. That is, the transverse and normal dimensions of the panel in the 

initial position are panel
tL  and panel

nL , where panel
tL  and panel

nL are the dimensions of the 

unstretched panel. These unstretched dimensions are calculated as 

0cosmesht
panel
t LmL   (13) 
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0sinmeshn
panel
n LmL   (14) 

where mt and mn are number of meshes in transverse and normal direction (3 in the test 

problem) and Lmesh is the nominal mesh size. The stretching factor β ranges from 0.1 to 

10, and therefore the panel can be highly compressed (panel area 10 times smaller) or 

stretched (panel area is 10 times larger) in the initial position, compared with the 

unstretched shape. The optimization method described in (de la Prada and González, 

2014b) was used to find the equilibrium position of the panel. The two twine models for 

large axial deformations described in Section 2 were used: the linear spring model in 

Eq. (3) and the variable natural length spring model in Eq. (4). 

Fig.  8 plots the number of function calls required to achieve the equilibrium as a 

function of the stretching factor β. Both spring models were able to converge to the right 

solution even for the minimum and maximum values of β. Both models present a quite 

similar behaviour for log10(β) < 0.3, but the linear spring model is more efficient for 

higher stretching factors. The high number of function calls shown in the figure is 

caused by the high accuracy required to the solution and the optimization method used 

to solve the problem, which does not use the Jacobian of the forces. Experiments with a 

lower level of accuracy result in a lower number of function calls but confirm the trend 

shown in Fig.  8. We have also confirmed that a twine model for large axial 

deformations is required to solve the problem even when β is close to 1. 

3.3. Influence of the transition region of the blending function 

The blending function α(r) defined in Eq. 6 depends on the parameter ε, which 

determines the width of the transition region between the beam model and the spring 

model. This parameter affects the convergence ratio of the model. Fig.  9 plots the 

number of function calls required to reach the equilibrium as a function of ε for three 
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different initial positions (stretching factor β = 1, 2, 3). Numerical experiments for 

higher values of β were carried out, but results are not shown since they follow the trend 

in Fig.  9. The influence of ε becomes noticeable when β > 2: the number of function 

calls always increases for ε < 0.03 and ε > 0.05, regardless of the value of β. Therefore, 

a value of ε = 0.04 is recommended. 

4. Experimental validation 

A simple experiment (Fig.  10) was carried out to verify that the model presented in this 

work can predict the mesh resistance to opening of a real netting material. A 38 mesh 

polyethylene panel was hold between an upper fixed bar and a bottom free bar. The 

panel was stretched in the normal direction of the meshes by applying a growing force 

panelF to the bottom bar and the resulting length of the panel 
panelL  was measured. The 

experimental data was analyzed with the method proposed in (Sala et al., 2007b) to 

estimate the mechanical and dimensional parameters of the netting sample. The method 

uses nonlinear least squares regression to fit a theoretical model for mesh resistance to 

opening to the experimental data. In this example, the model function used in the 

regression analysis was a computer implementation of the netting model described in 

Section 2, particularized for a 38 mesh panel to match the dimensions of the sample 

used in the experiment. Four parameters of the model were estimated: the twine bending 

stiffness EI, the twine length Ltwine, the diameter D of the knot spheres and the angle φ0. 

The nonlinear regression provides the following estimates and confidence intervals for 

the parameters: EI = 74.9 ± 8.7 % N/mm2, Ltwine = 41.5 ± 2.6 % mm, D = 2.1 ± 0.7% 

mm and φ0 = 22.7 ± 0.4%. Fig.  11 plots the length of the panel panelL as a function of 

the applied force panelF . The values of panelL  predicted by the fitted model are 
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superimposed to the experimental data. The quality of the fitting is quantified by 

coefficient of determination R2 = 0.997. A visual inspection of the residuals in Fig.  11 

and the narrow confidence intervals of the parameter estimates confirm that the fitting is 

excellent. Therefore, the netting model presented in this work can predict the mesh 

resistance to opening of netting materials with high accuracy. 

Note that this experimental validation was done with a full model of the netting panel 

simulated with a computer implementation of the numerical model described in Section 

2, including the use of spherical knots. A similar experiment was presented by the 

authors in (de la Prada and González, 2014a), but in that case we only used the 

measurements in a twine to validate Eqs. (1) and (2) and the knots were considered as 

rigid rectangles. Hence, the experimental validation presented here is far more 

complete. 

5. Computational efficiency 

In this section, the computational efficiency of the presented netting model is compared 

with a classical linear spring model that does not take into account mesh resistance to 

opening. The test problem is a 100×100 mesh panel hold by its two upper corners (Fig.  

12). The properties of the netting are: EI = 345 Nmm2, Ltwine = 43.95 mm, D = 2.05 mm 

and φ0 = 15. A vertical force of 10 N per knot is applied to the bottom edge of the 

panel to simulate the weight of a rope attached to it. The panel is exposed to a constant 

water current of 2 m/s normal to the panel, and hydrodynamic forces are calculated 

using the well-known method described in (Vincent, 1999).  

The problem is modelled with two formulations. First, with the formulation described in 

Section 2. Second, with a simpler formulation that models knots as points and twines as 
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linear springs, ignoring the effect of mesh resistance to opening and the knot structure. 

This second formulation is very similar to the lumped mass netting models developed 

by other authors (Bessonneau and Marichal, 1998; Le Dret et al., 2004; Lee et al., 2005, 

2008; Li et al., 2006; Takagi et al., 2004; Theret, 1993), but in this case we do not use 

nodes in the midpoints of twines in order to be able to share the numerical mesh grid 

between both models. For simplicity, each physical mesh is modelled with a numerical 

mesh in both models: the problem has 104 numerical meshes, 20604 nodes and 61812 

variables. 

The equilibrium position shown in Fig.  12 was calculated with the same optimization 

method used in Section 3 (de la Prada and González, 2014b), imposing a stopping 

tolerance of 10-3 to achieve a highly accurate solution. The results obtained with the two 

models are visibly different. Table 3 summarizes the computational performance of both 

models. The solution time and the number of force evaluations are high because the 

initial position was far from the equilibrium, a very fine mesh grid was used and a small 

tolerance was required. In practical applications, a coarse mesh grid would be used in 

the first iterations, thus reducing the total computing time in about two orders of 

magnitude. The key performance indicator is the time per force evaluation in a 

numerical mesh (the last row in Table 3), which includes the evaluation of all non-

constant forces (twine elastic forces and hydrodynamic drag). The model presented in 

this work does not affect the number of iterations, but it is twice as slow as the classical 

linear spring model without mesh resistance to opening.  

A clarification is necessary to interpret this result. The classical linear spring model 

used in this comparison does not have nodes in the midpoints of twines, as explained 

before. But such nodes are used in all lumped mass models for netting structures 

(Bessonneau and Marichal, 1998; Le Dret et al., 2004; Lee et al., 2005, 2008; Li et al., 
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2006; Takagi et al., 2004; Theret, 1993) to describe the curvature of the twine. The 

midpoint nodes duplicate the number of linear springs in a numerical mesh (from 4 to 

8), and therefore they increase the time per force evaluation in a mesh in a factor about 

two. This means that the computational efficiency of the model presented in this work is 

similar to previous lumped mass models that do not consider mesh resistance to 

opening. Note that the presented model does not need nodes in the midpoints of the 

twines to take into account twine bending, since it is already considered in the beam 

model described by Eqs. (1) and (2). 

6. Discussion 

The results of the numerical validation show that the presented model is robust and has 

a good accuracy compared to a detailed finite element model. The differences with the 

finite element model (relative errors below 5%) are not important due to the high 

uncertainty in the mechanical properties of netting materials for marine applications, 

which change during use (Sala et al., 2004). Moreover, the detailed finite element model 

used in Section 3 is an approximation of the real structure of the netting: real twines are 

likely to have a very complex behavior due to the structure its polymer fibers, and real 

knots are not completely rigid structures. 

The results of the experimental validation are far better than the results presented in 

(Sala et al., 2007b), which used a similar experiment to quantify the mesh resistance to 

opening of netting panels. The asymptotic model developed in (O’Neill, 2002) was used 

in that work to analyze experimental data, and the authors reported a systematic lack of 

fit of their model to the experimental data and identifiability problems in the parameters 

of the model. On the contrary, our model provides an excellent goodness of fit and 

parameter estimates with narrow confidence intervals. This suggests that the model 
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presented in this work could be also used to quantify the mesh resistance to opening of 

netting panels in a more reliable way than in (Sala et al., 2007b). 

The approximation of knots as spheres instead of rectangles seems to have little effect in 

the experimental validation presented in this work. However, knots in other kind of 

netting materials may have the shape of a rectangle with a large aspect ratio, and 

therefore the sphere approximation may provide worse agreement with experimental 

data in such materials. More research is required to get insight about this topic. If 

required, the presented netting model could be easily modified to consider knots as 

rectangular parallelepipeds. 

A major objection to the netting model presented in this work is that it does not consider 

the twine flexion outside the plane of the netting. This is the usual practice in all the 

netting models for marine applications, since the curvature of marine netting structures 

is small and therefore the moment generated by the out-of-plane bending can be 

neglected. In our netting model, this simplification is present in the mesh model 

described in Section 2, which implicitly assumes that twines are contained in the plane 

defined by its ending knots and the transverse direction of the mesh. However, out-of-

plane bending modifies the shape of the twines and hence it may modify the resistance 

to opening of the netting. This issue has not been investigated yet in the literature. 

Further experimental work is required to verify the accuracy of the presented netting 

model when out-of-plane bending is present. This matter is out of the scope of this 

article due to the complexity of the required experimental work. 
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7. Conclusions 

A lumped mass model for netting structures with mesh resistance to opening is 

presented. It is designed to be used in applications that only require calculating the 

shape of the structures but not the stress fields in the material. This is the case of many 

marine applications of netting structures (e.g. fishing gears). The model combines a 

twine beam model for small axial deformations, a twine spring model for large axial 

deformations and a sphere model for netting knots. The model has significant 

advantages over previous methods to simulate the resistance to opening in netting 

materials. Numerical experiments confirmed that it is very robust. It also shows an 

excellent agreement with experimental data. Despite the higher non-linearity of this 

model, its computational performance is similar to other models that do not consider 

mesh resistance to opening because it avoids nodes in the midpoints of twines. The 

model can be easily implemented in existing computer codes that use other lumped 

mass models for netting structures. 

The presented model will be very useful to improve the designs of certain marine 

netting structures. For example, the design of selective fishing gears is a very active 

research field that requires predicting the selectivity of the gear using behavioral models 

of fish and structural models of netting (O’Neill and Herrmann, 2007). Accurate 

simulation of mesh opening in the gear is essential for these methods, and the model 

presented in this work can achieve such accuracy when thicker and stiffer twines are 

used. Another application of the presented model is the experimental quantification of 

the mesh resistance to opening of netting materials, as an alternative to the method 

described in (Sala et al., 2007b): the model can be fitted to experimental data using non-
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linear regression in order to obtain an accurate estimation of the mechanical and 

dimensional parameters that govern the resistance to opening. 

Finally, further research is needed to verify that the model is still valid with out-of-plane 

bending is present in the netting material. Despite out-of-plane bending is neglected in 

netting models for marine applications due to the low curvature of the netting structures, 

it may affect the resistance to opening of the netting. 
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TABLES 

Table 1. Coefficient values for the radial force of the twine beam model.  

cij Twine axial rigidity (EA) 

 500 N 1000 N 2000 N

c00 -6.58 × 103 -8.58 × 103 -2.02 × 104

c10 1.18 × 104 1.36 × 104 2.90 × 104

c01 2.74 × 104 5.55 × 104 1.34 × 105

c20 -4.92 × 103 -4.59 × 103 -7.42 × 103

c11 -5.65 × 104 -1.12 × 105 -2.60 × 105

c02 4.34 × 102 -5.95 × 102 -6.67 × 103

c21 2.88 × 104 5.59 × 104 1.22 × 105

c12 -1.63 × 101 1.59 × 103 1.23 × 104

c03 -3.16 × 102 -7.04 × 102 -3.04 × 103

 

Table 2. Coefficient values for the tangential force of the twine beam model. 

cij Twine axial rigidity (EA) 

 500 N 1000 N 2000 N

c00 -1.28 × 102 -1.12 × 102 -9.35 × 102

c10 1.76 × 102 1.73  × 102 1.06 × 103

c01 6.79 × 102 4.05 × 102 4.03 × 103

c11 -7.31 × 102 -4.49 × 102 -4.35 × 103

c02 -2.06 × 103 -2.04 × 103 -7.86 × 103

c12 2.09 × 103 1.96 × 103 8.36 × 103

c03 1.54 × 103 1.85 × 103 4.70 × 103

c13 -1.53 × 103 -1.68 × 103 -5.06 × 103

c04 -2.50 × 101 -1.05 × 102 6.55 × 101
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Table 3. Computational performance of the presented model compared with a classical linear spring 

model without mesh resistance to opening.  

 Presented
model 

Classical linear 
spring model

Numerical meshes 10000 10000

Total solution time (s) 305.3 162.4

Force evaluation calls 10933 10804

Time per call (ms) 27.9 15.0

Time per call per mesh (s) 2.79 1.50
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Fig.  3. Plot of the blending function α(r). 

 

Fig.  4. Modelling of a numerical netting mesh. 
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Fig.  7. Comparison of the lumped mass model with a detailed finite element model (FEM). (a) transverse 

(Lt) and normal (Ln) mesh opening as a function of the applied load Ft = Fn, (b) relative error of the 

lumped mass model. 
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Fig.  8. Robustness to bad initial positions. Number of function calls required to reach the equilibrium as a 

function of the stretching factor β, for the linear spring model and the variable natural length spring 

model. 

 

Fig.  9. Effect of the width of the transition region of the blending function. Number of function calls 

required to reach the equilibrium as a function of the width ε for different values of the stretching factor β 

in the initial position. 
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