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ABSTRACT: Coastal areas have been widely considered as nurseries for many marine 

species. New approaches to this concept take into account interactions among 

environmental variables and ecological variations related to geographical location, as 

well as complex life cycles of marine invertebrates. We present a comparative approach 

to assess the relevance of environmental variables on the determination of patterns of 

distribution and habitat use of benthic decapod species in coastal areas. We 

hypothesize that this approach allows us to infer processes originating these patterns 

and to identify the main habitat use models. An intensive fine-grain sampling design 

was used to take into account the environmental gradients occurring at different spatial 

scales (defined by substrate type, depth, exposure and geographical location) in a 

temperate oceanic bay (Ria de A Coruña, Spain). A high proportion of juveniles were 

found in most populations, but the results do not allow us to generalize the idea of 

coastal areas as potential nurseries, except for few species with a marked spatial 

segregation between juveniles and adults. Larval transport seems to be the main 

process regulating mesoscale distribution patterns, while microscale distribution 

responds to a complex interaction among different processes, i. e. habitat selection at 

settlement, differential mortality among habitats, post-settlement dispersal and 

ontogenetic habitat shifts. Sandy substrates showed low-diversity communities 

dominated by hermit crabs. In rocky bottoms, variability in spatial patterns was mostly 

related to substrate type and geographical location. Caridean shrimps showed higher 

densities on flat rock surfaces, with similar juvenile and adult patterns. Anomuran 
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species occurred mainly on cobbles. Distribution patterns of brachyurans varied among 

species, but did not change greatly from juveniles to adults. 

 

KEY WORDS: Spatial scale; Nursery habitat; Habitat selection; Settlement; Decapod 

crustaceans; Coastal ecosystems; Habitat use; Distribution; Ria de A Coruña 

 

INTRODUCTION 

 

Coastal areas are widely considered as nursery habitats for a high number of marine 

vertebrate and invertebrate species. Traditionally, nursery habitats have been defined 

as areas where juveniles occur at higher densities, avoid predation more successfully or 

grow faster than in other habitats (see review in Gillanders et al. 2003). Beck et al 

(2001) proposed a more accurate definition which includes the relative contribution of 

each potential nursery habitat to the adult population. Furthermore, new approaches 

apply this concept not to an entire area, but to a specific habitat defined by the 

complex interaction of environmental variables and ecological functions related to local 

variations (Beck et al. 2001, Stoner 2003). In addition, this concept has been so far 

studied mainly for a few fish and invertebrate species and for a limited number of 

ecosystem types (e.g. mangroves, coral reefs, estuaries) (Beck et al. 2001, Gillanders 

et al. 2003). Population dynamics of benthic invertebrates shows great differences from 

that of fish, and is determined mainly by complex life cycles, with pelagic phases which 

carry out medium or large-scale dispersion, and benthic phases characterised by a 

limited mobility respect to fish (Roughgarden et al. 1988). These differences, along 

with the high diversity of coastal habitats which so far have been poorly studied, 

suggest the need of further studies in order to produce general hypotheses and 

theories about mechanisms of population regulation in coastal ecosystems. 

 

Shallow benthic habitats are structurally complex environments where a high number of 

biotic and abiotic factors (such as predation or physical disturbance, respectively) 

determine habitat quality and generate different stress levels that determine population 

and community structure and dynamics. These factors act at different spatial scales, 

creating gradients that can occur in the order of meters (microscale), 100s meters or 
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kilometres (mesoscale) or even in the order of 10s-100s kilometres (macroscale) 

(Orensanz & Jamieson 1998). As a response to this variability, benthic organisms might 

select their habitat in order to minimize the trade-offs among different stress factors. 

 

The process of habitat selection could occur in two phases of the life cycle. Firstly, most 

benthic invertebrates can show a certain level of active selection at larval settlement 

and metamorphosis (Paula et al. 2001, Van Montfrans et al. 2003) and early benthic 

stages (Moksnes et al. 2003); this selection is probably aimed to avoid high levels of 

mortality commonly associated to this critical moment in their life cycle. 

Complementarily, differential mortality among habitats also contributes to determine 

the final distribution patterns of juveniles (Palma et al. 1999, Robinson & Tully 2000). 

 

Mobile invertebrates could also modify their habitat preferences in later benthic stages, 

either by carrying out ontogenetic habitat shifts in certain phases of their life cycle (Pile 

et al. 1996, Moksnes 2004) or by showing a differential habitat use related to different 

behaviours (e.g. foraging, mating, etc). 

 

Decapod crustaceans are a suitable group to be used as a model for studying the 

interplay of recruitment processes, habitat selection and postlarval mortality, due to 

their mobility, complex life cycles and population dynamics. Decapod crustaceans play a 

relevant ecological role in the dynamics of coastal benthic ecosystems, due to their high 

abundance in these areas and high taxonomic and trophic diversity (Squires 1990, Ingle 

1996, Freire et al. submitted). Many species of this group are also economically 

important since they support outstanding fisheries, most of them in coastal areas 

(Caddy 1989, Squires 1990, Freire et al. 2002). 

 

In the present study we apply a comparative approach to analyze patterns of 

distribution and habitat use of different decapod species inhabiting coastal areas. We 

hypothesize that this approach will allow us to infer habitat-related differences in 

population-level processes from the observed distribution and abundance patterns. An 

intensive sampling using a fine-grain spatial design was used to take into account the 

different environmental gradients occurring in a coastal ecosystem at different spatial 
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scales. By employing this methodology we will try to assess whether the studied 

habitats or a subset of them constitute potential nurseries for some benthic decapod 

species. In addition, the hierarchical relevance of different environmental variables on 

the processes determining spatial distribution and habitat use of decapod species will 

be analysed. 

 

MATERIALS AND METHODS 

 

Sampling. A stratified random sampling was carried out along the coast of the Ria de 

A Coruña in July and August 1998 (Figure 1). Previous studies suggested that in 

temperate latitudes a settlement peak takes place during these months for many 

invertebrate species (Pfister 1997). The study area is a coastal embayment located in 

the north-western Iberian Peninsula. Its main axis is 5 km long and has a north-south 

orientation; the mean depth is 25 m in the outer zones and 10 m in the inner part 

(Cosme de Avilés & Prego 1995). Three sites along the eastern coastline of the Ria 

were selected to sample the meso-scale variability (sites were separated by 1.5-2.5 

km). The western coastline has been subject to a high urban development and was not 

included in this study. 

 

An array of sampling locations was defined within each site according to the 

combination of three micro-scale variables: 

- Wave exposure: exposed and sheltered locations (separated by 100s m) were 

selected depending on their orientation respect to the mouth of the bay. 

Seaweed communities were also observed to confirm the exposure level 

assigned to each location. 

- Depth, using three nominal strata: 0 (low intertidal), 1 (3-5 m) and 2 (8-12 m). 

Depths are indicated in relation to Lowest Low Water. Locations at different 

depths within the same site and exposure were separated among them by 10s 

m. 

- Substrate type. Four types of relevant substrates were identified in the study 

area: sandy bottoms, flat rock surfaces covered with small seaweeds, cobbles 
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and boulders, and kelp (Saccorhiza polyschides) holdfasts. Distances among 

sampled substrates in a given depth were in the order of a few meters.  

 

Every possible combination of factor levels (site, exposure, depth and substrate) was 

sampled, with two exceptions. Wave exposure was always considered as sheltered for 

samples taken at depth 2, assuming that the importance of the effect of the waves is 

significantly reduced under 8 m deep. Sandy bottoms appeared only in significant 

proportions in the most internal site and thus they were sampled only there.  

  

A suction sampler operated by scuba divers was used. This device consisted of a PVC 

pipe (length 1.70 m, inner diameter 7.5 cm) provided with an air diffuser connected to 

an air compressor and fitted to a 0.5 mm mesh-size bag. Rock surfaces, cobbles and 

sandy bottom samples were taken by placing 50x50 cm stainless steel quadrats on the 

substrate and suctioning the epibenthos. Different operations were employed in every 

substrate type. Flat rock surfaces were previously scraped to separate algae and sessile 

organisms, which were suctioned. Cobbles and boulders <7.5 cm diameter were 

suctioned, as well as the underlying sediment; larger cobbles were scraped and sessile 

organisms were suctioned. Sandy bottoms were suctioned to 5 cm deep. Each kelp 

holdfast was considered a sample and was randomly chosen and pulled up manually 

before suctioning its content. Four replicate samples were taken in each location. 

 

Samples were washed and transferred to plastic bags for freezing at -20ºC. After 

defrosting, decapod crustaceans were separated, fixed in a dissolution of 4% 

formaldehyde in seawater and subsequently conserved in 70% ethanol. Specimens 

were identified following the taxonomical keys of Hayward & Ryland (1995) and 

González-Gurriarán & Méndez (1986). The following biological data were recorded: sex, 

presence of brood in females, and body size measured as carapace length in Caridea 

and Paguridea, and as major carapace axis in Brachyura and other Anomura (carapace 

width in all taxa except Majids and Galathea strigosa). Carapace length excluded the 

rostrum except for Inachus phalangium and Macropodia rostrata. Morphometrical 

measurements were taken using a stereoscopic microscope for individuals <20 mm and 

a calliper for larger specimens. 
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Most individuals were identified at the species level, except in some cases due to the 

taxonomical difficulties, especially in juvenile phases. Species of the superfamily 

Paguridea show allometric growth of the characters used in taxonomy (Benvenuto & 

Gherardi, 2001; Bertini & Fransozo, 1999), difficulting the identification of early stages; 

due to the high proportion of newly settled juveniles found, these species were pooled 

as a single taxon. Some genera (Eualus, Hippoyte, Palaemon, Processa, Pilumnus and 

Xantho) were represented in the collected samples by two species, and differentiation 

between them was impossible for a high proportion of damaged or early stage 

specimens; thus, these species were pooled as genera for data analyses.  

 

Size at onset of maturity was used to estimate the abundance and relative proportions 

of juveniles and adults in the samples for each taxon (Table 1). Maturity size was 

estimated according to the following criteria: I) size of the smallest ovigerous female 

found (excluding outliers) and II) maturity size reported in literature. In the case of 

Ebalia tuberosa, no information about size at maturity was available and the maturity 

size of the two individuals found was not determined. Criterium I was only used when 

the number of ovigerous females was large (>15 individuals) or when no information 

about maturity size of the species was available in the literature. When identification to 

species level was not possible, the minimum size at maturity estimated for the taxon 

was applied (Zariquiey Alvarez 1968, Williams 1984, Hayward & Ryland 1995, Oh & 

Hartnoll 1999, Squires et al. 2000, Marine Information Network for Britain & Ireland: 

http://www.marlin.ac.uk/baski/baski_sp_home.htm, Crustikon, University of Tromso: 

http://www.tmu.uit.no/crustikon/Decapoda/Decapoda2/Species_index.htm). 

 

Data analysis. The most abundant taxa (those that constituted more than 1% of the 

total abundance) were included in data analyses. Mean densities of each species were 

calculated as number of individuals·m-2 for cobbles, flat rock surfaces and sandy bottom 

substrates; since this was not possible for kelp holdfast samples, densities were 

calculated as number of individuals per holdfast. 
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Generalized linear models (GLM) were employed to determine the quantitative effect of 

the environmental conditions (related to site, exposure, depth and substrate) on the 

spatial patterns of the postlarval populations. The best subsets procedure using the 

Akaike Information Criterion (AIC) was used to select the best model, and a normal 

error and log link were assumed. Juvenile and adult abundances were analysed using 

GLMs. Due to the different density units used for holdfast and the rest of samples, 

analyses were performed separately for this habitat. Sandy bottom samples were also 

excluded from the GLM models given the completely different specific composition and 

structure of the communities found and the absence of this habitat at the two most 

external sites. Statistical models for rocky bottoms were fitted both for the complete 

data set and for flat rock surfaces and cobbles separately. 

 

RESULTS 

 

A total of 8843 individuals were found in the samples. 34 species were represented, as 

well as the superfamily Paguridea which was not identified to species level. The size 

frequency distribution of each infraorder showed a pronounced dominance of smaller 

size classes, indicating a high proportion of first juvenile instars (Fig. 2). 

 

Juveniles of all taxa were found in the sampled area, whereas in two taxa (Palaemon 

spp., Galathea strigosa) adults were absent. The proportion of adults was low (32%) in 

all the studied habitats and for almost all species, with the exception of Thoralus 

cranchii, for which adults were more abundant than juveniles in all habitats (70%). 

Species of the superfamily Paguridea also showed a higher proportion of adults (63%) 

than of juveniles in all the rocky bottom habitats (Table 1). 

 

Sandy substrate. Sandy and rocky bottom samples showed clearly different 

assemblages. Sandy substrate showed an extremely low specific diversity, dominated 

by species of the superfamily Paguridea (families Paguridae and Diogenidae). Pagurids 

reached very high densities (up to 1227 individuals/m2 in deepest areas) and 

populations were composed almost exclusively by newly settled individuals, under 2 
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mm carapace length (98.1%). Other species appeared occasionally in very low densities 

(Fig. 3). 

 

Rocky subatrates. Although all the tested variables showed an important effect on 

the distribution of decapod species, variability in spatial patterns for most taxa is mainly 

related to two variables: substrate type and sampling site (Table 2). Effects of depth 

and wave exposure on spatial distribution of postlarvae were quantitatively lower. 

 

Similar patterns regarding parameters included in GLM were found in juveniles and 

adults on rocky bottoms (Table 2).  In both cases substrate type was included in most 

of the models (85% for juveniles, 73% for adults), while wave exposure showed the 

lowest percentage of occurrence in models for both juveniles (62%) and adults (45%).  

However, sampling site was also included in the same proportion of models as 

substrate type for juveniles. 

 

For most species, the proportion of adults was lower at deeper zones and juveniles 

showed higher densities at the external sampling site, with only one clear exception in 

Athanas nitescens, which occurred mainly in the internal site (Fig. 3). Spatial 

differences in distribution were generally more pronounced for juveniles than for adults, 

which were more evenly distributed among the different habitats. Differences in adult 

and juvenile proportion also showed the existence of different habitat use in juvenile 

and adult stages for some species, mainly regarding wave exposure and depth. 

 

Attending to each infraorder independently, we found that caridean shrimps showed 

higher densities on flat rock surfaces, except for A. nitescens and Eualus spp. which 

occurred also on cobbles in high densities (Fig. 4). Vertical distribution of juveniles 

varied among species, occurring from low intertidal (genera Palaemon and Processa) to 

8-10 m (Athanas nitescens, Eualus spp. and Hippolyte spp.). Although differences due 

to exposure level were not significant according to GLM, most caridean juveniles 

occurred preferently (A. nitescens, Processa spp.) or exclusively (Eualus spp.) in 

sheltered zones, but Thoralus cranchii was more abundant in exposed areas. 
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In most carideans, adult distributions followed similar patterns to those of juveniles, 

although densities were generally lower. However, differences among habitats in adult 

densities were less pronounced and their distribution range was wider, especially 

regarding exposure level and depth (A. nitescens), and in some cases differences 

among habitats were not significant (Processa spp.). Some of the taxa also disperse to 

internal sites (genera Eualus and Hyppolite). Thoralus cranchii adults appeared in 

higher densities than juveniles in all habitats and showed similar distribution patterns 

(Fig. 4). 

 

The distribution of brachyuran juveniles was mainly determined by substrate type, 

although with variable patterns among species. Pilumnus spp. and Pirimela denticulata 

occurred almost exclusively on flat rock surfaces, while Xantho spp. appeared mostly on 

cobbles. These patterns were consistent in adults for Pilumnus and Xantho, although in 

this last genus a different vertical distribution pattern was observed, with juveniles 

located in deeper areas and adults in the low intertidal. Densities observed for adults of 

P. denticulata were very low (<0.30 ind/m2) in all habitats (Fig. 5). Many other 

brachyuran species were found in low densities (<1% of total abundance) and 

therefore were not included in the statistical analyses; in many of these species adults 

were absent. 

 

Anomuran species like Pisidia longicornis, Porcellana platycheles and Galathea strigosa 

showed clear habitat preferences, occurring mainly or exclusively on cobbles at medium 

and higher depths. P. longicornis maintained a similar distribution during all their life 

cycle, although a slight dispersion of adults towards intertidal zones was observed. P. 

platycheles showed a differential vertical distribution of different maturity stages, with a 

higher proportion of adults at intertidal zones. No adults of G. strigosa were found. 

Regarding exposure level, G. strigosa and P. longicornis were mainly found in exposed 

areas, whereas P. platycheles occurred only in sheltered habitats. On the other hand, 

the Paguridea were mainly represented by adult stages in rocky habitats, although 

juveniles found showed clear habitat preferences which were less distinct in adult 

phases (Fig. 5). 
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Kelp holdfasts. Almost all taxa found in rocky bottoms occurred also in kelp holdfasts, 

except in the case of the genus Eualus. The GLM results for kelp holdfast samples 

showed a lower effect of all the factors on juvenile and adult patterns compared to the 

results obtained in rocky samples, with no relevant differences among variables. 50% 

of the models obtained for juveniles and 33% of those for adults were not significant 

(p>0.05) (Table 3). 

 

Distribution in holdfasts for most species followed the same patterns as in rocky 

bottoms regarding sampling site, depth and exposure level. However, it is remarkable 

that species like G. strigosa, P. platycheles, A. nitescens and Xantho spp., which 

appeared mostly or exclusively on cobbles, occurred only in kelp holdfasts located in 

sheltered zones. Juveniles of G. strigosa appeared in relatively high densities in 

hodlfasts (up to 2.5 individuals per holdfast), although they could not be compared 

directly to densities in rocky samples. 

 

Mean total densities in kelp holdfasts were 14.1 ind. per holdfast for juveniles and 8.9 

ind. per holdfast for adults. Generally, proportion of adults of each species were equal 

(T. cranchii, Pilumnus spp., P. longicornis) or higher (A. nitescens, Hyppolite spp.) than 

in rocky bottom samples, with cases like the genus Xantho where the proportion of 

adults reached 92% in holdfasts. The few species in which only juveniles appeared 

(Palaemon spp. and P. platycheles) showed very low densities in holdfasts. 

 

DISCUSSION 

 

Potential nursery role of shallow habitats 

 

The higher proportion of juveniles found for most species suggests that the sampled 

areas are juvenile habitats. Nevertheless our results do not allow us to consider the 

area as a general nursery for decapods, according to Beck et al. (2001), since some of 

the premises they establish are not fulfilled for all species. First, the high juvenile 

densities found may be explained not only by the potential nursery role of these 
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habitats but also by the high levels of larval settlement taking place during summer in 

temperate latitudes (Pfister 1997). 

 

On the other hand, the nursery role concept is only applicable to life history strategies 

where there is a disjunction between juvenile and adult habitats. Some species (e.g. 

Porcellana platycheles, Pisidia longicornis, Pilumnus spp.) lacked a spatial segregation 

between juvenile and adult phases at the studied scales. Other species (e.g. Athanas 

nitescens, Eualus spp., Xantho spp.) seem to have a certain spatial segregation, with 

juveniles occurring in a subset of adult habitats. However, the ontogenetic changes in 

distribution seem to respond to dispersion, which could be due to density-dependent 

factors and to a wider stress tolerance range rather than to changes in habitat 

requirements (see Moksnes 2004). Adults of Palaemon shrimps were not found, but 

their high mobility may allow them to easily avoid the sampling device, thus their 

absence in the samples does not imply habitat segregation. 

 

For Galathea strigosa only juveniles were present, as well as for some low-density 

brachyurans excluded from data analyses (e.g. Cancer pagurus, Maja brachydactila). 

Since there is evidence of adult presence at higher depths (Hayward et al. 1995, Fariña 

et al. 1997, Freire et al. 2002, Gonzalez-Gurriaran et al. 2002), we hypothesize that 

these shallow habitats may play an important nursery role for these species. However, 

the absence of adults in these areas does not imply their migration to other areas. The 

differential ontogenetic distribution found in pagurids also suggests a settlement 

function and a potential nursery role of sandy bottoms for this group. Further studies 

must test these hypotheses taking into account the juvenile survival, growth and 

movement to adult habitats (see Beck et al. 2001, Gillanders et al. 2003). 

 

Finally, the results obtained in Thoralus cranchii, in which adults were more abundant 

than juveniles, might be due to inter-cohort variability in recruitment, since no spatial 

segregation was observed. 

  

Effects of environmental variables on distribution patterns 
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The strong mesoscale variation on the distribution of juveniles may be determined by a 

differential larval input (see Wing et al. 1998) along the main axis of the coastal 

embayment. The hydrodynamic pattern of the Ria de A Coruña divides it in two parts 

(Montero & Prego 1997). The inner area is dominated by a clockwise eddy that may 

limit larval dispersion and input, depending on tidal cycle, whilst the outer zone is more 

influenced by oceanic circulation and can receive a greater influx of larvae. This pattern 

results in higher densities of juveniles in the external site, for most species, although in 

few cases (e.g. Athanas nitescens) the pattern differs, probably due to the association 

of the larval input with favourable tidal conditions. Nevertheless, a great range of post-

settlement processes like differential mortality, dispersion and ontogenetic habitat shifts 

may explain the higher mesoscale homogeneity in adult distribution. However, there 

are some exceptions (e. g. Pisidia longicornis, Porcellana platycheles) in which adult 

populations could be strongly limited by juvenile distribution, i.e. by larval dispersion 

and settlement processes (Fernandez et al. 1990). 

 

The major microscale variable affecting differential spatial distribution was substrate 

type, although some trends may be identified regarding wave exposure and depth. 

Some species showed slight preferences for sheltered areas where physical stress is 

minimized (Processa spp., Pirimela denticulata, Porcellana platycheles) and only species 

ocurring mainly in cobbles seem to prefer exposed areas. This restricted effect could be 

in part explained by the small variation in wave exposure at the selected spatial scale. 

 

In general, juveniles tend to appear at deeper zones where predation risk is higher 

(Ruiz et al. 1993, Dittel et al. 1995) but wave disturbance is minimized. This suggests 

that early benthic stages are more vulnerable to physical stress while predation can be 

avoided by using microrefuges, available only for small individuals. Adults seem to be 

less vulnerable to these factors, thus occurring in a wider depth range. Generally, 

substrates with a complex three-dimensional structure seem to be suitable for 

settlement and survival of early stages of decapods (Moksnes 2002, Heck et al. 2003), 

while the poor structure of sandy bottoms does not fulfil the requirements of almost all 

taxa, as our results show. Early stages of hermit crabs are associated to this habitat 

because of their dependence on the use of empty gastropod shells (De Grave & Barnes 
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2001, Barnes & Arnold 2001) which can be found mainly in soft sediments. This 

behaviour allows them to avoid predation in absence of three-dimensional shelter. The 

strong competence for this resource among different pagurid species could lead to the 

complex distribution and shell use patterns observed and would explain the presence of 

adults in a great variety of sandy and rocky habitats.  

 

In the study area the different rocky substrate types constitute nearby patches, among 

which movement may be easy for shrimps and to a lesser extent for brachyuran and 

anomuran crabs. Cobble substrates have been considered to play a relevant nursery 

role due to their abundance in a wide range of subtidal ecosystems and to their 

interstitial nature, which may provide shelter for a high number of species, particularly 

for benthic decapods (Linnane et al. 2002). The nursery function of flat rock surfaces 

has been less studied, but the algal communities may also provide a three-dimensional 

structure suitable for benthic decapods, especially for highly mobile species, as has 

been observed in seaweed-covered soft-bottoms (Lopez de la Rosa et al. 2002). A 

certain differential distribution among flat rock surfaces and cobbles was observed to 

be closely related to the requirements of each species, as a function of anatomical and 

behavioural adaptations of each group. Caridean shrimps generally seem to inhabit flat 

rock surfaces rather than cobbles, but the small differences in density between them 

may indicate a high interchange of individuals, especially for adults. Species found 

mostly in flat surfaces show swimming activity and cryptic adaptations to mimetize with 

seaweed, as in Hyppolite spp. Conversely, Athanas nitescens shows a relatively less 

active swimming behaviour, which may lead them to search for shelter in cobbles and 

crevices.  

 

Anomuran crabs in rocky bottoms demonstrate a clear preference for cobble substrates, 

showing specific adaptations for inhabiting the numerous interstitial spaces present, 

with depressed bodies and flattened or elongated chelae. Porcellana platycheles occurs 

in the lower intertidal and upper subtidal zones restricted to shores with rocks and 

boulders (Stevcic 1985) as our results show. This distribution may be due to their non-

territorial behaviour and reduced activity associated to microphagous feeding (Stevcic 

1985). Conversely, Pisidia longicornis has a slight wider distribution among different 
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substrates although the highest abundances occur in cobbles. This is consistent with its 

importance in rocky bottoms along the Eastern Atlantic coast, where it appears in great 

variety of ecosystems, usually in cobble and gravel substrates (Robinson & Tully 2000, 

Sampedro et al. 1997, Linnane et al. 2002). 

 

Variable patterns found in brachyuran crabs, with recordings of Pilumnus spp. and 

Pirimela denticulata on rock surfaces and Xantho spp. on cobbles, appear to be 

consistent along the whole life cycle. This may be related to their more restricted 

mobility respect to carideans. However, a high number of brachyuran species were 

found in very low densities and their ontogenic changes in distribution might differ from 

the patterns described above. 

 

 
Focusing on kelp holdfasts, the ontogenic distribution patterns observed suggest that 

these habitats are used as a temporary shelter (e. g. against predation, during mating) 

rather than a permanent habitat or a settlement and nursery substrate. The influence 

of environmental stress could be attenuated inside kelp holdfasts, allowing the 

presence of many typically cobble-inhabiting species inside them. 

 

Processes determining habitat use 

 

Observed patterns of habitat use could be explained attending to the underlying 

processes acting at different spatial scales along the life cycle of organisms. Larval 

transport seems to be the main process regulating mesoscale distribution patterns of 

the decapods in the study area. However, microscale distribution responds to a more 

complex interaction among different processes, i. e. habitat selection at settlement, 

differential mortality among habitats, post-settlement dispersal and ontogenetic habitat 

shifts. There are a high number of possible combinations of these processes, but the 

effective number of habitat use models in natural ecosystems is more limited. We have 

identified here the main habitat use models in decapod species in the study area 

allowing to propose the possible combinations of processes originating them. 
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All the species showed a differential distribution among habitats, at least in juvenile 

stages. This can be explained by habitat selection at settlement or in early benthic 

stages and/or by early differential mortality. Our methodology does not allow us to 

discriminate between these two processes. To assess the relative importance of each 

mechanism it will be necessary to carry out complementary field and laboratory 

experiments. 

 

Several processes may act on the patterns of spatial segregation between juveniles and 

adults. Ontogenetic habitat shifts are probably the major process acting on species with 

complete segregation or where juveniles occupy a subset of adult areas. Conversely, no 

migration or dispersion of adult phases would be acting in those species with no spatial 

segregation. Small scale dispersion movements can result in a more extended 

distribution of adults but without a real juvenile/adult disjunction. Differential mortality 

will interact with these processes creating more complex patterns where the individual 

effect of each process is difficult to discriminate. 

 

Determining the nursery role of these shallow habitats will require more accurate 

studies focused on identifying local areas that fulfil the requirements to be considered 

as main nursery grounds, taking into account the larval input, juvenile survival and 

growth and the resulting contribution to adult populations.  
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FIGURE LEGENDS 

 

Figure 1. Ria de A Coruña, NW Spain. Sampling sites located along its eastern 

coastline: Portocobo (PC), Canide (CE) and Canabal (CL). 

 

Figure 2. Size frequency distribution of decapod crustaceans found in the samples. A) 

Caridea, B) Anomura, C) Brachyura. Note different size ranges in Brachyura. 

 

Figure 3. Densities of taxa found in each depth strata on sandy substrate. Note scale 

breaks in the density axis. 

 

Figure 4. Mean densities of juvenile (white boxes) and adult (black boxes) caridean 

taxa in flat rock surface, cobble and kelp holdfast samples for each class of the other 

environmental variables (sampling station, wave exposure level, and depth). 

Densities are calculated as individuals·m-2 for the first two substrates and as 

individuals per holdfast for the latter. Boxes and whiskers represent the standard 

error and 95% confidence interval, respectively. Ex= exposed, Sh=sheltered. 

 

Figure 5. Mean densities of juvenile (white boxes) and adult (black boxes) 

brachyuran taxa in flat rock surface, cobble and kelp holdfast samples for each class 

of the other environmental variables (sampling station, wave exposure level, and 

depth). Densities are calculated as individuals·m-2 for the first two substrates and as 

individuals per holdfast for the latter. Boxes and whiskers represent the standard 

error and 95% confidence interval, respectively. Ex= exposed, Sh=sheltered. 

 

Figure 6. Mean densities of juvenile (white boxes) and adult (black boxes) 

anomurans in flat rock surface, cobble and kelp holdfast samples for each level of 

the other environmental variables (sampling station, wave exposure and depth). 

Densities are calculated as individuals·m-2 for the first two substrates and as 

individuals per holdfast for the latter. Boxes and whiskers represent the standard 

error and 95% confidence interval, respectively. Ex= exposed, Sh=sheltered. 
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Sandy 
bottoms

Rocky 
bottoms

Kelp   
holdfasts

Taxon Nº ind  (mm) criteria (nº ind/holdfast)
Caridea

Athanas nitescens 1432 16.19 2.8 I 2.33 44.04 7.67 0.15
Hippolyte spp. 936 10.58 1.7 I 0.33 31.96 3.50 0.36
Thoralus cranchii 929 10.51 1.4 I 0.33 32.54 3.06 0.70
Processa spp. 230 2.60 5.8 I 0.33 9 0.27 0.08
Eualus spp. 105 1.19 1.8 I 0 4.38 0 0.33
Palaemon spp. 102 1.15 10 II 0.67 4.08 0.04 0
Philocheras spp. 53 0.60 3.5 I 2 1.88 0.04 0.02
Alpheus macrocheles 28 0.32 4.5 I 0 1.17 0 0.29

Brachyura
Pilumnus spp. 713 8.06 7 II 0 21.38 4.17 0.18
Xantho spp. 316 3.57 9 II 0 12.63 0.27 0.39
Pirimela denticulata 106 1.20 11.3 I 0 4.08 0.17 0.10
Necora puber 49 0.55 49.8 II 0 1.67 0.19 0
Inachus phalangium 13 0.15 9.8 II 0 0.38 0.08 0.54
Macropodia rostrata 11 0.12 13.9 I 0 0.46 0 0.09
Liocarcinus spp. 8 0.09 25 II 0.67 0.25 0 0
Pisa tetraodon 7 0.08 21.2 II 0 0.29 0 0.29
Cancer pagurus 5 0.06 127 II 0 0.17 0.02 0
Achaeus gracilis 4 0.05 5.8 II 0 0.17 0 0.75
Achaeus cranchii 3 0.03 5.8 II 0 0.13 0 0.67
Maja brachydactila 3 0.03 120 II 0 0.13 0 0
Ebalia tuberosa 2 0.02 - - 0 0.08 0 -
Eurynome aspera 2 0.02 8 II 0 0.08 0 0

Anomura
Paguridea 1942 21.96 1.2 I 434.33 24.75 0.94 0.21
Pisidia longicornis 1568 17.73 2.8 I 0 60.71 2.31 0.50
Porcellana platycheles 102 1.15 7 I 0 4.17 0.04 0.15
Galathea strigosa 92 1.04 34.6 II 0 2.96 0.44 0

Unidentified 82 0.93 - - 0 2.96 0.23 -
Total 8843 441 266.46 23.44 0.32

Table 1. Abundances, mean densities and adult/juvenile ratios of decapod crustacean taxa found in shallow benthic habitats of
the Ria de A Coruña. The taxa in bold (relative abundance >1%) were used in the analyses. Species pooled as genera due to
identification difficulties: Hippolyte (represented by the species H. varians and H. longirostris ), Pilumnus (P. hirtellus, P. 
spinifer ), Xantho (X. incisus, X. pilipes ), Processa (P. edulis, P. modica ), Eualus (E. occultus, E. pusiolus ), Palaemon (P. 
longirostris , P. serratus , P. elegans ), Philocheras (P. fasciatus , P. trispinosus ) and Liocarcinus (L. arcuatus , L. vernalis ). 
Sexual maturity criteria: I) Size of smallest ovigerous female, II) Size of maturity in literature.

Proportion 
of adults

Relative 
abundance 

(%)

Mean densities

(nº ind m-2)

Sexual maturity



Species Intercept Canide Canabal Sheltered Depth 0 Depth 1 Cobbles p
Juveniles
Caridea

Athanas nitescens 12.00 * -7.33 2.77 1.20 3.67 -2.76 * 8.24 <0,001
Eualus spp. 0.98 * 0.59 0.08 0.01 * -0.78 -0.77 * 0.39 <0,001
Hippolyte spp. 4.85 * -2.51 3.46 * 1.06 * -1.49 -1.60 * -1.67 <0,001
Palaemon spp. 0.36 * -0.93 2.21 * 1.29 * 2.20 -0.56 -0.65 0.004
Processa  spp. 1.28 -0.07 0.15 * 0.91 * -0.45 1.14 * -1.05 <0,001
Thoralus cranchii 3.06 -0.39 -0.33 * -1.59 * -2.30 0.92 -0.50 <0,001

Brachyura
Pilumnus spp. 4.92 * 0.36 1.55 * -2.66 * -1.79 1.80 * -2.14 <0,001
Pirimela denticulata 0.43 * -0.34 1.11 * 0.81 * 1.04 -0.17 * -0.57 <0,001
Xantho spp. 2.99 * 0.11 1.30 -0.57 -0.41 -0.42 * 2.48 <0,001

Anomura
Galathea strigosa 1.14 * -0.02 0.60 * -0.38 * -0.52 0.07 * 0.77 <0,001
Paguridae 3.16 * -1.20 2.75 0.06 * -2.00 -1.16 * 1.47 <0,001
Pisidia longicornis 11.70 * 6.40 -1.20 * -7.14 * -7.79 1.31 * 4.38 <0,001
Porcellana platycheles 1.02 * -0.77 1.73 0.39 0.03 0.46 * 1.11 <0,001

% 84.6 61.5 76.9 84.6

Adults
Caridea

Athanas nitescens 1.22 * -0.89 -0.22 0.20 * 1.21 -0.17 * 0.88 0.026
Eualus spp. 0.41 0.23 -0.02 0.00 * -0.30 -0.03 * 0.16 0.017
Hippolyte spp. 2.59 * -1.31 1.07 0.24 0.02 -0.18 * -0.86 <0,001
Processa  spp. 0.16 0.01 0.04 * 0.07 0.12 -0.02 0.03 0.317
Thoralus cranchii 6.35 -0.30 -0.72 * -2.81 * -4.56 2.23 * -1.35 <0,001

Brachyura
Pilumnus spp. 0.95 * 0.42 -0.06 * -0.69 * -0.46 0.43 * -0.54 <0,001
Pirimela denticulata 0.09 * -0.11 0.17 0.06 0.09 -0.07 -0.03 0.018
Xantho spp. 1.49 * -0.06 0.59 0.00 0.28 -0.07 * 1.34 <0,001

Anomura
Paguridae 3.07 0.86 0.30 * 1.65 * -2.69 1.12 -0.62 <0,001
Pisidia longicornis 11.12 * 5.93 -1.60 * -6.78 * -7.61 2.61 * 3.46 <0,001
Porcellana platycheles 0.17 * -0.03 0.21 0.09 0.13 0.04 * 0.22 <0,001

% 63.6 45.4 54.5 72.7

Sampling station Depth

Table 2. Results of GLM fitted to the distribution of the most abundant species of decapod crustaceans in shallow rocky
bottoms in the Ria de A Coruña. Values estimated for the different levels of the variables are relative to the missing level of
each one, considered as 0 level. Variables included in the most parsimonious models are indicated with asterisks.
Percentage of models in which a variable has been included is showed. P-values showed indicate the significance of the
most parsimonious model for each species.

(10s m)
Wave exposure

(kms)
Microhabitat

Mesoscale Microscale
(100s m) (m)



Species Intercept Canide Canabal Sheltered Depth 0 Depth 1 p
Juveniles
Caridea

Athanas nitescens 6.15 * -1.27 -3.59 * -2.29 -0.61 0.98 0.05
Hippolyte spp. 2.13 -0.42 0.33 -0.13 * -0.63 0.47 0.27
Palaemon spp. 0.04 * 0.08 -0.04 0.00 0.00 0.00 0.11
Processa  spp. 0.00 -0.07 0.30 * -0.22 0.37 0.15 0.06
Thoralus cranchii 0.88 0.20 -0.30 * 0.24 * -0.80 0.64 <0,001

Brachyura
Pilumnus spp. 3.05 -0.34 0.28 * 0.39 0.32 -0.12 0.29
Pirimela denticulata 0.17 * -0.13 0.25 0.00 -0.04 -0.04 0.04
Xantho spp. 0.00 -0.03 0.04 * -0.03 0.00 0.06 0.31

Anomura
Galathea strigosa 0.76 -0.24 0.45 -0.24 * -0.34 -0.71 0.00
Paguridae 1.60 -0.02 0.04 -0.08 * -1.60 -1.43 <0,001
Pisidia longicornis 1.23 * 0.48 0.10 0.13 * -1.02 0.48 <0,001
Porcellana platycheles -0.01 -0.05 0.08 * -0.05 0.05 0.06 0.14

% 33.3 50 41.6

Adults
Caridea

Athanas nitescens 0.72592 * 0.7206 0.7206 * 0.52625 0.82976 0.85712 <0,001
Hippolyte spp. 0.40 0.40 0.40 0.29 * 0.46 0.47 0.01
Processa  spp. 0.03 0.03 0.03 * 0.02 0.03 0.03 0.31
Thoralus cranchii 0.50 * 0.50 0.50 0.36 * 0.57 0.59 0.00

Brachyura
Pilumnus spp. 0.22 0.21 0.21 0.16 * 0.25 0.25 0.04
Xantho spp. 0.10 0.10 0.10 * 0.07 0.12 0.12 0.04

Anomura
Paguridae 0.28 0.28 0.28 0.20 * 0.32 0.33 0.06
Pisidia longicornis 0.31 0.30 0.30 * 0.22 * 0.35 0.36 <0,001

% 25 50 62.5

Table 3. Results of GLM fitted to the distribution of the most abundant species of decapod crustaceans in kelp
holdfasts in the Ria de A Coruña. Values estimated for the different levels of the variables are relative to the
missing level of each one, considered as 0 level. Variables included in the most parsimonious models are
indicated with asterisks. Percentage of models in which a variable has been included is showed. P-values
showed indicate the significance of the most parsimonious model for each species.

MicroscaleMesoscale

Sampling station Wave exposure Depth
(10s m)(kms) (100s m)


